barriers / 阅读 / 详情

HSDPA是什么

2023-07-08 20:39:17
TAG: dpa hs pa sd dp
共1条回复
cloudcone

HSDPA是什么

  HSDPA是什么,生活中,许多人对HSDPA不了解,其实HSDPA是指一种移动通信协议,能大大提高用户下行数据业务速率,下面是关于HSDPA是什么的内容介绍!

  HSDPA是什么1

  HSDPA(High Speed Downlink Packet Access)表示高速下行分组接入技术,是一种移动通信协议,亦称为3.5G(3G),属于WCDMA技术的延伸。该协议在WCDMA下行链路中提供分组数据业务,在一个5MHz载波上的传输速率可达8-10 Mbit/s(如采用MIMO技术,则可达20 Mbit/s)。在具体实现中,采用了自适应调制和编码(AMC)、多输入多输出(MIMO)、混合自动重传请求(HARQ)、快速调度、快速小区选择等技术。

  由于开放了新的高速下行链路共享信道(High-Speed Downlink Shared Channel,HS-DSCH),加上强化了本身的传输技术,包括优化数据分组传送调度及出现错误时的传送程序、采用较短帧长(frame length)以加快分组传送调度、加入递增冗余(Incremental Redundancy)减少重新传送对接口的负担等,令HSDPA的数据下载速度最高可达14.4Mbps,理论上可以比3G技术快5倍,比GPRS技术快20倍。

  WCDMA R99版本可以提供384kbps的数据速率,这个速率对于大部分现有的分组业务而言基本够用。然而,对于许多对流量和迟延要求较高的数据业务如视频、流媒体和下载等,需要系统提供更高的传输速率和更短的时延。

  为了适应多媒体服务对高速数据传输日益增长的需要,第三代移动通信合作项目组(3GPP)公布了一种新的高速数据传输技术,叫做高速下行分组接入技术(HSDPA),该技术是WCDMA R"99(也就是我们常说的WCDMA)的强化版本,大大加强了下行链路传输的功能,当前出售的绝大多数WCDMA手机已支持HSDPA。

   HSDPA原理

  WCDMA R5版本高速数据业务增强方案充分参考了cdma2000 1X EV-DO的设计思想与经验,新增加一条高速共享信道(HS-DSCH),同时采用了一些更高效的自适应链路层技术。共享信道使得传输功率、PN码等资源可以统一利用,根据用户实际情况动态分配,从而提高了资源的利用率。自适应链路层技术根据当前信道的状况对传输参数进行调整,如快速链路调整技术、结合软合并的快速混合重传技术、集中调度技术等,从而尽可能地提高系统的吞吐率。

  基于演进考虑,HSDPA设计遵循的准则之一是尽可能地兼容R99版本中定义的功能实体与逻辑层间的功能划分。在保持R99版本结构的同时,在NodeB(基站)增加了新的媒体接入控制(MAC)实体MAC-hs,负责调度、链路调整以及混合ARQ控制等功能。这样使得系统可以在RNC统一对用户在HS-DSCH信道与专用数据信道DCH之间切换进行管理。 HSDPA引入的信道使用与其它信道相同的频点,从而使得运营商可以灵活地根据实际业务情况对信道资源进行灵活配置。 HSDPA信道包括高速共享数据信道(HS-DSCH)以及相应的下行共享控制信道(HS-SCCH)和上行专用物理控制信道(HS-DPCCH)。下行共享控制信道(HS-SCCH)承载从MAC-hs到终端的控制信息,包括移动台身份标记、H-ARQ相关参数以及HS-DSCH使用的传输格式。这些信息每隔2ms从基站发向移动台。上行专用物理控制信道(HS-DPCCH)则由移动台用来向基站报告下行信道质量状况并请求基站重传有错误的数据块。

  共享高速数据信道(HS-DSCH)映射的信道码资源由15个扩频因子固定为16的SF码构成。不同移动台除了在不同时段分享信道资源外,还分享信道码资源。信道码资源共享使系统可以在较小数据包传输时仅使用信道码集的一个子集,从而更有效地使用信道资源。此外,信道码共享还使得终端可以从较低的数据率能力起步,逐步扩展,有利于终端的开发。从共用信道池分配的信道码由RBS根据HS-DSCH信道业务情况每隔2ms分配一次。与专用数据信道使用软切换不同,高速共享数据信道(HS-DSCH)间使用硬切换方式。

  HSDPA是什么2

   HSDPA技术是什么?

  高速下行分组接入( HSDPA )也被称为高速下行协议访问。 HSDPA是一种协议,用于移动电话。 这是第三代( 3G )高速分组接入技术,旨在加快网络容量和数据传输速率的移动电话。

  HSDPA是与各种通用移动通信系统(UMTS)网络。 这些问题包括全球移动系统(GSM )的通信。

  HSDPA(高速下行分组接入,High Speed Downlink Packages Access)技术,是3GPP在R5协议中引入的,它可以在不改变WCDMA系统网络结构的基础上,大大提高用户下行数据业务速率(理论峰值可达14.4Mbit/s),极大地改善了WCDMA不支持数据密集型应用的缺陷,是WCDMA网络建设中提高下行容量和数据业务速率的一种重要技术。

  为了达到提高下行分组数据速率和减少时延的目的,HSDPA主要采用了自适应的编码和调制(AMC adaptive modulation and coding)、快速混合自动重传(HARQ hybrid ARQ)和快速调度技术。其实,上述三种技术都属于链路自适应技术,也可以看成是WCDMA技术中可变扩频技术和功率控制技术的进一步提升。

  目前, HSDPA能够支持速度为1.8 Mbps的速率可达14.4 Mbps 。 虽然这不是非常快相比,各种有线网络,它是一个重要的里程碑考虑的速度提供给蜂窝技术。

  虽然HSDPA是主要确定其下行速度,但它也有能力将大大拓展转移能力。 HSDPA网络可以传输多达30 GB的数据,并每月多达300分钟的手机看电视和1000分钟的通话时间。

   HSDPA基本原理:

  在R99的空中接口体系中,数据重传方式是由RNC来负责完成的,数据重传需要绕经Iub接口,数据重传的周期较长;Node B仅仅起到一个根据RNC的指令完成物理层编码、传输的功能,Node B本身基本不具有对物理资源的控制和调度能力。而在HSDPA中,为了在空中接口上实现更大的吞吐能力,对Node B的功能进行了增强,在Node B的层面引入了物理层重传和快速资源调度的概念。通过在更靠近空中接口的Node B上引入这些原本只有RNC才具有的功能,加快了重传以及对空中资源调度的效率。同时,结合AMC(Adaptive Modulation and Coding,自适应调制编码)、HARQ(Hybrid Automatic Repeat reQuest)等新技术,采用了更短的TTI(Transmit Time Interval)长度(2ms)、固定扩频因子的多码道传输,从而在下行方向上实现了远高于R99的高速的分组数据传输能力。

  为了实现HSDPA的功能特性,在物理层规范中引入了三种新的物理信道。

   (1)高速下行链路共享信道(HS-DSCH): 在下行链路上,传输用户的业务数据。采用固定的扩频因子SF=16,由于需要给公共信道、HS-SCCH及相关的DCH预留可用的信道码,所以最大可用信道数为15。传输时间间隔定义为2ms(3个时隙),远小于R99中规定的10ms、20ms等长度,从而大大缩短了数据重传时终端和Node B之间的往返时延。

   (2)高速下行共享控制信道(HS-SCCH): 在下行链路上,传送HSDPA的专用信令,如传输格式和系统资源指示等;采用固定的扩频因子SF=128,每个终端最多可以同时监测4个HS-SCCH。

   (3)高速专用物理控制信道(HS-DPCCH): 在上行链路上,发送反馈信道信息(如信道质量指示CQI)和传输块发送确认信息(承载HARQ进程需要的"ACK/NACK信息)。用户终端通过测量CPICH得到CQI信息,CQI的上报周期和映射可由网络定义。

  Node B通过用户从上行专用控制信道HS-DPCCH中反馈的信息得到用户的下行信道情况,然后Node B根据所收集的所有用户的信道情况,通过一定的调度策略,为当前用户分配HSDPA的下行数据传输的物理资源(HS-DSCH、HS-SCCH),同时选择相应的最合适的AMC方案,以此来实现系统吞吐量最大化、用户吞吐量最大化、用户QoS保证等资源调度目标。

   目前HSDPA技术:

  目前,有100个HSDPA的网络操作系统在全球54个国家。 大量这些网络提供3.6 Mbps的下行速度。 然而,更多的网络也开始切换到更快的7.2 Mbps的下行速度。 只有一些网络目前提供全面14.4 Mbps的速度

  HSDPA的竞争与竞争对手的格式,数据优化演进提供的码分多址(CDMA )和细胞提供者。

   HSDPA技术的设备:

  除了具有移动计划,公司提供HSDPA接入,唯一的要求登录到HSDPA网络是具有移动设备能够使用这项技术。 当前共有171款手机和其他移动设备可以使用HSDPA网络。 其中一些的HSDPA功能的设备是著名的手机品牌和型号的名称,如诺基亚N95的Palm Treo 750掌上电脑,及摩托罗拉RAZR以及它的许多不同版本。

  除了不同的HSDPA手机在市场上,一些笔记本电脑和HSDPA技术的笔记本电脑接入网络的数据提供。 这些产品提供的几个主要电脑制造商包括戴尔,宏基,惠普,西门子,富士通,松下和联想。

   未来的HSDPA技术:

  虽然14.4 Mbps的是当前的上限,下行速度的HSDPA ,网络正在准备升级为一种新型的HSDPA系统。 被称为HSPA网络的发展,这个新的HSDPA技术的目的是提高下载速度为42 Mbps的释放后,有可能达到更高的速度在未来的价值。

   HSDPA的应用 :

  目前,HSDPA标准已经稳定,技术也日益成熟,产品性能通过测试得到验证,终端产品在市场上也已陆续推出。随着HSDPA技术不断发展和设备不断成熟,其良好的应用前景和平滑的演进能力正在引起业界越来越多的关注,HSDPA几乎得到了所有WCDMA设备厂商的支持,在世界范围内,各主要运营商也已开始计划部署或已经部署HSDPA。

相关推荐

为什么WCDMA基站可以通过40W来提升覆盖效果(WCDMA基站的标准发射功率为20W)

总功率大了,CPICH功率也大了,网络覆盖范围也大了,这样与临小区的重叠部分大了,对林小区的干扰也增大了,还可能产生导频污染。 这个是对的,同时这也会导致上下行功率不平衡影响其它KPI指标等,这个对网络整体没有什么好处,只能是解决部分覆盖问题才用到,而且是不建议在站点密度较大的区域使用,干扰增大,越区也可能成为问题。
2023-07-08 17:32:551

导频污染的定义是什么?

通彻来说:各个厂家对导频污染的定义都不相同 但是大同小异。1、华为定义的导频污染为,当前满足CPICH_RSCP>-100dBm的导频个数大于3个 且最佳激活器导频强度与第四强导频的强度之差小于5dB时 判定存在导频污染。2、爱立信定义的导频污染为,当前满足CPICH_RSCP>-100dBm的导频个数大于3个 且最佳激活器导频Ec/Io与第四强导频的Ec/Io之差小于5dB时 判定存在导频污染。3、西门子将导频污染定义为,当某点接受到强导频信号的个数大于3个 且导频信号的RSCP>-100dBm。按照RSCP进行排列,设第四强导频信号和激活集最佳小区的导频信号差值为D,由此定义导频污染程度:严重导频污染 D≤4dB中度导频污染 4dBD≤8dB轻度导频污染 8dBD≤12dB若D>12dB或测量到的强导频数量小于4,则认为无导频污染如果最强导频信号的RSCP≤-100dBm,则认为若覆盖,不列入导频污染范畴。通常定义为:1、存在3个以上的强导频2、最强与最弱差值在3-5dB以内解决方案:1、调整布局和天线参数2、降低导频功率3、在不影响容量的条件下,合并基站的扇区或删除冗余的扇区4、尽量在规划设计阶段控制导频污染 方便以后的网络优化希望能帮到你
2023-07-08 17:33:031

WCDMA中重选迟滞及偏置之间的关系是怎么样??

在wcdma的小区重选中,首先将所有测量到的小区按照S准则进行排列,然后将满足S准则的候选小区和服务小区一起按照R准则进行第一次排队,如果重选参数中是按照CPICH RSCP值进行判决则不必按照R准则进行第二次排队,如果最好小区为FDD的小区,且按照CPICH Ec/No值进行判决的话就按照R准则进行第二次排队。排队方式为:Rs=服务小区信号值+重选迟滞、Rn=邻小区信号值-邻区偏置,如果在小区重选延迟时间Tselection内,Rn>Rs,那么就发生小区重选。从R准则可以看出,重选迟滞是和服务小区信号相加的,邻区偏置是和邻小区信号相减的,然后所得的两个值进行比较。如果在小区重选延迟时间Tselection内,都是后者的值大就发生小区重选了。显然重选迟滞越大越不容易发生小区重选,邻区偏置越大也越不容易发生小区重选。希望我的解答你能够明白。
2023-07-08 17:33:101

接收到的基站的信号功率怎么看

首先我们需要清楚手机信号格数是怎么得来的。一般情况下,手机信号格数的多少取决于接收到的基站发射的特定信道 / 子载波的功率大小,这在不同的系统下有不同的规定。2G:以 GSM 系统为例,接收功率主要是 Rx_Lev 值,这个值是指手机收到的当前主服务基站的 BCCH 信道功率值。GSM 基于 TDMA 技术,BCCH 功率可以认为等于整个载波的功率,常见的一个载波为43dBm 左右(约 20W)。3G:以 WCDMA 为例,手机信号格数的依据主要指接收基站 P-CPICH 信道的 RSCP 值(源自 3GPP TS25.215)。WCDMA 基于 CDMA 技术,其一个载波的发射功率是所有信道共享的,现网中 P-CPICH 信道的发射功率一般设置为33dBm(约 2W)。4G:以 LTE FDD 为例,其接收功率则主要是当前小区的 RSRP 值,根据 3GPP TS36.214 定义,这个值可以通俗的认为是手机接收到的一个子载波的功率。以完整 20MHz 载波计算,其拥有 1200 个子载波,如果一个载波的发射功率为 20W,则一个子载波的发射功率为20/1200≈0.0167W(约 12 多 dBm),现网普遍使用 MIMO 技术,双发射通道的情况下加 3dB 约为 15dBm 左右。从上面的对比不难看出,假设 2G/3G/LTE 使用相同频段、共用天线,总发射功率也一样,在同一个地方下,由于不同制式下手机信号格数所体现的指标值不同,其所显示出来的信号格数也会有所差异。比如 GSM 下比 3G 高了 10 个 dB,而在 3G 下又比 LTE FDD 高了近 18dB~20dB,因此手机在不同网络下的接收功率会有相当大的差异。上述都是基于理想环境下的对比,而在实际中,还要考虑到 2G、3G、LTE 的频段、站点分布、天线参数设置、功率参数设置和周边环境地形等等方面的差异,这些因素都直接影响到最终手机接收功率的大小。比如 2G 可能位于 800MHz/900MHz 的低频段,而 3G/LTE 则可能位于 1.8GHz or 2.1GHz 乃至 2.6GHz 的高频段,显然低频段绕射性能好、路损小,单纯的对于手机接收功率来说也是相当有利的。一般来说,如果不考虑其他因素,GSM 下要能达到 -85dBm 以上,3G 下要能达到 -90dBm 以上,LTE 要能达到 -100dBm 以上才算是良好。比如接收功率一样是 -90dBm,信号可能都显示两到三格,但是对于 GSM 来说已经是很低了,而对于 3G 尤其是 LTE 来说,已经算是还可以了,更不用说 3G、LTE 相对于 GSM 来说还有扩频 / 宽带增益加成。
2023-07-08 17:33:181

移动通信中PCCPCH_CIR是什么意思

推荐LZ可以去MSC/BSC上面,那里是通信最专业的论坛,有最详细的论述等等。
2023-07-08 17:33:263

在4G通信中,衡量LTE覆盖和信号质量基本测量量是什么?

  下面这几个是LTE中最基本的几个测量量,是日常测试中关注最多的。  RSRP(Reference Signal Received Power)主要用来衡量下行参考信号的功率,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别;  RSRQ (Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量。和WCDMA中CPICH Ec/Io作用类似。二者的定义也类似,RSRQ = RSRP * RB Number/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的。  RSSI(Received Signal Strength Indicator)指的是手机接收到的总功率,包括有用信号、干扰和底噪,和UMTS中的RSSI概念是一致的;  SINR(Signal-to-Interference plus Noise Ratio)也就是信号干扰噪声比,顾名思义就是信号能量除以干扰加噪声的能量;  从上面的定义很容易看出对于RSRQ和SINR来说,二者的差别就在于分母一个包含自身、干扰信号及底噪,另外一个只包括干扰和噪声。
2023-07-08 17:33:341

室内单站验证内容主要包括以下哪些内容

在单站验证测试前,RNC工程师必须完成如下工作:1)基站状态的检查,包括站点是否存在告警,是否闭塞,小区HSPA功能是否激活,其它各个网元(MSC,SGSN,GGSN,PDN服务器,传输)是否正常,一旦有异常现象和故障出现,需要立即分析排除.2)负责导出RNC配置数据表,包括基站的各种基本配置数据(LAC,RAC,CELLID,频点,扰码,CPICH POWER,邻区等等)提供给网络优化工程师进行单站验证.3)配合安装工程师进行故障排查和解决.1.1.1.2网络优化工程师工作内容在单站验证测试前, 网络优化工程师必须完成如下工作:1)首先向RNC工程师确认站点是否存在告警,故障是否排除,测试小区状态是否正常。2)测试路线的选择测试前需要根据待测站点分布和当地实际情况选择合适的测试路线,室外路线选择原则:测试路线尽量经过待测基站的覆盖区域,尽可能跑全待测基站周围所有主要街道;测试路线尽量考虑当地的行车习惯,减少过红绿灯时的等待时间。室内测试楼层和路线选择原则:对于10层以上高楼,选择4个楼层测试,(地下室,地面,中间楼层和最高层)。测试路线尽量根据室内分布系统设计来安排(天线位置,热点区域)。3)测试点选择测试点的选择尽量满足信号覆盖的要求:RSCP >= -70dBm;Ec/Io >=-3dB。4)测试设备的检查在单站验证测试前,必须对所有的测试设备进行检查,避免因为测试设备的问题导致单站验证测试过程中出现故障和测试结果的不准确性.影响单站测试的进度.检查的设备包括:车辆,电源,测试终端是否齐备(HSPA业务需要有支持HSPA功能的终端),测试电脑,路测软件,各种串口,USB连接数据线是否正常,GPS,USB HUB,扫频仪,测试SIM卡开通的权限等等.1.1.2单站验证测试1.1.2.1RNC工程师工作内容在单站验证测试中,RNC工程师必须完成如下工作:1)在后台配合网络优化工程师进行信令跟踪,主要是跟踪单站测试的终端和小区,便于后续问题处理分析.2)配合网络优化工程师处理测试工程中出现的故障和异常现象.1.1.2.2网络优化工程师工作内容1)覆盖测试覆盖测试时,车速一般保持在30公里/小时-40公里/小时.通过路测,检查 Scanner 接收的 CPICH RSCP和CPICH Ec/Io 是否异常(例如是否存在其中一个测试小区的CPICH RSCP和CPICH Ec/Io 明显差于其他的小区),确认是否存在功放异常、天馈连接异常、天线安装位置设计不合理、周围环境发生变化导致建筑物阻挡、硬件安装时天线倾角/方向角与规划时不一致等问题。在一些特殊地段,例如香港岛,站间距少于200米,同时很难较好的接收到GPS信号,在这种情况下,站点的主覆盖区域很小,我们在DT 路测时得不到足够的信息,所以网优工程师需要步行测试,来得到足够的信息和测试数据.对于密集城区比如香港的湾仔,中环地区,一般的GPS接收信号漂移,造成路测打点不准确,测试数据无法用来分析,需要特殊的GPS解决方案来解决这个问题.2)业务测试在单站验证测试中,要对所有开通和支持的业务进行测试,包括语音,Video Phone, PS业务,HSPA业务,其中PS业务和HSPA业务可以进行定点测试。保驾护航网为您解答。
2023-07-08 17:33:451

