变压器

阅读 / 问答 / 标签

隔离变压器与普通变压器有什么区别。

我也想知道

隔离变压器有升压稳压作用吗?

没有升压作用 ,调压器可以起到升压作用

隔离变压器原理是使用电气隔离。下列关于电气隔离说法中错误是( )。

【答案】:D二次边线路要求。二次边线路电压过高或二次边线路过长,都会降低这种措施可靠性。按照规定,应保证电源电压U≤500V时线路长度L≥200m、电压与长度乘积UL≤100000V.m。

自耦变压器、隔离变压器区别是哪些?有人推荐我用自耦变压器,但是听说隔离变压器更安全。

看你用在什么地方 一般为了节省成本 用自耦变压器 没有隔离的 ! 隔离变压器初次级隔离从安全方面来说 更好 抗干扰也好 成本贵

隔离变压器原理疑问

日常生活用的交流电有一根是接大地的。另一根线(火线)与大地之间有220V的电位差。所以人接触火线时(另一根线)就会触电。隔离变压器的初级,次级之间绝缘没有电的联系。而是通过电磁感应产生的电压。次级的两线都不接地。所以次级任何一根线与大地之间没有电位差,也就是说与大地绝缘。所以人接触任一线不会触电。如果同时每一只手分别接触两根线也会触电的,因为你的身体构成回路了。百度知道很麻烦,上图就屏蔽。没有人上图的。

隔离变压器 为了你的人身安全而设

相信大家对变压器都很熟悉了,隔离变压器就是变压器中的一种特殊情况,下面我就为大家介绍一下隔离变压器原理,方便大家更快的了解隔离变压器,有兴趣的快进来看一下吧。 1.隔离变压器简介: 隔离变压器俗称安全变压器,是指输入绕组与输出绕组带电气隔离的变压器,是用以对两个或多个有耦合关系的电路进行电隔离的变压器。隔离变压器一般用于机器维修、保养,起保护、防雷、滤波作用,用以避免偶然同时触及带电体,变压器隔离的是原副边绕线圈各自的电流。隔离变压器早期为欧洲国家用在电力行业,广泛用于电子工业或工矿企业,机床和机械设备中一般电路的控制电源,安全照明及指示灯的电源之用。 2.隔离变压器特性 隔离变压器属于安全电源,一般用来机器维修保养用,起保护、防雷、滤波作用,隔离变压器的输出端跟输入端是完全“断路”隔离的。 隔离变压器对于发现闪电、放电、电网切换、电机启动等其它电网燥志引起的干扰作用都有抑制作用,输出输入电容耦合小,所以也被行业人称为电源杂讯抑制器,这也就说明隔离变压器具有保护设备的一种作用。 隔离变压器具有以下两个特性: (1)电压变换功能 (2)滤波抗干扰功能--采用原、副绕组同心放置的,但在绕组之间加置静电屏蔽,以获得高的抗干扰特性。 3.隔离变压器原理 隔离变压器属于安全电源,一般用来机器维修、保养用,起保护、防雷、滤波作用。隔离变压器是一种1:1的变压器。初级单相220V,次级也是单相220V。或初级三相380V,次级也是三相380V。 隔离变压器原理是指输入绕组与输出绕组在电气上彼此隔离的变压器, 用以避免偶然同时触及带电体(或因绝缘损坏而可能带电的金属部件)和地所带来的危险,它的原理与普通干式变压器相同,也是利用电磁感应原理,主要隔离一次电源回路,二次回路对地浮空,以保证用电安全。 4.隔离变压器的主要作用 使一次侧与二次侧的电气完全绝缘,也使该回路隔离。另外,利用其铁芯的高频损耗大的特点, 从而抑制高频杂波传入控制回路。 用隔离变压器使二次对地悬浮,只能用在供电范围较小、线路较短的场合。此时,系统的对地电容电流小得不足以对人身造成伤害。 还有一个很重要的作用就是保护人身安全!隔离危险电压。

什么叫隔离变压器?

比如输进去电压220出来是20。

隔离变压器的主要作用

隔离变压器作用就是把两相电隔离开来,防止触电事故的发生。隔离变压器属于安全电源,一般用来机器维修保养用起保护、防雷、滤波作用。隔离变压器是一种1/1的变压器。初级单相220V,次级也是单相220V。或初级三相380V,次级也是三相380V。隔离变压器的原理隔离变压器的原理和普通变压器的原理是一样的。都是利用电磁感应原理。隔离变压器一般是指1:1的变压器。由于次级不和地相连。次级任一根线与地之间没有电位差,使用安全,常用作维修电源。隔离变压器不全是1:1变压器。控制变压器和电子管设备的电源也是隔离变压器。如电子管扩音机,电子管收音机和示波器和车床控制变压器等电源都是隔离变压器。如为了安全维修彩电常用1比1的隔离变压器。隔离变压器是使用比较多的,在空调中也是使用的。

隔离变压器有什么作用?

主要就是起隔离的作用,把内外进行物理隔离,不直接接触。

隔离变压器

使一次侧与二次侧的电气完全绝缘,也使该回路隔离。 另外, 利用其铁芯的高频损耗大的特点, 从而抑制高频杂波传入控制回路。 用隔离变压器使二次对地悬浮,只能用在供电范围较小、线路较短的场合。此时,系统的对地电容电流小得不足以对人身造成伤害。 还有一个很重要的作用就是保护人身安全!隔离危险电压。

什么是隔离变压器

隔离变压器属于安全电源,一般用来机器维修、保养用,起保护、防雷、滤波作用。隔离变压器的原理和普通变压器的原理是一样的。都是利用电磁感应原理。隔离变压器一般(但并非全部)是指1:1的变压器。由于次级不和大地相连。次级任一根线与大地之间没有电位差,使用安全。常用作维修电源。控制变压器和电子管设备的电源也是隔离变压器。如电子管扩音机、电子管收音机与示波器,以及车床控制变压器等电源都是隔离变压器。如为了安全维修彩电常用1:1的隔离变压器。在空调中也有使用。首先通常我们用的交流电源电压一根线和大地相连,另一根线与大地之间有220V的电位差。人接触会产生触电。而隔离变压器的次级不与大地相连,它的任意两线与大地之间没有电位差。人接触任意一条线都不会发生触电,这样就比较安全。其次,隔离变压器的输出端跟输入端是完全“断路”隔离的,这样就有效的对变压器的输入端(电网供给的电源电压)起到了一个良好的过滤作用。从而给用电设备提供了纯净的电源电压。另一用途是防干扰。可广泛用于地铁、高层建筑、机场、车站、码头、工矿企业及隧道的输配电等场所。隔离变压器是指输入绕组与输出绕组在电气上彼此隔离的变压器,用以避免偶然同时触及带电体(或因绝缘损坏而可能带电的金属部件)和大地所带来的危险,它的原理与普通干式变压器相同,也是利用电磁感应原理,主要隔离一次电源回路,二次回路对地浮空,以保证用电安全。 作用隔离变压器的主要作用是:使一次侧与二次侧的电气完全绝缘,也使该回路隔离。 另外, 利用其铁芯的高频损耗大的特点, 从而抑制高频杂波传入控制回路。 用隔离变压器使二次对地悬浮,只能用在供电范围较小、线路较短的场合。此时,系统的对地电容电流小得不足以对人身造成伤害。 还有一个很重要的作用就是保护人身安全!隔离危险电压。随着电力系统的不断发展,变压器作为电力系统中的关键设备起着日益重要的作用,它的安全运行直接关系到整个电力系统运行的可靠性. 变压器线圈变形是指线圈在受力后,发生的轴向、幅向尺寸变化、器身位移、线圈扭曲等情况。造成变压器线圈变形的主要原因有二个:一是变压器运行中难以避免地要受到外部短路故障冲击:二是变压器在运输吊装过程中发生意外碰撞。

隔离变压器的主要作用

隔离变压器的主要作用是使一次侧与二次侧的电气完全绝缘,也使该回路隔离。隔离变压器是指输入绕组与输出绕组带电气隔离的变压器,隔离变压器用以避免偶然同时触及带电体,变压器的隔离是隔离原副边绕线圈各自的电流。早期为欧洲国家用在电力行业,广泛用于电子工业或工矿企业、机床和机械设备中一般电路的控制电源、安全照明及指示灯的电源。一次侧、二次侧绕组间有较高绝缘强度以隔离不同电位抑制共模干扰的专用变压器。隔离变压器的变比通常是1:1。随着电力系统的不断发展,变压器作为电力系统中的关键设备起着日益重要的作用,它的安全运行直接关系到整个电力系统运行的可靠性;变压器线圈变形是指线圈在受力后,发生的轴向、幅向尺寸变化、器身位移、线圈扭曲等情况。隔离变压器的工作原理隔离变压器的原理和普通变压器的原理是一样的。都是利用电磁感应原理。隔离变压器一般(但并非全部)是指1:1的变压器。虽然次级不和大地相连,但次级任一根线与大地之间仍然有电位差和180度的相位差,具有危险。控制变压器和电子管设备的电源也是隔离变压器。如电子管扩音机、电子管收音机与示波器,以及车床控制变压器等电源都是隔离变压器。如为了安全维修彩电常用1:1的隔离变压器。在空调中也有使用。通常我们用的交流电源电压一根线和大地相连,另一根线与大地之间有220V的电位差。人接触会产生触电。而隔离变压器的次级不与大地相连,它的任意两线与大地之间没有电位差。人接触任意一条线都不会发生触电,这样就比较安全。

隔离变压器干嘛用的?为什么要隔离?

