barriers / 阅读 / 详情

请问工业上电路常用的スイッチング和ラインフィルター以及トロイダルコイル是什么意思?

2023-07-29 10:12:30
共3条回复
我不懂运营

スイッチング 转换 开关

ラインフィルター 线路滤波器

トロイダルコイル圆环柱心、环行芯、环形磁心

ardim

开关、线路滤波器、环形线圈

小菜G

スイッチング switching, ラインフィルター line filter トロイダルコイル toroidal coil

相关推荐

托卡马克装置

应该是可以选的,它既然知道了托克马克装置,就应该是考你关于核聚变的方程式,所以选这个应该是没有问题的
2023-07-28 15:48:402

磁约束的基本原理

磁约束(magnetic confinement),用磁场来约束等离子体中带电粒子的运动。主要为可控核聚变提供理论与技术支持,其主要形式为托卡马克装置与仿星器装置。基本原理磁约束的基本原理是带电粒子在磁场中受的洛伦兹力。物理原理氘、氚等较轻的原子核聚合成较重的原子核时,会释放大量核能,但这种聚变反应只能在极高温下进行,任何固体材料都将熔毁。因此,需要用特殊形态的磁场把由氘、氚等原子核及自由电子组成的一定密度的高温等离子体约束在有限体积内,使之脱离器壁并限制其热导,这是实现受控热核聚变的重要条件。工作原理两端呈瓶颈状的磁力线,因瓶颈处磁场较强(也称作磁镜)能将带电粒子反射回来 ,从而限制粒子的纵向(沿磁力线方向)移动,使粒子在作回旋运动的同时,不断地来回穿梭,被约束在两端的磁镜之间,但是仍有一部分其轨道与磁力线的夹角小于某值的带电粒子会逃逸出去。为了避免带电粒子的流失,曾经把磁力线连同等离子体弯曲连接成环形;后来又改进为呈8字形的圆环形磁力线管,称为仿星器;实验上现最有成效的磁约束装置是托卡马克装置,又称环流器,它是环形螺线管,其中的磁力线具有螺旋形状。相关装置托卡马克环流器(即tokamak,音译为托卡马克)。它的名字来源于环形(toroidal)、真空室(kamera)、磁(magnet)、线圈(kotushka)。是目前性能最好的一种磁约束装置。(下面是环流器的图)环流器仿星器为了避免带电粒子的流失,科学家曾经把磁力线连同等离子体弯曲连接成环形。后来又改进为呈8字形的圆环形磁力线管,称为仿星器。尽管托卡马克被认为是人类未来最具有实用价值的可控核聚变装置,但仿星器也得到了世界不少科学家的研究兴趣。仿星器最早是由 Lyman Spitzer发明的并且在第二年建成,它在50-60年代曾十分流行。德国科学家认为,仿星器可能是最适合未来核聚变电厂的类型。德国正在建造的世界上最大的仿星器实验室被命名为Wendelstein X-7。行业活动2014年9月4-5号,中国磁约束核聚变第二次战略研讨会在西安召开。会议形成共识,要加快制定我国磁约束核聚变技术路线图,进一步明确目标,提出具体的解决方案,深入研究支持措施和对策。[1] 2014年3月15-16日,首次磁约束核聚变能发展研究战略研讨会在北京召开。会议分析了磁约束核聚变能研究国际动态、我国磁约束核聚变能专项部署情况、研究基础和进展,从国内两大托卡马克装置能力提升、聚变堆设计研究、等离子体物理理论与实验、聚变材料、安全与防护、高校人才培养的效果评估与模式等方面对我国磁约束核聚变能发展战略进行了研讨。
2023-07-28 15:48:502

仿星器和托卡马克有什么区别?

仿星器和经典的“托卡马克”一样,都是磁约束受控核聚变装置。它们能把等离子态的氢同位素——氘和氚约束起来,并加热至1亿摄氏度左右发生聚变,从而获得巨大的能量输出。这与太阳通过内部热核反应持续产生光与热的过程相似,因此人们浪漫地把核聚变装置喻为“人造恒星“从大的时空尺度来看,核能是人类的终极能源。”刘万东说。但是,目前运行中的核电站都是根据核裂变原理建造的。用于进行裂变反应的原料,如铀、钚等,均为放射性重金属,储量有限,还会产生难以处置的放射性废料。相比之下,聚变反应就有很多优势。首先,作为燃料的氘和氚不会产生大的放射性污染;其次,自然界中氘的储量很大,氚虽稀有,却很容易大量制备。
2023-07-28 15:49:062

磁约束热核聚变的磁场如何产生

通过脉冲功率技术,利用瞬间强大的脉冲电流产生巨大的脉冲磁场,从而产生强大的磁约束力。
2023-07-28 15:49:343

谁来介绍一下托卡马克里发生的反应是啥。。?

Plasma 等离子
2023-07-28 15:49:484

怎么计算磁环电感最大电流和DCR?

磁环电感(toroidal inductor)是一种常用的电感元件,通常由一个铁芯和一些线圈组成。要计算磁环电感的最大电流和DCR,需要进行以下步骤:1. 确定磁环电感的规格和参数,包括铁芯材料、线圈匝数、线径、长度等。这些参数通常可以从磁环电感的规格书或数据手册中获得。2. 计算磁环电感的额定电流。额定电流是磁环电感可以安全承受的最大电流。通常,磁环电感的额定电流取决于铁芯材料和线圈的尺寸。可以使用公式 I = B * Ae / Le 来计算,其中,B 是铁芯的饱和磁感应强度,Ae 是铁芯的有效截面积,Le 是线圈长度。3. 计算磁环电感的 DCR。DCR 是直流电阻,是磁环电感的线圈电阻。可以使用欧姆定律,将电流除以电感的 DCR,计算出它的额定功率。可以使用公式 DCR = L * R / N^2 来计算,其中,L 是电感,R 是线圈电阻,N 是线圈匝数。需要注意的是,磁环电感的最大电流和DCR应该根据具体的应用需求和环境条件进行选择。如果需要计算磁环电感的最大电流和DCR,建议寻求专业人士的帮助,并参考相关的规格书和数据手册。
2023-07-28 15:49:561

zemax里面想要做一个半圆柱的棱镜怎么弄啊?

半圆柱的棱镜?我知道在序列模式下怎么做柱面镜,不知道是不是你想要的。首先点开柱面镜前表面,将面型改成toroidal:然后将孔径改成方形光圈,并自己设定一下长宽:然后点击柱面镜后表面,将提取从那栏改为柱面镜前表面然后你会得到这样一个模型希望是你想要的
2023-07-28 15:50:051

核聚变 和钢铁侠中的一些问题

冷核聚变,听说过吗?
2023-07-28 15:50:382

托卡马克为什么要用超导技术?原因是什么呢?

主要就是因为这是一种可以实现巨变的装置它是人造太阳,是可以产生非常大的清洁能源,而且具有非常低的核辐射,风险的系数是远低于核裂变 的。
2023-07-28 15:50:474