信噪比、信干比、载噪比、载干比之间的区别与联系,各用于哪里

信噪比的定义为传输信号的平均功率与加性噪声的平均功率之比。信干比的定义是信号的能量与干扰能量(如同频干扰,多径等)和加性噪声能量的和的比值。载噪比的定义经调制的信号的平均功率(载波功率)与加性噪声的平均功率之比。载干比的定义经调制的信号的平均功率(载波功率)与干扰能量(如同频干扰,多径等)和加性噪声能量的和的比。区别于联系是:载噪(干)比中已调信号的功率包括了传输信号的功率和调制载波的功率,而信噪(干)比中仅包括传输信号的功率,两者之间相差一个载波功率。调制传输系统中,一般采用载噪(干)比指标;而在基带传输系统中,一般采用信噪(干)比指标。
2023-07-08 17:34:075

请教LTE的KPI指标RSRP,RSRQ,SINR的取值范围

R的取值范围
2023-07-08 17:34:382

解释名词RSRQ。

【答案】:(Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量。和WCDMA中CPICH Ec/Io作用类似。二者的定义也类似,RSRQ = RSRP * RB Number/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的。
2023-07-08 17:34:531

absolute threshold是什么意思

这是两个心理学名词。绝对阈限(absolute threshold)是指能可靠地引起感觉的最小刺激强度(物理能量)。差别阈限(different threshold)是指刚刚能够引起感觉差异的最小刺激变化强度。【阈限(threshold),是指人刚刚能够感觉到的刺激强度水平。】由于不同人的个体差异很大,即使一个人的差别阈限每时每刻也不尽相同,因此我们给了差别阈限一个操作性定义:有一半次数能觉察出差异的刺激值。这个值又被叫做最小可觉差(just noticeable difference, JND) 举例来说,绝对阈限是指刚能引起感觉的最小刺激量,比如说用一个很小声音来刺激人的听觉系统,那个刚好能被听到的临界强度就是人的听觉系统的绝对阈限值。而差别阈限是指能感觉到的最小的刺激差异量,所以差别阈限也叫最小可觉差。比如说手持一定重量的重物,然后逐渐增加微小的重量,当持物者感到重量变化时,那个添加的重量就是差别阈限。心理物理学对差别阈限的研究揭示了差别阈限的规律:最小可觉差是一个恒定的比例常数,而不是一个差值。就是说,最小可觉察和原有强度是成正比关系的。打个比方说,如果l00克的物体至少要增减3克才可以产生差别感觉,那么200克的物体就要增减6克。
2023-07-08 17:35:021

华为it可信理念考试

义母李婆婆一听,自己做菜也要付钱,不由得暗自担心。 若是范宇这菜搞的砸了,他们母子哪里有钱付啊。 “宇儿,你莫要与店家置气,咱们换一家吧。”李婆婆开口劝道,她可不如范宇心中有底。 “娘放心,即便是简单的食材,孩儿也能做的让人食指大动。”范宇好不容易把这个场子拉起来,怎么可能回头,那不成了笑话,“何况这也不是与店家过不去,只是想让娘吃顿好的。” 那青年食客听的不耐烦,此时打断了范宇的话道:“你们母子不要有什么顾虑,有我这个中人做保,怕个什么。这位小哥尽管去做,缺什么只管向店家要。莫要再耽搁时间,坏了我的兴致。” 吴掌柜听到青年客人的话,不由自负一笑道:“正是如此,若是小哥就这么走了,我店内的汪大师傅可也不高兴。他堂堂汴梁出身的的师傅,怎可被人随意小觑了。还望小哥拿出些本事,压压汪师傅的傲气。” 这话虽然说的客气,却也隐隐带着激将之意。道理也讲的清楚,你不能白白的看低我们太白楼大师傅的手艺。 范宇微微一笑,对义母李婆婆道:“娘,您请楼上安坐用茶,孩儿去后厨一下,稍待就回。” 送了忐忑不安的义母上楼坐下,范宇就要随着伙计下楼往后厨而去。 青年客人与吴掌柜也在楼上坐下,此时青年喊了范宇一声道:“小哥,你还没说要做几个菜,要多久才好?这天色可都快过午时了。” 范宇微微摇头,“这位大哥,我也不知做几样菜,看后厨的食材再定吧。但至少要半个时辰,你若等不得,可先请自便。”
2023-07-08 17:35:232

室分天线口设计功率一般是正的,比如6dBm、8dBm,但是为什么手机在天线下面接收到功率确是-40、-50dBm呢?

前者是天线口输出功率,后者是终端接收功率。
2023-07-08 17:35:333

WCDMA中TCP功率指标怎么计算的

  一、wcdma手机发射功率  GSM和wcdma虽然同为欧洲标准,但wcdma毕竟是码分多址的,它~~,也必须~~cdma中很多稳定成熟的技术和方案,至少在对手记发射功率控制这块,wcdma和cdma2000 1x就非常类似,只是wcdma对手机功率控制要求更精准、更严格。  笔者认为这里的原因是wcdma毕竟是码分多址的技术,它需要采用功率控制技术,来平衡用户功率,以保证系统每个用户的通信质量和系统的最大容量。虽然GSM和wcdma同为欧洲标准,而且GSM是第二代标准,wcdma是第三代标准,GSM尽管也采用了功率控制技术,但区别还是巨大的:  (1)GSM功率控制速率要慢得多,对功率控制升多少、降多少要求并不是很精准,也不是很严格;  (2)GSM对功率控制依赖程度要低,而CDMA没有了功率控制将几乎无法工作。  事实上在W—CDMA中,上行链路采用开环功控和闭环功控两种方式。当上行链路没有建立时,开环功控用来调节物理随机接入信道的发射功率。链路建立之后,使用闭环功控。闭环功控包括内环功控和外环功控。外环功控以误码率或者误帧率作为控制目标,内环功控以信干比作为控制目标。下行链路只有闭环功控。  1、Open Loop Power  这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。具体计算公式为:PRACH Preamble Initial Power = (P-CPICH DL TX Power) - (CPICH_RSCP)+ (UL Interference) + (Constant value)  2、Inner Loop Power wcdma  关于手机在内环功控方面作了较好的功率控制位的形式和算法的规定,手机在内环功控下,必须能发出–50dBm到+24 dBm范围内的信号,而且还要求手机能够很好相应基站所发出的功率控制位,当基站发出升(或降)1dB命令时,手机必须升(或降)1dB+/-0.5dB,当基站发出升(或降)10dB命令时,手机必须升(或降)10dB+/-2dB。同时wcdma还规定了A,B,C,D,E,F,G,H 8段区域,来测试手机。将这部分与cdma2000 1x 的闭环功率控制相比,可以看出虽然异曲同工,但wcdma的规定更严谨,更细致。  二、GSM手机发射功率  GSM协议规定,手机发射功率是可以被基站控制的。基站通过下行SACCH信道,发出命令控制手机的发射功率级别,每个功率级别差2dB,GSM900 手机最大发射功率级别是5(33dBm),最小发射功率级别是19(5dBm),DCS1800手机最大发射功率级别是0(30dBm),最小发射功率级别是15(0dBm)。当手机远离基站,或者处于无线阴影区时,基站可以命令手机发出较大功率,直至33dBm(GSM900),以克服远距离传输或建筑物遮挡所造成的信号损耗。如果手机离基站很近,且无任何遮挡物时,基站可以命令手机发出较小功率,直至5dBm(GSM900),以减少手机对同信道、相邻信道的其它GSM用户的干扰和其它无线设备的干扰,而且这样还可以有效延长手机待机时间、通话时间。GSM手机发出的最低功率仅为5dBm(GSM900),约为3.2mW,这比PHS的平均功率10mW要小,同时GSM手机发出的最大功率33dBm(GSM900),约为2W,这个信号相对来说是巨大的,对这种大信号不加以严格规定,其干扰也是巨大的。因此GSM就手机发射信号除了发射功率的规定以外,在其它方面也作了适当的规定。(注意:这里是适当的规定,如果规定偏严无疑会加大手机制造成本,如果偏松,无疑会加大干扰。)
2023-07-08 17:35:401

RSRP和RSSI有什么区别么,在LTE测试过程中

1. LTE测试用什么软件?什么终端? 答:LTE测试前台测试使用华为出的测试软件GENEX Probe,后台分析使用GENEX Assistant;测试终端有:CPE(B593s)、小数据卡(B398和B392)、TUE 2. LTE测试中关注哪些指标? 答:LTE测试中主要关注PCI(小区的标识码)、RSRP(参考信号的平均功率,表示小区信号覆盖的好坏)、SINR(相当于信噪比但不是信噪比,表示信号的质量的好坏)、RSSI(Received Signal Strength Indicator,指的是手机接收到的总功率,包括有用信号、干扰和底噪)、PUSCH Power(UE的发射功率)、传输模式(TM3为双流模式)、ThroughputDL, Throughput UL上下行速率、掉线率、连接成功率、切换成功率…… 3. RSRP、SINR、RSRQ什么意思? 答: RSRP: Reference Signal Received Power下行参考信号的接收功率 ,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别,所以RSRP在数值上偏低; SINR:信号与干扰加噪声比 (Signalto Interference plus Noise Ratio)是指:信号与干扰加噪声比(SINR)是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以简单的理解为“信噪比”。 RSRQ(Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量。和WCDMA中CPICHEc/Io作用类似。二者的定义也类似,RSRQ = RSRP * RBNumber/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的; 4. SINR值好坏与什么有关? 下行SINR计算:将RB上的功率平均分配到各个RE上; 下行RS的SINR = RS接收功率 /(干扰功率 + 噪声功率)= S/(I+N) ; 从公式可以看出SINR值与UE收到的RSRP、干扰功率、噪声功率有关,具体为:外部干扰、内部干扰(同频邻区干扰、模三干扰) 5. UE的发射功率多少? 答:LTE中UE的发射功率由PUSCHPower 来衡量,最大发射功率为23dBm;
2023-07-08 17:35:471

WCDMA小区搜索过程是怎样的

移动台开机后首先要与某一个小区的信号取得时序同步。这种从无联系到时序同步的过程就是移动台的小区搜索过程。在小区搜索过程中,移动台捕获一个小区的发射信号并据此确定这个小区的下行链路扰码和帧同步。第一步:时隙同步:主同步信道P-SCH ,每个时隙的前256个码片,主同步码序列只有一个所有基站的所有小区都一样第二步:扰码组的识别与帧同步:辅同步信道S-SCH,也使用每个时隙的前256个码片发送,3GPP定义了64组辅同步码序列,每组序列对应了一个扰码组。每个扰码组里面含有8个扰码,所以在系统初始捕获的时候,在UE获得主扰码识别时候,将主扰码的搜索范围从512降到8,大大提高了初始捕获的效率。辅同步码共有16个,把16个码字进行排列组合(要求每组15个码字),从所有的组合中挑出64组(每组的任意相位都不会和其他组的任意相位重复),第三步:扰码识别:当基站所属的扰码码组已确定后,需进一步确定基站的身份码——下行扰码。移动台使用第二步识别到的扰码码组中的8个主扰码分别与捕获的P-CPICH信道进行相关计算(对比),得到该小区使用的下行扰码。根据识别到的扰码,P-CCPCH就可以被检测出,从而可获得超帧同步,系统以及小区的特定的广播信息就可被读出。
2023-07-08 17:36:061

wsn功率控制技术有哪些?基于节点度的功率控制的基本思想是什么

一、远近效应功率控制的目的是为了克服远近效应。远近效应现象是指如果没有功率控制,距离基站近的一个UE就能阻塞整个小区,而距离NodeB远的UE信号将被逗淹没地。在上行链路中,如果小区内所有UE以相同的功率进行发射,由于每个UE与 Node B的距离和路径不同,信号到达Node B就会有不同的衰耗,从而导致离Node B较近的UE,Node B收到的信号强,较远的Node B收到的信号弱,这样就会造成Node B所接收到的信号的强度相差很大。由于 WCDMA是同频接收系统,较远的弱信号到达Node B后可能不会被解扩出来,造成弱信号逗淹没地在强信号中,而无法正常工作。CDMA自从提出来以后一直没有得到大规模应用的主要原因,就是无法克服远近效应。从图1可知,采用功率控制后,每个UE到达基站的功率基本相当,这样,每个UE的信号到达NodeB后,都能被正确地解调出来。二、功率控制的目的WCDMA采用宽带扩频技术,是个自干扰系统。通过功率控制,降低了多址干扰、克服远近效应以及衰落的影响,从而保证了上下行链路的质量。例如:在保证QoS的前提下降低某个UE的发射功率,将不会影响其上下行数据的接收质量,但结果却减少了系统干扰,其他UE的上下行链路质量将得到提高。功率控制给系统带来以下优点:(1)克服阴影衰落和快衰落。阴影衰落是由于建筑物的阻挡而产生的衰落,衰落的变化比较慢;而快衰落是由于无线传播环境的恶劣,UE和NodeB之间的发射信号可能要经过多次的反射、散射和折射才能到达接受端而造成。对于阴影衰落,可以提高发射功率来克服;而快速功控的速度是1500次/秒,功控的速度可能高于快衰落,从而克服了快衰落、给系统带来增益,并保证了UE在移动状态下的接受质量,同时也能减小对相邻小区的干扰。(2)降低网络干扰,提高系统的质量和容量。功率控制的结果使UE和NodeB之间的信号以最低功率发射,这样系统内的干扰就会最小,从而提高了系统的容量和质量。(3)由于手机以最小的发射功率和NodeB保持联系,这样手机电池的使用时间将会大大延长。三、功率控制的分类在WCDMA系统中,功率控制按方向分为上行(或称为反向)功率控制和下行(或称为前向)功率控制两类;按移动台和基站是否同时参与又分为开环功率控制和闭环功率控制两大类。闭环功控是指发射端根据接收端送来的反馈信息对发射功率进行控制的过程;而开环功控不需要接收端的反馈,发射端根据自身测量得到的信息对发射功率进行控制。1.开环功率控制开环功率控制是根据上行链路的干扰情况估算下行链路,或是根据下行链路的干扰情况估算上行链路,是单向不闭合的。如图2所示,UE测量公共导频信道CPICH的接收功率并估算NodeB的初始发射功率,然后计算出路径损耗,根据广播信道BCH得出干扰水平和解调门限,最后UE计算出上行初始发射功率作为随机接入中的前缀传输功率,并在选择的上行接入时隙上传送(随机接入过程)。开环功率控制实际上是根据下行链路的功率测量对路径损耗和干扰水平进行估算而得出上行的初始发射功率,所以,初始的上行发射功率只是相对准确值。WCDMA系统采用的FDD模式,上行采用1920~1980MHz、下行采用2110~2170MHz,上下行的频段相差190MHz。由于上行和下行链路的信道衰落情况是完全不同的,所以,开环功率控制只能起到粗略控制的作用。但开环功控却能相对准确地计算初始发射功率,从而加速了其收敛时间,降低了对系统负载的冲击;而且,在3GPP协议中,要求开环功率控制的控制方差在10dB内就可以接受。2.上行内环功控内环功率控制是快速闭环功率控制,在NodeB与UE之间的物理层进行,上行内环功率控制的目的是使基站接收到每个UE信号的比特能量相等。见图3。图3 上行内环功控首先,NodeB测量接受到的上行信号的信干比(SIR),并和设置的目标SIR(目标SIR由RNC下发给NodeB)相比较,如果测量SIR小于目标SIR,NodeB在下行的物理信道DPCH中的TPC标识通知UE提高发射功率,反之,通知UE降低发射功率。因为WCDMA在空中传输以无线帧为单位,每一帧包含有15个时隙,传输时间为10ms,所以,每时隙传输的频率为1500次/秒;而DPCH是在无限帧中的每个时隙中传送,所以其传送的频率为每秒1500次,而且上行内环功控的标识位TPC是包含在DPCH里面,所以,内环功控的时间也是1500次/秒。3.上行外环功控上行外环功控是RNC动态地调整内环功控的SIR目标值,其目的是使每条链路的通信质量基本保持在设定值,使接收到数据的BLER满足QoS要求。见图4。图4 上行外环功控上行外环功控由RNC执行。RNC测量从NodeB传送来数据的BLER(误块率)并和目标BLER(QoS中的参数,由核心网下发)相比较,如果测量BLER大于目标BLER,RNC重新设置目标TAR(调高TAR)并下发到NodeB;反之,RNC调低TAR并下发到NodeB。外环功率控制的周期一般在一个 TTI(10ms、20ms、40ms、80ms)的量级,即 10~100Hz。由于无线环境的复杂性,仅根据SIR值进行功率控制并不能真正反映链路的质量。而且,网络的通信质量是通过提供服务中的QoS来衡量,而QoS的表征量为BLER,而非SIR。所以,上行外环功控是根据实际的BLER值来动态调整目标SIR,从而满足Qos质量要求。4.下行闭环功控下行闭环功控和上行闭环功控的原理相似。下行内环功率控制由手机控制,目的使手机接收到NodeB信号的比特能量相等,以解决下行功率受限;下行外环功控是由UE的层3控制,通过测量下行数据的BLER值,进而调整UE物理层的目标SIR值,最终达到UE接收到数据的BLER值满足QoS要求。四、总结WCDMA是个自干扰系统,功率是最终的无线资源,而无线资源管理的过程就是控制自身系统内干扰的过程,所以,最有效地使用无线资源的唯一手段就是严格控制功率的使用。但控制功率的使用是矛盾的:一方面它能提高针对某用户的发射功率、改善用户的服务质量;另一方面,由于WCDMA的自干扰性,这种提高会带给其他用户干扰的增加,而导致介绍质量的下降。所以,在WCDMA系统中,在保证了用户要求的QoS前提下,功率控制的使用,最大限度地降低发射功率、减少系统干扰、增加系统容量,而这正是WCDMA技术的关键。
2023-07-08 17:36:161

LTE中S准则是怎么定义的

S准则是用作小区选择的什么时候进行小区选择:6S%m"i%m$N.d.Y5t1.UE开机从连接模式回到空闲模式连接模式过程中,如失去小区信息根据测量控制系统消息提供的小区列表进行小区重选,没有找到可正常驻留的小区驻留小区的条件要求符合小区选择S准则条件1:Srxlev>0。 坛+M7^,d r1j)[ q4}Srxlev计算公式如下:Srxlev=Qrxlevmeas-Qrxlevmin-Pcompensation;其中,Qrxlevmeas(测量的当前服务小区接收功率)指P-CCPCH信道的RSCP值;Qrxlevmin为服务小区最小接收功率。该参数从系统广播消息中读出,一般终端读出后需做一定的算术转换;)ePcompensation补偿值,可通过公式计算得到:Pcompensation=max(UE_TXP-WR_MAX _RACH-P_MAX,0);其中,UE_TXPWR_MAX_RACH(终端在做随机接入时RACH上的最大发送功率)由系统广播消息发送,一般设置为0;P_MAX是终端的最大标称发射功率,与终端功率。条件2:Squal=Qqualmeas-Qqualmin也要大于0Qqualmeas:Measured cell quality value. The quality of the received signal expressed in CPICH Ec/N0,就是测得的EC/NO值;Qqualmin:Minimum required quality level in the cell,要求的EC/NO值,通过SIB3读取得到如果满足Srxlev〉0并且Squal〉0,认为该小区满足驻留要求,读取系统消息,进行位置登记。
2023-07-08 17:36:251