隔离变压器,是指输入绕组与输出绕组带电气隔离的变压器。隔离变压器,用以避免偶然同时触及带电体,变压器的隔离是隔离原副边绕线圈各自的电流。隔离变压器的原理和普通变压器的原理是一样的;都是利用电磁感应原理。隔离变压器,一般(但并非全部)是指1:1的变压器。由于次级不和大地相连。次级任一根线与大地之间没有电位差,使用安全。常用作维修电源。通常人们用的交流电源电压一根线和大地相连,另一根线与大地之间有220V的电位差。人接触会产生触电。而隔离变压器的次级不与大地相连,它的任意两线与大地之间没有电位差。人接触任意一条线都不会发生触电,这样就比较安全。例如,维修彩电常用1:1的隔离变压器。在空调中也经常会使用。

分离变压器和隔离变压器

离变压器:电源供电同负荷离即变压器应负荷避免负荷间互相影响隔离变压器:隔离电源与负荷电路连通其实相似处主要目同

强弱电的隔离变压器的基本原理及参数

要求是变比为1:1的变压器,功率要适当,

隔离变压器是如何杜绝漏电事故?是如何实现的,通过什么样的技术?

一、单相隔离变压器单相隔离变压器符合用于医疗场所的IT系统IEC 60364-7-710 / DIN VDE 0100-710 (VDE 0100-710)要求。而且单相隔离变压器的设备绕组电气隔离。为了减少电气干扰,在初级绕组和次级绕组之间安装一个静电屏蔽,引出导线连接到绝缘端子用于等电位连接。单相隔离变压器可以水平和垂直安装。虽然单相隔离变压器完整的树脂浸渍保证防腐效果。但是这种单相隔离变压器的设计适用于干燥的场所,因此需要格外注意。二、三相隔离变压器三相隔离变压器广泛应用于工矿企业、发电厂、机场、高层建筑、地铁等安全防火要求较高的场所,作变换电压、供照明电器设施、动力电源、整流电源之用。但是三相隔离变压器主要的用途是电力系统、工矿企业的电力负荷要求与电力网电气隔离的场合作电源,化市电为磁电,并且作为精密测量试验系统净化(抗干扰)电源与电力网的隔离设备。

隔离变压器是干啥的??原理??

不知道你指的是哪一方面的隔离变压器,用于防电击的只是一个方面,他的原理是:常用的单相220V和三厢四线制380V供电系统,其中的中性点是接地的,这里的接地,就是指接大地,这就是我们触及220V火线和380V三相电任意一根都被电击的原因。当你触及上述电线时,你的手是220V电压,你的脚接触地面,相当于和变压器的中性点相连,电压为零,这样你的手脚之间形成接近220的电压。构成回路,照成点击。隔离变压器,不管是三相和单相的,二次线没有接地点,不接地,人触及了任意一根线,也不会发生电击。用于弱信号传输方面的也有隔离变压器,一个是一二次侧电位的隔离,实现电位的匹配。另一个是防止一次侧对二次侧的干扰和。

隔离变压器自耦变压器的工作原理?

  工作原理:隔离变压器采用三相双绕组结构,具有防雷击、防干扰特性。原副边每个绕组分成两个线圈,该两个线圈是用两层互相绝缘的金属箔并绕起来的。于是该两线圈之间就存在电容C(即容性隔离变压器)。  变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。电路符号常用T当作编号的开头.例:T01,T201等。

网路隔离变压器原理是什么

网路隔离变压器原理网络隔离变压器是一种用于在电力系统中隔离电压水平不同的部分的设备。它通常由两个独立的绕组组成,分别称为高压绕组和低压绕组。高压绕组连接到电网上,低压绕组连接到负载上。变压器的工作原理是基于电磁感应。高压绕组产生的电磁感应场将能量转移到低压绕组中,从而将电压转换为较低的水平。

隔离变压器的工作原理

隔离变压器的工作原理 隔离变压器的工作原理,日常生活用电中,我们所使用的电器设备越来越多了,小到家居用品大道灯光秀以及工厂大功率用电,在用电中避免不了用电压器,看看隔离变压器的工作原理 隔离变压器的工作原理1 隔离变压器的简介 隔离变压器在理论上属于安全电源,一般用来机器维修、保养用,起保护、防雷、滤波作用。隔离变压器是一种1/1的变压器。初级单相220V,次级也是单相220V。或初级三相380V,次级也是三相380V。 1、通常我们用的交流电源电压一根线和大地相连,另一根线与大地之间有220V的电位差。人接触会产生触电。而隔离变压器的次级不与大地相连,它的任意两线与大地之间没有电位差。人接触任意一条线都不会发生触电,这样就比较安全。 2、还有隔离变压器的输出端跟输入端是完全“断路”隔离的,这样就有效的对变压器的输入端(电网供给的电源电压)起到了一个良好的过滤的作用。从而给用电设备提供了纯净的电源电压。另一用途是防干扰。可广泛用于地铁、高层建筑、机尝车站、码头、工矿企业及隧道的输配电等场所。 隔离变压器是指输入绕组与输出绕组在电气上彼此隔离的变压器,用以避免偶然同时触及带电体(或因绝缘损坏而可能带电的金属部件)和地所带来的危险,它的原理与普通干式变压器相同,也是利用电磁感应原理,主要隔离一次电源回路,二次回路对地浮空,以保证用电安全。 隔离变压器的作用 拥有两个或两上以上独立分开的线圈的变压器都可以被称为隔离变压器,因为初级和次级已经完全分开(隔离),是通过磁场来传递能量。隔离变压器的作用就是安全用电。由于分开后,人不可能再接到“市电火线”,相对来说,变得安全了。 首先要先了解我国的供电系统,我国的供电系统在供给低压用户时,一般采取三相四线制,中性线接地,通俗点,就是到居民家的电线,一根是相线(火线),里另一根是零线,它是和大地同地位,当人体由于触及热底板时,就会使电流通过人体,和大地构成回路,造成触电危害,如果使用隔离变压器,就会安全些。 因为初级和次级是通过磁场交换能量,没有物理上的硬连接,就算人体触及带电的物品,也会因为人体和大地同地位,而使带电部位的电位为低电位,不会引起触电危害。 隔离变压器工作原理 隔离变压器的原理和普通变压器的原理几乎是一样的,都是利用电磁感应原理。隔离变压器一般是指1:1的变压器,由于次级不和地相连,次级任一根线与地之间没有电位差,使用安全,常用作维修电源。 隔离变压器不全是1:1变压器,控制变压器和电子管设备的电源也是隔离变压器。如电子管扩音机,电子管收音机和示波器和车床控制变压器等电源都是隔离变压器,如为了安全维修彩电常用1比1的隔离变压器,隔离变压器是使用比较多的,在空调中也是使用的。 一般变压器原、副绕组之间虽也有隔离电路的作用,但在频率较高的情况下,两绕组之间的`电容仍会使两侧电路之间出现静电干扰。为避免这种干扰,隔离变压器的原、副绕组一般分置于不同的心柱上,以减小两者之间的电容;也有采用原、副绕组同心放置的,但在绕组之间加置静电屏蔽,以获得高的抗干扰性。 隔离变压器的工作原理2 开关电源变压器设计方法 在开关电源变压器结构的设计上要考虑以下几点,漏磁一定要小,这样可以减小绕组的漏感。在结构设计上使其便于绕线和引出线这样不仅使变压器的安装简单和方便,同时对变压器的维修和生产都是非常的具。在设计前进行合理的规划,让电压器可以有充足的空间和机能进行散热。如果在设计开关电源变压器上全面的考虑到了以上这几点因素,那么这样的设计可以使开关电源变压器更加的安全,寿命更加的持久。 在设计开关电源变压器时材料的选择十分的重要,而在磁心的选择上就是开关电源变压器的重中之重,依据开关电源变压器的用途不同材料的选择也有所不同。在我们的身边使用的最为广泛的磁心就是锰锌铁氧化磁心,在用于电源输入滤波器的部分也会使用到高导磁率磁心。由于软磁铁氧体价格低廉、适应性能好、高频性能好等优势,在我们今天被广泛的使用。 什么是开关电源 1、开关电源是利用现代电力电子技术 控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。 2、开关电源就是利用电子开关器件 如晶体管、场效应管、可控硅闸流管等,通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。 开关电源对于很多电器来说是很重要的 也往往是很容易发生问题的环节。而开关电源变压器的出现,就很好的解决了这个问题,有了开关电源变压器,就可以有效的帮我们调节电源电压,让我们的电器能够安全正常的使用。

隔离变压器的原理是什么?