toroidal transmitter是什么意思

toroidal transmitter环形发射器.很高兴为你解答!如有不懂,请追问。 谢谢!
2023-07-28 15:51:231

托卡马克详细资料大全

托卡马克,是一种利用磁约束来实现受控核聚变的环形容器。它的名字Tokamak 来源于环形、真空室、磁、线圈。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的电浆加热到很高的温度,以达到核聚变的目的。 基本介绍 中文名 :托卡马克 外文名 :Tokamak 技术类别 :可控核聚变装置 约束类型 :磁约束 相似技术产物 :仿星器 竞争技术 :惯性约束可控核聚变 装置的主要部件和子系统,核聚变简介,结构原理,各国概况,历史发展,现状及前景,钢铁侠中的“方舟反应堆”, 装置的主要部件和子系统 托卡马克(Tokamak)是一环形装置,通过约束电磁波驱动,创造氘、氚实现聚变的环境和超高温,并实现人类对聚变反应的控制。它的名字Tokamak来源于环形(toroidal)、真空室(kamera)、磁(mag)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。 受控热核聚变在常规托卡马克装置上已经实现。但常规托卡马克装置体积庞大、效率低,突破难度大。上世纪末,科学家们把新兴的超导技术用于托卡马克装置,使基础理论研究和系统运行参数得到很大提高。据科学家估计,可控热核聚变的演示性的聚变堆将于2025年实现,商用聚变堆将于2040年建成。商用堆建成之前,中国科学家还设计把超导托卡马克装置作为中子源,用于环境保护、科学研究及其它途径。这一构想获得国内外专家较高评价。 包括磁体(环向场磁体及极向场磁体)、真空室及其抽气系统、供电系统、控制系统(装置控制和电浆控制)、加热与电流驱动系统(中性束和微波)、喷气及弹丸注入系统、偏滤器及孔阑、诊断和数据采集与处理系统、包层系统、氚系统、辐射防护系统、遥控操作与维修系统等部件(子系统)。虽然强磁场能提高约束性能,但受工程技术和材料限制,环向磁场一般为2~8T;为了获取稳定的核聚变能输出,托卡马克聚变堆最终要采用超导磁体(稳态运行要求),为此要增加杜瓦、冷屏和低温制冷系统。为将电浆加热至需要的温度,大型装置的总加热功率为几十兆瓦,国际热核实验堆装置的加热功率为73~130MW。 核聚变简介 核聚变(nuclear fusion),又称核融合、融合反应或聚变反应[1]核是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),只有在极高的温度和压力下才能让核外电子摆脱原子核的束缚,让两个原子核能够互相吸引而碰撞到一起,发生原子核互相聚合作用,生成新的质量更重的原子核(如氦),中子虽然质量比较大,但是由于中子不带电,因此也能够在这个碰撞过程中逃离原子核的束缚而释放出来,大量电子和中子的释放所表现出来的就是巨大的能量释放。这是一种核反应的形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。核聚变是核裂变相反的核反应形式。科学家正在努力研究可控核聚变,核聚变可能成为未来的能量来源。 核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才能发生核聚变,比如氢的同位素氘(dāo)、氚(chuān)等。核聚变也会放出巨大的能量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的。 相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。 人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变。 结构原理 在托卡马克装置中,欧姆线圈的电流变化提 *** 生、建立和维持电浆电流所需要的伏秒数(变压器原理);极向场线圈产生的极向磁场控制电浆截面形状和位置平衡;环向场线圈产生的环向磁场保证电浆的巨观整体稳定性;环向磁场与电浆电流产生的极向磁场一起构成磁力线旋转变换的和磁面结构嵌套的磁场位形来约束电浆。同时,电浆电流还对自身进行欧姆加热。电浆的截面形状可以是圆形,也可以与偏滤器(位于真空室内部的边缘区域,通过产生磁分界面将约束区与边缘区隔离开来,具有排热、控制杂质和排除氦灰等功能的特殊部件)位形结合设计成D形。在托卡马克装置上,已可通过大功率中性束注入加热和微波加热使电浆达到和超过氘一氚有效燃烧所需的温度(>10K),最高已达4.4×10K。加大装置尺寸,约束时间大致按尺寸的平方增大。此外,还可通过提高环向磁场、最佳化约束位形和运行模式来提高 能量约束时间。实验结果表明,托卡马克装置已基本满足建立核聚变反应堆的要求。 各国概况 相比其他方式的受控核聚变,托卡马克拥有不少优势。1968年8月在苏联新西伯利亚召开的第三届电浆物理和受控核聚变研究国际会议上,阿齐莫维齐宣布在苏联的T-3托卡马克上实现了电子温度1keV,质子温度0.5keV,nτ=10的18次方m-3.s,这是受控核聚变研究的重大突破,在国际上掀起了一股托卡马克的热潮,各国相继建造或改建了一批大型托卡马克装置。其中比较著名的有:美国普林斯顿大学由仿星器-C改建成的ST Tokamak,美国橡树岭国家实验室的奥尔马克,法国冯克奈-奥-罗兹研究所的TFR Tokamak,英国卡拉姆实验室的克利奥(Cleo),西德马克斯-普朗克研究所的Pulsator Tokamak。 高1米4,半径0.785米 2006年9月28日,中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的新一代热核聚变装置EAST首次成功完成放电实验,获得电流200千安、时间接近3秒的高温电浆放电。EAST成为世界上第一个建成并真正运行的全超导非圆截面核聚变实验装置。 历史发展 二战末期,前苏联和美、英各国曾出于军事上的考虑,一直在互相保密的情况下开展对核聚变的研究。几千万、几亿摄氏度高温的聚变物质装在什么容器里一直是困扰人们的难题。二十世纪五十年代初期,前苏联科学家提出托卡马克的概念。托卡马克(TOKAMAK)在俄语中是由“环形”、“真空”、“磁”、“线圈”几个词组合而成,这是一种形如面包(多纳)圈的环流器,依靠电浆电流和环形线圈产生的强磁场,将极高温等离子状态的聚变物质约束在环形容器里,以此来实现聚变反应。 托卡马克内部 1954年,第一个托卡马克装置在原苏联库尔恰托夫原子能研究所建成。当人们提出这种磁约束的概念后,磁约束核聚变研究在一些方面的进展顺利,氢弹又迅速试验成功,这曾使不少国家的核科学家一度对受控核聚变抱有过分乐观的态度。但人们很快发现,约束电浆的磁场,虽然不怕高温,却很不稳定。另外,电浆在加热过程中能量也不断损失。 1985年,美国里根总统和前苏联戈巴契夫总统,在一次首脑会议上倡议开展一个核聚变研究的国际合作计画,要求“在核聚变能方面进行最广泛的切实可行的国际合作”。后来戈巴契夫、里根和法国总统密特朗又进行了几次高层会晤,支持在国际原子能机构(IAEA)主持下,进行国际热核实验堆(ITER)概念设计和辅助研究开发方面的合作。这是当时也是当前开展核聚变研究的最重大的国际科学和技术合作工程项目。1987年春,IAEA总干事邀请欧共体、日本、美国和加拿大、前苏联的代表在维也纳开会,讨论加强核聚变研究的国际合作问题,并达成了协定,四方合作设计建造国际热核实验堆。 1990年,中国国家科学院等离子所兴建大型超导托卡马克装置,得到俄、美、欧盟等机构、专家大力的支持。特别是俄罗斯科学家,世界聚变研究最具权威的俄罗斯国家研究中心卡多姆采夫教授,成为装置建设的“经常性技术指导”。 1993年HT-7建成,中国成为世界上俄、法、日(法国的Tore-Supra,俄罗斯的T-15,日本的JT-60U)之后第四个拥有同类大型装置的国家。中国在装置相关的超导、低温制冷、强磁场等研究都登上新的台阶。 1993年12月9日和10日,美国在TFTR装置上使用氘、氚各50%的混合燃料,使温度达到3亿至4亿摄氏度,两次实验释放的聚变能分别为0.3万千瓦和0.56万千瓦,大约为JET输出功率的2倍和4倍,能量增益因子Q值达0.28。与JET相比,Q值又得到很大提高。 1997年9月22日,联合欧洲环JET又创造输出功率为1.29万千瓦的世界纪录,能量增益因子Q值达0.60,持续时间2秒。仅过了39天,输出功率又提高到1.61万千瓦,Q值达到0.65。 1997年12月,日本方面宣布,在JT-60上成功进行了氘-氘反应实验,换算到氘-氚反应,Q值可以达到1.00。后来,Q值又超过了1.25。在JT-60U上,还达到了更高的等效能量增益因子,大于1.3,它也是从氘-氘实验得出的结果外推后算出的。 2000年,HT-7实验放电时间超过10秒,标志中国在这重大基础理论研究领域中进入世界先进行列。 2002年1月28日,在中国成都的核工业西南物理研究院与合肥西郊的中国科学院等离体物理研究所,基于超导托卡马克装置HT-7的可控热核聚变研究再获突破,实现了放电脉冲长度大于100倍能量约束时间、电子温度2000万摄氏度的高约束稳态运行,中心密度大于每立方米1.2×1019,运行参数居世界前两位。本轮实验有来自美、日等14个研究机构的18位外籍专家参与。 2006年,中国新一代“人造太阳”实验装置(EAST)实现了第一次“点火”——激发等离子态与核聚变。很快,它就实现了最高连续1000秒的运行,这在当时是前所未有的成就。 EAST 2012年04月22日,中国新一代“人造太阳”实验装置(EAST)中性束注入系统(NBI)完成了氢离子束功率3兆瓦、脉冲宽度500毫秒的高能量离子束引出实验。本轮实验获得的束能量和功率创下中国国内纪录,并基本达到EAST项目设计目标。这标志著中国自行研制的具有国际先进水平的中性束注入系统基本克服所有重大技术难关。 现状及前景 只有同时达到密度(>10cm)、温度(>10K)及能量约束时间(>1s)三个条件(或聚变三重积>10cmu0387Ku0387s)时,才能实现氘一氚自持核聚变反应。这三个条件已经在不同的装置上分别达到或超过,但还没有在一个装置上同时达到或超过。JET(见图)和JT-60U装置基本达到能量得失相当条件(Q≈1),JET的氘一氚实验还得到17MW聚变功率输出。 欧洲联合环JET装置结构简图 实验研究还发现多种改善约束的模式,根据这些模式,托卡马克型核聚变反应堆的经济性能还可以进一步提高。基于50多年来在电浆理论、物理实验研究和工程技术上取得的重大进展,由七方共同参与的超大型国际合作项目国际热核实验堆(ITER)计画已经进入工程建造阶段。 钢铁侠中的“方舟反应堆” 电影《钢铁侠》中的方舟反应堆与托卡马克极为相似,有可能是根据托卡马克改编的。
2023-07-28 15:51:301

哪有一些关于宇宙科学的知识

上百度搜索~
2023-07-28 15:51:412

立体卷铁心变压器的简介

【立体卷铁心Tridimensional Toroidal-Core】由三个几何尺寸相同的卷绕式铁心单框拼合成的三角形立体布置的铁心。 【立体卷铁心配电变压器Tridimensional Toroidal-Core Distribution Transformer】以立体卷铁心为磁路的配电变压器。 三维立体卷铁心变压器、立体组合式卷铁心变压器、立体组合式三相卷铁心变压器、三角形立体卷铁心变压器、立体三角形卷铁心变压器等说法均是指【立体卷铁心变压器】,其型号中出现字母RL,如S13-MRL-100/10、SCB11-RL-1000/10,其中,R表示卷铁心,L表示立体结构。 【立体卷铁心变压器】 是一种节能型电力变压器,它创造性地改革了传统电力变压器的叠片式磁路结构和三相布局,使产品性能更为优化,如三相磁路完全对称、节电效果显著、噪音大大降低、散热及过载能力更强、结构紧凑体积小等。
2023-07-28 15:51:481

宇宙是圆的吗?

是的!宇宙是一个四维球,它有限但是无边界
2023-07-28 15:52:0515

核聚变是什么?

把多个小原子核结合成一个大的原子核在此过程中会释放出很大的能量,叫核能
2023-07-28 15:52:332

一项现代科技发明

基因工程genetic engineering 基因工程是以分子遗传学为理论基础, 以分子生物学和微生物学的现代方法为手段, 将不同来源的基因(DNA分子),按预先设计的蓝图, 在体外构建杂种DNA分子, 然后导入活细胞, 以改变生物原有的遗传特性、获得新品种、 生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。什么是基因工程?【简介】 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。   迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。   诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 【基因工程的基本操作步骤】1.获取目的基因是实施基因工程的第一步。2.基因表达载体的构建是实施基因工程的第二步,也是基因工程的核心。3.将目的基因导入受体细胞是实施基因工程的第三步。4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。基因工程的前景科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。 生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。 人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。 人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。 科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。
2023-07-28 15:52:511

为什么细胞和细胞挨得这么近,它们的膜不会融合到一起?

细胞膜内的囊泡与细胞膜的融合过程,是内膜变成外膜的过程。例如囊泡运输到细胞膜,然后与细胞膜融合,这时候囊泡的内膜融合到细胞外膜,而囊泡内的物质则释放到了细胞外面。细胞膜的主要成分是磷脂双分子层,是疏水结构,但是表面也还有许多膜蛋白,这些膜蛋白有亲水的部分,因此在细胞膜与相邻的其他细胞膜之间还是存在水层的,这些水层隔离了细胞膜。如果HIV病毒能够诱导细胞融合,那可能是HIV改变了细胞膜表面蛋白的分布情况?这些都需要实验来验证,如果能够发现是某种蛋白的存在保证了细胞膜不融合也会很有意思。
2023-07-28 15:53:113

新型可控核聚变思路求验证,看是否可行,物理高手们看下吧!