导频污染和重叠覆盖的区别

导频污染是指当手机收到4 个或更多个Ec/Io 的强度都大于T_add 的导频,且其中没有一个导频的强度大到可作为主导频时所发生的情况。在导频污染区里Ec/Io很差,而且手机Idle的信号不停变换造成手机起呼困难;此时手机若在通话状态,由于存在多个强导频而没有一个足够强的主导频,从而导致主小区频繁切换而导致掉话。在TD-SCDMA中,PCCPCH的作用和CDMA和WCDMA中的导频的作用基本相同。TD-SCDMA中主要是通过对PCCPCH的研究来定义其导频污染的。TD-SCDMA的导频污染中引入强导频和足够强主导频的定义。即在某一点存在过多的强导频却没有一个足够强的主导频的时候,即定义为导频污染。在WCDMA中,判决导频污染的依据为:当前满足CPICH_RSCP>-100dBm的导频个数大于3个,且最佳激活集导频强度与第四强导频的强度之差小于5dB时,判定存在导频污染导频污染的解决方法:1、功率调整。最直接的方法是提升一个基站的功率,降低其它基站的输出功率,形成一个主导频。但要全面考虑对全网覆盖影响的情况。但若该污染区的最强的PN随地点变化很大的话,则不适宜。它主要适宜于某个PN基本保持在最强的状况。2、天线调整。根据实际路测情况,调整天线的方位、下倾角来改变污染区域的各导频信号强度,从而改变导频信号在该区域的分布状况。调整的原则是增强强导频,减弱导频。这些调整可以与功率调整结合使用。3、改变基站配置。有些导频污染区域可能无法通过上述的调整来解决,这时,可能需要根据具体情况,考虑替换天线型号,改变天线安装位置,改变基站位置,增加或减少基站,等措施。这些措施的实施涉及到较大的工程变化,因此,需要仔细分析4、采用ODU或直放站。对于无法通过功率调整、天馈调整等解决的导频污染,可以考虑利用ODU或直放站来解决。利用ODU或直放站的目的是在导频污染区域引入一个强的信号覆盖,从而降低该区域其它信号的相对强度,降低其它扇区在该点的Ec/Io,改变多导频覆盖的状况。但要考虑到ODU及直放站引入对网络质量的影响。5、采用微小区。采用微蜂窝的方式也是解决导频污染的一个重要的手段。微蜂窝主要应用于存在话务热点的地区,可以增加容量,同时解决导频污染问题。重叠覆盖的定义在某一连续覆盖区域内,存在多个小区,最少2个的共同覆盖,并且多个小区的覆盖均达了进行业务的要求,这样的区域即为重叠覆盖区域。重叠覆盖的解决方法1. 主要通过调整天线的方位角、俯仰角、高度来解决;2. 在天线工参无法调整的情况下也可以考虑通过RS参考信号功率的调整来解决;3. 当两个小区的天线夹角过小时可以采用小区合并的方法来解决
2023-07-08 17:36:321

手机工作时候,何时发射功率最大,有多大?

先看开环功率控制:它是假定前向路径损耗与反向路径损耗是相似的链路为前提的。将发射功率与接收功率的总和设置为一个常数,通常为-73dB。[移动台根据在整个1.2288MHz频段接收到的总信号能量(就是在导频、寻呼、同步和业务信道的功率,其中含有从服务基站来的信号与相同频率相邻基站的信号总和来)来调整它的发射功率] 例如:如果移动台接收到的信号功率为-85dBm,这时它的发射功率应当为:-73-(-85)=12dBm 闭环功率控制:基站监视从每个移动台接收的功率并命令移动台以固定的步长1dB(0.5 dB、0.25dB)增加或降低功率(不能保持不变)。这个过程每1.25ms一次(每秒钟重复800次) 从以上资料不难看出,cdma2000 1x不断精确控制手机的发射功率,以达到在能够保证接收质量的情况下的最小功率,下面详细介绍 cdma2000 1x为实现这个目的所作的有关功率方面的测试规定。 1、Open Loop Output 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。 2、Time Response of Open Loop 这部分主要保证,手机在不断运动,或者其他原因,导致接受到基站的信号持续变化时,手机是否能根据这种变化能快速、持续调整开环输出功率。 3、Closed Loop Power Range 对于闭环功率控制,基站命令手机进行输出功率调整以优化功率输出。基于收到的电平,基站命令手机增加和降低输出功率,每1.25 ms变化1 dB(800次/秒)。测试闭环功率性能的标准方法包括验证整个功率范围及手机闭环功率控制范围的线性。CDMA手机必须演示±24dB的闭环功率控制范围以及定义的改变功率的速度,以确定手机是否能跟上基站的命令。 4、Maximum Output Power和Minimum Output Power 根据以上的介绍,其实基站对手机发射的绝对功率并不是很重视,它仅仅是要求手机能根据自己发出的功率上升指令或功率下降指令自动调整输出功率即可,且最好手机能发出无限大或无限小的功率来,但这个要求对手机制造商来说,实在是苛刻,且会无限制的提高手机制造成本,因此折中的方案是将手机按发射功率分类,不同类的手机最大功率必须达到各自要求,也就是至少要大于标准规定的最大功率的下限,小于标准规定的最大功率的上限,使其在小区远端或无线阴影中也能较好通讯。同时要求手机必须能够输出小于最小功率的功率值来,也就是在无线环境比较好,且手机与基站很近时,手机能把自己的输出功率降得很低,以确保对其它手机的最小干扰和对电池的最小消耗。 5、Standby Power cdma2000 1x规定手机待机功率要小于-61 dBm,这既保证了对外干扰很小,又保证了在待机时间对电池的小消耗,延长了手机的待机时间。 五、wcdma手机发射功率 GSM和wcdma虽然同为欧洲标准,但wcdma毕竟是码分多址的,它采纳,也必须采纳cdma中很多稳定成熟的技术和方案,至少在对手记发射功率控制这块,wcdma和cdma2000 1x就非常类似,只是wcdma对手机功率控制要求更精准、更严格。 笔者认为这里的原因是wcdma毕竟是码分多址的技术,它需要采用功率控制技术,来平衡用户功率,以保证系统每个用户的通信质量和系统的最大容量。虽然GSM和wcdma同为欧洲标准,而且GSM是第二代标准,wcdma是第三代标准,GSM尽管也采用了功率控制技术,但区别还是巨大的: (1) GSM功率控制速率要慢得多,对功率控制升多少、降多少要求并不是很精准,也不是很严格; (2) GSM对功率控制依赖程度要低,而CDMA没有了功率控制将几乎无法工作。 事实上在W—CDMA中,上行链路采用开环功控和闭环功控两种方式。当上行链路没有建立时,开环功控用来调节物理随机接入信道的发射功率。链路建立之后,使用闭环功控。闭环功控包括内环功控和外环功控。外环功控以误码率或者误帧率作为控制目标,内环功控以信干比作为控制目标。下行链路只有闭环功控。 1、Open Loop Power 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。具体计算公式为:PRACH Preamble Initial Power = (P-CPICH DL TX Power) - (CPICH_RSCP)+ (UL Interference) + (Constant value) 2、Inner Loop Power wcdma 关于手机在内环功控方面作了较好的功率控制位的形式和算法的规定,手机在内环功控下,必须能发出–50dBm到+24 dBm范围内的信号,而且还要求手机能够很好相应基站所发出的功率控制位,当基站发出升(或降)1dB命令时,手机必须升(或降)1dB+/-0.5dB,当基站发出升(或降)10dB命令时,手机必须升(或降)10dB+/-2dB。同时wcdma还规定了A,B,C,D,E,F,G,H 8段区域,来测试手机。将这部分与cdma2000 1x 的闭环功率控制相比,可以看出虽然异曲同工,但wcdma的规定更严谨,更细致。 3、Maximum Output Power和Minimum Output Power wcdma与cdma2000 1x在这方面非常类似,故不再赘述。 通过以上的介绍,不难看出WCDMA与IS-95、CDMA 2000 1x没有本质不同,撇开IPR问题,所有的不同点无非是怎样才能更好发挥CDMA的优势、提高系统的性能如系统容量、通信质量和网络覆盖等。 六、结束语 前面所述仅是把各个标准里对手机发射功率的有关规定拿出来罗列和对比,挂一漏万。但管中窥豹,足见技术的发展和通信协议的进步。 PHS和GSM同为时分多址系统,协议就手机输出功率方面的规定具有可比性,它们与cdma2000 1x、wcdma这些码分多址系统,在手机输出功率方面不具有可比性。码分多址近似的可以认为是在实时的(1.25ms一次),精确的(以0.25 dB)控制手机发射功率,而手机也要实时的、精确的相应控制(具体测试方法见上文),以保证系统的需要。由于多址方式的不同,这就决定了GSM没有必要搞码分多址哪种实时的、精确的、很复杂的功率控制(以节省制造、测试成本),当然也不能像PHS那样,不控制手机输出功率,即便是在微蜂窝内。 在上文中,也是简单介绍了码分多址技术对手机发射功率的控制,事实上码分多址技术对基站和手机的发射功率的规定远不止这些,如接入试探功率、发射开/关控制,呼吸技术等等。现实的情况是,如果没有功率控制等无线资源管理技术的支持,码分多址的性能比时分多址更差。而这些笔者在本文都将其省略了,并不是说这些不重要,而是笔者认为这些与本文着眼点不太一致。 总之,手机发射功率实在是个重要的指标,也是一柄锋利的双刃剑,一方面人们希望它足够大,以克服无线电波传播路径的损耗、发射、折射的损耗,克服其他无线电波的干扰,另一方面又希望它足够小,尽可能小的干扰别人,这点在码分多址系统中尤显突出。解决的办法就是要根据需要控制手机发射功率,在保证所有人的正常通信的情况下,尽可能的把所有手机的发射功率都降下来。当然,这些无疑会加大协议的复杂性,提高手机的制造成本,但这可以保证更多的人同时拥有更多的带宽,这是符合人们一直在追求的提高无线资源利用率这一目标的,毕竟频率资源是不可再生的资源,而手机的制造成本会通过手机的批量生产,最终会降下来。
2023-07-08 17:36:541

英文单词“met”什么意思?

meet(遇见)的过去式
2023-07-08 17:37:025

阴影衰落余量通常与哪些因素相关

、远近效应功率控制目克服远近效应远近效应现象指没功率控制距离基站近UE能阻塞整区距离NodeB远UE信号淹没行链路区内所UE相同功率进行发射由于每UE与NodeB距离路径同信号达NodeB同衰耗导致离NodeB较近UENodeB收信号强较远NodeB收信号弱造NodeB所接收信号强度相差由于WCDMA同频接收系统较远弱信号达NodeB能解扩造弱信号淹没强信号工作CDMA自提直没规模应用主要原克服远近效应图1知采用功率控制每UE达基站功率基本相每UE信号达NodeB都能确解调二、功率控制目WCDMA采用宽带扩频技术自干扰系统通功率控制降低址干扰、克服远近效应及衰落影响保证行链路质量例:保证QoS前提降低某UE发射功率影响其行数据接收质量结却减少系统干扰其UE行链路质量提高功率控制给系统带优点:(1)克服阴影衰落快衰落阴影衰落由于建筑物阻挡产衰落衰落变化比较慢;快衰落由于线传播环境恶劣UENodeB间发射信号能要经反射、散射折射才能达接受端造于阴影衰落提高发射功率克服;快速功控速度1500/秒功控速度能高于快衰落克服快衰落、给系统带增益并保证UE移状态接受质量同能减相邻区干扰(2)降低网络干扰提高系统质量容量功率控制结使UENodeB间信号低功率发射系统内干扰提高系统容量质量(3)由于手机发射功率NodeB保持联系手机电池使用间延三、功率控制类WCDMA系统功率控制按向行(或称反向)功率控制行(或称前向)功率控制两类;按移台基站否同参与环功率控制闭环功率控制两类闭环功控指发射端根据接收端送反馈信息发射功率进行控制程;环功控需要接收端反馈发射端根据自身测量信息发射功率进行控制1.环功率控制环功率控制根据行链路干扰情况估算行链路或根据行链路干扰情况估算行链路单向闭合图2所示UE测量公共导频信道CPICH接收功率并估算NodeB初始发射功率计算路径损耗根据广播信道BCH干扰水平解调门限UE计算行初始发射功率作随机接入前缀传输功率并选择行接入隙传送(随机接入程)环功率控制实际根据行链路功率测量路径损耗干扰水平进行估算行初始发射功率所初始行发射功率相准确值WCDMA系统采用FDD模式行采用1920~1980MHz、行采用2110~2170MHz行频段相差190MHz由于行行链路信道衰落情况完全同所环功率控制能起粗略控制作用环功控却能相准确计算初始发射功率加速其收敛间降低系统负载冲击;且3GPP协议要求环功率控制控制差10dB内接受2.行内环功控内环功率控制快速闭环功率控制NodeB与UE间物理层进行,行内环功率控制目使基站接收每UE信号比特能量相等见图3图3行内环功控首先NodeB测量接受行信号信干比(SIR)并设置目标SIR(目标SIR由RNC发给NodeB)相比较测量SIR于目标SIRNodeB行物理信道DPCHTPC标识通知UE提高发射功率反通知UE降低发射功率WCDMA空传输线帧单位每帧包含15隙传输间10ms所每隙传输频率1500/秒;DPCH限帧每隙传送所其传送频率每秒1500且行内环功控标识位TPC包含DPCH面所内环功控间1500/秒3.行外环功控行外环功控RNC态调整内环功控SIR目标值其目使每条链路通信质量基本保持设定值使接收数据BLER满足QoS要求见图4图4行外环功控行外环功控由RNC执行RNC测量NodeB传送数据BLER(误块率)并目标BLER(QoS参数由核网发)相比较测量BLER于目标BLERRNC重新设置目标TAR(调高TAR)并发NodeB;反RNC调低TAR并发NodeB外环功率控制周期般TTI(10ms、20ms、40ms、80ms)量级即10~100Hz由于线环境复杂性仅根据SIR值进行功率控制并能真反映链路质量且网络通信质量通提供服务QoS衡量QoS表征量BLER非SIR所行外环功控根据实际BLER值态调整目标SIR满足Qos质量要求4.行闭环功控行闭环功控行闭环功控原理相似行内环功率控制由手机控制目使手机接收NodeB信号比特能量相等解决行功率受限;行外环功控由UE层3控制通测量行数据BLER值进调整UE物理层目标SIR值终达UE接收数据BLER值满足QoS要求四、总结WCDMA自干扰系统功率终线资源线资源管理程控制自身系统内干扰程所效使用线资源唯手段严格控制功率使用控制功率使用矛盾:面能提高针某用户发射功率、改善用户服务质量;另面由于WCDMA自干扰性种提高带给其用户干扰增加导致介绍质量降所WCDMA系统保证用户要求QoS前提功率控制使用限度降低发射功率、减少系统干扰、增加系统容量WCDMA技术关键
2023-07-08 17:37:181

银行 通讯录

这么隐私的东西,谁敢给你!
2023-07-08 17:37:273

RSRP,RSSI,RSRQ有哪些区别?

RSRP:ReferenceSignalReceivedPower下行参考信号的接收功率,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别,所以RSRP在数值上偏低。RSSI:(ReceivedSignalStrengthIndicator,指的是手机接收到的总功率,包括有用信号、干扰和底噪)。RSRQ:(ReferenceSignalReceivedQuality)主要衡量下行特定小区参考信号的接收质量。和WCDMA中CPICHEc/Io作用类似。二者的定义也类似,RSRQ=RSRP*RBNumber/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的;信令中与实际测量值的换算RSRQ=(实际测量值-40)/2。
2023-07-08 17:37:521

RSRP,RSSI,RSRQ有哪些区别?

RSRP: Reference Signal Received Power下行参考信号的接收功率 ,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别,所以RSRP在数值上偏低。RSSI:(Received Signal Strength Indicator,指的是手机接收到的总功率,包括有用信号、干扰和底噪)。RSRQ: (Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量。和WCDMA中CPICH Ec/Io作用类似。二者的定义也类似,RSRQ = RSRP * RB Number/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的;信令中与实际测量值的换算RSRQ=(实际测量值-40)/2。
2023-07-08 17:38:011

LTE中SINR、RSRQ还有CQI有什么联系么,求解释

RSRP(Reference Signal Received Power)主要用来衡量下行参考信号的功率,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别。RSRQ (Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量。和WCDMA中CPICH Ec/Io作用类似。二者的定义也类似,RSRQ = RSRP * RB Number/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的。 当小区存在干扰时 SINR会降低 RSRP不会降低。RSRQ是一个long term的指标,主要用于小区接入、切换等。SINR在物理层一般是short term的指标,对应CQI等。
2023-07-08 17:38:081

请教LTE的KPI指标RSRP,RSRQ,SINR的取值范围

在3GPP的协议中,参考信号接收功率(RSRP),定义为在考虑测量频带上,承载小区专属参考信号的资源粒子的功率贡献(以W为单位)的线性平均值。 通俗的理解,可以认为RSRP的功率值就是代表了每个子载波的功率值。在3GPP的协议中,接收信号强度指示(RSSI)定义为:接收宽带功率,包括在接收机脉冲成形滤波器定义的带宽内的热噪声和接收机产生的噪声。测量的参考点为UE的天线端口。即RSSI(Received Signal Strength Indicator)是在这个接收到Symbol内的所有信号(包括导频信号和数据信号,邻区干扰信号,噪音信号等)功率的平均值。 在3GPP中有该参数的介绍,参考信号接收质量(RSRQ) i定义为比值N×RSRP/(E-UTRA carrier RSSI),其中N表示 E-UTRA carrier RSSI 测量带宽中的RB的数量。分子和分母应该在相同的资源块上获得。 E-UTRA 载波接收信号场强指示(E-UTRA Carrier RSSI),由UE从所有源上观察到的总的接收功率(以W为单位)的线性平均,包括公共信道服务和非服务小区,邻仅信道干扰,热噪声等。如果UE使用接收分集,那么报告值应该不低于任一独立分集分支的相应RSRQ值。 从公式上推断,该数值用对数表示时,大部分情况是负值。即使来自外部的干扰为0或忽略不计,极限情况数值也是趋近与0的。载波干扰噪声比,RS-CINR在终端定义为RS有用信号与干扰(或噪声或干扰加噪声)相比强度,路测中由UE测得。RS-SINR没有在3GPP进行标准化,所以目前仅在外场测试中要求厂家提供RS-CINR,且不同厂家在实现中可能会有一定偏差。具体计算数值如下 RS-CINR=RSRP/(RS RSSI-RSRP);或者可以说:下行RS的SINR = RS接收功率 /(干扰功率 + 噪声功率),干扰功率 = RS所占的RE上接收到的邻小区的功率之和。 通俗的理解,该比值类似于GSM系统中的C/I,即有用信号/无用的信号。从定义来看RSRP相当于WCDMA里CPICH的RSCP,RSRQ相当于CPICH Ec/NoReference Signal Received Quality (RSRQ) 在协议中的定义为:N×RSRP/(E-UTRA carrier RSSI),即RSRQ = 10log10(N) + UE所处位置接收到主服务小区的RSRP – RSSI。其中N为UE测量系统频宽内RB的数目,RSSI是指天线端口port0上包含参考信号的OFDM符号上的功率的线性平均,首先将每个资源块上测量带宽内的所有RE上的接收功率累加,包括有用信号、干扰、热噪声等,然后在OFDM符号上即时间上进行线性平均。参见3GPP 36.214。 RSRQ是随着网络负荷和干扰发生变化,网络负荷越大,干扰越大,RSRQ测量值越小。在网络规划仿真中RSRQ>-13.8dB与RS-CINR>0dB的统计比例基本一致 ,他们的数值关系推断如下:两式相除得:观察上面的式子,表示测量频带内的RB数量,分子乘于12后变成测量频带内的干扰信号,RSSI为有用信号(本小区信号)+干扰信号(邻区干扰与噪声) 考虑理想情况下,在重叠区域,本小区的干扰与邻区信号强度相等,在边缘处用户被分配的RB资源不多,占用带宽不大,不考虑底噪。可推算得到RSRQ/RS-CINR=1/24,即-13.8dB; 在LTE-Advance R11版本协议中提出了CoMP多点协调的概念,通过X2接口互联,避免在同频组网的情况下,邻区间使用相同的频率资源,降低干扰。但是目前X2接口间的功能尚未完善。所以现在同频组网的情况,无法避免重叠区发生频率资源碰撞。在重叠覆盖处只有牺牲速率要求来保证质量了。
2023-07-08 17:38:291