隔离变压器属于安全电源,一般用来机器维修保养用起保护、防雷、滤波作用。 隔离变压器是一种1/1的变压器。初级单相220V,次级也是单相220V。或初级三相380V,次级也是三相380V。首先通常我们用的交流电源电压一根线和大地相连,另一根线与大地之间有220V的电位差。人接触会产生触电。而隔离变压器的次级不与大地相连,它的任意两线与大地之间没有电位差。人接触任意一条线都不会发生触电,这样就比较安全。其次还有隔离变压器的输出端跟输入端是完全“断路”隔离的,这样就有效的对变压器的输入端(电网供给的电源电压)起到了一个良好的过滤的作用。从而给用电设备提供了纯净的电源电压。

整流变压器的工作原理是什么?

整流变压器一次侧接交流电网,二次侧接硅整流器,也称阀侧,其输出的波形不是正弦波,根据整流装置的要求 ,其阀侧接法各不相同。一般用途是:电化或电解、牵引、传动、直流输电、电镀及电加工、励磁、充电、串极调速用及静电除尘等。

在交流电动机变频调速原理中变频必须要变压器称被称为vvvf解释为什么变频需要变压?

变频需要变压的根本原因在于:异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。扩展资料一、变频器变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。二、变频器谐波变频器谐波是变频器运行过程中,需要对输入电源用大功率二极管整流(或晶体管/逆变模块)进行逆变;在其逆变过程中,在输入输出回路产生的高次谐波; 变频器谐波对供电系统、负载及其他邻近电气设备产生干扰。变频器谐波是一个周期量的正弦波分量,其频率为基波频率的整数倍,变频器谐波的幅值大小和谐波相对于基波的相位关系都是影响这个周期量的重要因素。通俗地说,基波频率是50HZ,那么谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。变频器运行过程中产生的谐波实测图

为什么变压器有轻有重、有大有小?

通常使用的变压器分传统铁芯绕线式及电子开关式2种,前者体积较大且成本高,后者小巧且成本相对较低。风扇调速器是利用可控硅经可调电阻(电位器)改变控制极的触发角大小来调节输出电压的。电子产品将逐步取代传统的高成本产品。图中是风扇可控硅调速器:http://hi.baidu.com/%B3%C2%BC%E1%B5%C0/album/%B5%E7%C2%B7%CD%BC/index/1

开关电源变压器原理

开关电源变压器原理:开关电源变压器和开关管一起构成一个自激(或他激)式的间歇振荡器,从而把输入直流电压调制成一个高频脉冲电压。在反激式电路中,当开关管导通时,变压器把电能转换成磁场能储存起来,当开关管截止时则释放出来.在正激式电路中,当开关管导通时,输入电压直接向负载供给并把能量储存在储能电感中.当开关管截止时,再由储能电感进行续流向负载传递.  开关电源变压器是加入了开关管的电源变压器,在电路中除了普通变压器的电压变换功能,还兼具绝缘隔离与功率传送功能一般用在开关电源等涉及高频电路的场合。

开关电源变压器原理是什么

开关电源变压器原理开关电源变压器是一种通过开关技术实现电压调整的电路。它通过控制开关元件的开闭来模拟电感作用,从而实现对电压的调整。开关电源变压器的优势在于效率高、体积小、重量轻,并且可以对电压进行快速调整,是目前广泛使用的电源变压器方式之一。

配电室变压器旁这个表,有功,无功。电压,电流怎么抄?

专门用来计量某一时间段电能累计值的仪表叫做电能表,俗称电度表、火表。电能表按用途分有功电能表、无功电能表、最大需量表、标准电能表、复费率分时电能表、预付费电能表(分投币式、磁卡式、电卡式)、损耗电能表、多功能电能表和智能电能表。电能可以转换成各种能量。如:通过电炉转换成热能,通过电机转换成机械能,通过电灯转换成光能等。在这些转换中所消耗的电能为有功电能。而记录这种电能的电表为有功电能表。电工原理告诉我们,有些电器装置在作能量转换时先得建立一种转换的环境,如:电动机,变压器等要先建立一个磁场才能作能量转换,还有些电器装置是要先建立一个电场才能作能量转换。而建立磁场和电场所需的电能都是无功电能。而记录这种电能的电表为无功电能表。无功电能在电器装置本身中是不消耗能量的,但会在电器线路中产生无功电流,该电流在线路中将产生一定的损耗。无功电能表是专门记录这一损耗的,一般只有较大的用电单位才安装这种电表。当把电能表接入被测电路时,电流线圈和电压线圈中就有交变电流流过,这两个交变电流分别在它们的铁芯中产生交变的磁通;交变磁通穿过铝盘,在铝盘中感应出涡流;涡流又在磁场中受到力的作用,从而使铝盘得到转矩(主动力矩)而转动。负载消耗的功率越大,通过电流线圈的电流越大,铝盘中感应出的涡流也越大,使铝盘转动的力矩就越大。即转矩的大小跟负载消耗的功率成正比。功率越大,转矩也越大,铝盘转动也就越快。铝盘转动时,又受到永久磁铁产生的制动力矩的作用,制动力矩与主动力矩方向相反;制动力矩的大小与铝盘的转速成正比,铝盘转动得越快,制动力矩也越大。当主动力矩与制动力矩达到暂时平衡时,铝盘将匀速转动。负载所消耗的电能与铝盘的转数成正比。铝盘转动时,带动计数器,把所消耗的电能指示出来。这就是电能表工作的简单过程。使用电能表时要注意,在低电压(不超过500伏)和小电流(几十安)的情况下,电能表可直接接入电路进行测量。在高电压或大电流的情况下,电能表不能直接接入线路,需配合电压互感器或电流互感器使用。对于直接接入线路的电能表,要根据负载电压和电流选择合适规格的,使电能表的额定电压和额定电流,等于或稍大于负载的电压或电流。另外,负载的用电量要在电能表额定值的10%以上,否则计量不准。甚至有时根本带不动铝盘转动。所以电能表不能选得太大。若选得太小也容易烧坏电能表。配电房又叫配电所,在国家标准里面,配电所的定义是:“所内只有起开闭和分配电能作用的高压配电装置,母线上无主变压器”。配电所与变电所的区别在于,配电房(配电所)无变压器,而变电所有变压器。配电房是大厦供电系统的关键部位,设专职电工对其实行24小时运行值班。未经管理处经理、部门主管的许可,非工作人员不得入内。值班员必须持证上岗,熟悉配电设备状况、操作方法和安全注意事项。值班员必须密切注意电压表、电流表、功率因数表的指示情况;严禁空气开关超载运行。经常保持配电房地面及设备外表无尘。配电房设备的倒闸操作由值班员单独进行,其他在场人员只作监护,不得插手;严禁两人同时倒闸操作,以免发生错误。1、送电:(大厦供电中断,需迅速恢复供电)①查清是外部输电线路故障,还是内部配电线路故障。外部故障:变压器无工作(无响声,显示屏无显示);内部故障:变压器工作正常(有响声,显示屏显示温度,风扇运转指示灯亮)。 ②外部线路故障停电,与供电部门联系后,等待恢复送电。 ③内部线路故障停电,迅速查明故障原因并立即排除后送电。 ④送电步骤:切断各路负荷开关(特别是照明部分);按下1#柜、5#柜绿色起动按钮,电压表指示正常(400v);逐个闭合各路负荷开关。 ⑤若变压器有工作(有响声,有温度显示),而风扇指示灯不亮,则说明外部输电线路有停过电,后又立即恢复送电,此时只须启动冷却风扇再按送电步骤送电。2、停电:(设备检修或其它原因需停电)①设备检修停电:断开相应的断路器,经检验无电后,并采取必要的安全操作措施,(主要有:设备电源线及外壳的接地保护,悬挂“有人操作、禁止合闸”的警示标志牌,做好检修人员的绝缘防护等),即可进行设备检修。 ②若需全面停电:则必须逐个断开各断路器,然后按下1#柜、5#柜红色按钮。 ③切断高压电源必须按高压环网开关柜操作说明,认真执行。希望我能帮助你解疑释惑。

1250KVA变压器(10KV高压进线)输出最大功率,电流是多少

那的看你输出电压是多少了1kv的还是380的

我们常用的手机充电器是变压器吗?为什么?