电子的质量很小,和原子核相比就好像芝麻和汽车。你说芝麻撞汽车会怎么样?
2023-07-28 15:54:454

EAST只放电不聚变,三项关键技术将助力未来核聚变研究

近年来,大家经常听到中国科学院等离子体物理研究所的“东方超环”核聚变装置EAST刷新纪录的消息。例如,2021年5月28日,EAST实现了可重复的100秒、1.2亿度等离子体放电,引起了世界轰动。 然而,这些成果是怎么取得的呢?媒体一般不讲,因为普通人要看懂成果本身都已经不容易了,更何况科学原理。最近,我看到EAST的两代负责人李建刚院士和万元熙院士在中国工程院院刊《Engineering》的文章《东方超环托卡马克》,给出了详细的解读。 首先,EAST的基本定位是,世界上第一个全超导托卡马克。然后,它的目标并不是发生核聚变,放出能量。实际上,EAST做的只是放电,即制备和控制氢的等离子体。这个等离子体将来可以成为聚变的原料,但现在并没有发生聚变。人类现在的问题是对等离子体控制得不好,过不了多长时间能量就泄漏了。所以EAST的任务是研究如何把等离子体控制好,具体而言包括:一,演示超过1000秒的长脉冲偏滤器运行;二,实现数百秒的高约束模式运行;三,为未来聚变装置的关键科学和工程问题提供参考。 为实现这些目标,EAST开发了许多重要的技术,其中三种最关键的技术是:超导磁体系统、加热和电流驱动系统(heating and current drive, H&CD)、主动冷却偏滤器。下面分别来介绍一下。 一,超导磁体。EAST是全世界第一个在所有磁体上都使用超导材料的全超导托卡马克,包括提供纵场(toroidal field, TF)的线圈和用于等离子体控制(poloidal field, PF)的线圈。EAST超导磁体系统由16个TF线圈、6个PF线圈和6个中央螺线管(central soliloid, CS)线圈组成。EAST所有磁体都选用了铌钛合金(NbTi)作为超导材料。所有线圈均采用了导管内电缆(CICC)技术,以提供非常高的工作电流和足够的抗交流损耗能力。 在EAST运行的15年中,所有超导磁体都经历了不同的托卡马克运行模式,无一失败,证明了第一个完全使用超导磁体的托卡马克的运行质量和鲁棒性。 二,辅助加热。等离子体的有效加热和等离子体电流分布控制是聚变应用的必要条件。在过去的几十年里,以下四种主要的H&CD系统在托卡马克的研究中得到了广泛的应用:离子回旋共振加热(ICRH)、电子回旋共振加热(ECRH)、中性束流注入(NBI)和低杂波电流驱动(LHCD)。大多数H&CD系统是以短脉冲模式开发的,只能持续几秒钟。为了实现EAST的使命,需要新一代具有长脉冲(100~1000 s)的H&CD系统。 EAST研制出了总功率为34 MW的长脉冲H&CD系统,包括一套12 MW的连续波ICRH系统、一套8 MW的注入粒子能量为50~80 keV的NBI系统、一套140 GHz的4 MW ECRH系统、一套2.45 GHz的4 MW LHCD系统和一套6 MW LHCD 4.6 GHz系统。与其他托卡马克装置相比,EAST是唯一一个具有所有4种H&CD系统的长脉冲托卡马克装置,它可以提供不同加热方式和等离子体控制的灵活组合,以促进高性能稳态运行。EAST的H&CD系统在国际热核聚变实验堆(ITER)和其他大型稳态托卡马克的技术开发中发挥着关键作用,特别是EAST的实验经验可以为所有H&CD系统的测试提供一种集成的方法。 三,偏滤器。在长脉冲条件下,等离子体和壁之间发生的强烈相互作用,以及高热量和高粒子通量,给聚变反应堆带来严峻的挑战。对偏滤器靶来说尤其如此,因为偏滤器靶的最高热量和粒子通量都高于材料极限。为了实现目标,已经在EAST中使用了三代偏滤器。 第一代是完全主动冷却的掺杂石墨面向等离子体组件(PFC)和石墨偏滤器,它的连续热排出能力是2 MW m^(-2)。第二代是全钨偏滤器,其热流处理能力高达10 MW m^(-2)。 由于实验的迅速发展,EAST偏滤器靶板的热负荷将很快达到20 MW m^(-2)。为了满足未来的需求,我们选择了一种20 MW m-2超级蒸发冷却(hypervapotron)结构的平板(flat-tile)W/Cu偏滤器。该部件承受住了1000次20 MW m^(-2)的高热负荷辐照,其表面温度约为900 ,远低于ITER的结构。新的偏滤器于2021年年初在EAST安装,近半年来进行了长脉冲、高热流实验,未出现故障。进一步的实验将为未来的聚变反应堆提供可靠的经验。 介绍了这三种关键技术后,文章结尾的展望是: 拥有托卡马克核聚变研究的所有技术前提设施(如偏滤器、H&CD系统和长脉冲放电能力)的EAST,使中国磁约束聚变研究处于国际稳态先进托卡马克运行领域的前沿。在ITER开始运行之前,EAST提供了很多关于超导系统和稳态运行的经验。 在未来几年里,ITER所需的高达400秒的高约束模式放电将是EAST的目标。在10年的长期计划中,随着H&CD和先进诊断技术的进一步升级,EAST将把其先进性能运行的模式扩展到稳态运行区间,目的是研究未来聚变反应堆的条件,如在反应堆相关条件下运行数小时。
2023-07-28 15:54:521