请教LTE的KPI指标RSRP,RSRQ,SINR的取值范围

前两个请查36.214 sinr规范没定义,一般-10到40db
2023-07-08 17:38:383

天线端口0干扰噪声功率高是什么原因导致

在3GPP的协议中,参考信号接收功率(RSRP),定义为在考虑测量频带上,承载小区专属参考信号的资源粒子的功率贡献(以W为单位)的线性平均值。 通俗的理解,可以认为RSRP的功率值就是代表了每个子载波的功率值。 在3GPP的协议中,接收信号强度指示(RSSI)定义为:接收宽带功率,包括在接收机脉冲成形滤波器定义的带宽内的热噪声和接收机产生的噪声。测量的参考点为UE的天线端口。即RSSI(Received Signal Strength Indicator)是在这个接收到Symbol内的所有信号(包括导频信号和数据信号,邻区干扰信号,噪音信号等)功率的平均值。 在3GPP中有该参数的介绍,参考信号接收质量(RSRQ) i定义为比值N×RSRP/(E-UTRA carrier RSSI),其中N表示 E-UTRA carrier RSSI 测量带宽中的RB的数量。分子和分母应该在相同的资源块上获得。 E-UTRA 载波接收信号场强指示(E-UTRA Carrier RSSI),由UE从所有源上观察到的总的接收功率(以W为单位)的线性平均,包括公共信道服务和非服务小区,邻仅信道干扰,热噪声等。如果UE使用接收分集,那么报告值应该不低于任一独立分集分支的相应RSRQ值。 从公式上推断,该数值用对数表示时,大部分情况是负值。即使来自外部的干扰为0或忽略不计,极限情况数值也是趋近与0的。 载波干扰噪声比,RS-CINR在终端定义为RS有用信号与干扰(或噪声或干扰加噪声)相比强度,路测中由UE测得。RS-SINR没有在3GPP进行标准化,所以目前仅在外场测试中要求厂家提供RS-CINR,且不同厂家在实现中可能会有一定偏差。具体计算数值如下 RS-CINR=RSRP/(RS RSSI-RSRP);或者可以说:下行RS的SINR = RS接收功率 /(干扰功率 + 噪声功率),干扰功率 = RS所占的RE上接收到的邻小区的功率之和。 通俗的理解,该比值类似于GSM系统中的C/I,即有用信号/无用的信号。从定义来看RSRP相当于WCDMA里CPICH的RSCP,RSRQ相当于CPICH Ec/No Reference Signal Received Quality (RSRQ) 在协议中的定义为:N×RSRP/(E-UTRA carrier RSSI),即RSRQ = 10log10(N) + UE所处位置接收到主服务小区的RSRP – RSSI。其中N为UE测量系统频宽内RB的数目,RSSI是指天线端口port0上包含参考信号的OFDM符号上的功率的线性平均,首先将每个资源块上测量带宽内的所有RE上的接收功率累加,包括有用信号、干扰、热噪声等,然后在OFDM符号上即时间上进行线性平均。参见3GPP 36.214。 RSRQ是随着中国络负荷和干扰发生变化,中国络负荷越大,干扰越大,RSRQ测量值越小。 在中国络规划仿真中RSRQ>-13.8dB与RS-CINR>0dB的统计比例基本一致 ,他们的数值关系推断如下: 两式相除得: 观察上面的式子,表示测量频带内的RB数量,分子乘于12后变成测量频带内的干扰信号,RSSI为有用信号(本小区信号)+干扰信号(邻区干扰与噪声) 考虑理想情况下,在重叠区域,本小区的干扰与邻区信号强度相等,在边缘处用户被分配的RB资源不多,占用带宽不大,不考虑底噪。可推算 得到RSRQ/RS-CINR=1/24,即-13.8dB; 在LTE-Advance R11版本协议中提出了CoMP多点协调的概念,通过X2接口互联,避免在同频组中国的情况下,邻区间使用相同的频率资源,降低干扰。但是目前X2接口间的功能尚未完善。所以现在同频组中国的情况,无法避免重叠区发生频率资源碰撞。在重叠覆盖处只有牺牲速率要求来保证质量了。
2023-07-08 17:39:171

rsrp rsrq 3gpp哪个协议

在3GPP的协议中,参考信号接收功率(RSRP),定义为在考虑测量频带上,承载小区专属参考信号的资源粒子的功率贡献(以W为单位)的线性平均值。 通俗的理解,可以认为RSRP的功率值就是代表了每个子载波的功率值。 在3GPP的协议中,接收信号强度指示(RSSI)定义为:接收宽带功率,包括在接收机脉冲成形滤波器定义的带宽内的热噪声和接收机产生的噪声。测量的参考点为UE的天线端口。即RSSI(Received Signal Strength Indicator)是在这个接收到Symbol内的所有信号(包括导频信号和数据信号,邻区干扰信号,噪音信号等)功率的平均值。 在3GPP中有该参数的介绍,参考信号接收质量(RSRQ) i定义为比值N×RSRP/(E-UTRA carrier RSSI),其中N表示 E-UTRA carrier RSSI 测量带宽中的RB的数量。分子和分母应该在相同的资源块上获得。 E-UTRA 载波接收信号场强指示(E-UTRA Carrier RSSI),由UE从所有源上观察到的总的接收功率(以W为单位)的线性平均,包括公共信道服务和非服务小区,邻仅信道干扰,热噪声等。如果UE使用接收分集,那么报告值应该不低于任一独立分集分支的相应RSRQ值。 从公式上推断,该数值用对数表示时,大部分情况是负值。即使来自外部的干扰为0或忽略不计,极限情况数值也是趋近与0的。 载波干扰噪声比,RS-CINR在终端定义为RS有用信号与干扰(或噪声或干扰加噪声)相比强度,路测中由UE测得。RS-SINR没有在3GPP进行标准化,所以目前仅在外场测试中要求厂家提供RS-CINR,且不同厂家在实现中可能会有一定偏差。具体计算数值如下 RS-CINR=RSRP/(RS RSSI-RSRP);或者可以说:下行RS的SINR = RS接收功率 /(干扰功率 + 噪声功率),干扰功率 = RS所占的RE上接收到的邻小区的功率之和。 通俗的理解,该比值类似于GSM系统中的C/I,即有用信号/无用的信号。从定义来看RSRP相当于WCDMA里CPICH的RSCP,RSRQ相当于CPICH Ec/No Reference Signal Received Quality (RSRQ) 在协议中的定义为:N×RSRP/(E-UTRA carrier RSSI),即RSRQ = 10log10(N) + UE所处位置接收到主服务小区的RSRP – RSSI。其中N为UE测量系统频宽内RB的数目,RSSI是指天线端口port0上包含参考信号的OFDM符号上的功率的线性平均,首先将每个资源块上测量带宽内的所有RE上的接收功率累加,包括有用信号、干扰、热噪声等,然后在OFDM符号上即时间上进行线性平均。参见3GPP 36.214。 RSRQ是随着中国络负荷和干扰发生变化,中国络负荷越大,干扰越大,RSRQ测量值越小。 在中国络规划仿真中RSRQ>-13.8dB与RS-CINR>0dB的统计比例基本一致 ,他们的数值关系推断如下: 两式相除得: 观察上面的式子,表示测量频带内的RB数量,分子乘于12后变成测量频带内的干扰信号,RSSI为有用信号(本小区信号)+干扰信号(邻区干扰与噪声) 考虑理想情况下,在重叠区域,本小区的干扰与邻区信号强度相等,在边缘处用户被分配的RB资源不多,占用带宽不大,不考虑底噪。可推算 得到RSRQ/RS-CINR=1/24,即-13.8dB; 在LTE-Advance R11版本协议中提出了CoMP多点协调的概念,通过X2接口互联,避免在同频组中国的情况下,邻区间使用相同的频率资源,降低干扰。但是目前X2接口间的功能尚未完善。所以现在同频组中国的情况,无法避免重叠区发生频率资源碰撞。在重叠覆盖处只有牺牲速率要求来保证质量了。
2023-07-08 17:39:241

WCDMA和GSM功率多少?

一、wcdma手机发射功率  GSM和wcdma虽然同为欧洲标准,但wcdma毕竟是码分多址的,它采纳,也必须采纳cdma中很多稳定成熟的技术和方案,至少在对手记发射功率控制这块,wcdma和cdma2000 1x就非常类似,只是wcdma对手机功率控制要求更精准、更严格。  笔者认为这里的原因是wcdma毕竟是码分多址的技术,它需要采用功率控制技术,来平衡用户功率,以保证系统每个用户的通信质量和系统的最大容量。虽然GSM和wcdma同为欧洲标准,而且GSM是第二代标准,wcdma是第三代标准,GSM尽管也采用了功率控制技术,但区别还是巨大的:  (1)GSM功率控制速率要慢得多,对功率控制升多少、降多少要求并不是很精准,也不是很严格;  (2)GSM对功率控制依赖程度要低,而CDMA没有了功率控制将几乎无法工作。  事实上在W—CDMA中,上行链路采用开环功控和闭环功控两种方式。当上行链路没有建立时,开环功控用来调节物理随机接入信道的发射功率。链路建立之后,使用闭环功控。闭环功控包括内环功控和外环功控。外环功控以误码率或者误帧率作为控制目标,内环功控以信干比作为控制目标。下行链路只有闭环功控。  1、Open Loop Power  这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。具体计算公式为:PRACH Preamble Initial Power = (P-CPICH DL TX Power) - (CPICH_RSCP)+ (UL Interference) + (Constant value)  2、Inner Loop Power wcdma  关于手机在内环功控方面作了较好的功率控制位的形式和算法的规定,手机在内环功控下,必须能发出–50dBm到+24 dBm范围内的信号,而且还要求手机能够很好相应基站所发出的功率控制位,当基站发出升(或降)1dB命令时,手机必须升(或降)1dB+/-0.5dB,当基站发出升(或降)10dB命令时,手机必须升(或降)10dB+/-2dB。同时wcdma还规定了A,B,C,D,E,F,G,H 8段区域,来测试手机。将这部分与cdma2000 1x 的闭环功率控制相比,可以看出虽然异曲同工,但wcdma的规定更严谨,更细致。  二、GSM手机发射功率  GSM协议规定,手机发射功率是可以被基站控制的。基站通过下行SACCH信道,发出命令控制手机的发射功率级别,每个功率级别差2dB,GSM900 手机最大发射功率级别是5(33dBm),最小发射功率级别是19(5dBm),DCS1800手机最大发射功率级别是0(30dBm),最小发射功率级别是15(0dBm)。当手机远离基站,或者处于无线阴影区时,基站可以命令手机发出较大功率,直至33dBm(GSM900),以克服远距离传输或建筑物遮挡所造成的信号损耗。如果手机离基站很近,且无任何遮挡物时,基站可以命令手机发出较小功率,直至5dBm(GSM900),以减少手机对同信道、相邻信道的其它GSM用户的干扰和其它无线设备的干扰,而且这样还可以有效延长手机待机时间、通话时间。GSM手机发出的最低功率仅为5dBm(GSM900),约为3.2mW,这比PHS的平均功率10mW要小,同时GSM手机发出的最大功率33dBm(GSM900),约为2W,这个信号相对来说是巨大的,对这种大信号不加以严格规定,其干扰也是巨大的。因此GSM就手机发射信号除了发射功率的规定以外,在其它方面也作了适当的规定。(注意:这里是适当的规定,如果规定偏严无疑会加大手机制造成本,如果偏松,无疑会加大干扰。)WCDMA和GSM功率多少?
2023-07-08 17:39:311

在小区搜索与小区选择的过程中用到了哪些物理信道

移动台开机后首先要与某一个小区的信号取得时序同步。这种从无联系到时序同步的过程就是移动台的小区搜索过程。在小区搜索过程中,移动台捕获一个小区的发射信号并据此确定这个小区的下行链路扰码和帧同步。第一步:时隙同步:主同步信道P-SCH ,每个时隙的前256个码片,主同步码序列只有一个所有基站的所有小区都一样第二步:扰码组的识别与帧同步:辅同步信道S-SCH,也使用每个时隙的前256个码片发送,3GPP定义了64组辅同步码序列,每组序列对应了一个扰码组。每个扰码组里面含有8个扰码,所以在系统初始捕获的时候,在UE获得主扰码识别时候,将主扰码的搜索范围从512降到8,大大提高了初始捕获的效率。辅同步码共有16个,把16个码字进行排列组合(要求每组15个码字),从所有的组合中挑出64组(每组的任意相位都不会和其他组的任意相位重复),第三步:扰码识别:当基站所属的扰码码组已确定后,需进一步确定基站的身份码——下行扰码。移动台使用第二步识别到的扰码码组中的8个主扰码分别与捕获的P-CPICH信道进行相关计算(对比),得到该小区使用的下行扰码。根据识别到的扰码,P-CCPCH就可以被检测出,从而可获得超帧同步,系统以及小区的特定的广播信息就可被读出。
2023-07-08 17:39:381

手机何时发射功率最大,有多大?