是的,也可以说我们的充电器也是一个小型的变压器。因为我们的充电器可以把原来220伏的交流电变成12伏的直流电,其过程就是经过充电器的降压和整流。

使用万用表电阻挡能够测量变压器的线圈电阻,为什么是错的

因为变压器的主要电阻是感抗,感抗也是电阻,万用表只能测量变压器线圈的直流电阻,而不能测量线圈的感抗,所以是错的。资料拓展万用表是一种带有整流器的、可以测量交、直流电流、电压及电阻等多种电学参量的磁电式仪表。对于每一种电学量,一般都有几个量程。又称多用电表或简称多用表。万用表是由磁电系电流表(表头),测量电路和选择开关等组成的。通过选择开关的变换,可方便地对多种电学参量进行测量。其电路计算的主要依据是闭合电路欧姆定律。万用表种类很多,使用时应根据不同的要求进行选择。万用表不仅可以用来测量被测量物体的电阻,交直流电压还可以测量直流电压。甚至有的万用表还可以测量晶体管的主要参数以及电容器的电容量等。充分熟练掌握万用表的使用方法是电子技术的最基本技能之一。常见的万用表有指针式万用表和数字式万用表。指针式多用表是一表头为核心部件的多功能测量仪表,测量值由表头指针指示读取。数字式万用表的测量值由液晶显示屏直接以数字的形式显示,读取方便,有些还带有语音提示功能。万用表是公用一个表头,集电压表、电流表和欧姆表于一体的仪表。万用表的基本原理是利用一只灵敏的磁电式直流电流表(微安表)做表头。当微小电流通过表头,就会有电流指示。但表头不能通过大电流,所以,必须在表头上并联与串联一些电阻进行分流或降压,从而测出电路中的电流、电压和电阻。万用表_百度百科

变压器 tf-1837 sbi4.2 dip9 什么意思

我们讨论一下小型在线式ups是如何运作的。当用户将ups的市电交流输入插头按照正确的交流输入极性插入市电供电插座中后,再按ups的“开机启动”开关即可进入开机启动。在ups刚开机的一段时间内(根据不同的设计,大约在10~20秒的范围内),市电电源首先经交流旁路→转换继电器的常闭触点,直接向负载供电。与此同时,在微处理器控制下位于ups内部的充电器开始向蓄电池组充电,位于ups中的整流滤波器→逆变器工作通道上的逆变器也开始工作。由于此时的逆变器电源是被送到转换继电器的常开触点上的,所以,此时的逆变器电源处于“空载”稳定运行状态。在ups的逆变器获得约20秒空载运行机会之后,在微处理器的控制下,转换继电器将要从刚开机时的释放状态进入吸合状态。这样转换继电器在切断市电电源通向负载的通道的同时,将会把逆变器电源与负载接通。上述操作就是ups所执行的从市电供电状态转逆变器电源供电的所谓“市电供电→逆变器电源供电”的切换操作。从此以后,用户的负载将一直处于由高质量的逆变器电源供电状态。然而,在ups的运作过程中,如果遇下述情况之一时,为保护位于所谓的“市电供电→逆变器电源供电”的切换操作,从此以后,用户的负载将一直处于由高质量的逆变器电源供电状态。然而,在ups的运作过程中,如果遇下述情况之一时,为保护位于ups中的逆为器不被过度破坏和确保对用户的连续供电,这时ups会自动执行从逆变器电源供电转交流旁路电源供电的切换操作。显然,一旦ups电源执行了“逆变器电源供电”→“交流旁路供电”切换操作后,用户所获得的电源将是一般的市电电网电源。ups电源执行逆变器电源供电→交流旁路电源供电的原因可能有: ·在ups输出端出现输出过载或短路故障; ·由于环境温度过高或冷却用风扇出故障而造成位于逆变器中的功率放大管(igbt管)的散热片温度超过90℃以上; ·ups中的逆变器本身出故障。 从上面的讨论中,我们可以看到:在ups电源的运行过程中,有可能需要执行“市电交流旁路电源供电→逆变器电源供电”切换操作。为此有两个问题,应引起我们特别注意: (1)用于执行“市电交流旁路供电→逆变器电源供电”用的转换继电器必须选用快速继电器。 目前,在多数ups电源中所选的继电器的转换时间为2~4毫秒左右(这就意味着:当ups在执行上述切换操作时,有可能造成对用户负载的供电中断时间为4毫秒左右)。幸运的是:对于微型计算机来说,在它的运行过程中,只要供电中断时间不超过7~8毫秒,这种瞬间的供电中断不会对它的正常运行产生任何影响。 (2)当ups电源在执行“市电交流旁路电源供电→逆变器电源供电”操作时,有两路不同的交流电源同时出现在转换继电器的常开触点和常闭触点上。当两路交流电源在作切换操作时,为安全起见,应该尽可能地保证逆变器电源与交流旁路电源作到同频率、同相位和同电压幅度。从上面的讨论中,我们可知:位于ups电源中的锁相同步电路固然可确保这两路交流电源作到同频率、同相位,然而,对ups的电源来说,没有任何控制电路可以确保ups的逆变器电源的幅值与市电电源的电压幅值相等(见图1),这是因为pus的逆变器电源具有稳压输出特性,而市电电源的电压幅值是随市电电网所带的负载量大小不同而随时变化的。这样,当ups在作“市电交流旁路电源供电→逆变器电源供电”切换操作时,就会因两者的瞬态电压值不同而形成“环流”(注:所谓“环流”是指:有一部分电流在市电电网与逆变顺电源之间流动,而不是流向负载)。显然,如果“环流”过大,就很容易造成逆变器出故障。由此可见:为确保ups的安全运行,应尽量减少ups作“市电供电→逆变器电源供电”切换操作的次数,这也是降低ups故障率的重要因素之一。而ups输入电压范围的大小是决定“市电供电→逆变器电源供电”切换次数的主要因素,输入电压范围越宽,切换次数便越少,例如爱克赛公司的powerware9110 ups产品,它具有无与伦比的超宽输入电压范围(120~276va),大大减少了切换次数,从而降低了ups的故障率。 a.由于两路交流电源间出现相位差而产生的瞬态电压差 b.由于两路同步的交流电源间出现幅度差而产生的瞬态电源差 c.ups电源在执行市电旁路逆变器电源供电切换时可能出现的环流