氢能利用详细资料大全

氢能利用,是指将氢能转化为电能、热能等加以利用。 氢能是一种二次能源,它是通过天然气重整、电解水、太阳能光合作用、生物制氢等其它能源制取的,而不像煤、石油和天然气等可以直接从地下开采、几乎完全依靠化石燃料。 基本介绍 中文名 :氢能利用 外文名 :Hydrogen utilization 优点 :安全、环保 套用 :广泛 历史 :二战开始就已利用 利用方向 :燃料、发电等 氢能利用历史,开发现状,氢能制备方法,特点,氢能利用安全问题,氢能利用方向,展望, 氢能利用历史 在化学史上,人们把氢元素的发现,主要归功于英国化学家和物理学家卡文迪许(Cavendish,H.1731-1810)。但早在16世纪,瑞士著名医生帕拉塞斯就描述过铁屑与酸接触时有一种气体产生;17世纪时,比利时著名的医疗化学派学者海尔蒙特(van Helmont,J.B.1579-1644)曾偶然接触过这种气体,但没有把它离析、收集起来;波义耳虽偶然收集过这种气体,但并未进行研究。他们只知道它可燃,此外就很少了解;1700年,法国药剂师勒梅里(Lemery,N.1645-1715)在巴黎科学院的《报告》上也提到过它。 第一个对氢气进行收集并认真研究的卡文迪许,但卡文迪许对氢气的认识并不正确,他认为水是一种元素而氢则是含有过多燃素的水。直到1782年,拉瓦锡明确提出水并非元素而是化合物。1787年,他把过去称作“易燃空气”的这种气体命名为“Hydrogen”(氢),意思是“产生水的”,并确认它是一种元素。 氢作为内燃机的燃料并是人类最近的发明。在内燃机中使用氢气已有相当长的历史。 人类历史上第一款氢气内燃机的历史可以上溯到 1807 年,瑞士人伊萨克·代·李瓦茨制成了单缸氢气内燃机。他把氢气充进气缸,氢气在气缸内燃烧最终推动活塞往复运动。该项发明在 1807 年 1 月 30 日获得法国专利,这是第一个关于汽车产品的专利。但由于受当时的技术水平所限,制造和使用氢气远比使用蒸汽和汽油等资源复杂,氢气内燃机于是被蒸汽机、柴油机以及汽油机“淹没” 在第二次世界大战期间,氢就被用做A-2火箭发动机的液体推进剂。 1960年液氢首次用作航天动力燃料,1970年美国发射的“阿波罗”登月飞船使用的起飞火箭也是用液氢作燃料,现在氢已是火箭领域的常用燃料了。 对现代太空梭而言,减轻燃料自重,增加有效载荷变得更为重要。氢的能量密度很高,是普通汽油的3倍,这意味着太空梭以氢作为燃料,其自重可减轻2/3,这对太空梭无疑是极为有利的。除此之外,氢还可以用于宇宙飞船。 现在科学家们正在研究一种“固态氢”的宇宙飞船。固态氢既作为飞船的结构材料,又作为飞船的动力燃料,在飞行期间,飞船上所有的非重要零件都可以转作能源而“消耗掉”,这样飞船在宇宙中就能飞行更长的时间。 80年代后期多种燃料电池汽车被公开示范. 90年代后期小型燃料电池取代蓄电池的可行性得到证实。 进入21世纪,在面对环境污染等危机下,氢能燃料电池快速发展,并且更多成型的氢燃料电池汽车正开始走向市场。 开发现状 氢能作为倔强当前人类所面临困境的新能源而成为各国大力研究的对象,据美国能源部(DOE)新能源开发中心调查,过去5年,全世界工业化国家对氢能的开发投入年均递增20.5%。美国一直重视氢能。2003年,布希 *** 投资17亿美元,启动氢燃料开发计画,该计画提出了氢能工业化生产技术、氢能储存技术、氢能套用等重点开发项目。2004年2月,美国能源部公布了《氢能技术研究、开发与示范行动计画》,该计画详细阐述了发展氢经济的步骤和向氢经济过渡的时间表,该计画的出台是美国推动氢经济发展的又一重大举措,标准著美国发展氢经济已经从政策评估、制定阶段进入到了系统化实施阶段。2004年5月美国建立了第一座氢气站,加利福尼亚州的一个固定制氢发电装置“家庭能量站第三代”开始试用。2005年7月,世界上第一批生产氢能燃料电池的公司之一------戴姆勒----克莱斯勒(Daimler Chrysler)公司研制的“第五代新电池车”成功横跨美国,刷新了燃料电池车在公路上的行驶记录,该车以氢气为动力,全程行驶距离为5245km,最高速度145km/h。 对我国来说,能源建设战略是国民经济发展之重点战略,我国化石能源探明可采储量中,煤炭量为1145亿t、石油量为38亿t、天然气储量为1.37万亿m3,分别占世界储量的11.6%、2.6%、0.9%。我国人口多,人均资源不足,人均煤炭探明可采储量仅为世界平均值的1/2,石油仅为1 /10左右,人均能源占有量明显落后;同时,我国近年来交通运输的能还所占比重愈来愈大,与此同时,汽车尾气污染已经成为大气污染特别是城市大气污染最重要的因素,以此,寻找新的清洁能源对我国的可持续发展有着特别重要的意义。“九五”和“十五”期间,科技部都把燃料电池汽车及相关技术研究开发列入国建科技计画,2002年1月,中国科学院启动科技创新战略行动计画重大项目---------大功率质子交换膜燃料电池发动机及氢能源技术,由中科院大连化学物理研究所主持的这个重大科研项目,主要以科技部国家高技术发展计画(“863”)“电动汽车重大专项”为背景,研究和开发具有自主智慧财产权的75KW和150KW燃料电池发动机及氢能源成套技术,这项世界前沿的技术将有助于我国早日进入氢能时代。目前我国已成功研制除燃料电池轿车和客车,累计实验运行超过2000km,这标志着我国具备开发氢动力燃料电池发动机的能力,2008年奥运会和2010年世博会召开时,燃料电池轿车已经小批量示范性的行驶在街头。 氢能制备方法 1、矿物燃料制氢 在传统的制氢工业中,矿物燃料制氢是采用最多的方法,并已有成熟的技术及工业装置。其方法主要有重油部分氧化重整制氢,天然气水蒸气重整和煤气化制氢。用蒸汽和天然气作原料的制氢化学反应为:CH 4 +2H 2 O=CO 2 +4H 2 .用蒸汽和煤作原料来制取氢气的基本反应过程为:C+2H 2 O=CO 2 +2H 2 。虽然目前90%以上的制氢都是以天然气和煤为原料。但天然气和煤储量有限,且制氢过程回对环境造成污染,按照科学发展观的要求,显然在未来的制氢技术中该方法不是最佳的选择。 2、电解水制氢 电解水制氢工业历史较长,这种方法是基于如下的氢氧可逆反应:2H 2 O=2H 2 +O 2 目前常用的电解槽一般采用压滤式复极结构,或箱式单级结构,每对电解槽压在1.8~2.0V之间,制取1m3H2的能耗在4.0~4.5Kwh。箱式结构的优点是装备简单,易于维修,投资少,缺点是占地面积大,时空产率低;压滤式结构较为复杂,优点是紧凑、占地面积,小、时空产率高,缺点是难维修,投资大。随着科学技术的发展,出现了固体聚合物电解质(SPE)电解槽。SPE槽材料易得,适合大批量生产,而且使用相同数量的阴阳极进行H 2 、O 2 的分离,其效率比常规碱式电解槽要高,另外,SPE槽液相流量是常规碱式电解槽的1/10,使用寿命约为300天。缺点是水电解的能耗仍然非常高。目前,我国水电解工业扔停留在压滤式复极结构电解槽或单级箱式电解槽的水平上,与国外工业和研究的水平差距还很大。 3、甲烷催化热分解制氢 传统的甲烷裂解制造氢气过程都伴有大量的二氧化碳排放,但近年来,甲烷因热分解制氢能避免CO 2 的排放,而成为人们研究的热点。甲烷分解1mol氢气需要37.8KJ的能量,排放CO 2 0.05mol。该法主要优点在于制取高纯氢气的同时,制的更有经济价值、易于出场的固体碳,从而不向大气排放二氧化碳,减轻了温室效应。由于基本不产生CO 2 ,被认为是连线化石燃料和可再生能源之间的过渡工艺。但生产成本不低,如果副产物碳能具有广阔的市场前景,该法将会成为一种很有前途的制氢方法。 4、生物制氢 利用生物制氢技术,可节约不可再生能源,减少黄精污染,可能成为未来能源制备技术的主要发展方向之一。生物制氢是利用微生物在常温、常压下以含氢元素物质(包括植物淀粉、纤维素、糖等有机物及水)为底物进行酶生化反应来制的氢气。迄今为止,以研究报导的产氢生物可分为两大类:光合生物(厌氧光合细菌、蓝细菌和绿藻)和非光合生物(严格厌氧细菌、兼性厌氧细菌和好氧细菌)。 光合生物蓝细菌和绿藻可利用体内巧妙的光合结构转化太阳能为氢能,故其产氢研究远较非光合生物深入。二者均可光裂解水产生氢气,光裂解水产氢是理想的制氢途径,但蓝细菌和绿藻在光合放氢的同时,伴随氧的释放,除产氢效率较低外,如何解决氢酶遇氧失活是该技术应解决的关键问题。厌氧光合细菌与蓝细菌和绿藻相比,其厌氧光合放氢过程不产生氧,故工艺简单。目前鉴于光合放氢过程的复杂性和精密性,研究内容仍主要集中在高活性产氢菌株的筛选或选育、育化和控制环境条件以提高产氢量,其研究水平和规模还基本处于实验室水平。 非光合生物可降解大分子有机物而产氢,使其生物转化可再生能源物质(纤维素及其降解产物和淀粉等)生产氢能研究中显示出优越于光合生物的优势。该类微生物作为氢来源的研究始于20世纪60年代,至20世纪90年代末,我国科学家任南琪等研究开发了以厌氧活性污泥和有机质废水为原料的“有机废水发酵法生物制氢技术”,该技术突破了生物制氢技术必须采用纯菌种和固定技术的局限,开创了利用非固定化菌种生产氢气的新途径,中试试验结果表明,生物制氢反应器最高持续产氢能力达到5.7m 3 /(m 3 ·d),生产成本约为目前采用的电解水法制氢成本的一半。 特点 (1)氢是自然界存在最普遍的元素,据估计它构成了宇宙质量的75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质 (2)所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,因此在能源工业中氢是极好的传热载体 (3)氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,3%-97%范围内均可燃。而且燃点高,燃烧速度快 (4)除核燃料外,氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,达142.35lkJ/kg,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍 (5)所有元素中,氢重量最轻。在标准状态下,它的密度为0.0899g/L;氢可以以气态、液态或固态的金属氢化物出现,能适应贮运及各种套用环境的不同要求 (6)氢本身无毒,与其他燃料相比氢燃烧时最清洁,除生成水和少量氮化氢外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氮化氢经过适当处理也不会污染环境,而且燃烧生成的水还可继续制氢,反复循环使用 氢能利用安全问题 氢是安全燃料。大量使用实践表明,氢有着安全的使用记录。美国1967~1977年间发生145起氢事故,都是发生在石油精炼、氯碱工业或核电厂中,并未真正涉及能源套用。 国内外用氢经验显示,氢常见事故可归纳为:未察觉的泄漏;阀门故障或泄漏;安全阀失灵;排空系统故障;管道或容器破裂;材料损坏;置换不良、空气或氧气等杂质残留在系统中;氢气排放速率太高;管路接头或波纹管损坏;输氢过程发生撞车或翻车事故。 这些事故需要补充两个条件才能发生火灾,一是火源,二是氢气与空气或氧气的混合物要处于当时、当地的着火或暴震的极限当中,没有这两个条件,不能酿成事故。实际上,严格管理和认真执行操作规程,绝大多数事故是可以避免的。 氢能利用方向 氢能的利用方式主要有三种: ①直接燃烧; ②通过燃烧电池转化为电能; ③核聚变。 其中最安全高效的使用方式是通过燃料电池将氢能转化为电能。目前,氢能的开发正在引发一场深刻的能源革命,并将可能成为21世纪的主要能源。美、欧、日等已开发国家都从国家可持续发展和安全战略的高度,制定了长期的氢能发展战略。 1、氢内燃机 氢内燃机的基本原理于汽油或者柴油内燃机原理一样。氢内燃机是传统汽油内燃机的带小量改动的版本。氢内燃直接燃烧氢,不使用其他燃料或产生水蒸气排出。氢内燃机不需要任何昂贵的特殊环境或者催化剂就能完全做功,这样就不会存在造价过高的为题。现在很多研发成功的氢内燃机都是混合动力的,也就是既可以使用液氢,也可以使用汽油等作为燃料。这样氢内燃机就成了一种很好的过渡产品。例如,在一次补充燃料后不能到达目的地,但能找到加氢站的情况下就使用氢为燃料;或者先使用液氢,然后找到普通加油站加汽油。这样就不会出现加氢站还不普及的时候人们不敢放心使用氢动力汽车的情况。氢内燃机由于其点火能量小,易实现稀薄燃烧,故可在更宽阔的工况内得到较好的燃油经济性。 2、燃料电池 氢能的套用主要通过燃料电池来实现的。氢燃料电池发电的基本原理是电解水的逆反应,把氢和氧分别供给阴极和阳极,氢通过阴极向外扩散和电解质发生反应后,放出电子通过外部的负载到达阳极。氢燃料电池与普通电池的区别主要在于:干电池、蓄电池是一种储能装置,它把电能储存起来,需要的时候再释放出来;而氢燃料电池严格的说是一种发电装置,像发电厂一样,是把化学能直接转化为电能的电化学发电装置。而使用氢燃料电池发电,是将燃烧的化学能直接转换为电能,不需要进行燃烧,能量转换率可达60%~80%,而且污染少,噪声小,装置可大可小,非常灵活。从本质上看,氢燃烧电池的工作方式不同于内燃机,氢燃烧电池通过化学反应产生电能来推动汽车,而内燃机则是通过燃烧热能来推动汽车。由于燃料电池汽车工作过程不涉及燃烧,因此无机械损耗及腐蚀,氢燃烧电池产生的电能可以直接被用于推动汽车的四轮上,从而省略了机械传动装置。现在,各已开发国家的研究者都已强烈意识到氢燃烧电池将结束内燃机时代这一必然趋势,已经开发研究成功氢燃烧电池汽车的汽车厂商包括通用(GM)、福特、丰田(Toyota)、宾士(Benz)、宝马(BMW)等国际大公司。 3、核聚变 核聚变,即氢原子核(氘和氚)结合成较重的原子核(氦)时放出巨大的能量。 热核反应,或原子核的巨变反应,是当前很有前途的新能源。参与核反应的氢原子核,如氢、氘、氟、锂等从热运动获得必要的动能而引起的聚变反应。热核反应是氢弹爆炸的基础,可在瞬间产生大量热能,但目前尚无法加以利用。如能使热核反应在一定约束区域内,根据人们的意图有控制的产生于进行,即可实现受控热核反应。这正是目前在进行试验研究的重大课题。受控热核反应是聚变反应堆的基础。聚变反应堆一旦成功,则可能向人类提供最清洁而又取之不尽的能源。 目前,可行性较大的可控核聚变反应堆就是托卡马克装置。托卡马克是一种利用磁约束来实现受控核聚变的环形容器。他的名字Tokamak来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。最初是有位苏联莫斯科的库尔恰托夫研究所的阿奇莫维奇等人在20世纪50年代发明的。托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部回产生巨大的螺旋形磁场,将其中的等离子加热到很高的温度,已达到核聚变的目的。我国也由两座核聚变实验装置。 展望 能源、资源及环境问题迫切需要氢能源来化解这种危机,但目前氢能源的制备还不成熟,储氢材料的研究大多仍处于实验室的探索阶段。氢能源的制备应主要集中在生物制氢这一方面,其他制氢方法,是不可持续的,不符合科学发展的要求。生物制氢中的微生物制氢需要基因工程同化学工程的有机结合,这样才能充分利用现有科技尽快开发出符合要求的产氢生物。生物质制氢需要技术的不断改进和大力推广,这些都是一个艰难的过程。 氢气的储存主要集中在新材料的发现方面,对材料的规模化或工业制备还未及考虑,对不同储氢材料的储氢机理也有待于进一步研究。另外,因为每一种储氢材料都有其优缺点,且大部分储氢材料的性能都有加合性的特点,而单一的储氢材料的性质也较多地为人们所认识。因此认为,应该研制出集多种单一储氢材料储氢优点于一体的复合储氢材料是未来储氢材料发展的一个方向。
2023-07-28 15:54:591

