黎曼猜想如果得到证实有什么意义和作用,以及贡献.

lwctt2022-10-04 11:39:541条回答

黎曼猜想如果得到证实有什么意义和作用,以及贡献.
如果有一天黎曼猜想得到了证实,那么它将会为人类社会的哪些方面带来推进作用和贡献?

已提交,审核后显示!提交回复

共1条回复
lanyuanbn 共回答了22个问题 | 采纳率95.5%
有些数具有不能表示为两个更小的数的乘积的特殊性质~
1年前

相关推荐

什么是黎曼猜想?急
爱上思思1年前1
yashilandai 共回答了21个问题 | 采纳率85.7%
黎曼猜想
这是1859年由德国大数学家黎曼提出的几个猜想之一,而其他猜想均已证明.这个猜想是指黎曼 函数:
的非平凡零点都在 的直线上.
在数学中我们碰到过许多函数,最常见的是多项式和三角函数.多项式 的零点也就是代数方程 =0的根.根据代数基本定理,n次代数方程有n个根,它们可以是实根也可以是复根.因此,多项式函数有两种表示方法,即
当s为大于1的实数时,为收敛的无穷级数,欧拉仿照多项式情形把它表示为乘积的情形,这时是无穷乘积,而且也不是零点的形式:
但是,这样的 用处不大,黎曼把它开拓到整个复数平面,成为复变量s就包含非常多的信息.正如多项式的情形一样,函数的信息大部分包含在其零点的信息当中,因此,的零点就成为大家关心的头等大事.有两类零点,一类是s=-2,-4,…-2n,…时的实零点,称为平凡零点;一类是复零点.黎曼猜想就是讲,这些复零点的实部都是,也就是所有复零点都在 这条直线(后称为临界线)上.
这个看起来简单的问题并不容易.从历史上看,求多项式的的零点特别是求代数方程的复根都不是简单的问题.一个特殊函数的零点也不太容易找到.在85年前,哈代首先证明这条临界线上有无穷多个零点.10年前我们知道有2/5的复零点都在这条线上,而且这条线外至今也没有发现复零点,因此,黎曼猜想是对是错还在未定之中.
这个简单的特殊函数在数学上有重大意义,正因为如此,黎曼猜想总是被当成数一数二的重要猜想.在这个猜想上稍有突破,就有不少重大成果.200年前高斯提出的素数定理就是在100年前由于黎曼猜想的一个重大突破而证明的.当时只是证明复零点都在临界线附近,如果黎曼猜想被完全证明,整个解析数论将取得全面进展.
更重要的是,在代数数论、代数几何、微分几何、动力系统理论等学科中都引入各种 函数和它们的推广L函数,它们各有相应的“黎曼猜想”,其中有的黎曼猜想已经得到证明,使得该分支获得突破性的进展.可以设想,黎曼猜想及其各种推广是21世纪的中心的问题之一.
关于黎曼zeta函数的零点问题(不是黎曼猜想)
关于黎曼zeta函数的零点问题(不是黎曼猜想)
众所周知:黎曼zeta函数有无限个平凡零点和无限个非平凡零点;其中平凡零点是-2、-4、-6等等负偶数,

但是将s=-2k(k为正整数)代入黎曼zeta函数得到:

于是zeta函数的每一项都大于等于一,极限后得到的不应该是0,而是正无限啊.
这是为什么?
hibbins1年前1
偶是成双地 共回答了15个问题 | 采纳率86.7%
黎曼zeta函数是上面这个欧拉形式的解析延拓.
而上面这个欧拉形式只是当s为s>1的实数时的形式.
因此对于x=-2,-4等平凡零点,是不能套用上述公式的,而是套用解析延拓后的公式.
黎曼猜想的内容
jiajia04281年前1
lrsf10 共回答了19个问题 | 采纳率94.7%
黎曼猜想,即素数的分布最终归结为所谓的黎曼ζ函数的零点问题.
黎曼在1859年在论文《在给定大小之下的素数个数》中做出这样的猜想:ζ(z)函数位于0≤x≤1之间的全部零点都在ReZ=1/2之上,即零点的实部都是1/2,这至今仍是未解决的问题.
《黎曼猜想》这道跨世纪难题到现在进展如何,有人能解开吗?
《黎曼猜想》这道跨世纪难题到现在进展如何,有人能解开吗?
一个字难加不懂
kisssky5151年前1
木子草明 共回答了20个问题 | 采纳率75%
当年徐迟的一篇报告文学,中国人知道了陈景润和歌德巴赫猜想. 那么,什么是歌德巴赫猜想呢? 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士.1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和.如6=3+3,12=5+7等等.公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想: (a)任何一个>=6之偶数,都可以表示成两个奇质数之和. (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和. 这就是着名的哥德巴赫猜想.欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明.叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等.有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立.但严格的数学证明尚待数学家的努力. 从此,这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠". 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰.世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解. 到了20世纪20年代,才有人开始向它靠近.1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99).这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想. 目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式. 在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下: 1920年,挪威的布朗证明了‘“9 + 9”. 1924年,德国的拉特马赫证明了“7 + 7”. 1932年,英国的埃斯特曼证明了“6 + 6”. 1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”. 1938年,苏联的布赫夕太勃证明了“5 + 5”. 1940年,苏联的布赫夕太勃证明了“4 + 4”. 1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数. 1956年,中国的王元证明了“3 + 4”. 1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”. 1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”. 1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”. 1966年,中国的陈景润证明了 “1 + 2 ”. 从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年.自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功. 布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了.前一部分的叙述是很自然的想法.关键就是要证明'至少还有一对自然数未被筛去'.目前世界上谁都未能对这一部分加以证明.要能证明,这个猜想也就解决了. 然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和.故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式.因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1.所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证.然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+1缺失的情况)存在的基础根据.所以1+2与2+2,以及1+2(或至少有一种)"类别组合"方式是确定的,客观的,也即是不可排除的.所以1+1成立是不可能的.