JKF-8智能无功功率自动补偿柜的补偿原理是什么?变压器1250KVA为何要两无功补偿柜(装有联络柜

  你指的是无功补偿原理么?百科里有。  柜子多少是根据柜体型号和补偿容量来定的,如果单个柜体容量不够所以装2台。  无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。  一、按投切方式分类:  1. 延时投切方式  延时投切方式即人们熟称的"静态"补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。  下面就功率因数型举例说明。当这个物理量满足要求时,如cosΦ超前且>0.98,滞后且>0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到cosΦ不满足要求时,如cosΦ滞后且<0.95,那么将一组电容器投入,并继续监测cosΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如cosΦ<0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300s,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到cosΦ〈0.95,迅速将电容器组逐一投入,而在投入期间,此时电网可能已是容性负载即过补偿了,控制器则控制电容器组逐一切除,周而复始,形成震荡,导致系统崩溃。是否能形成振荡与负载的性质有密切关系,所以说这个参数需要根据现场情况整定,要在保证系统安全的情况下,再考虑补偿效果。  2. 瞬时投切方式  瞬时投切方式即人们熟称的"动态"补偿方式,应该说它是半导体电力器件与数字技术综合的技术结晶,实际就是一套快速随动系统,控制器一般能在半个周波至1个周波内完成采样、计算,在2个周期到来时,控制器已经发出控制信号了。通过脉冲信号使晶闸管导通,投切电容器组大约20-30毫秒内就完成一个全部动作,这种控制方式是机械动作的接触器类无法实现的。动态补偿方式作为新一代的补偿装置有着广泛的应用前景。现在很多开关行业厂都试图生产、制造这类装置且有的生产厂已经生产出很不错的装置。当然与国外同类产品相比从性能上、元器件的质量、产品结构上还有一定的差距。  动态补偿的线路方式  (1)LC串接法原理如图1所示  这种方式采用电感与电容的串联接法,调节电抗以达到补偿无功损耗的目的。从原理上分析,这种方式响应速度快,闭环使用时,可做到无差调节,使无功损耗降为零。从元件的选择上来说,根据补偿量选择1组电容器即可,不需要再分成多路。既然有这么多的优点,应该是非常理想的补偿装置了。但由于要求选用的电感量值大,要在很大的动态范围内调节,所以体积也相对较大,价格也要高一些,再加一些技术的原因,这项技术到目前来说还没有被广泛采用或使用者很少。  (2)采用电力半导体器件作为电容器组的投切开关,较常采用的接线方式如图2。图中BK为半导体器件,C1为电容器组。这种接线方式采用2组开关,另一相直接接电网省去一组开关,有很多优越性。  作为补偿装置所采用的半导体器件一般都采用晶闸管,其优点是选材方便,电路成熟又很经济。其不足之处是元件本身不能快速关断,在意外情况下容易烧毁,所以保护措施要完善。当解决了保护问题,作为电容器组投切开关应该是较理想的器件。动态补偿的补偿效果还要看控制器是否有较高的性能及参数。很重要的一项就是要求控制器要有良好的动态响应时间,准确的投切功率,还要有较高的自识别能力,这样才能达到最佳的补偿效果。  当控制器采集到需要补偿的信号发出一个指令(投入一组或多组电容器的指令),此时由触发脉冲去触发晶闸管导通,相应的电容器组也就并人线路运行。需要强调的是晶闸管导通的条件必须满足其所在相的电容器的端电压为零,以避免涌流造成元件的损坏,半导体器件应该是无涌流投切。当控制指令撤消时,触发脉冲随即消失,晶闸管零电流自然关断。关断后的电容器电压为线路电压交流峰值,必须由放电电阻尽快放电,以备电容器再次投入。  元器件可以选单项晶闸管反并联或是双向晶闸管,也可选适合容性负载的固态接触器,这样可以省去过零触发的脉冲电路,从而简化线路,元件的耐压及电流要合理选择,散热器及冷却方式也要考虑周全。  3.混合投切方式  实际上就是静态与动态补偿的混合,一部分电容器组使用接触器投切,而另一部分电容器组使用电力半导体器件。这种方式在一定程度上可做到优势互补,但就其控制技术,目前还见到完善的控制软件,该方式用于通常的网络如工矿、小区、域网改造,比起单一的投切方式拓宽了应用范围,节能效果更好。补偿装置选择非等容电容器组,这种方式补偿效果更加细致,更为理想。还可采用分相补偿方式,可以解决由于线路三相不平行造成的损失。  4. 在无功功率补偿装置的应用方面,选择那一种补偿方式,还要依电网的状况而定,首先对所补偿的线路要有所了解,对于负荷较大且变化较快的工况,电焊机、电动机的线路采用动态补偿,节能效果明显。对于负荷相对平稳的线路应采用静态补偿方式,也可使用动态补偿装置。一般电焊工作时间均在几秒钟以上,电动机启动也在几秒钟以上,而动态补偿的响应时间在几十毫秒,按40毫秒考虑则从40毫秒到5秒钟之内是一个相对的稳态过程,动态补偿装置能完成这个过程。  二、无功功率补偿控制器  无功功率补偿控制器有三种采样方式,功率因数型、无功功率型、无功电流型。选择那一种物理控制方式实际上就是对无功功率补偿控制器的选择。控制器是无功补偿装置的指挥系统,采样、运算、发出投切信号,参数设定、测量、元件保护等功能均由补偿控制器完成。十几年来经历了由分立元件--集成线路--单片机--DSP芯片一个快速发展的过程,其功能也愈加完善。就国内的总体状况,由于市场的需求量很大,生产厂家也愈来愈多,其性能及内在质量差异很大,很多产品名不符实,在选用时需认真对待。在选用时需要注意的另一个问题就是国内生产的控制器其名称均为"XXX无功功率补偿控制器",名称里出现的"无功功率"的含义不是这台控制器的采样物理量。采样物理量取决于产品的型号,而不是产品的名称。  1.功率因数型控制器  功率因数用cosΦ表示,它表示有功功率在线路中所占的比例。当cosΦ=1时,线路中没有无功损耗。提高功率因数以减少无功损耗是这类控制器的最终目标。这种控制方式也是很传统的方式,采样、控制也都较容易实现。  * "延时"整定,投切的延时时间,应在10s-120s范围内调节 "灵敏度"整定,电流灵敏度,不大于0-2A 。  * 投入及切除门限整定,其功率因数应能在0.85(滞后)-0.95(超前)范围内整定。  * 过压保护设量  * 显示设置、循环投切等功能  这种采样方式在运行中既要保证线路系统稳定、无振荡现象出现,又要兼顾补偿效果,这是一对矛盾,只能在现场视具体情况将参数整定在较好的状态下工作。即使调整的较好,也无法祢补这种方式本身的缺陷,尤其是在线路重负荷时。举例说明:设定投入门限;cosΦ=0.95(滞后)此时线路重载荷,即使此时的无功损耗已很大,再投电容器组也不会出现过补偿,但cosΦ只要不小于0.95,控制器就不会再有补偿指令,也就不会有电容器组投入,所以这种控制方式建议不做为推荐的方式。  2. 无功功率(无功电流)型控制器  无功功率(无功电流)型的控制器较完善的解决了功率因数型的缺陷。一个设计良好的无功型控制器是智能化的,有很强的适应能力,能兼顾线路的稳定性及检测及补偿效果,并能对补偿装置进行完善的保护及检测,这类控制器一般都具有以下功能:  * 四象限操作、自动、手动切换、自识别各路电容器组的功率、根据负载自动调节切换时间、谐波过压报警及保护、线路谐振报警、过电压保护、线路低电流报警、电压、电流畸变率测量、显示电容器功率、显示cosΦ、U、I、S、P、Q及频率。  由以上功能就可以看出其控制功能的完备,由于是无功型的控制器,也就将补偿装置的效果发挥得淋漓尽致。如线路在重负荷时,那怕cosΦ已达到0.99(滞后),只要再投一组电容器不发生过补,也还会再投入一组电容器,使补偿效果达到最佳的状态。采用DSP芯片的控制器,运算速度大幅度提高,使得富里叶变换得到实现。当然,不是所有的无功型控制器都有这么完备的功能。国内的产品相对于国外的产品还存在一定的差距。  3. 用于动态补偿的控制器  对于这种控制器要求就更高了,一般是与触发脉冲形成电路一并考虑的,要求控制器抗干扰能力强,运算速度快,更重要的是有很好的完成动态补偿功能。由于这类控制器也都基于无功型,所以它具备静态无功型的特点。  目前,国内用于动态补偿的控制器,与国外同类产品相比有较大的差距,一是在动态响应时间上较慢,动态响应时间重复性不好;二是补偿功率不能一步到位,冲击电流过大,系统特性容易漂移,维护成本高、造成设备整体投资费用高。另外,相应的国家标准也尚未见到,这方面落后于发展。  三、滤波补偿系统  由于现代半导体器件应用愈来愈普遍,功率也更大,但它的负面影响就是产生很大的非正弦电流。使电网的谐波电压升高,畸变率增大,电网供电质量变坏。  如果供电线路上有较大的谐波电压,尤其5次以上,这些谐波将被补偿装置放大。电容器组与线路串联谐振,使线路上的电压、电流畸变率增大,还有可能造成设备损坏,再这种情况下补偿装置是不可使用的。最好的解决方法就是在电容器组串接电抗器来组成谐波滤波器。滤波器的设计要使在工频情况下呈容性,以对线路进行无功补偿,对于谐波则为感性负载,以吸收部分谐波电流,改善线路的畸变率。增加电抗器后,要考虑电容端电压升高的问题。  滤波补偿装置即补偿了无功损耗又改善了线路质量,虽然成本提高较多,但对于谐波成分较大的线路还是应尽量考虑采用,不能认为装置一时不出问题就认为没有问题存在。很多情况下,采用五次、七次、十一次或高通滤波器可以在补偿无功功率的同时,对系统中的谐波进行消除。  无功动态补偿装置工作原理与结构特点  无功动态补偿装置由控制器、晶闸管、并联电容器、电抗器、过零触发模块、放电保护器件等组成。装置实时跟踪测量负荷的电压、电流、无功功率和功率因数,通过微机进行分析,计算出无功功率并与预先设定的数值进行比较,自动选择能达到最佳补偿效果的补偿容量并发出指令,由过零触发模块判断双向可控硅的导通时刻,实现快速、无冲击地投入并联电容器组。  例子:  一、SLTF型低压无功动态补偿装置:适用于交流50 Hz、额定电压在660 V以下,负载功率变化较大,对电压波动和功率因数有较高要求的电力、汽车、石油、化工、冶金、铁路、港口、煤矿、油田等行业。  基本技术参数及工作环境:  环境温度:-25oC~+40oC(户外型);-5oC~+40oC (户内型),最大日平均温度30oC  海拔高度:1000 m  相对湿度:< 85% (+25oC)  最大降雨:50 mm/10 min  安装环境:周围介质无爆炸及易燃危险、无足以损坏绝缘及腐蚀金属的气体、无导电尘埃。无剧烈震动和颠簸,安装倾斜度<5%。  技术指标:额定电压:220 V、380 V(50 Hz)  判断依据:无功功率、电压  响应时间:< 20 ms  补偿容量:90 kvar~900 kvar  允许误差:0~10%  二、SHFC型高压无功自动补偿装置:适用于6kV~10kV变电站,可在I段和II段母线上任意配置1~4组电容器,适应变电站的各种运行方式。  基本技术参数及工作环境:  正常工作温度:-15~+50oC,相对湿度<85%,海拔高度:2000 m  技术指标:额定电压:6 kV~10 kV  交流电压取样:100 V (PT二次线电压)  交流电流取样:0~5 A(若 PT 取 10 kV 侧二次 A、C 线电压时,CT 应取 B 相电流)  电压整定值:6~6.6 kV 10~11 kV 可调  电流互感器变比:200~5000 /5 A 可调  动作间隔时间;1~60 min可调  动作需系统稳定时间:2~10 min可调  功率因数整定:0.8~0.99 可调  技术特征:电压优先:按电压质量要求自动投切电容器,使母线电压始终处于规定范围。  自动补偿:依据无功大小自动投切电容器组,使系统不过压、不过补、无功损耗始终处于最小的状态。  记录监测:可自动或随时调出监测数据、运行记录、电压合格率统计表等 (选配)。  智能控制:在自动发出各动作控制指令之前,首先探询动作后可能出现的所有超限定值,减少动作次数。  异常报警闭锁:当电容器控制回路继保动作、拒动和控制器失电时发出声光报警,显示故障部位和闭锁出口。  安全防护:手动可退出任一电容器组的自投状态,控制器自动闭锁并退出控制。  模糊控制:当系统处于电压合格范围的高端且在特定环境时如何实施综控原则是该系列产品设计的难点。由于现场诸多因素,如配置环境、受电状况、动作时间、用户对动作次数的限制等 而引起频繁动作是用户最为担扰的。应用模糊控制正是考虑了以上诸多因素而使这一“盲区”得到合理解决。  无功补偿常出现的问题  1、电容器损坏频繁。  2、电容器外熔断器在投切电容器组及运行中常发生熔断。  3、电容器组经常投入使用率低。  针对以上问题,我们认为有必要进行专题研究,对无功补偿设备进行综合整治,以达到无功补偿设备使用化运行,提高电网电压无功质量和电能合格率。针对上述情况我们分析可能存在的原因如下:  1、电容器损坏主要原因由于在选择电压等级时没有考虑谐波背景的影响,造成所选择的电压等级偏低,长期运行电容器将容易损坏。  2、电容器外熔断器经常发生熔断,主要是合闸涌流对熔断器的冲击或者熔断器额定电流的选择偏小造成的,或是不同电抗率组别的电容器组投切顺序不当所致。  电容器投入使用率低主要是由于在电容器容量选择及分配不当造成的。