1.2亿摄氏度101秒!中国“人造太阳”创纪录意味着什么?

中科院合肥物质科学研究院有“人造太阳”之称的全超导托卡马克核聚变实验装置(EAST),创造了新的世界纪录,
2023-07-28 15:55:073

全超导托卡马克核聚变也叫做什么

全超导托卡马克核聚变也叫超导托卡马克可控热核聚变(EAST)。超导托卡马克可控热核聚变,非圆截面核聚变实验,核物理学重要理论之 一,也是核聚变实现的重要途径之一。托卡马克核聚变是海水中富含的氕、氘在特定环境和超高温条件下使其实现核聚变反应,以释放巨大能量,世界各国科学家为已在20世纪中叶开始相关研发。托卡马克核聚变是一种利用磁约束来实现受控的核聚变。它的名字Tokamak来源于环形toroidal、真空室kamera、磁magnet、线圈kotushka。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。托卡马克核聚变的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。全超导托卡马克核聚变未来的发展计划全超导托卡马克核聚变发展目标通过15年2006-2020的努力,使EAST成为中国磁约束聚变能研究发展战略体系中最重要的知识源头,使中国核聚变能开发技术水平进入世界先进行列。同时,积极参与国际合作,消化、吸收、掌握聚变堆关键科学与技术,锻炼队伍,培养人才,储备技术,使得中国有能力独立设计和建设或参与国际合作聚变能示范堆。HT-7装置是国际上正在运行的EAST投入正式运行之前第二大超导托卡马克装置,配合EAST的科学目标开展高温等离子体的稳态运行技术和相关物理问题的研究。其稳态高参数等离子体物理实验结果和工程技术发展对EAST,最终科学目标的实现和国际聚变研究都具有重要的直接意义。
2023-07-28 15:56:311

地球自由振荡的图像

球体的自由振荡可以分为两类:一类称为球振型(即S振型,Spheroidal mode),另一类称为扭振型(即T振型,Torsional mode)或环振型(Toroidal mode)。在球振型中,不仅包含前后振动,同时包含径向振动;在扭振型中,球体每一质点只能在球面上作前后振动。因此,球振型的性质类似于瑞利面波(P-SV型),扭振型的性质类似于勒夫面波(SH型)。对于一维物体,只要一个整数即可确定自由振荡的振型;二维物体需要两个整数确定振型;对于像地球这样的三维物体,则需要三个整数l,n和m才能确定自由振荡的振型。假设在球坐标系统中,以θ表示纬度,φ表示经度,r表示径向坐标。令n和m表示球面上振动的形态。整数n确定振动对纬度,亦即与震源间角距离的变化,n=0,1,2……直至无穷大。整数m确定振动对经度,亦即对方位角的变化,m=0,1,2,3……n。整数l确定位移随深度z的变化,以及在z方向上的节面数目,l=0,1,2……直至无穷。球振型和扭振型分别用 表示。振动的形状可以约略自节面的位置看出来。在球坐标中,θ函数为零的节面是以地心为中心的同心锥面;φ函数为零的节面是大圆面;r函数为零的节面是以地心为中心的同心球面。在非旋转的球体中,自由振荡的周期与m无关,这时只有两组无穷多个振型, 退化成为lSn和lTn。相应于每一个n级,随着l值的不同,可以有基振型(l=0)和其他高振型(l=1,2……)。图4-19(a)表示不同n级的球振型,lS0为球体沿径向膨胀和收缩的振型,lS1为摇摆式振型,lS2似“足球”的形状。图4-19(b)表示不同n级的扭振型,在lT2振型中,上半球扭转的方向与下半球相反。在高级的振动中,扭转方向变换更多。图4-19(c)表示不同l的振型。由理论推导可知,自由振荡可以用一系列不同形式的行波来表示。这可以自行波互相干涉时产生驻波的现象来推想。与此相仿,一个行波也可用不同振型的自由振荡来模拟。因此地球的自由振荡可以看成是长周期面波的推广。球振型相当于瑞利波的推广:扭振型相当于勒夫波的推广。长周期地震仪可以记录数百秒以内的面波,自数百秒至t小时左右的周期则用地球振荡的数据来补充。地球自由振荡是一种低频振荡,必须用特殊的地震仪才能观测到。基于各种振型的运动特点,重力仪和垂向长周期地震仪由于它们只反映沿径向的位移,所以只能记录球型振荡,不能记录环型振荡,而水平地震仪和应变仪则可同时记录两种振型的振荡。
2023-07-28 15:57:031