分类: 教育/科学 >> 科学技术 >> 工程技术科学 问题描述: 手机何时发射功率最大?听说刚振铃时、信号弱时发射功率大,是吗?有多大?对人后多大害处? 解析: 浅谈手机发射功率 笔者从事手机测试校准系统集成有段时间,感觉到手机发射功率在不同的系统、不同的协议下有很多的不同。笔者对此深感有意思,故把PHS、GSM、cdma2000 1x、wcdma下对手机发射功率的规定罗列于此,希望能给同行起到抛砖引玉的作用,斧正我的错误。 一、手机发射功率的两个方面手机发射功率在PHS、GSM、cdma2000 1x、wcdma等协议中,被设计得越来越复杂,它的重要性已不言而喻,哪手机发射功率是大些好哪,还是小些好哪?事实上单纯的说大些好或者小些好,都实在不是一个明智的回答,因为在设计手机功率时,要考虑以下两个方面: 1、在能保证正常通信情况下,手机发射功率越小越好 *、手机发射功率越小,手机的耗电量就越小,待机时间、通话时间越长; *、手机发射功率越小,对同系统别的手机的干扰越小,这不仅给同系统别的手机创造了好的无线环境,同时对于cdma2000 1x、wcdma来说,这就意味着小区容量越大; *、手机发射功率越小,对别的无线设备干扰越小,这就给别的无线设备创造了好的无线环境; 2、在有些情况下,为了能保证通信质量,手机发射功率希望能被调整的大些,再大些,再大些...... *、手机在小区的远端时,为了保证手机信号经过长距离传输到达基站后,手机信号仍能被正确解调,也就是手机发射功率要足够大,以克服信号经过长距离传输的衰减; *、手机被建筑物或其它遮挡,在无线阴影区内,手机发射功率也要足够大,以克服手机信号必须经过多次的反射、折射及长距离传输的衰减; *、手机在干扰比较大的情况下,如邻信道、同信道干扰,阻塞等等,手机发射功率也要足够大,以克服噪声的干扰。 综上所述,手机发射功率存在着两面性,一方面在能保证正常通信情况下,手机发射功率越小越好;另一方面,在有些情况下,为了能保证通信质量,手机发射功率必须要大一些,甚至要再大一些。这两方面看似矛盾,实为统一,准确表述为:手机必须发出足够大的功率,以保证通信质量,在保证通信质量的前提下,手机发射功率越小越好。换言之,手机发射功率最好根据实际情况能够被控制,该大则大,该小则小。 二、PHS手机发射功率 PHS(Personal Handyphone system的缩写)为日本独立开发出的第三代数字无绳电话系统——个人携带电话系统,它具有很多突出的优点:建设费用低、系统扩充方便,超低的资费标准,因协议简单,而使手机制造成本降低,最终导致手机拥有价格上的优势等等。PHS在中国被称为小灵通,在有些地方也称为“个人通信接入系统PAS(Personal Access System)” PHS采用日本RCR-STD28协议作为空中无线接口标准,采用微蜂窝技术,因此它必须建置较密集的基站。由于基站覆盖范围较小,其铺设就必须比高功率的移动电话基站密,适于低速状态下的移动。不过,新一代的PHS基站范围已扩大至500米。 基于以上的情况,特别是采用微蜂窝技术,RCR-STD28规定手机的发射平均功率≤10mW,峰值功率≤80mW,发射功率不可控。除此之外,有关PHS手机发射功率的测量还有 1、载波关断泄漏功率≤80nW 2、发射瞬态响应特性:脉冲上升、下降时间≤13μS 3、杂散发射功率相对载波电平(衰减量)≥50dB,或绝对电平≤2.5μW。 从以上的情况不难看出,PHS手机在小区远端,或阴影区,或受到干扰,是不能以再提高发射功率,以抵消无线信号的长距离传输的损耗,或建筑物等的遮挡损耗,或抵御干扰。这实际上导致的结果就是手机与基站之间的无线链路很脆弱,这是PHS手机协议上的根本弱点之一。 反过来从协议对手机发射功率的规定中我们也不难看出,PHS只能采用微蜂窝技术,通过建置较密集的基站抵消远近效应和阴影效应,否则就会出现大量的无信号区域和通信质量差等问题。在受到干扰,通信质量降低的情况下,手机也无法通过提高发射功率的办法,来保证通信质量。 由于PHS手机发射功率比较小,对别的手机或无线设备干扰也小,它的待机时间、通话时间都比较长,由于PHS手机发射功率不受控制,协议简单,手机制造成本也相对较低。 三、GSM手机发射功率 GSM协议规定,手机发射功率是可以被基站控制的。基站通过下行SACCH信道,发出命令控制手机的发射功率级别,每个功率级别差2dB,GSM900 手机最大发射功率级别是5(33dBm),最小发射功率级别是19(5dBm),DCS1800手机最大发射功率级别是0(30dBm),最小发射功率级别是15(0dBm)。 从以上不难看出当手机远离基站,或者处于无线阴影区时,基站可以命令手机发出较大功率,直至33dBm(GSM900),以克服远距离传输或建筑物遮挡所造成的信号损耗。如果手机离基站很近,且无任何遮挡物时,基站可以命令手机发出较小功率,直至5dBm(GSM900),以减少手机对同信道、相邻信道的其它GSM用户的干扰和其它无线设备的干扰,而且这样还可以有效延长手机待机时间、通话时间。 从以上不难看出GSM手机发出的最低功率仅为5dBm(GSM900),约为3.2mW,这比PHS的平均功率10mW要小,同时GSM手机发出的最大功率33dBm(GSM900),约为2W,这个信号相对来说是巨大的,对这种大信号不加以严格规定,其干扰也是巨大的。因此GSM就手机发射信号除了发射功率的规定以外,在其它方面也作了适当的规定。(注意:这里是适当的规定,如果规定偏严无疑会加大手机制造成本,如果偏松,无疑会加大干扰。)具体有如下几个方面: 1、Power versus Time 由于GSM是TDMA系统,因此GSM协议通过一个功率对时间的模板来严格限制发射功率在时间域的变化情况,以减少干扰,尤其是对同信道其他时隙的用户的干扰。 2、Output RF Spectrum Due to Modulation 3、Output RF Spectrum Due to Ramping GSM通过对手机发射信号的调制谱和切换谱的规定,来限制手机发射信号时的频谱带宽和形状,以减少干扰,尤其是邻信道用户的干扰。 拿GSM协议和PHS协议对比来看,GSM为保证通信质量,规定了手机的发射功率是受基站控制的,根据需要可大可小,但同时又严格规定手机发射信号在时间域和频率域的“形状”(PvT,ORFS),这无疑又极大的限制了手机对外的干扰。而PHS手机的发射功率不可再增大,因此PHS手机与基站之间的无线链路很脆弱的弱点,只能通过建置较密集的基站来解决,这无疑又加大了系统的投资。当然由于它的发射信号始终比较小,信号在时域和频域上的要求也不用很严,生产制造成本、测试成本也都跟着降了下来。 从以上不难看出,同为时分多址系统,单从手机发射功率这点就能看出来,GSM系统优于PHS系统。 四、cdma2000 1x手机发射功率 cdma顾名思义是码分多址,因此在一个小区内的所有用户,都是同时在同一个频率上通讯,因此每个用户都回受到同小区的其它用户的干扰,每个用户都会干扰同小区的其它用户,因此人们也把cdma称之为自干扰系统。 CDMA的基本技术之一是功率控制。因为限制CDMA系统容量的因素是总干扰功率,所以控制每个移动台的功率是获得最大容量的关键。在给定条件下,CDMA移动台的功率被控制到能够保证接收话音质量的最小功率。结果是每个移动台到达基站的信号电平几乎相同。这样,每台移动台对其他移动台的干扰被控制到最小。因此CDMA系统容量也被称为“软容量”,也就是CDMA可以通过降低通信质量来提高系统容量。 如果移动台发射功率过大,会对其他用户带来干扰。它会作为其他接收者的背景噪声存在。如果某用户为了获得完美的话音而没有限制的升高发射信号功率,那么他将不仅影响到本网络的其他用户的通话,而且会影响到该频段上其他通信系统用户的使用。 下面以cdma2000 1x(cdma95类似)为例,详细介绍有关功率控制与测试。cdma2000 1x反向链路采用两种形式的功率控制:开环功率控制和闭环功率控制。 先看开环功率控制:它是假定前向路径损耗与反向路径损耗是相似的链路为前提的。将发射功率与接收功率的总和设置为一个常数,通常为-73dB。[移动台根据在整个1.2288MHz频段接收到的总信号能量(就是在导频、寻呼、同步和业务信道的功率,其中含有从服务基站来的信号与相同频率相邻基站的信号总和来)来调整它的发射功率] 例如:如果移动台接收到的信号功率为-85dBm,这时它的发射功率应当为:-73-(-85)=12dBm 闭环功率控制:基站监视从每个移动台接收的功率并命令移动台以固定的步长1dB(0.5 dB、0.25dB)增加或降低功率(不能保持不变)。这个过程每1.25ms一次(每秒钟重复800次) 从以上资料不难看出,cdma2000 1x不断精确控制手机的发射功率,以达到在能够保证接收质量的情况下的最小功率,下面详细介绍 cdma2000 1x为实现这个目的所作的有关功率方面的测试规定。 1、Open Loop Output 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。 2、Time Response of Open Loop 这部分主要保证,手机在不断运动,或者其他原因,导致接受到基站的信号持续变化时,手机是否能根据这种变化能快速、持续调整开环输出功率。 3、Closed Loop Power Range 对于闭环功率控制,基站命令手机进行输出功率调整以优化功率输出。基于收到的电平,基站命令手机增加和降低输出功率,每1.25 ms变化1 dB(800次/秒)。测试闭环功率性能的标准方法包括验证整个功率范围及手机闭环功率控制范围的线性。CDMA手机必须演示±24dB的闭环功率控制范围以及定义的改变功率的速度,以确定手机是否能跟上基站的命令。 4、Maximum Output Power和Minimum Output Power 根据以上的介绍,其实基站对手机发射的绝对功率并不是很重视,它仅仅是要求手机能根据自己发出的功率上升指令或功率下降指令自动调整输出功率即可,且最好手机能发出无限大或无限小的功率来,但这个要求对手机制造商来说,实在是苛刻,且会无限制的提高手机制造成本,因此折中的方案是将手机按发射功率分类,不同类的手机最大功率必须达到各自要求,也就是至少要大于标准规定的最大功率的下限,小于标准规定的最大功率的上限,使其在小区远端或无线阴影中也能较好通讯。同时要求手机必须能够输出小于最小功率的功率值来,也就是在无线环境比较好,且手机与基站很近时,手机能把自己的输出功率降得很低,以确保对其它手机的最小干扰和对电池的最小消耗。 5、Standby Power cdma2000 1x规定手机待机功率要小于-61 dBm,这既保证了对外干扰很小,又保证了在待机时间对电池的小消耗,延长了手机的待机时间。 五、wcdma手机发射功率 GSM和wcdma虽然同为欧洲标准,但wcdma毕竟是码分多址的,它采纳,也必须采纳cdma中很多稳定成熟的技术和方案,至少在对手记发射功率控制这块,wcdma和cdma2000 1x就非常类似,只是wcdma对手机功率控制要求更精准、更严格。 笔者认为这里的原因是wcdma毕竟是码分多址的技术,它需要采用功率控制技术,来平衡用户功率,以保证系统每个用户的通信质量和系统的最大容量。虽然GSM和wcdma同为欧洲标准,而且GSM是第二代标准,wcdma是第三代标准,GSM尽管也采用了功率控制技术,但区别还是巨大的: (1) GSM功率控制速率要慢得多,对功率控制升多少、降多少要求并不是很精准,也不是很严格; (2) GSM对功率控制依赖程度要低,而CDMA没有了功率控制将几乎无法工作。 事实上在W—CDMA中,上行链路采用开环功控和闭环功控两种方式。当上行链路没有建立时,开环功控用来调节物理随机接入信道的发射功率。链路建立之后,使用闭环功控。闭环功控包括内环功控和外环功控。外环功控以误码率或者误帧率作为控制目标,内环功控以信干比作为控制目标。下行链路只有闭环功控。 1、Open Loop Power 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。具体计算公式为:PRACH Preamble Initial Power = (P-CPICH DL TX Power) - (CPICH_RSCP)+ (UL Interference) + (Constant value) 2、Inner Loop Power wcdma 关于手机在内环功控方面作了较好的功率控制位的形式和算法的规定,手机在内环功控下,必须能发出–50dBm到+24 dBm范围内的信号,而且还要求手机能够很好相应基站所发出的功率控制位,当基站发出升(或降)1dB命令时,手机必须升(或降)1dB+/-0.5dB,当基站发出升(或降)10dB命令时,手机必须升(或降)10dB+/-2dB。同时wcdma还规定了A,B,C,D,E,F,G,H 8段区域,来测试手机。将这部分与cdma2000 1x 的闭环功率控制相比,可以看出虽然异曲同工,但wcdma的规定更严谨,更细致。 3、Maximum Output Power和Minimum Output Power wcdma与cdma2000 1x在这方面非常类似,故不再赘述。 通过以上的介绍,不难看出WCDMA与IS-95、CDMA 2000 1x没有本质不同,撇开IPR问题,所有的不同点无非是怎样才能更好发挥CDMA的优势、提高系统的性能如系统容量、通信质量和网络覆盖等。 六、结束语 前面所述仅是把各个标准里对手机发射功率的有关规定拿出来罗列和对比,挂一漏万。但管中窥豹,足见技术的发展和通信协议的进步。 PHS和GSM同为时分多址系统,协议就手机输出功率方面的规定具有可比性,它们与cdma2000 1x、wcdma这些码分多址系统,在手机输出功率方面不具有可比性。码分多址近似的可以认为是在实时的(1.25ms一次),精确的(以0.25 dB)控制手机发射功率,而手机也要实时的、精确的相应控制(具体测试方法见上文),以保证系统的需要。由于多址方式的不同,这就决定了GSM没有必要搞码分多址哪种实时的、精确的、很复杂的功率控制(以节省制造、测试成本),当然也不能像PHS那样,不控制手机输出功率,即便是在微蜂窝内。 在上文中,也是简单介绍了码分多址技术对手机发射功率的控制,事实上码分多址技术对基站和手机的发射功率的规定远不止这些,如接入试探功率、发射开/关控制,呼吸技术等等。现实的情况是,如果没有功率控制等无线资源管理技术的支持,码分多址的性能比时分多址更差。而这些笔者在本文都将其省略了,并不是说这些不重要,而是笔者认为这些与本文着眼点不太一致。 总之,手机发射功率实在是个重要的指标,也是一柄锋利的双刃剑,一方面人们希望它足够大,以克服无线电波传播路径的损耗、发射、折射的损耗,克服其他无线电波的干扰,另一方面又希望它足够小,尽可能小的干扰别人,这点在码分多址系统中尤显突出。解决的办法就是要根据需要控制手机发射功率,在保证所有人的正常通信的情况下,尽可能的把所有手机的发射功率都降下来。当然,这些无疑会加大协议的复杂性,提高手机的制造成本,但这可以保证更多的人同时拥有更多的带宽,这是符合人们一直在追求的提高无线资源利用率这一目标的,毕竟频率资源是不可再生的资源,而手机的制造成本会通过手机的批量生产,最终会降下来。
2023-07-08 17:39:461

以下lte哪些覆盖指标与lte负荷大小相关

RSRP(Reference Signal Received Power)主要用来衡量下行参考信号的功率,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别。 RSRQ (Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量。和WCDMA中CPICH Ec/Io作用类似。二者的定义也类似,RSRQ = RSRP * RB Number/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的。 当小区存在干扰时 SINR会降低 RSRP不会降低。 RSRQ是一个long term的指标,主要用于小区接入、切换等。SINR在物理层一般是short term的指标,对应CQI等。
2023-07-08 17:40:061

td-wcdma掉话由于切换失败,该怎么调整

  邻区漏配  一般来讲,初期优化过程掉话占大多数是由于邻区漏配导致的。对于同频邻区,通常采用以下的办法来确认是否为同频邻区漏配:  方法一:观察掉话前UE记录的活动集EcIo信息和Scanner记录的Best Server EcIo信息,如果UE记录的EcIo很差,而Scanner记录的Best Server EcIo很好;同时检查Scanner记录Best Server扰码是否出现在掉话前最近出现的同频测量控制中,如果测量控制中没有扰码,那么可以确认是邻区漏配。  方法二:如果掉话后UE马上重新接入,如果UE重新接入的小区扰码和掉话时的扰码不一致,也可以怀疑是邻区漏配问题,可以通过测量控制进一步进行确认。  邻区漏配导致的掉话也包括异频邻区漏配和异系统邻区漏配。  覆盖问题  通常所说的覆盖差,主要是指RSCP不和EcIo都很差。覆盖的问题需要通过掉话前上行或者下行的专用信道功率来确认,需要采用以下的方法来确认:  如果掉话前的上行发射功率达到最大值,并且上行的BLER也很差或者从RNC记录的单用户跟踪上看到NodeB上报RL failure,基本可以认为上行覆盖差导致的掉话;如果掉话前,下行发射功率达到最大值,并且下行的BLER很差,基本可以认为是下行覆盖不行导致的掉话。  确认覆盖的问题简单直接的方式:  直接观察Scanner采集的数据,若最好小区的RSCP和EcNo都很低,就可以认为是覆盖问题。  切换问题  软切换/同频导致掉话主要分为两类原因:切换来不及或者乒乓切换。  从信令流程上CS业务表现为手机收不到活动集更新命令(同频硬切换时为物理信道重配置),PS业务有时候会在切换之前先发生TRB复位。  从信号上看,切换来不及主要有以下两种现象:  1)拐角:源小区EcIo陡将,目标小区EcNo陡升(即突然出现就是很高的值);  2)针尖:源小区EcIo快速下降后一段时间后上升,目标小区出现短时间的陡升。  乒乓切换主要有以下两种现象:  1)主导小区变化快:2个或者多个小区交替成为主导小区,主导小区具有较好的RSCP和EcIo每个小区成为主导小区的时间很短;  2)无主导小区:存在多个小区,RSCP正常而且相互之间差别不大,每个小区的EcIo都很差。  干扰问题。  一般情况下,对于下行,当CPICH RSCP大于-85dB,而EcIo小于-13dB容易产生了掉话,基本上可以认为是下行干扰的问题。对于上行RTWP比正常值(-104~-105)超过10dB,干扰时间超过2~3s,就有可能造成掉话。
2023-07-08 17:40:221

主公共控制物理信道p-ccpch为什么要使用固定的码和时隙

移动台开机后首先要与某一个小区的信号取得时序同步。这种从无联系到时序同步的过程就是移动台的小区搜索过程。在小区搜索过程中,移动台捕获一个小区的发射信号并据此确定这个小区的下行链路扰码和帧同步。第一步:时隙同步:主同步信道P-SCH ,每个时隙的前256个码片,主同步码序列只有一个所有基站的所有小区都一样第二步:扰码组的识别与帧同步:辅同步信道S-SCH,也使用每个时隙的前256个码片发送,3GPP定义了64组辅同步码序列,每组序列对应了一个扰码组。每个扰码组里面含有8个扰码,所以在系统初始捕获的时候,在UE获得主扰码识别时候,将主扰码的搜索范围从512降到8,大大提高了初始捕获的效率。辅同步码共有16个,把16个码字进行排列组合(要求每组15个码字),从所有的组合中挑出64组(每组的任意相位都不会和其他组的任意相位重复),第三步:扰码识别:当基站所属的扰码码组已确定后,需进一步确定基站的身份码——下行扰码。移动台使用第二步识别到的扰码码组中的8个主扰码分别与捕获的P-CPICH信道进行相关计算(对比),得到该小区使用的下行扰码。根据识别到的扰码,P-CCPCH就可以被检测出,从而可获得超帧同步,系统以及小区的特定的广播信息就可被读出。
2023-07-08 17:40:291

Qqualmin是什么?

具体代表什么
2023-07-08 17:40:382

华为lte后台 x2信令跟踪出来的信令什么意思

1. LTE测试用什么软件?什么终端? 答:LTE测试前台测试使用华为出的测试软件GENEX Probe,后台分析使用GENEX Assistant;测试终端有:CPE(B593s)、小数据卡(B398和B392)、TUE 2. LTE测试中关注哪些指标? 答:LTE测试中主要关注PCI(小区的标识码)、RSRP(参考信号的平均功率,表示小区信号覆盖的好坏)、SINR(相当于信噪比但不是信噪比,表示信号的质量的好坏)、RSSI(Received Signal Strength Indicator,指的是手机接收到的总功率,包括有用信号、干扰和底噪)、PUSCH Power(UE的发射功率)、传输模式(TM3为双流模式)、ThroughputDL, Throughput UL上下行速率、掉线率、连接成功率、切换成功率…… 3. RSRP、SINR、RSRQ什么意思? 答: RSRP: Reference Signal Received Power下行参考信号的接收功率 ,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别,所以RSRP在数值上偏低; SINR:信号与干扰加噪声比 (Signalto Interference plus Noise Ratio)是指:信号与干扰加噪声比(SINR)是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以简单的理解为“信噪比”。 RSRQ(Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量。和WCDMA中CPICHEc/Io作用类似。二者的定义也类似,RSRQ = RSRP * RBNumber/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的; 4. SINR值好坏与什么有关? 下行SINR计算:将RB上的功率平均分配到各个RE上; 下行RS的SINR = RS接收功率 /(干扰功率 + 噪声功率)= S/(I+N) ; 从公式可以看出SINR值与UE收到的RSRP、干扰功率、噪声功率有关,具体为:外部干扰、内部干扰(同频邻区干扰、模三干扰) 5. UE的发射功率多少? 答:LTE中UE的发射功率由PUSCHPower 来衡量,最大发射功率为23dBm;
2023-07-08 17:41:101

WCDMA和GSM功率多少?

WCDMA就是中国联通的3G网络“精彩在WO”,他是由GSM网络演进而来的,是欧洲的一个标准,WCDMA和GSM差别很大,比如接入网,空中的帧协议完全不同,GSM采用TDMA,而WCDMA采用CDMA,核心网区别也很大,GSM的话音业务和数据业务都是走的电路域核心网,而WCDMA话音业务走的是电路域核心网,数据业务走的是分组域核心网,GSM的数据业务最高速率只有9.6Kbps,现在大家所用的GSM数据业务基本都是由GPRS和EDGE提供的,EDGE的理论最大速率有384Kbps,实际上也就是30K左右,而WCDMA的数据业务速率就高很多了,目前能达到7.2Mbps。还有功率控制的频率以及方式,核心网的寻址,发射功率,移动性管理等都区别很大,在这里无法做一个全面的概述,如果想具体了解的话,最好还是找相关准也书籍看看,如果只是想了解一下自己该用哪种网络,这个就要根据自己的需求来定了。如有其它问题可追问,希望我的回答对你有所帮助!
2023-07-08 17:41:182