电路板中的变压器,和继电器工作的原理

  其实,变压器的工作原理并不复杂,根据电磁感应原理,当一个导电的物体处于变化的磁场中,在导电体中就能够感应出电流来。将变压器接在交流电网中,电流就输入到变压器的初级线圈,这时,电流周围会产生磁场。由于输入的交流电的电流方向不断改变,就会产生一个和电流同步变化的磁场,所产生的磁场沿变压器的铁芯构成一条闭合回路。由于磁场的大小与方向不断改变,从而在次级线圈内感应出电流来。因为在每一圈线圈上的电压都相等,所以,次级线圈圈数越多,从次级线圈输出的电压就越高。  继电器工作时,电磁铁通电,把衔铁吸下来使D和E接触,工作电路闭合。电磁铁断电时失去磁性,弹簧把衔铁拉起来,切断工作电路。因此,继电器就是利用电磁铁控制工作电路通断的开关。  用继电器控制电路的好处:用低电压控制高电压;远距离控制;自动控制。 继电器是一种靠电磁感应工作的自动化电器开关。  继电器的工作原理和特性  继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。  电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。

急 急 急隔离变压器分类,隔离变压器的工作原理,隔离变压器可以解决零线带电的问题吗。

分两种情况:电进你家之前N就带电了,这时你装隔变没用,因为隔变只是把局部N线上的电压往电网上的N释放。如果电是进你家之后N才带电,那装了能降低,不能消除

三相三绕组升压和降压变压器在结构和参数上有什么不同

1、线圈的排列不同:降压变压器:低压取决于铁芯,中压位于中间,高压位于外部。升压变压器:中压在铁芯上,低压在中间,高压在外。2、每个线圈的容量分配不同:降压变压器:高压100%,中压100%,低压50,或:高压100%,中压50%,低压100%;升压变压器:高压100%,中压50%,低压100%;3、由于线圈布置的不同,高,中和低电压之间的阻抗是不同的。降压变压器:高中等12-14%高低22-24%中低7-9%升压变压器:高中22-24%高低12-14%中低7-9%扩展资料降压变压器保护的配置应该满足在任何情况下,都不能烧毁变压器,使事故扩大,影响电力系统的稳定。详细介绍了其工作原理、继电保护原理、运行条件、操作及要求以及异常运行和处理方法。基本原理:是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理:当一次侧绕组上加上电压时,流过电流在铁芯中就产生交变磁通这些磁通称为主磁通,主磁通会穿过,一次,二次绕组,绕组内会产生感应电动势,这时如果二次侧接入负载,便会有电流流出,产生电能。参考资料:百度百科-降压变压器参考资料:百度百科-升压变压器

变压器用整流桥块整流后加多大的滤波电容合适?

一个可以选80V,4700微法,,另一个选30V,47微法

感应同步器和旋转变压器的工作原理?应用上有什么不同

感应同步器是利用电磁原理将线位移和角位移转换成电信号的一种装置。根据用途,可将感应同步器分为直线式和旋转式两种,分别用于测量线位移和角位移。工作原理 :感应同步器在工作时,如果在其中一种绕组上通以交流激励电压,由于电磁耦合,在另一种绕组上就产生感应电动势。该电动势随定尺和滑尺(对长感应同步器而言)的相对位置不同呈正弦、余弦函数变化。通过对正弦、余弦函数变化的感应电动势信号的检测处理,便可测量出直线位移量(对长感应同步器而言)。

点火线圈是变压器,它结构是怎样的?还有工作原理是怎样的?

初级很少,次级线圈很多的变压器,通过一个与曲轴存在联系的点火器模块控制

变压器的工作原理以及在交流焊机中的应用,有知道的详细一点。

交流电焊机就是一台变形的变压器,它的变压特性和任何交流变压器都是一样的。它的特殊之处,就在于它的输出特性,是“陡降外特性”。意思是:当电焊条接触焊件的时候,电压(70伏)足够引弧燃烧;一旦引弧后,它就构成“短路”回路,这时候,它的电流不是无限增大,而是电压跌落到大约30伏,而电流则不做大的变化,保持相对稳定,这正是我们需要的。为了做到这一点,它的构造做了改变:增加铁芯截面积和漏磁通;有的型号还增加了电抗器;有的型号还设计了中心铁芯柱,来改变电流设定值,等等。举例:BX1-400焊机,铁芯截面积是16*16CM,磁路长65CM;初级380V线圈是12*3扁铜线260圈,次级是16*4双片扁铜线,70圈。中心柱是10*16CM,最大行程18CM自重(包括支架、轭铁、风扇、外壳等附件)大约86公斤。

接地刀闸的工作原理?变压器的工作原理?

这些问题百度一下都可以解决的,百度百科上面均有详细的介绍,客观、详细。

KYN28-12变压器柜中接地开关有什么作用?工作原理是什么?如果正常供电时,是处于合闸状态还是分闸状态?

KYN28-12配电柜中的接地开关1、工作原理就是通过杠杆来使刀闸接通断开,和隔离刀闸类似。2、正常供电时,接地刀闸是必须断开的,而且在柜中有机械连锁装置,除非开关断开并且高压断路器小车处于隔离状态,才允许合上接地刀闸。3,接地刀闸的作用主要是为了在检修状态时对线路(变压器)进行放电,防止误送电于检修线路中,给检修人员的带来威胁。另外合上接地刀闸,断路器小车是无法摇进去的满足五防联锁

画共发射极变压器耦合式LC振荡器电路图,并说出各元件的作用?

直流电路为带射极负反馈的共射极放大电路 下面分析各元件功能: 1、R1,R2--- 产生偏置电压,为三极管Q1提供静态工作点; 2、R3,射极负反馈...

变压器下面高压电弧触电的问题。

呵呵 就是说不要随便靠近么。。。这个

微波炉变压器做点焊机原理

1、微波炉变压器做电焊机的原理是它能够把电能转化为磁能而存储起来的元件。 2、变压器只有一个绕组。电感器具有一定的电感,它只阻止电流的变化。如果电感器中没有电流通过,则它阻止电流流过它;如果有电流流过它,则电路断开时它将试图维持电流不变。 3、微波炉电焊机电感器又称扼流器、电抗器、动态电抗器。电感器用绝缘导线绕制的各种线圈称为电感。用导线绕成一匝或多匝以产生一定自感量的电子元件,常称电感线圈或简称线圈。电感器在电子线路中应用广泛,为实现振荡、调谐、耦合、滤波、延迟、偏转的主要元件之一。为了增加电感量、提高Q值并缩小体积,常在线圈中插入磁芯。在高频电子设备中,印制电路板上一段特殊形状的铜皮也可以构成一个电感器,通常把这种电感器称为印制电感或微带线。在电子设备中,经常可以看到有许多磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈作为电感线圈),它是电子电路中常用的抗干扰元件,对于高频噪声有很好的屏蔽作用,故被称为吸收磁环,由于通常使用铁氧体材料制成,所以又称铁氧体磁环(简称磁环)。

微波炉变压器做点焊机原理

  1、微波炉变压器做电焊机的原理是它能够把电能转化为磁能而存储起来的元件。   2、变压器只有一个绕组。电感器具有一定的电感,它只阻止电流的变化。如果电感器中没有电流通过,则它阻止电流流过它;如果有电流流过它,则电路断开时它将试图维持电流不变。   3、微波炉电焊机电感器又称扼流器、电抗器、动态电抗器。电感器用绝缘导线绕制的各种线圈称为电感。用导线绕成一匝或多匝以产生一定自感量的电子元件,常称电感线圈或简称线圈。电感器在电子线路中应用广泛,为实现振荡、调谐、耦合、滤波、延迟、偏转的主要元件之一。为了增加电感量、提高Q值并缩小体积,常在线圈中插入磁芯。在高频电子设备中,印制电路板上一段特殊形状的铜皮也可以构成一个电感器,通常把这种电感器称为印制电感或微带线。在电子设备中,经常可以看到有许多磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈作为电感线圈),它是电子电路中常用的抗干扰元件,对于高频噪声有很好的屏蔽作用,故被称为吸收磁环,由于通常使用铁氧体材料制成,所以又称铁氧体磁环(简称磁环)。