核聚变技术难点与解决办法

现状:1.可以实现,但维持时间短2.可以实现,但高投入,低产出,投入产出比严重偏低
2023-07-28 15:57:242

核能的核能知识

所谓轻核聚变是指在高温下(几百万度以上)两个质量较小的原子核结合成质量较大的新核并放出大量能量的过程,也称热核反应。它是取得核能的重要途径之一。由于原子核间有很强的静电排斥力,因此在一般的温度和压力下,很难发生聚变反应。而在太阳等恒星内部,压力和温度都极高,所以就使得轻核有了足够的动能克服静电斥力而发生持续的聚变。自持的核聚变反应必须在极高的压力和温度下进行,故称为热核聚变反应。氢弹是利用氘、氚原子核的聚变反应瞬间释放巨大能量这一原理制成的,但它释放能量有着不可控性,所以有时造成了极大的杀伤破坏作用。目前正在研制的受控热核聚变反应装置也是应用了轻核聚变原理,由于这种热核反应是人工控制的,因此可用作能源。 1.可控核聚变的发生条件产生可控核聚变需要的条件非常苛刻。我们的太阳就是靠核聚变反应来给太阳系带来光和热,其中心温度达到1500万摄氏度,另外还有巨大的压力能使核聚变正常反应,而地球上没办法获得巨大的压力,只能通过提高温度来弥补,不过这样一来温度要到上亿度才行。核聚变如此高的温度没有一种固体物质能够承受,只能靠强大的磁场来约束。此外这么高的温度,核反应点火也成为问题。不过在2010年2月6日,美国利用高能激光实现核聚变点火所需条件。中国也有“神光2”将为我国的核聚变进行点火。2.核聚变的反应装置可行性较大的可控核聚变反应装置就是托卡马克装置。托卡马克是一种利用磁约束来实现受控核聚变的环性容器。它的名字Tokamak 来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。 托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。 化石燃料在能源消耗中所占的比重仍处于绝对优势,但此种能源不仅燃烧利用率低,而且污染环境,它燃烧所释放出来的二氧化碳等有害气体容易造成 温室效应,使地球气温逐年升高,造成气候异常,加速土地沙漠化过程,给社会经济的可持续发展带来严重影响。与火电厂相比,核电站是非常清洁的能源,不排放这些有害物质也不会造成温室效应,因此能大大改善环境质量,保护人类赖以生存的生态环境。世界上核电国家的多年统计资料表明,虽然核电站的投资高于燃煤电厂,但是,由于核燃料成本远远地低于燃煤成本,相反核燃料反应所释放的能量却远远高于化石燃料燃烧所释放出来的能量,而且核燃料取之不尽,这就使得核电站的总发电成本低于烧煤电厂。 据估计,在世界上核裂变的主要燃料铀和钍的储量分别约为490万吨和275万吨。这些裂变燃料足可以用到聚变能时代。轻核聚变的燃料是氘和锂,1升海水能提取30毫克氘,在聚变反应中能产生约等于300升汽油的能量,即1升海水约等于300升汽油,地球上海水中有40多万亿吨氘,足够人类使用百亿年。地球上的锂储量有2000多亿吨,锂可用来制造氚,足够人类在聚变能时代使用。况且以世界能源消费的水平来计算,地球上能够用于核聚变的氘和氚的数量,可供人类使用上千亿年。因此,有关能源专家认为,如果解决了核聚变技术,那么人类将能从根本上解决能源问题。1.核工业的主要业务范围核工业的主要业务范围包括:铀矿勘探、铀矿开采与铀的提取、燃料元件制造、铀同位素分离、反应堆发电、乏燃料后处理、同位素应用以及与核工业相关的建筑安装、仪器仪表、设备制造与加工、安全防护及环境保护。2.核燃料循环及其组成核燃料循环是指核燃料的获得、使用、处理、回收利用的全过程。它是核工业体系中的重要组成部分。核燃料循环通常分为前端和后端两部分,前端包括铀矿勘探、铀矿开采、矿石加工(包括选矿、浸出、提取和沉淀等工序)、精制、转化、浓缩、元件制造等;后端包括对反应堆辐照以后的乏燃料元件进行铀钚分离的后处理以及对放射性废物进行处理、贮存和处置。3. 铀矿地质勘探铀是核工业最基本的原料。铀矿地质勘探的目的是查明和研究铀矿床形成的地质条件,总结出铀矿床在时间上和空间上的分布规律,并用此规律指导普查勘探,探明地下的铀矿资源。普查勘探工作的程序为区域地质调查、普查和详查、揭露评价、勘探等,同时还要求工作人员进行地形测量、地质填图、原始资料编录等-系列的基础地质工作。分散在地壳中的铀元素在各种地质作用下不断集中,最终形成了铀矿物的堆积物,即铀矿床。了解铀矿床的形成过程,对铀矿普查勘探具有十分重要的指导意义。并不是所有的铀矿床都有开采、进行工业利用价值的。据统计,在已发现的170多种铀矿床及含铀矿物中,具有实际开采价值只有14~18%。影响铀矿床工业的两个主要因素是矿石品位和矿床储量。此外,评价的因素还有矿石技术加工性能、矿床开采条件,有用元素综合利用的可能性和交通运输条件等。4. 铀矿开采生产铀的第一步是铀矿开采。其任务是从地下矿床中开采出工业品位的铀矿石,或将铀经化学溶浸,生产出液体铀化合物。由于铀矿有放射性,所以铀矿开采其特殊方法。常用的主要有三种:露天开采、地下开采和原地浸出。露天开采一般用于埋藏较浅的矿体,方法剥离表土和覆盖岩石,使矿石出露,然后进行采矿。地下开采一般用于埋藏较深的矿体,此种方法的工艺过程比较复杂。与以上两种法方法相比,原地浸出采铀具有生产成本低,劳动强度小等优点,但其应用有一定的局限性,仅适用于具有一定地质、水文地质条件的矿床。其方法是通过地表钻孔将化学反应剂注入矿带,通过化学反应选择性地溶解矿石中的有用成分--铀,并将浸出液提取出地表,而不使矿石绕围岩产生位移。5. 铀矿石的加工铀矿石加工的目的是将开采出来的具有工业品位或经放射性选矿的矿加工富集,使其成为含铀较高的中间产品,即通常所说的铀化学浓缩物。将此种铀化学浓缩物精制,进一步加工成易于氢氟化的铀氧化物作为下一步工序的原料。铀矿石加工的主要步骤包括:矿石品位、磨矿、矿石浸出,母液分离、溶液纯化、沉淀等工序。为了便于浸出,矿石被开采出来后,必须将其破碎磨细,使铀矿物充分暴露。然后采用一定的工艺,借助一些化学试剂(即浸出剂)或其它手段将矿石中有价值的组分选择性地溶解出来。浸出方法有两种:酸法和碱法。由于浸出液中铀含量低,而且杂质种类多,含量高,所以必须将杂质去除才能确保铀的纯度。实现这一过程,可以选择以下两种方法:离子交换法(又称吸附法)和溶剂萃取法。水冶生产的最后一道工序是将沉淀物洗涤、压滤、干燥,然后得到水冶产品铀化学浓缩物,又称黄饼。6. 铀的浓缩为了提高铀-235浓度所进行的铀同位素的分离处理称为浓缩。通过浓缩可以为某些反应堆提供铀-235浓度符合要求的铀燃料,现今所采用的浓缩方法有气体扩散法、分离法、激光法、喷嘴法、电磁分离法、化学分离法等,其中气体扩散法和离心分离法是现代工业上普遍采用的浓缩方法。浓缩处理是以六氟化铀形式进行的。7. 核燃料元件经过提纯或浓缩的铀,还不能直接用作核燃料。必须经过化学,物理、机械加工等处理后,制成各种不同形状和品质的元件,才能供反应堆作为燃料来使用。核燃料元件种类繁多,按组分特征来分,可分为金属型、陶瓷型和弥散型;按几何形状来分,有柱状、棒状、环状、板状、条状、球状、棱柱状元件;按反应堆来分,可以分为试验堆元件,生产堆元件,动力堆元件(包括核电站用的核燃料组件)。核燃料元件一般都是由芯体和包壳组成的。由于它长期在强辐射、高温、高流速甚至高压的环境下工作,所以对芯片的综合性能、包壳材料的结构和使用寿命都有很高的要求。可见,核燃料元件制造是一种高科技含量的技术。8.乏燃料的后处理经过辐照的燃料元件,从堆内卸出时总是含有一定量未分裂和新生的裂变燃料。乏燃料的后处理的目的就是回收这些裂变燃料如铀-235,铀-233和钚,利用它们再制造新的燃料元件或用做核武器装料。此外,回收转换原料(铀-238,铯-137,锶-90),提取处理所生成的超铀元素以及可用作射线源的某些放射性裂变产物(如铯-137,锶-90等),都有很大的科学和经济价值。但此项工序放射性强,毒性大,容易发生临界事故,所以,在进行乏燃料的后处理时一定要加强安全防护措施。后处理工艺一般分为四个步骤:冷却与首端处理、化学分离、通过化学转化还原出铀和钚、通过净化分别制成金属铀(或二氧化铀)及钚(或二氧化钚)。冷却与首端处理是冷却将乏燃料组件解体,即脱除元件包壳,溶解燃料芯块。化学分离(即净化与去污过程)是将裂变产物从U-Pu中清除出去,然后用溶剂淬取法将铀-钚分离并分别以硝酸铀酰和硝酸钚溶液形式提取出来。9. 三废处理与处置在核工业生产和科研过程中,会产生一些不同程度放射性的固态、液态和气态的废物,简称为三废。在这些废物中,放射性物质的含量虽然很低,危害却很大。普通的外界条件(如物理、化学、生物方法)对放射性物质基本上不会起作用。因此在放射性废物处理过程中,除了靠放射性物质的衰变使其放射性衰减外,就只能采取多级净化、去污、压缩减容、焚烧、固化等措施将放射性物质从废物中分离出来,使浓集放射性物质的废物体积尽量减小,并改变其存在的状态,以达安全处置的目的。这个过程称为三废处理与处置。
2023-07-28 15:57:321