ue上行闭环功率控制主要基于终端哪些物理量的测量

一、远近效应功率控制的目的是为了克服远近效应。远近效应现象是指如果没有功率控制,距离基站近的一个UE就能阻塞整个小区,而距离NodeB远的UE信号将被“淹没”。在上行链路中,如果小区内所有UE以相同的功率进行发射,由于每个UE与 Node B的距离和路径不同,信号到达Node B就会有不同的衰耗,从而导致离Node B较近的UE,Node B收到的信号强,较远的Node B收到的信号弱,这样就会造成Node B所接收到的信号的强度相差很大。由于 WCDMA是同频接收系统,较远的弱信号到达Node B后可能不会被解扩出来,造成弱信号“淹没”在强信号中,而无法正常工作。CDMA自从提出来以后一直没有得到大规模应用的主要原因,就是无法克服远近效应。从图1可知,采用功率控制后,每个UE到达基站的功率基本相当,这样,每个UE的信号到达NodeB后,都能被正确地解调出来。二、功率控制的目的WCDMA采用宽带扩频技术,是个自干扰系统。通过功率控制,降低了多址干扰、克服远近效应以及衰落的影响,从而保证了上下行链路的质量。例如:在保证QoS的前提下降低某个UE的发射功率,将不会影响其上下行数据的接收质量,但结果却减少了系统干扰,其他UE的上下行链路质量将得到提高。功率控制给系统带来以下优点:(1)克服阴影衰落和快衰落。阴影衰落是由于建筑物的阻挡而产生的衰落,衰落的变化比较慢;而快衰落是由于无线传播环境的恶劣,UE和NodeB之间的发射信号可能要经过多次的反射、散射和折射才能到达接受端而造成。对于阴影衰落,可以提高发射功率来克服;而快速功控的速度是1500次/秒,功控的速度可能高于快衰落,从而克服了快衰落、给系统带来增益,并保证了UE在移动状态下的接受质量,同时也能减小对相邻小区的干扰。(2)降低网络干扰,提高系统的质量和容量。功率控制的结果使UE和NodeB之间的信号以最低功率发射,这样系统内的干扰就会最小,从而提高了系统的容量和质量。(3)由于手机以最小的发射功率和NodeB保持联系,这样手机电池的使用时间将会大大延长。三、功率控制的分类在WCDMA系统中,功率控制按方向分为上行(或称为反向)功率控制和下行(或称为前向)功率控制两类;按移动台和基站是否同时参与又分为开环功率控制和闭环功率控制两大类。闭环功控是指发射端根据接收端送来的反馈信息对发射功率进行控制的过程;而开环功控不需要接收端的反馈,发射端根据自身测量得到的信息对发射功率进行控制。1.开环功率控制开环功率控制是根据上行链路的干扰情况估算下行链路,或是根据下行链路的干扰情况估算上行链路,是单向不闭合的。如图2所示,UE测量公共导频信道CPICH的接收功率并估算NodeB的初始发射功率,然后计算出路径损耗,根据广播信道BCH得出干扰水平和解调门限,最后UE计算出上行初始发射功率作为随机接入中的前缀传输功率,并在选择的上行接入时隙上传送(随机接入过程)。开环功率控制实际上是根据下行链路的功率测量对路径损耗和干扰水平进行估算而得出上行的初始发射功率,所以,初始的上行发射功率只是相对准确值。WCDMA系统采用的FDD模式,上行采用1920~1980MHz、下行采用2110~2170MHz,上下行的频段相差190MHz。由于上行和下行链路的信道衰落情况是完全不同的,所以,开环功率控制只能起到粗略控制的作用。但开环功控却能相对准确地计算初始发射功率,从而加速了其收敛时间,降低了对系统负载的冲击;而且,在3GPP协议中,要求开环功率控制的控制方差在10dB内就可以接受。2.上行内环功控内环功率控制是快速闭环功率控制,在NodeB与UE之间的物理层进行,上行内环功率控制的目的是使基站接收到每个UE信号的比特能量相等。见图3。图3 上行内环功控首先,NodeB测量接受到的上行信号的信干比(SIR),并和设置的目标SIR(目标SIR由RNC下发给NodeB)相比较,如果测量SIR小于目标SIR,NodeB在下行的物理信道DPCH中的TPC标识通知UE提高发射功率,反之,通知UE降低发射功率。因为WCDMA在空中传输以无线帧为单位,每一帧包含有15个时隙,传输时间为10ms,所以,每时隙传输的频率为1500次/秒;而DPCH是在无限帧中的每个时隙中传送,所以其传送的频率为每秒1500次,而且上行内环功控的标识位TPC是包含在DPCH里面,所以,内环功控的时间也是1500次/秒。3.上行外环功控上行外环功控是RNC动态地调整内环功控的SIR目标值,其目的是使每条链路的通信质量基本保持在设定值,使接收到数据的BLER满足QoS要求。见图4。图4 上行外环功控上行外环功控由RNC执行。RNC测量从NodeB传送来数据的BLER(误块率)并和目标BLER(QoS中的参数,由核心网下发)相比较,如果测量BLER大于目标BLER,RNC重新设置目标TAR(调高TAR)并下发到NodeB;反之,RNC调低TAR并下发到NodeB。外环功率控制的周期一般在一个 TTI(10ms、20ms、40ms、80ms)的量级,即 10~100Hz。由于无线环境的复杂性,仅根据SIR值进行功率控制并不能真正反映链路的质量。而且,网络的通信质量是通过提供服务中的QoS来衡量,而QoS的表征量为BLER,而非SIR。所以,上行外环功控是根据实际的BLER值来动态调整目标SIR,从而满足Qos质量要求。4.下行闭环功控下行闭环功控和上行闭环功控的原理相似。下行内环功率控制由手机控制,目的使手机接收到NodeB信号的比特能量相等,以解决下行功率受限;下行外环功控是由UE的层3控制,通过测量下行数据的BLER值,进而调整UE物理层的目标SIR值,最终达到UE接收到数据的BLER值满足QoS要求。四、总结WCDMA是个自干扰系统,功率是最终的无线资源,而无线资源管理的过程就是控制自身系统内干扰的过程,所以,最有效地使用无线资源的唯一手段就是严格控制功率的使用。但控制功率的使用是矛盾的:一方面它能提高针对某用户的发射功率、改善用户的服务质量;另一方面,由于WCDMA的自干扰性,这种提高会带给其他用户干扰的增加,而导致介绍质量的下降。所以,在WCDMA系统中,在保证了用户要求的QoS前提下,功率控制的使用,最大限度地降低发射功率、减少系统干扰、增加系统容量,而这正是WCDMA技术的关键。
2023-07-08 17:41:261

手机工作时候何时发射功率最大,有多大?

一、手机发射功率的两个方面 手机发射功率在PHS、GSM、cdma2000 1x、wcdma等协议中,被设计得越来越复杂,它的重要性已不言而喻,哪手机发射功率是大些好哪,还是小些好哪?事实上单纯的说大些好或者小些好,都实在不是一个明智的回答,因为在设计手机功率时,要考虑以下两个方面: 1、在能保证正常通信情况下,手机发射功率越小越好 *、手机发射功率越小,手机的耗电量就越小,待机时间、通话时间越长; *、手机发射功率越小,对同系统别的手机的干扰越小,这不仅给同系统别的手机创造了好的无线环境,同时对于cdma2000 1x、wcdma来说,这就意味着小区容量越大; *、手机发射功率越小,对别的无线设备干扰越小,这就给别的无线设备创造了好的无线环境; 2、在有些情况下,为了能保证通信质量,手机发射功率希望能被调整的大些,再大些,再大些...... *、手机在小区的远端时,为了保证手机信号经过长距离传输到达基站后,手机信号仍能被正确解调,也就是手机发射功率要足够大,以克服信号经过长距离传输的衰减; *、手机被建筑物或其它遮挡,在无线阴影区内,手机发射功率也要足够大,以克服手机信号必须经过多次的反射、折射及长距离传输的衰减; *、手机在干扰比较大的情况下,如邻信道、同信道干扰,阻塞等等,手机发射功率也要足够大,以克服噪声的干扰。 综上所述,手机发射功率存在着两面性,一方面在能保证正常通信情况下,手机发射功率越小越好;另一方面,在有些情况下,为了能保证通信质量,手机发射功率必须要大一些,甚至要再大一些。这两方面看似矛盾,实为统一,准确表述为:手机必须发出足够大的功率,以保证通信质量,在保证通信质量的前提下,手机发射功率越小越好。换言之,手机发射功率最好根据实际情况能够被控制,该大则大,该小则小。 二、PHS手机发射功率 PHS(Personal Handyphone system的缩写)为日本独立开发出的第三代数字无绳电话系统——个人携带电话系统,它具有很多突出的优点:建设费用低、系统扩充方便,超低的资费标准,因协议简单,而使手机制造成本降低,最终导致手机拥有价格上的优势等等。PHS在中国被称为小灵通,在有些地方也称为“个人通信接入系统PAS(Personal Access System)” PHS采用日本RCR-STD28协议作为空中无线接口标准,采用微蜂窝技术,因此它必须建置较密集的基站。由于基站覆盖范围较小,其铺设就必须比高功率的移动电话基站密,适于低速状态下的移动。不过,新一代的PHS基站范围已扩大至500米。 基于以上的情况,特别是采用微蜂窝技术,RCR-STD28规定手机的发射平均功率≤10mW,峰值功率≤80mW,发射功率不可控。除此之外,有关PHS手机发射功率的测量还有 1、载波关断泄漏功率≤80nW 2、发射瞬态响应特性:脉冲上升、下降时间≤13μS 3、杂散发射功率相对载波电平(衰减量)≥50dB,或绝对电平≤2.5μW。 从以上的情况不难看出,PHS手机在小区远端,或阴影区,或受到干扰,是不能以再提高发射功率,以抵消无线信号的长距离传输的损耗,或建筑物等的遮挡损耗,或抵御干扰。这实际上导致的结果就是手机与基站之间的无线链路很脆弱,这是PHS手机协议上的根本弱点之一。 反过来从协议对手机发射功率的规定中我们也不难看出,PHS只能采用微蜂窝技术,通过建置较密集的基站抵消远近效应和阴影效应,否则就会出现大量的无信号区域和通信质量差等问题。在受到干扰,通信质量降低的情况下,手机也无法通过提高发射功率的办法,来保证通信质量。 由于PHS手机发射功率比较小,对别的手机或无线设备干扰也小,它的待机时间、通话时间都比较长,由于PHS手机发射功率不受控制,协议简单,手机制造成本也相对较低。 三、GSM手机发射功率 GSM协议规定,手机发射功率是可以被基站控制的。基站通过下行SACCH信道,发出命令控制手机的发射功率级别,每个功率级别差2dB,GSM900 手机最大发射功率级别是5(33dBm),最小发射功率级别是19(5dBm),DCS1800手机最大发射功率级别是0(30dBm),最小发射功率级别是15(0dBm)。 从以上不难看出当手机远离基站,或者处于无线阴影区时,基站可以命令手机发出较大功率,直至33dBm(GSM900),以克服远距离传输或建筑物遮挡所造成的信号损耗。如果手机离基站很近,且无任何遮挡物时,基站可以命令手机发出较小功率,直至5dBm(GSM900),以减少手机对同信道、相邻信道的其它GSM用户的干扰和其它无线设备的干扰,而且这样还可以有效延长手机待机时间、通话时间。 从以上不难看出GSM手机发出的最低功率仅为5dBm(GSM900),约为3.2mW,这比PHS的平均功率10mW要小,同时GSM手机发出的最大功率33dBm(GSM900),约为2W,这个信号相对来说是巨大的,对这种大信号不加以严格规定,其干扰也是巨大的。因此GSM就手机发射信号除了发射功率的规定以外,在其它方面也作了适当的规定。(注意:这里是适当的规定,如果规定偏严无疑会加大手机制造成本,如果偏松,无疑会加大干扰。)具体有如下几个方面: 1、Power versus Time 由于GSM是TDMA系统,因此GSM协议通过一个功率对时间的模板来严格限制发射功率在时间域的变化情况,以减少干扰,尤其是对同信道其他时隙的用户的干扰。 2、Output RF Spectrum Due to Modulation 3、Output RF Spectrum Due to Ramping GSM通过对手机发射信号的调制谱和切换谱的规定,来限制手机发射信号时的频谱带宽和形状,以减少干扰,尤其是邻信道用户的干扰。 拿GSM协议和PHS协议对比来看,GSM为保证通信质量,规定了手机的发射功率是受基站控制的,根据需要可大可小,但同时又严格规定手机发射信号在时间域和频率域的“形状”(PvT,ORFS),这无疑又极大的限制了手机对外的干扰。而PHS手机的发射功率不可再增大,因此PHS手机与基站之间的无线链路很脆弱的弱点,只能通过建置较密集的基站来解决,这无疑又加大了系统的投资。当然由于它的发射信号始终比较小,信号在时域和频域上的要求也不用很严,生产制造成本、测试成本也都跟着降了下来。 从以上不难看出,同为时分多址系统,单从手机发射功率这点就能看出来,GSM系统优于PHS系统。 四、cdma2000 1x手机发射功率 cdma顾名思义是码分多址,因此在一个小区内的所有用户,都是同时在同一个频率上通讯,因此每个用户都回受到同小区的其它用户的干扰,每个用户都会干扰同小区的其它用户,因此人们也把cdma称之为自干扰系统。 CDMA的基本技术之一是功率控制。因为限制CDMA系统容量的因素是总干扰功率,所以控制每个移动台的功率是获得最大容量的关键。在给定条件下,CDMA移动台的功率被控制到能够保证接收话音质量的最小功率。结果是每个移动台到达基站的信号电平几乎相同。这样,每台移动台对其他移动台的干扰被控制到最小。因此CDMA系统容量也被称为“软容量”,也就是CDMA可以通过降低通信质量来提高系统容量。 如果移动台发射功率过大,会对其他用户带来干扰。它会作为其他接收者的背景噪声存在。如果某用户为了获得完美的话音而没有限制的升高发射信号功率,那么他将不仅影响到本网络的其他用户的通话,而且会影响到该频段上其他通信系统用户的使用。 下面以cdma2000 1x(cdma95类似)为例,详细介绍有关功率控制与测试。cdma2000 1x反向链路采用两种形式的功率控制:开环功率控制和闭环功率控制。 先看开环功率控制:它是假定前向路径损耗与反向路径损耗是相似的链路为前提的。将发射功率与接收功率的总和设置为一个常数,通常为-73dB。[移动台根据在整个1.2288MHz频段接收到的总信号能量(就是在导频、寻呼、同步和业务信道的功率,其中含有从服务基站来的信号与相同频率相邻基站的信号总和来)来调整它的发射功率] 例如:如果移动台接收到的信号功率为-85dBm,这时它的发射功率应当为:-73-(-85)=12dBm 闭环功率控制:基站监视从每个移动台接收的功率并命令移动台以固定的步长1dB(0.5 dB、0.25dB)增加或降低功率(不能保持不变)。这个过程每1.25ms一次(每秒钟重复800次) 从以上资料不难看出,cdma2000 1x不断精确控制手机的发射功率,以达到在能够保证接收质量的情况下的最小功率,下面详细介绍 cdma2000 1x为实现这个目的所作的有关功率方面的测试规定。 1、Open Loop Output 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。 2、Time Response of Open Loop 这部分主要保证,手机在不断运动,或者其他原因,导致接受到基站的信号持续变化时,手机是否能根据这种变化能快速、持续调整开环输出功率。 3、Closed Loop Power Range 对于闭环功率控制,基站命令手机进行输出功率调整以优化功率输出。基于收到的电平,基站命令手机增加和降低输出功率,每1.25 ms变化1 dB(800次/秒)。测试闭环功率性能的标准方法包括验证整个功率范围及手机闭环功率控制范围的线性。CDMA手机必须演示±24dB的闭环功率控制范围以及定义的改变功率的速度,以确定手机是否能跟上基站的命令。 4、Maximum Output Power和Minimum Output Power 根据以上的介绍,其实基站对手机发射的绝对功率并不是很重视,它仅仅是要求手机能根据自己发出的功率上升指令或功率下降指令自动调整输出功率即可,且最好手机能发出无限大或无限小的功率来,但这个要求对手机制造商来说,实在是苛刻,且会无限制的提高手机制造成本,因此折中的方案是将手机按发射功率分类,不同类的手机最大功率必须达到各自要求,也就是至少要大于标准规定的最大功率的下限,小于标准规定的最大功率的上限,使其在小区远端或无线阴影中也能较好通讯。同时要求手机必须能够输出小于最小功率的功率值来,也就是在无线环境比较好,且手机与基站很近时,手机能把自己的输出功率降得很低,以确保对其它手机的最小干扰和对电池的最小消耗。 5、Standby Power cdma2000 1x规定手机待机功率要小于-61 dBm,这既保证了对外干扰很小,又保证了在待机时间对电池的小消耗,延长了手机的待机时间。 五、wcdma手机发射功率 GSM和wcdma虽然同为欧洲标准,但wcdma毕竟是码分多址的,它采纳,也必须采纳cdma中很多稳定成熟的技术和方案,至少在对手记发射功率控制这块,wcdma和cdma2000 1x就非常类似,只是wcdma对手机功率控制要求更精准、更严格。 笔者认为这里的原因是wcdma毕竟是码分多址的技术,它需要采用功率控制技术,来平衡用户功率,以保证系统每个用户的通信质量和系统的最大容量。虽然GSM和wcdma同为欧洲标准,而且GSM是第二代标准,wcdma是第三代标准,GSM尽管也采用了功率控制技术,但区别还是巨大的: (1) GSM功率控制速率要慢得多,对功率控制升多少、降多少要求并不是很精准,也不是很严格; (2) GSM对功率控制依赖程度要低,而CDMA没有了功率控制将几乎无法工作。 事实上在W—CDMA中,上行链路采用开环功控和闭环功控两种方式。当上行链路没有建立时,开环功控用来调节物理随机接入信道的发射功率。链路建立之后,使用闭环功控。闭环功控包括内环功控和外环功控。外环功控以误码率或者误帧率作为控制目标,内环功控以信干比作为控制目标。下行链路只有闭环功控。 1、Open Loop Power 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。具体计算公式为:PRACH Preamble Initial Power = (P-CPICH DL TX Power) - (CPICH_RSCP)+ (UL Interference) + (Constant value) 2、Inner Loop Power wcdma 关于手机在内环功控方面作了较好的功率控制位的形式和算法的规定,手机在内环功控下,必须能发出–50dBm到+24 dBm范围内的信号,而且还要求手机能够很好相应基站所发出的功率控制位,当基站发出升(或降)1dB命令时,手机必须升(或降)1dB+/-0.5dB,当基站发出升(或降)10dB命令时,手机必须升(或降)10dB+/-2dB。同时wcdma还规定了A,B,C,D,E,F,G,H 8段区域,来测试手机。将这部分与cdma2000 1x 的闭环功率控制相比,可以看出虽然异曲同工,但wcdma的规定更严谨,更细致。 3、Maximum Output Power和Minimum Output Power wcdma与cdma2000 1x在这方面非常类似,故不再赘述。 通过以上的介绍,不难看出WCDMA与IS-95、CDMA 2000 1x没有本质不同,撇开IPR问题,所有的不同点无非是怎样才能更好发挥CDMA的优势、提高系统的性能如系统容量、通信质量和网络覆盖等。 六、结束语 前面所述仅是把各个标准里对手机发射功率的有关规定拿出来罗列和对比,挂一漏万。但管中窥豹,足见技术的发展和通信协议的进步。 PHS和GSM同为时分多址系统,协议就手机输出功率方面的规定具有可比性,它们与cdma2000 1x、wcdma这些码分多址系统,在手机输出功率方面不具有可比性。码分多址近似的可以认为是在实时的(1.25ms一次),精确的(以0.25 dB)控制手机发射功率,而手机也要实时的、精确的相应控制(具体测试方法见上文),以保证系统的需要。由于多址方式的不同,这就决定了GSM没有必要搞码分多址哪种实时的、精确的、很复杂的功率控制(以节省制造、测试成本),当然也不能像PHS那样,不控制手机输出功率,即便是在微蜂窝内。 在上文中,也是简单介绍了码分多址技术对手机发射功率的控制,事实上码分多址技术对基站和手机的发射功率的规定远不止这些,如接入试探功率、发射开/关控制,呼吸技术等等。现实的情况是,如果没有功率控制等无线资源管理技术的支持,码分多址的性能比时分多址更差。而这些笔者在本文都将其省略了,并不是说这些不重要,而是笔者认为这些与本文着眼点不太一致。 总之,手机发射功率实在是个重要的指标,也是一柄锋利的双刃剑,一方面人们希望它足够大,以克服无线电波传播路径的损耗、发射、折射的损耗,克服其他无线电波的干扰,另一方面又希望它足够小,尽可能小的干扰别人,这点在码分多址系统中尤显突出。解决的办法就是要根据需要控制手机发射功率,在保证所有人的正常通信的情况下,尽可能的把所有手机的发射功率都降下来。当然,这些无疑会加大协议的复杂性,提高手机的制造成本,但这可以保证更多的人同时拥有更多的带宽,这是符合人们一直在追求的提高无线资源利用率这一目标的,毕竟频率资源是不可再生的资源,而手机的制造成本会通过手机的批量生产,最终会降下来。
2023-07-08 17:41:3615