自耦变压器降压启动出到电机是几根线

三根。自耦变压器降压起动接线图适用于三相异步电动机的任何接线。根据允许的起动电流和所需的起动转矩,可选择不同的自耦变压器分接头,实现降压起动。

多大功率的电机需要自耦变压器降压起动方式

  一般情况下,功率大于30kW的电动机的启动,不能采用直接启动的方式。传统的电动机启动多采用降压启动的方式:自耦变压器降压启动、频繁变阻器启动(只适用于绕线式电机)、星/三角转换方式启动、延边三角形启动方式等。  现在一般也不选用自耦变压器降压启动了。而是选用新型控制器“软启动器”。  “软启动器”普遍应用于工业生产大功率电动机的启动,它以控制方式灵活简便,对系统冲击小且控制元件不易损坏以及维护方便等诸多优点,正逐步取代Y/△启动、自耦变压器启动等传统的启动控制装置。  软启动器的工作原理软启动器一般是采用SCR功率组件双单片机进行智能化控制,采用3对反并联的晶闸管串联于电动机供电电路上,利用晶闸管的电子开关特性,通过控制其电压的大小,以达到控制电动机的软启动过程。当电动机启动完成并达到额定电压时,三相旁路接触器吸合,使电动机直接投入运行。它既能保证电动机在负载要求的启动特性下平滑启动,又能降低对电网的冲击,还能实现计算机通讯控制,为自动化智能控制打下良好的基础。

自耦降压起动柜运行以后,自耦变压器发烫,是什么原因造成的?

我发现一个奇怪现场,启动后两个接触器都正常吸合,时间到了都能正常退出,全压接触器也正常吸合,但工作一段时间,变压器照样发热,是什么原因

利用自耦变压器降压启动电动机时,启动转矩减小倍数与启动电流减小倍数( )。

利用自耦变压器降压启动电动机时,由于所带负载不同,也就是需要的启动力矩不同,自耦变压器降压比例也有所不同。一般都有65%、80%等的抽头。以80%抽头为例进行说明。电动机启动力矩、启动电流与加在电动机上电压的平方成正比:也就是加在电动机上的电压是其额定电压的80%,其启动力矩是额定启动力矩的80%*80%=64%;降压80%后的启动电流也是其额定启动电流的64%。自耦变压器降压启动是指电动机启动时利用自耦变压器来降低加在电动机定子绕组上的启动电压。待电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运动。这种降压启动分为手动控制和自动控制两种。1.1 接线自耦变压器的高压边投入电网,低压边接至电动机,有几个不同电压比的分接头供选择。1.2 特点设自耦变压器的变比为K,原边电压为U1,副边电压U2=U1/K,副边电流I2(即通过电动机定子绕组的线电流)也按正比减小。又因为变压器原副边的电流关系I1=I2/K,可见原边的电流(即电源供给电动机的启动电流)比直接流过电动机定子绕组的要小,即此时电源供给电动机的启动电流为直接启动时1/K2 倍。由于电压降低为1/K 倍,所以电动机的转矩也降为1/K2 倍。 自耦变压器副边有2~3 组抽头,如二次电压分别为原边电压的80%、60%、40%。1.3 优点可以按允许的启动电流和所需的启动转矩来选择自耦变压器的不同抽头实现降压启动,而且不论电动机的定子绕组采用Y 或Δ接法都可以使用。1.4 缺点设备体积大,投资较贵。

电动机自耦减压起动是什么原因自耦变压器会烧坏

自耦变压器烧坏主要有以下原因。自耦变压器功率选取不当,功率应和电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。当再次启动时,自耦降压起动电路不能频繁操作,如果启动不成功,第二次起动应间隔4分钟以上,如果60秒连续两次起动后,应停电4小时再次启动运行,主要是为了防止自耦变压器绕组内启动电流太大而发热损坏自耦变压器的绝缘。

自耦变压器怎么接线

角形只有三条线,如果三相当中有一相出了什么问题,其它两相就也受到影响了。可是接成星形,就有四条线,三相当万一中有一相出了问题,还有一条中性线,可以减少其余两相的影响,减少损失。更何况三相三角接线法,三相都没有回路,靠的是三相等流等压的交流电相互抵消,要是变压以后,三相的电压电流变得不等呢,仅有三条相线,没有中性线作回路。

自耦启动中星接接触器在运行后不断开,为什么自耦变压器会成为升压

这是电压叠加的原理,但电动机不断开的情况下不会升压的。你可参照以下电路的接法。这种接法封头可直接连在一起,不需断开的。

电机降压启动中自耦变压器启动接成星点的原因是什么

电动机在启动的瞬间电流会超过正常的数倍对送电线路造成很大的干扰,为了减少这项干扰,所以在电机启动时用自耦变压器降低电压,由380V降低0.577倍即220V,使得瞬间电流减少。电机(英文:Electric machinery,俗称“马达”)是指依据电磁感应定律实现电能转换或传递的一种电磁装置。在电路中用字母M(旧标准用D)表示。它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。发电机在电路中用字母G表示。它的主要作用是利用电能转化为机械能。

请问用自耦变压器接二级启动电机就不用象星三角降压启动那样有6根线进电机了吗?

是的,用电感降压启动.

自耦变压器降压启动控制电路图CAD步骤

1. 确定电路原理图,包括电路结构和参数设定。2. 根据原理图进行电路设计,包括确定降压启动电路和控制电路的参数设定等。3. 根据电路原理图中的要求,进行电路的设计和参数设定,确保电路能够正常工作。 (注:电路设计和参数设置需要在设计之前进行,因为电路设计涉及到电路原理和电路参数的设定。)4. 根据设计图进行设计,确定电路的电气参数和电路的连接方式。(注:设计电路时需要考虑电路的稳定性、可靠性和安全性。)

自耦降压起动变压器在转换过程中经常有一绕组放炮短路什么原因

操作过电压。

为什么自耦变压器降压启动能降低电机启动电流

自耦变压器降压起动,电流下降效果较好。原因有二个,一是把电压降下来后,起动电流也同比下降。二是变压器的作用,高压侧的电压高,高压侧的电流成反比后又下降了一次。所以电流下降倍数是降压比的二次方关系。

自耦变压器的作用是什么呢?

自耦变压器的作用就是降低或升高电压的作用

如何按照安装自耦变压器降压启动控制线路的电路图,画出接线图?过程详细点

给你这个电路图,希望对你有帮助

一台22千瓦电机,用自偶变压器降压启动。启动装置有三个交流接触器,一个时间继电器。一个中间继电器。

http://wenku.baidu.com/view/20853e4ff7ec4afe04a1df40.html

为什么自耦变压器降压启动能降低电机启动电流

采用自耦变压器降压启动,电动机的启动电流及启动转矩与其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转矩。如启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。自耦变压器降压启动的优点是可以直接人工操作控制,也可以用交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。缺点是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。

自耦变压器降压启动如何与三速电机接线

电动机自耦降压启动的控制原理:自耦降压启动是利用自耦变压器降低电动机端电压的启动方法,自耦变压器一般由两组抽头可以得到不同的输出电压(一般为电源电压的80%和65%),启动时使自耦变压器中的一组抽头一般用65%抽头。电动机自耦降压启动的控制原理:自耦降压启动是利用自耦变压器降低电动机端电压的启动方法,自耦变压器一般由两组抽头可以得到不同的输出电压(一般为电源电压的80%和65%),启动时使自耦变压器中的一组抽头一般用65%抽头,接在电动机的回路中,当电动机的转速接近额定转速时,将自耦变压器切除,使电动机直接接在三相电源上进入全压启动。

电机为什么要自耦变压器降压启动

自耦变压器一般都是大电机用 不用他降压 启动是电流会很大 损伤启动设备 电机 甚至冲击电网

自耦变压器启动的原理

电动机直接启动电流可达6~7倍,降压启动时,加在电动机上的电压下降后,起动电流也同比例下降(起动力矩也下降),由于自耗变压器的变比作用,高压侧的电流增加不多,如采用65%的电压起动,电动机的起动电流为0.65X7Ie=4.55Ie,而经过自耦变压器后,高压侧的电流为0.65X4.9Ie=2.96Ie。

自耦变压器的原理及作用?

自耦变压器主要用于有载调压和大型电机的降压启动,由于一、二次绕组直接接通,低压输出端也容易造成危险,因此自耦变压器是不能作为安全变压器使用的。

自耦变压器的原理是什么?

不管什么形式的变压器,其都是利用电磁感应的原理进行工作的。

自藕变压器启动什么原理

你问的是工作原理吧!这种初,副绕组直接串联,自行偶合的变压器就叫自藕变压器,又叫单圈变压器.1自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高.2其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压``,自耦变压器是自己影响自己3自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。

自耦变压器的工作原理是什么?