史绍熙的人物贡献

推导出粒子在气缸内涡流中的运动轨迹方程,提出了周边混合气流形成的原理。发明柴油机的热混合理论。建立了周期性脉动式流动的能用速度分布方程,并求得了其频率影响的无因次式,从而解决了层流流量计多年来未解决的理论问题和设计问题。研究开发成功我国第一台转速为3000转/分以上的高速柴油机和第一台两级自由活塞式发动机压气机。创建高校内燃机专业内燃机是国民经济与国防各部门广泛应用的动力机械,50年代初,我国不仅内燃机工业基础十分薄弱,而且高等院校尚未设立内燃机专业。作为这一领域的专家,史绍熙回国后当即积极推动与筹划,并于翌年(1952年)建立了天津大学内燃机专业,成为我国这一专业学科的首创者之一。他亲任内燃机教研室主任并讲授热工学、气体动力学、燃烧学、内燃机设计、高速柴油机原理与设计、自由活塞发动机等课程。同时,他又组织翻译了我国高等学校通用的第一套苏联内燃机教材及其教学计划和教学大纲,建立了内燃机实验室,并注意培养青年教师,为我国内燃机高等教育奠定了基础。1956年他被选任为我国首批研究生导师,开始招收研究生。这也是由我国专家自行培养内燃机高级人才之始。 他一贯主张教学与科研相结合,把不断提高教师自身素质与学术水平和更好地为国家建设培育人才紧密联系在一起,使高等学校成为教学与科研两个中心,达到既出人才又出成果的双重目的。1958年任主管内燃机与热能的第二机械系主任后,又在取得天津市的支持下创建了天津内燃机研究室;1960年又扩建为教育部与天津市共同领导的天津内燃机研究所并由他亲任所长,承担了不少国家重要科研项目和新产品开发任务。他全面组织领导了105系列与85系列柴油机和多种小型汽油机的设计、研究与发展工作,并在小型高速柴油机研制上取得了新突破,研究成功我国第一台标定转速达3000转/分(实验室内高达4000转/分)的新机型,可满足军用发电、快艇辅机和汽车动力的需要,为我国内燃机产品发展作出了重要贡献。1960年他还主持设计研制成功了第一台自由活塞发动机-压气机联合装置,并编写了《自由活塞式发动机》一书,填补了我国的一项空白。1976年随着我国历史性的转折,年已六旬的史绍熙在教学与科研工作上也进入了新阶段。1979年担任天津大学副校长兼热物理工程系主任,并创立了工程热物理专业,接着又筹建了热能研究所,兼任所长,广泛地进行了能源利用与开发研究。1981年被评选为我国首批博士研究生导师。1984年又被聘任为美国世界开放大学研究生指导教授。1987年他主持建成了第一个内燃机燃烧学国家重点实验室,并亲任主任和学术委员会主任,同时建立了我国唯一的内燃机学科博士后科研流动站。他全面负责领导着这两个重要部门的工作。到目前为止,他已培养出博士10人、硕士40人,并已承担博士后科研指导工作。1981~1986年他出任天津大学校长。在他的任期内,天津大学得到了长足的发展,先后成立了研究生院、管理学院、石油化工学院、材料科学与工程系、物理系、化学系、力学系、人文与社会科学系、外语系等,使之由多科性工科大学扩大为以工科为主,理、工、文、管各科相结合的综合性大学。 他非常重视国际学术交流,并在国内外学术界担任着许多重要职务。在他任校长以后,与国外高校进行了更加广泛的联系与合作,先后同美、英、加拿大、法、德、日、波兰、挪威、新西兰等国22所大学建立了校际合作关系。他不仅常应邀到国外讲学和参加国际学术活动,而且于1984、1985年在国内组织了两次国际会议。1989年他又组织召开了世界性的第18届国际内燃机会议(CIMAC)并担任大会主席。他作为中国内燃机学会理事长,与德国内燃机协会签定了两国合作协议,他还以中国大学内燃机学科组主席的名义与英国大学内燃机学科组签定了学术交流协议,为我国内燃机学术界走向世界,进入先进行列做出了重要贡献。发明复合式燃烧系统50年代末至60年代初期,我国工业和经济正面临着一个极其困难的时期。当时,国内生产的柴油机,性能均已明显落后,有的产品在生产和配件供应上也遇到了困难。国民经济的发展,迫切需要依靠自己的力量设计新一代的产品。其中,最关键的问题则是寻求适合我国当时国情的燃烧系统。为此,史绍熙提出了一种全新的燃烧方式,并定名为复合式燃烧过程,经过近四年的试验研究,获得了成功并于1963年通过了鉴定。 复合式燃烧过程的发明,不仅是他在柴油机燃烧理论方面的一项新突破,而且在应用上也作出了贡献,在国内外产生了重大影响。 关于柴油机的燃油-空气混合与燃烧方式,历来都遵循着传统的“空间式”或“容积式”理论,亦即在设计燃烧系统时,应将燃料喷成油雾,均匀地分布在燃烧室空间,避免油束触壁。1955年,西德MAN公司Meurer一反传统观念,提出了“油膜式”或“壁面式”燃烧过程(M过程),亦即将95%左右的燃料喷涂于燃烧室壁面上形成油膜,由少量的油雾在空间与空气混合着火,油膜随之蒸发燃烧。这一过程在该公司的一些产品上得到应用,并取得了轻声无烟的良好效果。但是,经过我国的研究与实践,发现了它的某些局限性,其中突出的两个问题是当时喷油嘴的生产不易解决,发动机冷起动较困难。史绍熙面对我国中小型高速柴油机发展中的困境,于1959年提出了既适合中国国情而又兼具上述两种燃烧方式长处的新型燃烧系统一复合式燃烧过程。他巧妙地把空间燃烧与油膜燃烧相结合,利用气缸内空气涡流随发动机工况变化的规律,改变燃油在空间与壁面上分布配比,使之在发动机起动或低速运转时,由于涡流速度低,空间燃料增多而具有“空间式”特点,从而克服了M过程起动困难的缺点;当发动机高速运转时,由于涡流速度高,壁面燃料多,又具有“油膜式”的特点,其结果不仅改善了柴油机的燃烧过程,降低了燃油消耗率,而且还可燃用多种燃料,特别是避免了采用小型多孔式喷油嘴,而采用我国大量生产的具有自清作用的轴针式喷油嘴,适应了当时我国的制造与使用条件。这不仅是我国第一个具有独创性的燃烧过程,而且也早于国外后来出现的类似过程(如德国的D过程和H过程)。日本京都大学著名教授长尾不二夫在“压燃式发动机的燃烧”论文中评价这一新的燃烧过程时指出:“天津大学史绍熙教授发明用普通燃烧与壁面燃烧相结合的新方法,取得了良好效果。” 复合式燃烧系统及其理论已编入高等学校教材《内燃机原理》,并于1973年作为国际技术交流资料提供匈牙利。该燃烧系统已广泛用于我国X105系列柴油机上,曾有30多家工厂生产,年产量高达70多万千瓦。此项成果荣获1982年国家发明二等奖。内燃机缸内流动及燃油喷雾研究史绍熙身负教学、行政许多领导职务和社会兼职,但却始终作为学术带头人,坚持在科研工作的第一线。他一贯倡导在学习、吸收他人的先进思想与技术的基础上、结合我国实情与发展需要,走自已的创新道路,并在科研实践中身体力行。因此,他不仅把传统的“空间式”和“油膜式”两类不同性质的燃烧方式取长补短,巧妙结合,创造出复合式燃烧系统,而且在以后的工作,不断开拓进取,并在流体力学、燃烧学、缸内流动、燃油雾化等试验研究方面不断取得新的进展与成果。 他在燃烧室内空气运动与粒子运动的研究中,提出了粒子在旋转气流中的运动转迹新方程。实验证明,这一方程较之过去人们一直沿用的毕兴格(Pishinger)方程精确得多。他通过理论和实验研究,发展了热混合理论,并提出了柴油机周边混合气形成原理。 他在直喷式柴油机压缩过程湍流场变化规律的研究中,对压缩过程的能量转化进行了全面分析,并发现了在上止点附近燃烧室不同部位湍流强度的变化规律。这一新规律的发现,对了解混合气的形成与燃烧具有重要意义。 他在发动机充气过程的研究中又提出了在进气终结时缸内涡流比的计算公式,实验证明,较之国际上通用的昌卡图(Ricardo)公式更为精确。 长期以来,内燃机科技工作者始终把燃烧节能作为主攻的方向,其核心在于如何实现燃油与空气最有效的混合与燃烧。为此,他在致力于揭示缸内气体流动规律的同时,还开展了燃料喷雾特性的研究。他用高速纹影法、激光全息摄影法、激光阴影法、激光衍射法和气体喷射模拟法,研究了柴油机的喷雾特性,并取得了一些重要成果。例如,油束的碰壁反溅对混合与燃烧有重要影响,适当的碰壁反溅作用可以提高混合速率,加快燃烧速度,但过多的燃料碰壁却会产生相反的效果。在高喷射压力下,燃油的射流将引起“卷吸”作用,使油束周围产生旋涡运动。这一现象称为环涡运动(Toroidal movement),而喷油压力愈高,环涡强度愈大。这是一个新发现。经实验证明,当喷油压力达130兆帕时,喷雾的SMD值比在常规喷油压力下的粒度小得多,一般在5~10微米之间。此外,还发现沿喷雾轴线方向向前和沿喷雾半径向外的SMD均有增大的趋势,在油束端部和外围仍有大量燃料尚未蒸发。这与过去一些学者认为燃油由喷孔射出后立即蒸发成蒸汽的论点也是不同的。这些新发现对柴油机的混合气形成与燃烧过程的研究具有十分重要的意义。研究发动机测试新技术当今世界对内燃机的性能和排放要求日益严苛,这就更加需要深入研究解决它的一系列理论与实践问题。然而,内燃机缸内油气混合与燃烧却是一种极其复杂的瞬变过程,要探明并掌握它的内在规律,其测试技术就成了具有决定作用的手段。史绍熙多年来一直十分重视这一领域的新技术开发与应用,并也取得了不少成果。 早在1949年他就研究成功了测量内燃机空气消耗量用的片式粘性流量计,1957年他又发表了“关于内燃机空气消耗量的测定法”论文,文中全面分析了脉动流的速度变化和压力变化对测量误差的影响,并提出了消除或减小测量误差的方法。这也是该领域内在我国最早发表的论文,从而引起了有关专家们的注意并推动了这方面研究工作的发展。此外,他还首次把粒子示踪法应用于缸内流动测量,并引起国际上的重视。 内燃机缸内压力测量误差及其解决方法,一直是国际内燃机界重视而又未获满意解决的问题。为此,史绍熙开展了这一课题的研究,并于1987年在英国机械工程学会组织的国际会议上发表了“内燃机气缸内压力测量的数值仿真及数字信号处理的研究”论文。首次成功地把数字信号处理和数字滤波技术应用于内燃机缸内压力测量,并由此提出了一种测量缸内压力的新方法。在此方法中,保留了一个短的测压通道,以避免热冲击效应,而通道效应则用数字滤波法滤除。与此同时,还发展了三种数字滤波法,用于对示功图的处理,以代替目前常用的“光顺法”,取得了良好的效果。此外,还提出了内燃机示功图测量误差的热力学修正法。 在激光测雾和测速技术方面,史绍熙也进行了许多工作。例如,1987年他成功地研究出应用激光衍射原理的柴油机喷雾场自动分析测量系统。该系统具有阵列光电探测器并行变换和多路同步触发并行取样及数字延时控制等特点,适用于柴油机等的瞬时断续变化的喷雾场实时自动分析测量,可以对次喷射过程中的不同时刻的喷雾进行测试。这一成果经专家们鉴定,达到了国际先进水平。1988年他研究成功了光电调制反馈激光多普勒测速仪,突破了传统LDA的构成模式,用变频光学频移技术和光电混合反馈技术,将光路和电路连接闭环负反馈跟踪环路,提高了信噪比,降低了成本。这项研究成果获得了国家专利。用甲醇在内燃机上进行燃的研究 随着世界性的石油危机的出现,内燃机正面临着燃料资源短缺和燃用石油产品造成的大气环境污染日益严重问题。为此,许多国家都在积极开展非石油制品作为内燃机燃料的研究,其中甲醇则是一种来源丰富的潜在燃料。如果用以作为内燃机的代用燃料,不仅大量节省柴油和汽油,又可减少排放污染。有鉴于此,史绍熙于1980年在我国首先进行了柴油机燃用甲醇的研究,并在第15、16两届国际内燃机燃烧学术会议上先后发表了“甲醇作为柴油机代用燃料的研究”和“双燃法燃用甲醇的研究”论文。在第8届国际醇类燃料会议上发表了“在柴油机上用双燃料法燃用甲醇的燃料控制系统的研究”论文。1988年在492Q型汽油机上进行了燃用纯甲醇(M100)的研究并取得成功,热效率较原机提高33%~48%,燃油消耗率达到了国际先进水平。1989年又完成了“柴油机用热表面点火法燃用纯甲醇(M100)的研究”,热效率比原柴油机提高4%,功率也增加了9.6%。这些成果为我国今后大量节约石油,拓宽内燃机燃料资源开辟了新途径。编纂专著和大型工具书史绍熙在忙于教学与科研工作的同时,还致力于专著、论著和大型工具书的编纂工作。他在国内外刊物上已发表了70多篇论文。1983年创办了《内燃机学报》,这是我国内燃机行业唯一的高级学术刊物。它国内外稿件兼收,中英文稿并载,所登的论文为国外多家信息系统所收录,在国内外产生了重大影响。此外,他还主编了《燃烧科学与技术》杂志,并兼任《工程热物理学报》副主编和《中国科学》与《科学通报》的编委。1984年中国农业机械出版社出版了他所主编的380多万字的《柴油机设计手册》。这是我国第一部全面总结柴油机设计经验,兼收国外最新技术成果的大型工具书,具有较高的实用价值和学术价值。1988年开始,他又主编了300多万字的《内燃机设计手册》,机械工业出版社已作为重点科技图书,于1992年正式出版。此外,他还担任了《中国大百科全书》机械卷动力机械部分主编。 他还参加了我国各个时期的科技发展规划工作,其中包括国家科委制定的《1960年国家科学技术长远发展计划》、《1978~1985年全国科学技术发展规划纲要》、1986~2000年基础研究长远发展规划的制定等,为我国的科学技术发展作出了贡献。
2023-07-28 15:57:581

请告诉我钯发生核聚变反应的原理,谢谢!