TDLTE小区RSSI正常值范围是多少,过高或者过低会造成什么影响

RSRP(Reference Signal Received Power)主要用来衡量下行参考信号的功率,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别;参考信号接收功率(对应TD-SCDMA / WCDMA的RSCP)每个RB上RS的接收功率提供了小区RS信号强度度量根据RSRP对LTE候选小区排序,作为切换和小区重选的输入RSRQ (Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量。和WCDMA中CPICH Ec/Io作用类似。二者的定义也类似,RSRQ = RSRP * RB Number/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的。参考信号接收质量(对应WCDMA的Ec/No)RSRQ=N*RSRP/RSSI,N为RSSI测量带宽的RB个数反映了小区RS信号的质量当仅根据RSRP不能提供足够的信息来执行可靠的移动性管理时,根据RSRQ对LTE候选小区排序,作为切换和小区重选的输入RSSI(Received Signal Strength Indicator)指的是手机接收到的总功率,包括有用信号、干扰和底噪,和UMTS中的RSSI概念是一致的;SINR(Signal-to-Interference plus Noise Ratio)也就是信号干扰噪声比,顾名思义就是信号能量除以干扰加噪声的能量;从上面的定义很容易看出对于RSRQ 和SINR 来说,二者的差别就在于分母一个包含自身、干扰信号及底噪,另外一个只包括干扰和噪声。载波接收信号强度指示UE对所有信号来源观测到的总接收带宽功率
2023-07-08 17:42:021

LTE中S准则是怎么定义的

S准则是用作小区选择的什么时候进行小区选择:6S%m"i%m$N.d.Y5t1.UE开机从连接模式回到空闲模式连接模式过程中,如失去小区信息根据测量控制系统消息提供的小区列表进行小区重选,没有找到可正常驻留的小区驻留小区的条件要求符合小区选择S准则条件1:Srxlev>0。 坛+M7^,d r1j)[ q4}Srxlev计算公式如下:Srxlev=Qrxlevmeas-Qrxlevmin-Pcompensation;其中,Qrxlevmeas(测量的当前服务小区接收功率)指P-CCPCH信道的RSCP值;Qrxlevmin为服务小区最小接收功率。该参数从系统广播消息中读出,一般终端读出后需做一定的算术转换;)ePcompensation补偿值,可通过公式计算得到:Pcompensation=max(UE_TXP-WR_MAX _RACH-P_MAX,0);其中,UE_TXPWR_MAX_RACH(终端在做随机接入时RACH上的最大发送功率)由系统广播消息发送,一般设置为0;P_MAX是终端的最大标称发射功率,与终端功率。条件2:Squal=Qqualmeas-Qqualmin也要大于0Qqualmeas:Measured cell quality value. The quality of the received signal expressed in CPICH Ec/N0,就是测得的EC/NO值;Qqualmin:Minimum required quality level in the cell,要求的EC/NO值,通过SIB3读取得到如果满足Srxlev〉0并且Squal〉0,认为该小区满足驻留要求,读取系统消息,进行位置登记。
2023-07-08 17:42:221

LTE中S准则是怎么定义的

参见规范3gpp 36.304
2023-07-08 17:42:322

UE的发射功率是多少范围

一、远近效应功率控制的目的是为了克服远近效应。远近效应现象是指如果没有功率控制,距离基站近的一个UE就能阻塞整个小区,而距离NodeB远的UE信号将被逗淹没地。在上行链路中,如果小区内所有UE以相同的功率进行发射,由于每个UE与NodeB的距离和路径不同,信号到达NodeB就会有不同的衰耗,从而导致离NodeB较近的UE,NodeB收到的信号强,较远的NodeB收到的信号弱,这样就会造成NodeB所接收到的信号的强度相差很大。由于WCDMA是同频接收系统,较远的弱信号到达NodeB后可能不会被解扩出来,造成弱信号逗淹没地在强信号中,而无法正常工作。CDMA自从提出来以后一直没有得到大规模应用的主要原因,就是无法克服远近效应。从图1可知,采用功率控制后,每个UE到达基站的功率基本相当,这样,每个UE的信号到达NodeB后,都能被正确地解调出来。二、功率控制的目的WCDMA采用宽带扩频技术,是个自干扰系统。通过功率控制,降低了多址干扰、克服远近效应以及衰落的影响,从而保证了上下行链路的质量。例如:在保证QoS的前提下降低某个UE的发射功率,将不会影响其上下行数据的接收质量,但结果却减少了系统干扰,其他UE的上下行链路质量将得到提高。功率控制给系统带来以下优点:(1)克服阴影衰落和快衰落。阴影衰落是由于建筑物的阻挡而产生的衰落,衰落的变化比较慢;而快衰落是由于无线传播环境的恶劣,UE和NodeB之间的发射信号可能要经过多次的反射、散射和折射才能到达接受端而造成。对于阴影衰落,可以提高发射功率来克服;而快速功控的速度是1500次/秒,功控的速度可能高于快衰落,从而克服了快衰落、给系统带来增益,并保证了UE在移动状态下的接受质量,同时也能减小对相邻小区的干扰。(2)降低网络干扰,提高系统的质量和容量。功率控制的结果使UE和NodeB之间的信号以最低功率发射,这样系统内的干扰就会最小,从而提高了系统的容量和质量。(3)由于手机以最小的发射功率和NodeB保持联系,这样手机电池的使用时间将会大大延长。三、功率控制的分类在WCDMA系统中,功率控制按方向分为上行(或称为反向)功率控制和下行(或称为前向)功率控制两类;按移动台和基站是否同时参与又分为开环功率控制和闭环功率控制两大类。闭环功控是指发射端根据接收端送来的反馈信息对发射功率进行控制的过程;而开环功控不需要接收端的反馈,发射端根据自身测量得到的信息对发射功率进行控制。1.开环功率控制开环功率控制是根据上行链路的干扰情况估算下行链路,或是根据下行链路的干扰情况估算上行链路,是单向不闭合的。如图2所示,UE测量公共导频信道CPICH的接收功率并估算NodeB的初始发射功率,然后计算出路径损耗,根据广播信道BCH得出干扰水平和解调门限,最后UE计算出上行初始发射功率作为随机接入中的前缀传输功率,并在选择的上行接入时隙上传送(随机接入过程)。开环功率控制实际上是根据下行链路的功率测量对路径损耗和干扰水平进行估算而得出上行的初始发射功率,所以,初始的上行发射功率只是相对准确值。WCDMA系统采用的FDD模式,上行采用1920~1980MHz、下行采用2110~2170MHz,上下行的频段相差190MHz。由于上行和下行链路的信道衰落情况是完全不同的,所以,开环功率控制只能起到粗略控制的作用。但开环功控却能相对准确地计算初始发射功率,从而加速了其收敛时间,降低了对系统负载的冲击;而且,在3GPP协议中,要求开环功率控制的控制方差在10dB内就可以接受。2.上行内环功控内环功率控制是快速闭环功率控制,在NodeB与UE之间的物理层进行,上行内环功率控制的目的是使基站接收到每个UE信号的比特能量相等。见图3。图3上行内环功控首先,NodeB测量接受到的上行信号的信干比(SIR),并和设置的目标SIR(目标SIR由RNC下发给NodeB)相比较,如果测量SIR小于目标SIR,NodeB在下行的物理信道DPCH中的TPC标识通知UE提高发射功率,反之,通知UE降低发射功率。因为WCDMA在空中传输以无线帧为单位,每一帧包含有15个时隙,传输时间为10ms,所以,每时隙传输的频率为1500次/秒;而DPCH是在无限帧中的每个时隙中传送,所以其传送的频率为每秒1500次,而且上行内环功控的标识位TPC是包含在DPCH里面,所以,内环功控的时间也是1500次/秒。3.上行外环功控上行外环功控是RNC动态地调整内环功控的SIR目标值,其目的是使每条链路的通信质量基本保持在设定值,使接收到数据的BLER满足QoS要求。见图4。图4上行外环功控上行外环功控由RNC执行。RNC测量从NodeB传送来数据的BLER(误块率)并和目标BLER(QoS中的参数,由核心网下发)相比较,如果测量BLER大于目标BLER,RNC重新设置目标TAR(调高TAR)并下发到NodeB;反之,RNC调低TAR并下发到NodeB。外环功率控制的周期一般在一个TTI(10ms、20ms、40ms、80ms)的量级,即10~100Hz。由于无线环境的复杂性,仅根据SIR值进行功率控制并不能真正反映链路的质量。而且,网络的通信质量是通过提供服务中的QoS来衡量,而QoS的表征量为BLER,而非SIR。所以,上行外环功控是根据实际的BLER值来动态调整目标SIR,从而满足Qos质量要求。4.下行闭环功控下行闭环功控和上行闭环功控的原理相似。下行内环功率控制由手机控制,目的使手机接收到NodeB信号的比特能量相等,以解决下行功率受限;下行外环功控是由UE的层3控制,通过测量下行数据的BLER值,进而调整UE物理层的目标SIR值,最终达到UE接收到数据的BLER值满足QoS要求。四、总结WCDMA是个自干扰系统,功率是最终的无线资源,而无线资源管理的过程就是控制自身系统内干扰的过程,所以,最有效地使用无线资源的唯一手段就是严格控制功率的使用。但控制功率的使用是矛盾的:一方面它能提高针对某用户的发射功率、改善用户的服务质量;另一方面,由于WCDMA的自干扰性,这种提高会带给其他用户干扰的增加,而导致介绍质量的下降。所以,在WCDMA系统中,在保证了用户要求的QoS前提下,功率控制的使用,最大限度地降低发射功率、减少系统干扰、增加系统容量,而这正是WCDMA技术的关键。
2023-07-08 17:42:401

wcdma中qrxlevmin-58代表多少电平

对覆盖的下行信号要求很高了
2023-07-08 17:42:472

手机工作时候,何时发射功率最大,有多大?大神们帮帮忙

先看开环功率控制:它是假定前向路径损耗与反向路径损耗是相似的链路为前提的。将发射功率与接收功率的总和设置为一个常数,通常为-73dB。[移动台根据在整个1.2288MHz频段接收到的总信号能量(就是在导频、寻呼、同步和业务信道的功率,其中含有从服务基站来的信号与相同频率相邻基站的信号总和来)来调整它的发射功率] 例如:如果移动台接收到的信号功率为-85dBm,这时它的发射功率应当为:-73-(-85)=12dBm 闭环功率控制:基站监视从每个移动台接收的功率并命令移动台以固定的步长1dB(0.5 dB、0.25dB)增加或降低功率(不能保持不变)。这个过程每1.25ms一次(每秒钟重复800次) 从以上资料不难看出,cdma2000 1x不断精确控制手机的发射功率,以达到在能够保证接收质量的情况下的最小功率,下面详细介绍 cdma2000 1x为实现这个目的所作的有关功率方面的测试规定。 1、Open Loop Output 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。 2、Time Response of Open Loop 这部分主要保证,手机在不断运动,或者其他原因,导致接受到基站的信号持续变化时,手机是否能根据这种变化能快速、持续调整开环输出功率。 3、Closed Loop Power Range 对于闭环功率控制,基站命令手机进行输出功率调整以优化功率输出。基于收到的电平,基站命令手机增加和降低输出功率,每1.25 ms变化1 dB(800次/秒)。测试闭环功率性能的标准方法包括验证整个功率范围及手机闭环功率控制范围的线性。CDMA手机必须演示±24dB的闭环功率控制范围以及定义的改变功率的速度,以确定手机是否能跟上基站的命令。 4、Maximum Output Power和Minimum Output Power 根据以上的介绍,其实基站对手机发射的绝对功率并不是很重视,它仅仅是要求手机能根据自己发出的功率上升指令或功率下降指令自动调整输出功率即可,且最好手机能发出无限大或无限小的功率来,但这个要求对手机制造商来说,实在是苛刻,且会无限制的提高手机制造成本,因此折中的方案是将手机按发射功率分类,不同类的手机最大功率必须达到各自要求,也就是至少要大于标准规定的最大功率的下限,小于标准规定的最大功率的上限,使其在小区远端或无线阴影中也能较好通讯。同时要求手机必须能够输出小于最小功率的功率值来,也就是在无线环境比较好,且手机与基站很近时,手机能把自己的输出功率降得很低,以确保对其它手机的最小干扰和对电池的最小消耗。 5、Standby Power cdma2000 1x规定手机待机功率要小于-61 dBm,这既保证了对外干扰很小,又保证了在待机时间对电池的小消耗,延长了手机的待机时间。 五、wcdma手机发射功率 GSM和wcdma虽然同为欧洲标准,但wcdma毕竟是码分多址的,它采纳,也必须采纳cdma中很多稳定成熟的技术和方案,至少在对手记发射功率控制这块,wcdma和cdma2000 1x就非常类似,只是wcdma对手机功率控制要求更精准、更严格。 笔者认为这里的原因是wcdma毕竟是码分多址的技术,它需要采用功率控制技术,来平衡用户功率,以保证系统每个用户的通信质量和系统的最大容量。虽然GSM和wcdma同为欧洲标准,而且GSM是第二代标准,wcdma是第三代标准,GSM尽管也采用了功率控制技术,但区别还是巨大的: (1) GSM功率控制速率要慢得多,对功率控制升多少、降多少要求并不是很精准,也不是很严格; (2) GSM对功率控制依赖程度要低,而CDMA没有了功率控制将几乎无法工作。 事实上在W—CDMA中,上行链路采用开环功控和闭环功控两种方式。当上行链路没有建立时,开环功控用来调节物理随机接入信道的发射功率。链路建立之后,使用闭环功控。闭环功控包括内环功控和外环功控。外环功控以误码率或者误帧率作为控制目标,内环功控以信干比作为控制目标。下行链路只有闭环功控。 1、Open Loop Power 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。具体计算公式为:PRACH Preamble Initial Power = (P-CPICH DL TX Power) - (CPICH_RSCP)+ (UL Interference) + (Constant value) 2、Inner Loop Power wcdma 关于手机在内环功控方面作了较好的功率控制位的形式和算法的规定,手机在内环功控下,必须能发出–50dBm到+24 dBm范围内的信号,而且还要求手机能够很好相应基站所发出的功率控制位,当基站发出升(或降)1dB命令时,手机必须升(或降)1dB+/-0.5dB,当基站发出升(或降)10dB命令时,手机必须升(或降)10dB+/-2dB。同时wcdma还规定了A,B,C,D,E,F,G,H 8段区域,来测试手机。将这部分与cdma2000 1x 的闭环功率控制相比,可以看出虽然异曲同工,但wcdma的规定更严谨,更细致。 3、Maximum Output Power和Minimum Output Power wcdma与cdma2000 1x在这方面非常类似,故不再赘述。 通过以上的介绍,不难看出WCDMA与IS-95、CDMA 2000 1x没有本质不同,撇开IPR问题,所有的不同点无非是怎样才能更好发挥CDMA的优势、提高系统的性能如系统容量、通信质量和网络覆盖等。 六、结束语 前面所述仅是把各个标准里对手机发射功率的有关规定拿出来罗列和对比,挂一漏万。但管中窥豹,足见技术的发展和通信协议的进步。 PHS和GSM同为时分多址系统,协议就手机输出功率方面的规定具有可比性,它们与cdma2000 1x、wcdma这些码分多址系统,在手机输出功率方面不具有可比性。码分多址近似的可以认为是在实时的(1.25ms一次),精确的(以0.25 dB)控制手机发射功率,而手机也要实时的、精确的相应控制(具体测试方法见上文),以保证系统的需要。由于多址方式的不同,这就决定了GSM没有必要搞码分多址哪种实时的、精确的、很复杂的功率控制(以节省制造、测试成本),当然也不能像PHS那样,不控制手机输出功率,即便是在微蜂窝内。 在上文中,也是简单介绍了码分多址技术对手机发射功率的控制,事实上码分多址技术对基站和手机的发射功率的规定远不止这些,如接入试探功率、发射开/关控制,呼吸技术等等。现实的情况是,如果没有功率控制等无线资源管理技术的支持,码分多址的性能比时分多址更差。而这些笔者在本文都将其省略了,并不是说这些不重要,而是笔者认为这些与本文着眼点不太一致。 总之,手机发射功率实在是个重要的指标,也是一柄锋利的双刃剑,一方面人们希望它足够大,以克服无线电波传播路径的损耗、发射、折射的损耗,克服其他无线电波的干扰,另一方面又希望它足够小,尽可能小的干扰别人,这点在码分多址系统中尤显突出。解决的办法就是要根据需要控制手机发射功率,在保证所有人的正常通信的情况下,尽可能的把所有手机的发射功率都降下来。当然,这些无疑会加大协议的复杂性,提高手机的制造成本,但这可以保证更多的人同时拥有更多的带宽,这是符合人们一直在追求的提高无线资源利用率这一目标的,毕竟频率资源是不可再生的资源,而手机的制造成本会通过手机的批量生产,最终会降下来。
2023-07-08 17:42:563

手机何时发射功率最大,有多大?