自耦变压器工作原理自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用.由电磁感应的原理可知,变压器并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的目的.在图1中,当变压器原绕组v1接入交流电源时,变压器原绕组每匝的电压降,电压平均分配在变压器原绕组两端,变压器副绕组v2的电压等于原绕组每匝电压乘以3,4的匝数.在电源电压不变的下,变更v1和v2的比例,就得到不同的v2值.这种原,副绕组直接串联,自行偶合的变压器就叫自藕变压器,又叫单圈变压器.普通变压器的原,副绕组是互相绝缘的,只用磁的联系而没有电的联系,依线圈组数的不同,这种变压器又可分为双圈变压器或多圈变压器自耦变压器中的电压,电流和匝数的关系和变压器,既:v1/v2=v1/v2=i2/i1=k自耦式变压器结构图升压自耦式变压器原理图降压自耦式变压器原理图自耦变压器的优缺点自耦变压器最大特点是,副绕组是原绕组的一部分(如图中自耦降压变压器),或原绕组是副绕组的一部分自耦式变压器的好处:两个绕组部分重叠,因此可以节省了部分铜线、体积较细、结构较为简单。但它也有缺点的:初级绕组和次级绕组之间不能完全隔离。在降压线路中,假使次级绕组因意外断开,就会使输出电压值升至和初级的一样高,引致危险。自耦变压器多用于输电用途或作可调电源输出电压用(环形)。

软启动与自耦变压器降压启动有什么区别

星三角启动是依靠改变电机绕组的接线,从而改变电机启动时的电压,启动时的电压被降低,使启动电流变小,启动时对母线的冲击减小,达到电机启动时母线电压的压降在允许的范围内(要求母线压降不超过额定电压的10%),自耦减压启动也是可以使电机启动时的电流减小,是通过自耦变压器电压抽头的改变而使电机启动时得到的电压降低,从而电流减小,减小对母线的冲击。自耦启动与星三角启动的最大区别是,他们输出的启动转矩不同,如果你的电机需要较大的启动转矩,恐怕星三角起不来,而自耦减压启动会好一些,提供的启动转矩相对会大一些。负荷是离心泵的话,星三角一般能起来。至于软起,他的启动原理与上述两个方法截然不同,他是利用电子元器件,电子线路,使启动的电机得到一个逐渐的升高的电压,启动电流可从一倍往上调,一般设置在额定电流的3到4倍,而启动转矩又不会向星三角降低那么多。

自耦变压器降压启动的控制电路中 电动机启动电流的限制是靠什么来实现

里面的原理相当是一个滑动变阻器。

自耦变压器的用途是什么?

自耦变压器的特点:⑴由于自耦变压器的计算容量小于额定容量。所以在同样的额定容量下,自耦变压器的主要尺寸较小,有效材料(硅钢片和导线)和结构材料(钢材)都相应减少,从而降低了成本。有效材料的减少使得铜耗和铁耗也相应减少,故自耦变压器的效率较高。同时由于主要尺寸的缩小和质量的减小,可以在容许的运输条件下制造单台容量更大的变压器。但通常在自耦变压器中只有k≤2时,上述优点才明显。⑵由于自耦变压器的短路阻抗标幺值比双绕组变压器小,故电压变换率较小,但短路电流较大。⑶由于自耦变压器一、二次之间有电的直接联系,当高压侧过电压时会引起低压侧严重过电压。为了避免这种危险,一、二次都必须装设避雷器,不要认为一、二次绕组是串联的,一次已装、二次就可省略。⑷在一般变压器中。有载调压装置往往连接在接地的中性点上,这样调压装置的电压等级可以比在线端调压时低。而自耦变压器中性点调压侧会带来所谓的相关调压问题。因此,要求自耦变压器有载调压时,只能采用线端调压方式。以上就是关于自耦变压器的相关知识,大家还需了解更多有关变压器的知识,请登录华兴特变官网查看。

自耦变压器降压启动控制电路图CAD步骤

  1、下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM和2KM闭合, 自耦变压器串入电动机降压起动;  2、同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合,3KM线圈在1KM和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。再按下停止按钮使电动机停转。  3、采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。  

自耦变压器为何能改变电压,有何优缺点,使用时注意什么事项

自耦变压器由于初次级连在一起,没有隔离。缺点就是低压侧也带高压电,优点就是电压调整范围宽,使用时应当小心触电。自耦变压器和其它变压器一样,也是把电转换成磁再转换成电的一种电器。仅供参考!

自耦减压变压器在单相电容电机上如何启动

自耦变压器降压启动原理:自耦变压器降压启动是通过自耦变压器降低加在电动机定子上的电压,从而降低启动电流。电动机启动时,定子绕组连接自耦变压器的二次侧,此时为降压启动状态。启动完成后,自耦变压器脱离,定子绕组连接额定电压,电动机全压运行。自耦变压器分析:自耦变压器降压启动常用于启动较大容量的三相交流电动机,自耦变压器设有50%.65%和80%线路电压的抽头,对应电动机的起动电流分别为全压起动电流的25%、42%和64%。电动机的启动电流和启动转矩与其端电压的平方成比例降低,相同的启动电流,电动机能获得较大的启动转矩。自耦变压器减压起动控制电路工作原理:合上电源开关,按起动按钮SB2,接触器KM1线圈得电吸合并自保,将自耦变压器T接入,电动机定子绕组经自耦变压器供电减压起动;同时,KT线圈得电吸合,计时开始。当KT整定延时时间结束时,其通电延时闭合的动合触点闭合,使中间继电器KA的线圈得电吸合并自保,KM1断电释放,其主触点断开; KM2线圈得电吸合,其主触点闭合,自耦变压器被切除,电动机全压运行。电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运动。采用自耦变压器降压启动,电动机的启动电流及启动转矩与其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转矩。自耦降压起动电路不能频繁操作,如果启动不成功,第二次起动应间隔几分钟以上,连续两次起动后,应最少半小时后再次启动运行,这是为了防止自耦变压器绕组内启动电流太大而发热损坏自耦变压器

自耦变压器可否一拖二同时降压启动两台电机,原理是怎么样的?

可以,但不能同时启动两台,一台启动后,隔一段时间再启另一台

自耦变压器的原理 有不懂

任何变压器都是互感变压器演变过来的,应能量不同输送所需,组成自耦变压器,自耦变压器是互感变压器一次与二次的组合,即利用了原电动势 ,组成相加相减而构成升压与降压的自耦变压器。

星型-角型起动和自耦变压器降压起动的工作原理

星型接法是把电机的三相绕组同名端相连,形成一个公共接点,另三端接三相电源。公共接点相当于三相四线制的中性点,所以每组线圈承受的电压是220V。 三角形接法是把电机的三相绕组首尾相连,形成一个三角形,三角形的三个顶点接三相电源,所以每组线圈承受的电压是380V。 电机采用星型、三角形启动,相当于220V启动,380V运行,属降压启动的一种。 自偶变压器可以实现对输出电压的近似于无级调节,可以使电机在足够低的电压下启动,然后逐渐调整到额定电压下运行。 电机启动时电流很大,降压启动主要是减轻电机启动时对电网的冲击。

自耦变压器的原理及作用是什么?

1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高.   2.其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。   3.自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得到广泛应用.。 原理是COPY的,你就当是滑线式电阻理解就可以,调压啊,自耦降压启动什么

电机为什么要自耦变压器降压启动

自耦变压器降压起动,电流下降效果较好。原因有二个,一是把电压降下来后,起动电流也同比下降。二是变压器的作用,高压侧的电压高,高压侧的电流成反比后又下降了一次。所以电流下降倍数是降压比的二次方关系。

自耦变压器的基本原理

在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。 在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。220KV以下几乎没有自耦变压器。自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用。对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。 1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高。⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈。一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得到广泛应用。由电磁感应的原理可知,变压器并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的目的.在图1中,当变压器原绕组W1接入交流电源U1时,变压器原绕组每匝的电压降,电压平均分配在变压器原绕组1,2,变压器副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行耦合的变压器就叫自耦变压器,又叫单圈变压器。普通变压器的原,副绕组是互相绝缘的,只用磁的联系而没有电的联系,依线圈组数的不同,这种变压器又可分为双圈变压器或多圈变压器.由电磁感应的原理可知,并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的目的.在图1中,当原绕组W1接入交流电源U1时,原绕组每匝的电压降,电压平均分配在原绕组1,2,,副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值。这种原、副绕组直接串联,自行耦合的变压器称为自耦变压器,又叫单圈变压器.自耦变压器中的电压,电流和匝数的关系和变压器,既:U1/U2=W1/W2=I2/I1=K自耦变压器最大特点是,副绕组是原绕组的一部分(如图1的自耦降压变压器),或原绕组是副绕组的一部分(如图2的自耦升压变压器)。自耦变压器原、副绕组的电流方向和普通变压器一样是相反的。在忽略变压器的激磁电流和损耗的情况下,可有如下关系式降压:I2=I1+I,I=I2-I1升压:I2=I1-I,I=I1-I2P1=U1I1,P2=U2I2式中:I1是原绕组电流,I2是副绕组电流U1是原绕组电压,U2是副绕组电压P1是原绕组功率,P2是副绕组功率
 首页 上一页  3 4 5 6 7 8 9 10 11 12 13  下一页  尾页