这就彻底论证了布朗筛法不能证"1+1". 由于素数本身的分布呈现无序性的变化,素数对的变化同偶数值的增长二者之间不存在简单正比例关系,偶数值增大时素数对值忽高忽低.能通过数学关系式把素数对的变化同偶数的变化联系起来吗?不能!偶数值与其素数对值之间的关系没有数量规律可循.二百多年来,人们的努力证明了这一点,最后选择放弃,另找途径.于是出现了用别的方法来证明歌德巴赫猜想的人们,他们的努力,只使数学的某些领域得到进步,而对歌德巴赫猜想证明没有一点作用. 歌德巴赫猜想本质是一个偶数与其素数对关系,表达一个偶数与其素数对关系的数学表达式,是不存在的.它可以从实践上证实,但逻辑上无法解决个别偶数与全部偶数的矛盾.个别如何等于一般呢?个别和一般在质上同一,量上对立.矛盾永远存在.歌德巴赫猜想是永远无法从理论上,逻辑上证明的数学结论. “用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想.奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和.偶数的猜想是说,大于等于4的偶数一定是两个素数的和.”(引自《哥德巴赫猜想与潘承洞》) 关于歌德巴赫猜想的难度我就不想再说什么了,我要说一下为什么现代数学界对歌德巴赫猜想的兴趣不大,以及为什么中国有很多所谓的民间数学家对歌德巴赫猜想研究兴趣很大. 事实上,在1900年,伟大的数学家希尔伯特在世界数学家大会上作了一篇报告,提出了23个挑战性的问题.歌德巴赫猜想是第八个问题的一个子问题,这个问题还包含了黎曼猜想和孪生素数猜想.现代数学界中普遍认为最有价值的是广义黎曼猜想,若黎曼猜想成立,很多问题就都有了答案,而歌德巴赫猜想和孪生素数猜想相对来说比较孤立,若单纯的解决了这两个问题,对其他问题的解决意义不是很大.所以数学家倾向于在解决其它的更有价值的问题的同时,发现一些新的理论或新的工具,“顺便”解决歌德巴赫猜想. 例如:一个很有意义的问题是:素数的公式.若这个问题解决,关于素数的问题应该说就不是什么问题了. 为什么民间数学家们如此醉心于哥猜,而不关心黎曼猜想之类的更有意义的问题呢? 一个重要的原因就是,黎曼猜想对于没有学过数学的人来说,想读明白是什么意思都很困难.而歌德巴赫猜想对于小学生来说都能读懂. 数学界普遍认为,这两个问题的难度不相上下. 民间数学家解决歌德巴赫猜想大多是在用初等数学来解决问题,一般认为,初等数学无法解决歌德巴赫猜想.退一步讲,即使那天有一个牛人,在初等数学框架下解决了歌德巴赫猜想,有什么意义呢?这样解决,恐怕和做了一道数学课的习题的意义差不多了. 当年柏努力兄弟向数学界提出挑战,提出了最速降线的问题.牛顿用非凡的微积分技巧解出了最速降线方程,约翰·柏努力用光学的办法巧妙的也解出最速降线方程,雅克布·柏努力用比较麻烦的办法解决了这个问题.虽然雅克布的方法最复杂,但是在他的方法上发展出了解决这类问题的普遍办法——变分法.现在来看,雅克布的方法是最有意义和价值的. 同样,当年希尔伯特曾经宣称自己解决了费尔马大定理,但却不公布自己的方法.别人问他为什么,他回答说:“这是一只下金蛋的鸡,我为什么要杀掉它?”的确,在解决费尔马大定理的历程中,很多有用的数学工具得到了进一步发展,如椭圆曲线、模形式等. 所以,现代数学界在努力的研究新的工具,新的方法,期待着歌德巴赫猜想这个“下金蛋的鸡”能够催生出更多的理论和工具.
关于黎曼猜想黎曼猜想:ζ(s=1+1/2^s+1/3^s+...+1/n^s的零点实部是1/2.为什么s等于负偶数时s是
关于黎曼猜想
黎曼猜想:ζ(s=1+1/2^s+1/3^s+...+1/n^s的零点实部是1/2.为什么s等于负偶数时s是ζ(s的零点,s为负偶数1/n^s>0,ζ(s应大于0才对啊.
还有黎曼假设的等价定理π(x)=Li(x)+O(x^(1/2)*Inx)中的π(x) .Li(x) 和O(x^(1/2)*Inx)分别表示什么意思?
梦BMW儿1年前1
wuhan2005 共回答了21个问题 | 采纳率85.7%
ζ(s) = ∑{1 ≤ n} 1/n^s不是ζ-函数的完整定义,
级数∑{1 ≤ n} 1/n^s只在s的实部大于1的时候收敛.
完整的定义涉及复变函数中"解析延拓"的概念.
从结果来说,上述定义在Re(s) > 1上的函数,
能够唯一的延拓为整个复平面(除s = 1外)上的解析函数,
这才是完整的Riemann ζ-函数.
而ζ-函数的平凡零点(负偶数)和非平凡零点都是在Re(s) < 1这一区域中,因此不能用那个级数计算.
π(x) = Li(x)+O(x^(1/2)·In(x))中,π(x)表示小于x的素数个数,Li(x)是对数积分函数∫{2,x} 1/ln(t) dt.
O是Landau符号,具体来说f(x) = O(g(x))表示存在常数B,C,使|f(x)| ≤ C·|g(x)|对任意x > B成立.
总结起来,这个式子的意思就是:x充分大时,π(x)与Li(x)的误差不超过x^(1/2)·In(x)的某个倍数.
有一篇很好的介绍Riemann猜想的科普文章,
提问:我们为啥要去证明数学定理在无限的时候的特性呢?对于例如黎曼猜想这样的难题来说,用数值方法计算出
提问:我们为啥要去证明数学定理在无限的时候的特性呢?对于例如黎曼猜想这样的难题来说,用数值方法计算出
详情如题x09大神们帮帮忙
jin123347651年前1
维生素专题 共回答了14个问题 | 采纳率92.9%
问题是,对于不同的问题,可能需要计算的数据是不一样的,对于每一个问题都进行计算的话,可能要花上很多时间.但如果我们能直接从数学上证明一个对于所有数据的结论的话,那么解决相同类型的问题,不管问题相关的数据有多么不同,只需要用同一种方法进行少量计算,甚至无需计算,就能得到结果.