威尔逊定理的内容

tengyun20042022-10-04 11:39:541条回答

已提交,审核后显示!提交回复

共1条回复
lixuan8485 共回答了22个问题 | 采纳率95.5%
威尔逊定理
若p为质数,则p可整除(p-1)!+1.
证明如下
p=2,命题显然成立;
p=3,命题显然成立;
对于奇质数p>=5,令a∈A={2,3,4.p-2},则B={a,2a,3a,.,(p-1)a}中不会有对于除数p同余的两个数;事实上αa,βa∈B,αa≡βa(mod p),则a|α-β|能被p整除,而a|α-β|∈B,B中的元素不可能被p除尽.于是B中被p除得的余数形成集合{1,2,3,...,p-1}.
假设B中被p除余一的数是γa:
一若γ=1,则γa=a,它被p除余a,所以γ=1不成立;
二若γ=p-1,则γa=(p-1)a,它被p除余p-a,所以γ=p-1不成立;
三若γ=a,则γa=a*a,由于a*a≡1(mod p),故应有a*a-1=(a+1)(a-1)≡0(mod p),这只能是a=1或a=p-1,此与a∈A矛盾,故不成立;
有一二三知γ≠a且a,γ∈A.
a不同时,γ也相异;若a1≠a2,a1,a2∈A,且γa1≡γa2≡1(mod p),因,γa1,γa2∈B,而B中的元素关于mod p不同余,可见a1≠a2,则γ1≠γ2.
即A中的每一个a均可找到与其配对的y,γ∈A使ay≡1(mod p),
又,a不同时,γ也相异.
因此,A中的偶数个(p-3个)元素可以分成(p-3)/2个二元组(a,y),每个二元组都满足ay≡1(mod p),
∴ 1×2×3×4.(p-2)≡1(mod p) p-1≡-1(mod p)
∴ (p-1)!≡-1(mod p)
从而p可整除(p-1)!+1
对于偶质数2,命题显然成立;
对于奇质数,令a∈A={2,3,4.p-2},则B={a,2a,3a,.,(p-1)a}中不会有对于除数p同余的两个数;事实上αa,βa∈B,αa≡βa(mod p),则a|α-β|能被p整除,而a|α-β|∈B,B中的元素不可能被p除尽.于是B中被p除得的余数形成集合{1,2,3,...,p-1}.
假设b中被p除余一的数是γa:
一若γ=1,则γa=a,它被p除余a,所以γ=1不成立;
二若γ=p-1,则γa=(p-1)a,它被p除余a,所以γ=p-1不成立;
三若γ=a,则γa=a*a,由于a*a≡1(mod p),故应有a*a-1=(a+1)(a-1)≡0(mod p),这只能是a=1或a=p-1,此与a∈A矛盾,故不成立;
有一二三知γ≠a且a∈A.
a不同时,γ也相异;若a1≠a2,a1,a2∈A,且γa1≡γa2≡1(mod p),因,γa1,γa2∈B,而B中的元素关于mod p不同余,可见a1≠a2,则γ1≠γ2.
依次取a为2,3,...,(p-1)/2;使γa≡1(mod p)的数γ分别为(p-1)/2+1,(p-1)/2+2,...,(p-1)/2,
即2*【(p-1)/2+1】≡3*【(p-1)/2+2】≡4*【(p-1)/2+3】≡...【(p-1)/2】*(p-2)≡1(mod p)
从而2*【(p-1)/2+1】*3*【(p-1)/2+2】*4*【(p-1)/2+3】*...*【(p-1)/2】*(p-2)≡1(mod p) 2*3*4*5*6*...*(p-2)≡1(mod p) 又p-1≡-1(mod p),则
(p-1)!=1*2*3*4*5*...*(p-2)*(p-1)≡-1(mod p)
从而p可整除(p-1)!+1
1年前

相关推荐

求一个不引进数论倒数概念的威尔逊定理的证明~
求一个不引进数论倒数概念的威尔逊定理的证明~
威尔逊定理的内容我就不写了~
xinnu1年前2
zhangbai5 共回答了15个问题 | 采纳率80%
令f(x)=(x-1)(x-2)...(x-(p-1)),g(x)=x^(p-1)-1,
可以发现由费马小定理x取1~p-1时f(x)同余于g(x)同余于0,
由拉格朗日同余定理知f(x)=g(x)在模m意义下至多p-2个实根(x的p-1次项消了)
但以上导出了p-1个模p不同实根,说明f(x)-g(x)在模p意义下为0多项式,即各项系数为p的倍数.
所以由韦达定理对比两式常数项可证明威尔逊定理.
详细可见《初等数论》拉格朗日定理一章~
谁知道威尔逊定理怎么证明啊?问一下,哪位知道威尔逊定理的证明过程? 要详细一点的,谢谢啊!公式:任意素数P,任意正整数A
谁知道威尔逊定理怎么证明啊?
问一下,哪位知道威尔逊定理的证明过程?
要详细一点的,谢谢啊!
公式:任意素数P,任意正整数A,都满足P|(P-1)!+1
llailh1年前1
妖精113 共回答了19个问题 | 采纳率100%
威尔逊定理
若p为质数,则p可整除(p-1)!+1.
证明如下
对于偶质数2,命题显然成立;
对于奇质数,令a∈A={2,3,4.p-2},则B={a,2a,3a,.,(p-1)a}中不会有对于除数p同余的两个数;事实上 αa,βa∈B,αa≡βa(mod p),则a|α-β|能被p整除,而a|α-β|∈B,B中的元素不可能被p除尽.于是B中被p除得的余数形成集合{1,2,3,...,p-1}.
假设b中被p除余一的数是γa:
一若γ=1,则γa=a,它被p除余a,所以γ=1不成立;
二若γ=p-1,则γa=(p-1)a,它被p除余a,所以γ=p-1不成立;
三若γ=a,则γa=a*a,由于a*a≡1(mod p),故应有a*a-1=(a+1)(a-1)≡0(mod p),这只能是a=1或a=p-1,此与a∈A矛盾,故不成立;
有一二三知γ≠a且a∈A.
a不同时,γ也相异;若a1≠a2,a1,a2∈A,且γa1≡γa2≡1(mod p),因,γa1,γa2∈B,而B中的元素关于mod p不同余,可见a1≠a2,则γ1≠γ2.
即每一个a均可找到与其配对的y使其ay≡1(mod p)
∴ 1×2×3×4.(p-2)≡1(mod p)
p-1≡-1(mod p)
∴ (p-1)!≡-1(mod p)
从而p可整除(p-1)!+1