在罗氏几何中能够有和勾股定理类似的阐明直角三角形三边关系的方式吗

筱妤LJL2022-10-04 11:39:541条回答

已提交,审核后显示!提交回复

共1条回复
tottisaviola 共回答了19个问题 | 采纳率100%
这样的关系是有的,毕竟两条直角边仍然可以确定第三边.
关系是:cosh(c/R) = cosh(a/R)cosh(b/R) ①.
其中cosh(x) = (e^x+e^(-x))/2,是双曲余弦函数.
R是常数,依赖于单位长度的选取(与曲率K的关系为R² = -1/K).
从由a,b可以确定c这一点,①式与勾股定理平行.
此外,由Taylor展开:cosh(x) = 1+x²/2+o(x²).
①式在2阶近似的意义下可写为:
1+c²/(2R²) ≈ (1+a²/(2R²))(1+b²/(2R²)) ≈ 1+a²/(2R²)+b²/(2R²).
即得近似勾股定理c² ≈ a²+b².
注:在球面几何中成立的是cos(c/R) = cos(a/R)cos(b/R).
1年前

相关推荐

证明罗氏几何的几个看上去很奇怪的定理.
证明罗氏几何的几个看上去很奇怪的定理.
罗氏几何的定理似乎完全不成立,应该如何证明?
yumeidakala1年前1
qqzrmp 共回答了21个问题 | 采纳率95.2%
罗巴切夫斯基几何学的公理系统和欧氏几何学不同的地方仅仅是把欧氏几何中“一对分散直线在其唯一公垂线两侧无限远离”这一几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同.由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题.
我们知道,罗巴切夫斯基几何除了一个平行公理之外采用了欧氏几何的一切公理.因此,凡是不涉及到平行公理的几何命题,在欧氏几何中如果是正确的,在罗氏几何中也同样是正确的.在欧氏几何中,凡涉及到平行公理的命题,在罗巴切夫斯基几何中都不成立,他们都相应地含有新的意义.下面举几个例子加以说明:
欧氏几何:
同一直线的垂线和斜线相交.
垂直于同一直线的两条直线平行.
存在相似的多边形.
过不在同一直线上的三点可以做且仅能做一个圆.
罗巴切夫斯基几何:
同一直线的垂线和斜线不一定相交.
垂直于同一直线的两条直线,当两端延长的时候,离散到无穷.
不存在相似的多边形.
过不在同一直线上的三点,不一定能做一个圆.
从上面所列举得罗巴切夫斯基几何的一些命题可以看到,这些命题和我们所习惯的直观形象有矛盾.所以罗巴切夫斯基几何中的一些几何事实没有象欧氏几何那样容易被接受.但是,数学家们经过研究,提出可以用我们习惯的欧氏几何中的事实作一个直观“模型”来解释罗氏几何是正确的.
1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现.这就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾.
人们既然承认欧氏几何是没有矛盾的,所以也就自然承认非欧几何没有矛盾了.直到这时,长期无人问津的非欧几何才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也就由此得到学术界的高度评价和一致赞美,他本人则被人们赞誉为“几何学中的哥白尼”.
罗氏几何黎曼几何欧氏几何区别和联系~~急
suker_kaka1年前1
yywjxxx 共回答了14个问题 | 采纳率78.6%
罗巴切夫斯基几何学的公理系统和欧氏几何学不同的地方仅仅是把欧氏几何中“一对分散直线在其唯一公垂线两侧无限远离”这一几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同.由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题.
我们知道,罗巴切夫斯基几何除了一个平行公理之外采用了欧氏几何的一切公理.因此,凡是不涉及到平行公理的几何命题,在欧氏几何中如果是正确的,在罗氏几何中也同样是正确的.在欧氏几何中,凡涉及到平行公理的命题,在罗巴切夫斯基几何中都不成立
罗巴切夫斯基几何中的一些几何事实没有象欧氏几何那样容易被接受.但是,数学家们经过研究,提出可以用我们习惯的欧氏几何中的事实作一个直观“模型”来解释罗氏几何是正确的.
1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现.这就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾.
黎曼几何以欧几里得几何和种种非欧几何作为其特例.例如:定义度量(a是常数),则当a=0时是普通的欧几里得几何,当a>0时 ,就是椭圆几何 ,而当a<0时为双曲几何.
在数学界,欧氏几何仍占主流;而物理界,则用的是黎曼几何.因为据黎曼几何,光线按曲线运动;而欧氏几何中,光线按直线运动
请问在罗氏几何里拟球曲面中,如何在直线外一点做两条与该直线平行的直线.
icy_liang1年前2
sidfusadufu 共回答了16个问题 | 采纳率100%