浅谈手机发射功率 笔者从事手机测试校准系统集成有段时间,感觉到手机发射功率在不同的系统、不同的协议下有很多的不同。笔者对此深感有意思,故把PHS、GSM、cdma2000 1x、wcdma下对手机发射功率的规定罗列于此,希望能给同行起到抛砖引玉的作用,斧正我的错误。一、手机发射功率的两个方面 手机发射功率在PHS、GSM、cdma2000 1x、wcdma等协议中,被设计得越来越复杂,它的重要性已不言而喻,哪手机发射功率是大些好哪,还是小些好哪?事实上单纯的说大些好或者小些好,都实在不是一个明智的回答,因为在设计手机功率时,要考虑以下两个方面:1、在能保证正常通信情况下,手机发射功率越小越好 *、手机发射功率越小,手机的耗电量就越小,待机时间、通话时间越长; *、手机发射功率越小,对同系统别的手机的干扰越小,这不仅给同系统别的手机创造了好的无线环境,同时对于cdma2000 1x、wcdma来说,这就意味着小区容量越大; *、手机发射功率越小,对别的无线设备干扰越小,这就给别的无线设备创造了好的无线环境;2、在有些情况下,为了能保证通信质量,手机发射功率希望能被调整的大些,再大些,再大些...... *、手机在小区的远端时,为了保证手机信号经过长距离传输到达基站后,手机信号仍能被正确解调,也就是手机发射功率要足够大,以克服信号经过长距离传输的衰减; *、手机被建筑物或其它遮挡,在无线阴影区内,手机发射功率也要足够大,以克服手机信号必须经过多次的反射、折射及长距离传输的衰减; *、手机在干扰比较大的情况下,如邻信道、同信道干扰,阻塞等等,手机发射功率也要足够大,以克服噪声的干扰。 综上所述,手机发射功率存在着两面性,一方面在能保证正常通信情况下,手机发射功率越小越好;另一方面,在有些情况下,为了能保证通信质量,手机发射功率必须要大一些,甚至要再大一些。这两方面看似矛盾,实为统一,准确表述为:手机必须发出足够大的功率,以保证通信质量,在保证通信质量的前提下,手机发射功率越小越好。换言之,手机发射功率最好根据实际情况能够被控制,该大则大,该小则小。二、PHS手机发射功率 PHS(Personal Handyphone system的缩写)为日本独立开发出的第三代数字无绳电话系统——个人携带电话系统,它具有很多突出的优点:建设费用低、系统扩充方便,超低的资费标准,因协议简单,而使手机制造成本降低,最终导致手机拥有价格上的优势等等。PHS在中国被称为小灵通,在有些地方也称为“个人通信接入系统PAS(Personal Access System)” PHS采用日本RCR-STD28协议作为空中无线接口标准,采用微蜂窝技术,因此它必须建置较密集的基站。由于基站覆盖范围较小,其铺设就必须比高功率的移动电话基站密,适于低速状态下的移动。不过,新一代的PHS基站范围已扩大至500米。 基于以上的情况,特别是采用微蜂窝技术,RCR-STD28规定手机的发射平均功率≤10mW,峰值功率≤80mW,发射功率不可控。除此之外,有关PHS手机发射功率的测量还有 1、载波关断泄漏功率≤80nW 2、发射瞬态响应特性:脉冲上升、下降时间≤13μS 3、杂散发射功率相对载波电平(衰减量)≥50dB,或绝对电平≤2.5μW。 从以上的情况不难看出,PHS手机在小区远端,或阴影区,或受到干扰,是不能以再提高发射功率,以抵消无线信号的长距离传输的损耗,或建筑物等的遮挡损耗,或抵御干扰。这实际上导致的结果就是手机与基站之间的无线链路很脆弱,这是PHS手机协议上的根本弱点之一。 反过来从协议对手机发射功率的规定中我们也不难看出,PHS只能采用微蜂窝技术,通过建置较密集的基站抵消远近效应和阴影效应,否则就会出现大量的无信号区域和通信质量差等问题。在受到干扰,通信质量降低的情况下,手机也无法通过提高发射功率的办法,来保证通信质量。 由于PHS手机发射功率比较小,对别的手机或无线设备干扰也小,它的待机时间、通话时间都比较长,由于PHS手机发射功率不受控制,协议简单,手机制造成本也相对较低。三、GSM手机发射功率 GSM协议规定,手机发射功率是可以被基站控制的。基站通过下行SACCH信道,发出命令控制手机的发射功率级别,每个功率级别差2dB,GSM900 手机最大发射功率级别是5(33dBm),最小发射功率级别是19(5dBm),DCS1800手机最大发射功率级别是0(30dBm),最小发射功率级别是15(0dBm)。 从以上不难看出当手机远离基站,或者处于无线阴影区时,基站可以命令手机发出较大功率,直至33dBm(GSM900),以克服远距离传输或建筑物遮挡所造成的信号损耗。如果手机离基站很近,且无任何遮挡物时,基站可以命令手机发出较小功率,直至5dBm(GSM900),以减少手机对同信道、相邻信道的其它GSM用户的干扰和其它无线设备的干扰,而且这样还可以有效延长手机待机时间、通话时间。 从以上不难看出GSM手机发出的最低功率仅为5dBm(GSM900),约为3.2mW,这比PHS的平均功率10mW要小,同时GSM手机发出的最大功率33dBm(GSM900),约为2W,这个信号相对来说是巨大的,对这种大信号不加以严格规定,其干扰也是巨大的。因此GSM就手机发射信号除了发射功率的规定以外,在其它方面也作了适当的规定。(注意:这里是适当的规定,如果规定偏严无疑会加大手机制造成本,如果偏松,无疑会加大干扰。)具体有如下几个方面:1、Power versus Time 由于GSM是TDMA系统,因此GSM协议通过一个功率对时间的模板来严格限制发射功率在时间域的变化情况,以减少干扰,尤其是对同信道其他时隙的用户的干扰。2、Output RF Spectrum Due to Modulation3、Output RF Spectrum Due to Ramping GSM通过对手机发射信号的调制谱和切换谱的规定,来限制手机发射信号时的频谱带宽和形状,以减少干扰,尤其是邻信道用户的干扰。 拿GSM协议和PHS协议对比来看,GSM为保证通信质量,规定了手机的发射功率是受基站控制的,根据需要可大可小,但同时又严格规定手机发射信号在时间域和频率域的“形状”(PvT,ORFS),这无疑又极大的限制了手机对外的干扰。而PHS手机的发射功率不可再增大,因此PHS手机与基站之间的无线链路很脆弱的弱点,只能通过建置较密集的基站来解决,这无疑又加大了系统的投资。当然由于它的发射信号始终比较小,信号在时域和频域上的要求也不用很严,生产制造成本、测试成本也都跟着降了下来。 从以上不难看出,同为时分多址系统,单从手机发射功率这点就能看出来,GSM系统优于PHS系统。四、cdma2000 1x手机发射功率 cdma顾名思义是码分多址,因此在一个小区内的所有用户,都是同时在同一个频率上通讯,因此每个用户都回受到同小区的其它用户的干扰,每个用户都会干扰同小区的其它用户,因此人们也把cdma称之为自干扰系统。 CDMA的基本技术之一是功率控制。因为限制CDMA系统容量的因素是总干扰功率,所以控制每个移动台的功率是获得最大容量的关键。在给定条件下,CDMA移动台的功率被控制到能够保证接收话音质量的最小功率。结果是每个移动台到达基站的信号电平几乎相同。这样,每台移动台对其他移动台的干扰被控制到最小。因此CDMA系统容量也被称为“软容量”,也就是CDMA可以通过降低通信质量来提高系统容量。 如果移动台发射功率过大,会对其他用户带来干扰。它会作为其他接收者的背景噪声存在。如果某用户为了获得完美的话音而没有限制的升高发射信号功率,那么他将不仅影响到本网络的其他用户的通话,而且会影响到该频段上其他通信系统用户的使用。 下面以cdma2000 1x(cdma95类似)为例,详细介绍有关功率控制与测试。cdma2000 1x反向链路采用两种形式的功率控制:开环功率控制和闭环功率控制。 先看开环功率控制:它是假定前向路径损耗与反向路径损耗是相似的链路为前提的。将发射功率与接收功率的总和设置为一个常数,通常为-73dB。[移动台根据在整个1.2288MHz频段接收到的总信号能量(就是在导频、寻呼、同步和业务信道的功率,其中含有从服务基站来的信号与相同频率相邻基站的信号总和来)来调整它的发射功率] 例如:如果移动台接收到的信号功率为-85dBm,这时它的发射功率应当为:-73-(-85)=12dBm 闭环功率控制:基站监视从每个移动台接收的功率并命令移动台以固定的步长1dB(0.5 dB、0.25dB)增加或降低功率(不能保持不变)。这个过程每1.25ms一次(每秒钟重复800次) 从以上资料不难看出,cdma2000 1x不断精确控制手机的发射功率,以达到在能够保证接收质量的情况下的最小功率,下面详细介绍 cdma2000 1x为实现这个目的所作的有关功率方面的测试规定。1、Open Loop Output 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。2、Time Response of Open Loop 这部分主要保证,手机在不断运动,或者其他原因,导致接受到基站的信号持续变化时,手机是否能根据这种变化能快速、持续调整开环输出功率。3、Closed Loop Power Range 对于闭环功率控制,基站命令手机进行输出功率调整以优化功率输出。基于收到的电平,基站命令手机增加和降低输出功率,每1.25 ms变化1 dB(800次/秒)。测试闭环功率性能的标准方法包括验证整个功率范围及手机闭环功率控制范围的线性。CDMA手机必须演示±24dB的闭环功率控制范围以及定义的改变功率的速度,以确定手机是否能跟上基站的命令。4、Maximum Output Power和Minimum Output Power 根据以上的介绍,其实基站对手机发射的绝对功率并不是很重视,它仅仅是要求手机能根据自己发出的功率上升指令或功率下降指令自动调整输出功率即可,且最好手机能发出无限大或无限小的功率来,但这个要求对手机制造商来说,实在是苛刻,且会无限制的提高手机制造成本,因此折中的方案是将手机按发射功率分类,不同类的手机最大功率必须达到各自要求,也就是至少要大于标准规定的最大功率的下限,小于标准规定的最大功率的上限,使其在小区远端或无线阴影中也能较好通讯。同时要求手机必须能够输出小于最小功率的功率值来,也就是在无线环境比较好,且手机与基站很近时,手机能把自己的输出功率降得很低,以确保对其它手机的最小干扰和对电池的最小消耗。5、Standby Power cdma2000 1x规定手机待机功率要小于-61 dBm,这既保证了对外干扰很小,又保证了在待机时间对电池的小消耗,延长了手机的待机时间。五、wcdma手机发射功率 GSM和wcdma虽然同为欧洲标准,但wcdma毕竟是码分多址的,它采纳,也必须采纳cdma中很多稳定成熟的技术和方案,至少在对手记发射功率控制这块,wcdma和cdma2000 1x就非常类似,只是wcdma对手机功率控制要求更精准、更严格。 笔者认为这里的原因是wcdma毕竟是码分多址的技术,它需要采用功率控制技术,来平衡用户功率,以保证系统每个用户的通信质量和系统的最大容量。虽然GSM和wcdma同为欧洲标准,而且GSM是第二代标准,wcdma是第三代标准,GSM尽管也采用了功率控制技术,但区别还是巨大的:(1) GSM功率控制速率要慢得多,对功率控制升多少、降多少要求并不是很精准,也不是很严格;(2) GSM对功率控制依赖程度要低,而CDMA没有了功率控制将几乎无法工作。 事实上在W—CDMA中,上行链路采用开环功控和闭环功控两种方式。当上行链路没有建立时,开环功控用来调节物理随机接入信道的发射功率。链路建立之后,使用闭环功控。闭环功控包括内环功控和外环功控。外环功控以误码率或者误帧率作为控制目标,内环功控以信干比作为控制目标。下行链路只有闭环功控。1、Open Loop Power 这部分主要以基站发出大信号、中信号、小信号三种状况下,来检测手机是否能正确估算出开环输出功率,以及开环输出功率范围。具体计算公式为:PRACH Preamble Initial Power = (P-CPICH DL TX Power) - (CPICH_RSCP)+ (UL Interference) + (Constant value)2、Inner Loop Power wcdma 关于手机在内环功控方面作了较好的功率控制位的形式和算法的规定,手机在内环功控下,必须能发出–50dBm到+24 dBm范围内的信号,而且还要求手机能够很好相应基站所发出的功率控制位,当基站发出升(或降)1dB命令时,手机必须升(或降)1dB+/-0.5dB,当基站发出升(或降)10dB命令时,手机必须升(或降)10dB+/-2dB。同时wcdma还规定了A,B,C,D,E,F,G,H 8段区域,来测试手机。将这部分与cdma2000 1x 的闭环功率控制相比,可以看出虽然异曲同工,但wcdma的规定更严谨,更细致。3、Maximum Output Power和Minimum Output Power wcdma与cdma2000 1x在这方面非常类似,故不再赘述。 通过以上的介绍,不难看出WCDMA与IS-95、CDMA 2000 1x没有本质不同,撇开IPR问题,所有的不同点无非是怎样才能更好发挥CDMA的优势、提高系统的性能如系统容量、通信质量和网络覆盖等。六、结束语 前面所述仅是把各个标准里对手机发射功率的有关规定拿出来罗列和对比,挂一漏万。但管中窥豹,足见技术的发展和通信协议的进步。 PHS和GSM同为时分多址系统,协议就手机输出功率方面的规定具有可比性,它们与cdma2000 1x、wcdma这些码分多址系统,在手机输出功率方面不具有可比性。码分多址近似的可以认为是在实时的(1.25ms一次),精确的(以0.25 dB)控制手机发射功率,而手机也要实时的、精确的相应控制(具体测试方法见上文),以保证系统的需要。由于多址方式的不同,这就决定了GSM没有必要搞码分多址哪种实时的、精确的、很复杂的功率控制(以节省制造、测试成本),当然也不能像PHS那样,不控制手机输出功率,即便是在微蜂窝内。 在上文中,也是简单介绍了码分多址技术对手机发射功率的控制,事实上码分多址技术对基站和手机的发射功率的规定远不止这些,如接入试探功率、发射开/关控制,呼吸技术等等。现实的情况是,如果没有功率控制等无线资源管理技术的支持,码分多址的性能比时分多址更差。而这些笔者在本文都将其省略了,并不是说这些不重要,而是笔者认为这些与本文着眼点不太一致。 总之,手机发射功率实在是个重要的指标,也是一柄锋利的双刃剑,一方面人们希望它足够大,以克服无线电波传播路径的损耗、发射、折射的损耗,克服其他无线电波的干扰,另一方面又希望它足够小,尽可能小的干扰别人,这点在码分多址系统中尤显突出。解决的办法就是要根据需要控制手机发射功率,在保证所有人的正常通信的情况下,尽可能的把所有手机的发射功率都降下来。当然,这些无疑会加大协议的复杂性,提高手机的制造成本,但这可以保证更多的人同时拥有更多的带宽,这是符合人们一直在追求的提高无线资源利用率这一目标的,毕竟频率资源是不可再生的资源,而手机的制造成本会通过手机的批量生产,最终会降下来。
2023-07-08 17:43:061

UE的发射功率是多少范围

一、远近效应功率控制的目的是为了克服远近效应。远近效应现象是指如果没有功率控制,距离基站近的一个UE就能阻塞整个小区,而距离NodeB远的UE信号将被“淹没”。在上行链路中,如果小区内所有UE以相同的功率进行发射,由于每个UE与NodeB的距离和路径不同,信号到达NodeB就会有不同的衰耗,从而导致离NodeB较近的UE,NodeB收到的信号强,较远的NodeB收到的信号弱,这样就会造成NodeB所接收到的信号的强度相差很大。由于WCDMA是同频接收系统,较远的弱信号到达NodeB后可能不会被解扩出来,造成弱信号“淹没”在强信号中,而无法正常工作。CDMA自从提出来以后一直没有得到大规模应用的主要原因,就是无法克服远近效应。从图1可知,采用功率控制后,每个UE到达基站的功率基本相当,这样,每个UE的信号到达NodeB后,都能被正确地解调出来。二、功率控制的目的WCDMA采用宽带扩频技术,是个自干扰系统。通过功率控制,降低了多址干扰、克服远近效应以及衰落的影响,从而保证了上下行链路的质量。例如:在保证QoS的前提下降低某个UE的发射功率,将不会影响其上下行数据的接收质量,但结果却减少了系统干扰,其他UE的上下行链路质量将得到提高。功率控制给系统带来以下优点:(1)克服阴影衰落和快衰落。阴影衰落是由于建筑物的阻挡而产生的衰落,衰落的变化比较慢;而快衰落是由于无线传播环境的恶劣,UE和NodeB之间的发射信号可能要经过多次的反射、散射和折射才能到达接受端而造成。对于阴影衰落,可以提高发射功率来克服;而快速功控的速度是1500次/秒,功控的速度可能高于快衰落,从而克服了快衰落、给系统带来增益,并保证了UE在移动状态下的接受质量,同时也能减小对相邻小区的干扰。(2)降低网络干扰,提高系统的质量和容量。功率控制的结果使UE和NodeB之间的信号以最低功率发射,这样系统内的干扰就会最小,从而提高了系统的容量和质量。(3)由于手机以最小的发射功率和NodeB保持联系,这样手机电池的使用时间将会大大延长。三、功率控制的分类在WCDMA系统中,功率控制按方向分为上行(或称为反向)功率控制和下行(或称为前向)功率控制两类;按移动台和基站是否同时参与又分为开环功率控制和闭环功率控制两大类。闭环功控是指发射端根据接收端送来的反馈信息对发射功率进行控制的过程;而开环功控不需要接收端的反馈,发射端根据自身测量得到的信息对发射功率进行控制。1.开环功率控制开环功率控制是根据上行链路的干扰情况估算下行链路,或是根据下行链路的干扰情况估算上行链路,是单向不闭合的。如图2所示,UE测量公共导频信道CPICH的接收功率并估算NodeB的初始发射功率,然后计算出路径损耗,根据广播信道BCH得出干扰水平和解调门限,最后UE计算出上行初始发射功率作为随机接入中的前缀传输功率,并在选择的上行接入时隙上传送(随机接入过程)。开环功率控制实际上是根据下行链路的功率测量对路径损耗和干扰水平进行估算而得出上行的初始发射功率,所以,初始的上行发射功率只是相对准确值。WCDMA系统采用的FDD模式,上行采用1920~1980MHz、下行采用2110~2170MHz,上下行的频段相差190MHz。由于上行和下行链路的信道衰落情况是完全不同的,所以,开环功率控制只能起到粗略控制的作用。但开环功控却能相对准确地计算初始发射功率,从而加速了其收敛时间,降低了对系统负载的冲击;而且,在3GPP协议中,要求开环功率控制的控制方差在10dB内就可以接受。2.上行内环功控内环功率控制是快速闭环功率控制,在NodeB与UE之间的物理层进行,上行内环功率控制的目的是使基站接收到每个UE信号的比特能量相等。见图3。图3上行内环功控首先,NodeB测量接受到的上行信号的信干比(SIR),并和设置的目标SIR(目标SIR由RNC下发给NodeB)相比较,如果测量SIR小于目标SIR,NodeB在下行的物理信道DPCH中的TPC标识通知UE提高发射功率,反之,通知UE降低发射功率。因为WCDMA在空中传输以无线帧为单位,每一帧包含有15个时隙,传输时间为10ms,所以,每时隙传输的频率为1500次/秒;而DPCH是在无限帧中的每个时隙中传送,所以其传送的频率为每秒1500次,而且上行内环功控的标识位TPC是包含在DPCH里面,所以,内环功控的时间也是1500次/秒。3.上行外环功控上行外环功控是RNC动态地调整内环功控的SIR目标值,其目的是使每条链路的通信质量基本保持在设定值,使接收到数据的BLER满足QoS要求。见图4。图4上行外环功控上行外环功控由RNC执行。RNC测量从NodeB传送来数据的BLER(误块率)并和目标BLER(QoS中的参数,由核心网下发)相比较,如果测量BLER大于目标BLER,RNC重新设置目标TAR(调高TAR)并下发到NodeB;反之,RNC调低TAR并下发到NodeB。外环功率控制的周期一般在一个TTI(10ms、20ms、40ms、80ms)的量级,即10~100Hz。由于无线环境的复杂性,仅根据SIR值进行功率控制并不能真正反映链路的质量。而且,网络的通信质量是通过提供服务中的QoS来衡量,而QoS的表征量为BLER,而非SIR。所以,上行外环功控是根据实际的BLER值来动态调整目标SIR,从而满足Qos质量要求。4.下行闭环功控下行闭环功控和上行闭环功控的原理相似。下行内环功率控制由手机控制,目的使手机接收到NodeB信号的比特能量相等,以解决下行功率受限;下行外环功控是由UE的层3控制,通过测量下行数据的BLER值,进而调整UE物理层的目标SIR值,最终达到UE接收到数据的BLER值满足QoS要求。四、总结WCDMA是个自干扰系统,功率是最终的无线资源,而无线资源管理的过程就是控制自身系统内干扰的过程,所以,最有效地使用无线资源的唯一手段就是严格控制功率的使用。但控制功率的使用是矛盾的:一方面它能提高针对某用户的发射功率、改善用户的服务质量;另一方面,由于WCDMA的自干扰性,这种提高会带给其他用户干扰的增加,而导致介绍质量的下降。所以,在WCDMA系统中,在保证了用户要求的QoS前提下,功率控制的使用,最大限度地降低发射功率、减少系统干扰、增加系统容量,而这正是WCDMA技术的关键。
2023-07-08 17:43:151

什么是TX power

TXPOWER是手机的发射功率。功率控制是保证CDMA通话质量和解决小区干扰容限的一个关键手段,手机在离基站近、上行链路质量好的地方,手机的发射功率就小,因为这时候基站能够保证接收到手机发射的信号并且误帧率也小,而且手机的发射功率小,对本小区内其他手机的干扰也小。所以手机的发射功率水平,反映了手机当前的上行链路损耗水平和干扰情况。上行链路损耗大、或者存在严重干扰,手机的发射功率就会大,反之手机发射功率就会小。在路测当中,正常的情况下,越靠近基站或者直放站,手机的发射功率会减小,远离基站和直放站的地方,手机发射功率会增大。如果出现基站直放站附近手机发射功率大的情况,很明显就是不正常的表现。可能的情况是上行链路存在干扰,也有可能是基站直放站本身的问题。比如小区天线接错,接收载频放大电路存在问题等。如果是直放站附近,手机发射功率大,很可能是直放站故障、上行增益设置太小等等。
2023-07-08 17:43:352