这种非欧几何想精确作图是不大可能的.
在罗氏几何中的三角形内角和最小是多少度?0度?
叶开i1年前2
格阻止她 共回答了17个问题 | 采纳率70.6%
0!真的是0,三角形三内角之和小于两直角,假如三角形变大,使它的所有三条高都无限增大,则它的三个内角全部趋向于零.
罗氏几何有什么应用呢?我说的应用主要是在物理学上的应用,当然也可以说说罗氏几何在别的方面的应用.我说的罗氏几何是罗巴切夫
罗氏几何有什么应用呢?
我说的应用主要是在物理学上的应用,当然也可以说说罗氏几何在别的方面的应用.我说的罗氏几何是罗巴切夫斯基提出来的那种几何
我知道黎曼几何可以在相对论中有所应用,我也想知道罗氏几何有什么应用,虽然这样说是有那么些功利
shigeru1年前1
mcfmcf 共回答了20个问题 | 采纳率75%
罗巴切夫斯基几何(双曲几何)是非欧几何的一种,它在天体理论有着广泛的应用:
在这里,我们从双曲几何一直说到著名的Gauss-Bonnet-Chern定理,我们还要提 到一个人,那就是伟大的Riemann,正是他创立了狭义的Riemanan几何(Riemann Geometry),然后又把这个结果纳入他创立的极度深邃的“广义Riemanan几何 (Riemannian Geometry,分清楚与Riemann Geometry的区别,它们形式上差别是 “ian”,实质上的差别却是“常曲率”与“任意曲率”的差别),推广了Gauss 的曲面内蕴几何学,定义了抽象Riemann度量,仅仅在2维情形就直接摆脱了Euclidean空间的嵌入研究,使曲面的研究不再等价于3维Euclidean空间中的曲面 研究.著名的Poincare上半平面上定义了Poincare度量,它无法在3维Euclidean 空间中实现嵌入,Poincare度量就是Riemann度量的一种.正如Milnor的所言,双曲几何在Riemann几何出现前只是没手没脚的躯干而已.Riemann让这个躯干成为正常人体.Riemanan之后,Beltrami使伪球面上实现了局部的双曲几何,Klein在开单位圆( 不包括圆周)上实现了整体的双曲几何,而Poincare在上半平面(不包括实数轴 )上实现了整体双曲几何.容易证明,单位圆和上半平面存在共形映射,而单位 圆周和实数轴作为两个域的边界,也一一对应.在单位圆上赋予Poincare度量(Poincare metric),就可以计算出它的截面曲率为-1,证明双曲几何的空间曲 率小于零.正如我们所知道的,双曲几何从Poincare去世后发展至今,最牛的人 物是Thurston,Fields奖获得者.此外,这个学科的发展很缓慢,足见其艰难,也足见Poincare之伟大.大名鼎鼎的Schwarzschild早在26岁时就考虑过宇宙如果为弯曲的话,曲率半径应 该为多少,他在19世纪末时就说:“本世纪有人在Euclid几何之外提出non- Euclid几何,其主要实例就是球面空间和伪球面空间.我们如果知道可能具有有限曲率半径的球面和伪球面几何中世界是什么样子,我们会感到惊讶.如果有这种可能,你会感到自己处在几何学的仙境里;而且如此美妙的仙境会不会变为现实,我们也无法知道.” 他还应用当时的天文学数据估算了3维空间曲率半径的极限,认为双曲空间与球形空间的曲率半径的下限分别为64光年和1600光年.我们当然知道,在1900年的时候,天文测距技术还是不完善的,实际上Einstein 提出静态宇宙学模型时(1917年)对宇宙大小的认识还是很模糊的,甚至于Hubble提出膨胀宇宙学说时,由于造父变星光度的分析有错误,使得宇宙的观测也相应出现严重失误.因此,在Schwarzschild那个时代,对宇宙有着如此的梦幻与计算,实在是非常了不起的.他的思想已经深入到双曲几何和椭圆几何中去了.说个题外话,现代微分几何学家处理三维问题和四维问题时面对的困难相差时很大的,因为三维空间Ricci曲率如果为零,则Riemann截面曲率就为零,而四维空间没有这个性质.但是在Schwarzschild那时,他肯定无法考虑到这个,所以如果 他牛到直接考虑四维时空,也照样提刀上阵:) 我们也知道,Lobachevskii在提出双曲几何时就已经想象到它或许会在宇宙中实现,他说:“同时,不能不重视Laplace的见我们所见到的星星饿银河只属于天体的一部分,就像微弱的、若隐若现的斑点,类似于我们在猎户星座、摩羯星座及其他星座中所看到的一样.于是,且不说在想象中空间可以无限地延伸,自然界本身向我们显示的距离,甚至同我们的地球到恒星的距离相比,后者也因微小而可以忽略.此外,不能进而断言,假定直线的度量不依赖于角——这一假设,许多几何学家想采纳它作为毋需证明的严格的真理——可能在我们过渡到可见世界的极限之前,就会发现它有可以觉察到的错误.” 英国的Clifford实际上也设想过这个问题,但是到了Schwarzschild时,这个梦想被继续深化了.这样我们就可以理解为什么Einstein一搞出广义相对论,Schwarzschild就给出第一个精确解,人家早就是老手了,学起这些新的几何学也 时易如反掌,再加上解偏微分方程的特殊能力,使得Einstein对这个结果赞赏不已,比起6年后对待的Friedman,可谓无比真诚了.

大家在问