科幻电影不过是一设想,当今还没有用钯来进行核反应的技术。核能的释放有重核裂变和轻核裂变两种。而容易发生裂变反应的核只有铀233,铀235,钚239,其它元素发生裂变反应很难。现在工业上核燃料主要是铀235。钯不适合用做核燃料。
2023-07-28 15:58:142

lower your stress什么意思

减轻你的压力
2023-07-28 15:58:224

求问托克马克的原理

http://baike.baidu.com/view/184671.htm?hold=redirect见上面网址
2023-07-28 15:58:422

托卡马克核聚变详细资料大全

托卡马克核聚变,也称超导托卡马克可控热核聚变(EAST)、超导非圆截面核聚变实验,核物理学重要理论之 一,也是核聚变实现的重要途径之一。托卡马克核聚变是海水中富含的氕、氘在特定环境和超高温条件下使其实现核聚变反应,以释放巨大能量,世界各国科学家为已在20世纪中叶开始相关研发。 基本介绍 中文名 :托卡马克核聚变 外文名 :Tokamak 性质 :核聚变 发明时间 :20世纪50年代 概念解读,优势,超导技术在EAST中的运用,研发背景,基本原理,实验装置,超导磁系统,真空室,冷屏与外真空杜瓦,面对电浆部件,装置技术诊断系统,低温系统,高功率电源系统,真空抽气系统,低杂波电流驱动系统,总控与数据采集系统,中国EAST,电浆物理所成立,探索新能源过程,EAST装置的主机部分,EAST装置研制过程,EAST的建设和投入运行,新一代EAST,实验突破, 概念解读 托卡马克(Tokamak)核聚变是一种利用磁约束来实现受控的核聚变。它的名字Tokamak来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。 托卡马克核聚变 托卡马克核聚变的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的电浆加热到很高的温度,以达到核聚变的目的。 优势 相比其他方式的受控核聚变,托卡马克拥有不少优势。1968年8月在苏联新西伯利亚召开的第三届电浆物理和受控核聚变研究国际会议上,阿齐莫维齐宣布在苏联的T-3托卡马克上实现了电子温度1keV,质子温度0.5keV,nτ=10的18次方m-3.s,这是受控核聚变研究的重大突破,在国际上掀起了一股托卡马克核聚变的热潮,各国相继建造或改建了一批大型托卡马克装置。其中比较著名的有:美国普林斯顿大学由仿星器-C改建成的STTokamak,美国橡树岭国家实验室的奥尔马克(Ormark),法国冯克奈-奥-罗兹研究所的TFRTokamak,英国卡拉姆实验室的克利奥(Cleo),西德马克斯-普朗克研究所的PulsatorTokamak。 超导技术在EAST中的运用 占发电量比重较大的核电站就是在控制之下的裂变能利用。托卡马克核聚变,通过约束电磁波驱动,创造氘、氚实现聚变的环境和超高温,并实现人类对聚变反应的控制。受控热核聚变在常规托卡马克装置上已经实现。但常规托卡马克装置体积庞大、效率低,突破难度大。上世纪末,科学家们把新兴的超导技术用于托卡马克核聚变,使基础理论研究和系统运行参数得到很大提高。 研发背景 能源是社会发展的基石。以煤炭、石油、天然气等化石能源替代柴薪的第一次能源革命带来了社会经济的飞速发展。然而这些宝贵的资源就这样被燃烧掉,同时造成了严重的污染。据估 计,一百年后地球上的化石能源将会面临枯竭。面对着即将来临的能源危机,人类有了一个共同的梦想—寻求一种无限而清洁的能源来实现人类的持续发展。 托卡马克核聚变研究举步维艰,根本原因是轻元素原子核的聚合远比重元素原子核的分裂困难。原子核之间的吸引力是很大的,但原子核都带正电,又互相排斥,只有当两个原子核之间的距离非常接近,大约相距只有万亿分之三毫米时,它们的吸引力才大于静电斥力,两个原子核才可能聚合到一起同时放出巨大的能量。因此,首先必须使聚变物质处于等离子状态,让它们的原子核完 *** 露出来。然而,两个带正电的原子核越互相接近,它们之间的静电斥力也越大。只有当带正电的原子核达到足够高的动能时,这需要几千万甚至几亿摄氏度的高温,它们的碰撞才有机会使它们非常接近,以致产生聚合。 1933年,人们用加速器使原子核获得所需的动能,在实验室实现了核聚变。可是从这样的核聚变中得到的能量比加速器消耗的能量要小得多,根本无法获得增益的能量。1952年,美国用核子弹爆炸的方法产生高温,第一次实现了大量氘、氚材料的核聚变。但这种方法的效果是,在极短时间内使核聚变释放出巨大能量,产生强烈爆炸,即氢弹爆炸。人类要和平利用核聚变,必须是可以控制的聚变过程。核聚变反应比较切实可行的控制办法是,通过控制核聚变燃料的加入速度及每一次的加入量,使核聚变反应按一定的规模连续或有节奏地进行。因此,核聚变装置中的气体密度要很低,只能相当于常温常压下气体密度的几万分之一。另外,对能量的约束要有足够长的时间。 二战末期,前苏联和美、英各国曾出于军事上的考虑,一直在互相保密的情况下开展对核聚变的研究。几千万、几亿摄氏度高温的聚变物质装在什么容器里一直是困扰人们的难题。 1954年,第一个托卡马克装置在原苏联库尔恰托夫原子能研究所建成。当人们提出这种磁约束的概念后,磁约束核聚变研究在一些方面的进展顺利,氢弹又迅速试验成功,这曾使不少国家的核科学家一度对受控核聚变抱有过分乐观的态度。但人们很快发现,约束电浆的磁场,虽然不怕高温,却很不稳定。另外,电浆在加热过程中能量也不断损失。经过了二十多年的努力,远未达到当初的乐观期望,理论上估计的电浆约束时间与实验结果相差甚远。人们开始认识到核聚变问题的复杂和研究的艰难。在这种情况下,苏、美等国感到保密不利于研究的进展,只有开展国际学术交流,才能推进核聚变的深入研究。另外,磁约束核聚变与热 核武器在科学技术上没有重大的重叠,而且其商业套用的竞争为时尚早。于是,1958年秋在日内瓦举行的第二届和平利用原子能国际会议上达成协定,各国互相公开研究计画,并在会上展示了各种核聚变实验装置。自这次会议后,研究重点转向高温电浆的基础问题,从二十世纪六十年代中到七十年代,各国先后建成了很多实验装置,核聚变研究进入了一个新的 *** 期,人们逐渐了解影响磁约束及造成能量损失的各种机理,摸索出克服这种不稳定性及能量损失的对策。随着核聚变研究的进展,人们对受控核聚变越来越有信心。 基本原理 核能是能源家族的新成员,包括裂变能和聚变能两种主要形式。裂变能 是重金属元素的核子通过裂变而释放的巨大能量。受控核裂变技术的发展已使裂变能的套用实现了商用化,如核 (裂变)电站。裂变需要的铀等重金属元素在地球上含量稀少,而且常规裂变反应堆会产生放射性较强的核废料,这些因素限制了裂变能的发展。聚变能是两个较轻的原子核聚合为一个较重的原子核并释放出的能量。目前开展的受控核聚变研究正是致力于实现聚变能的和平利用。其实,人类已经实现了氘氚核聚变--氢弹爆炸,但那是不可控制的瞬间能量释放,人类更需要受控核聚变。维系聚变的燃料是氢的同位素氘和氚,氘在地球的海水中有极其丰富的蕴藏量。经测算,1升海水所含氘产生的聚变能等同于300升汽油所释放的能量。海水中氘的储量可使人类使用几十亿年。特别的,聚变产生的废料为氦气,是清洁和安全的。因此,聚变能是一种无限的、清洁的、安全的新能源。这就是世界各国尤其是已开发国家不遗余力竞相研究、开发聚变能的根本原因。 受控热核聚变能的研究主要有两种--惯性约束核聚变和磁约束核聚变。前者利用超高强度的雷射在极短的时间内辐照氘氚靶来实现聚变,后者则利用强磁场可很好地约束带电粒子的特性,将氘氚气体约束在一个特殊的磁容器中并加热至数亿摄氏度高温,实现聚变反应。 托卡马克(Tokamak)是前苏联科学家于20世纪50年代发明的环形磁约束受控核聚变实验装置。经过近半个世纪的努力,在托卡马克上产生聚变能的科学可行性已被证实,但相关结果都是以短脉冲形式产生的,与实际反应堆的连续运行有较大距离。超导技术成功地套用于产生托卡马克强磁场的线圈上,是受控热核聚变能研究的一个重大突破。 超导不可能束缚高速带电粒子。假设两个距离很近的质子,往不同方向飞出,要同时束缚这两个质子,超导产生的磁场必须在很小的空间内有一个180度的方向改变。即便是超导体内的电子是悬浮的,也不可能实现这种磁场。磁场如果距离超导有一定的距离,不但难以在空间上发生突变,在时间上也难灵活改变。如果一个质子要飞出反应釜,磁场必须约束质子,可是质子一但改了方向,磁场要约束质子,也必须改方向。通俗地说,一个质子溜著超导体内的全部电子玩。电子本身是有质量的。电子要形成一个灵活的磁场,电子速度(速率和方向)就要不停的变。最后的结果就是超导体温度迅速增加,超导效果消失,质子飞出反应釜。 实验装置 “超导托卡马克核聚变”实验包括一个具有非圆小截面的大型超导托卡马克实验装置和低温、真空、水冷、电源及控制、数据采集和处理、波加热、波驱动电流、诊断等子系统。其中超 导托卡马克装置是本项目的核心。而超导托卡马克装置又包括超导纵场与极向场磁体系统、真空室、冷屏、外真空杜瓦及面对电浆部件等部件。承担各部件设计的工程技术人员,在充分集思广益、充分发挥创新能力的基础上,借鉴国际上同类装置的经验,通过一丝不苟的努力工作,目前各项工作的进展呈良性循环---设计推动了预研工作的进行,预研工作的结果又使设计得到进一步最佳化。 超导磁系统 超导纵场与极向场磁系统是HT-7U超导托卡马克的关键部件,结构复杂、技术难点多、难度大、涉及的不确定因素多。科研人员经过一轮又一轮的设计、计算和分析,对多种方案进行比较、最佳化,目前超导导体的设计已进入最后的实验选型阶段;线圈的设计已完成试验线圈的设计与绕制及原型线圈的设计;低温下高强度线圈盒的设计已完成各种可能工况下的力学分析与计算、传热分析与计算、电磁分析计算以及线圈盒焊接时的温升对超导线圈性能影响的试验等工作;低温冷却回路的设计已完成热的分析与计算及冷却参数的最佳化;超导导体接头已完成多种方案的设计、研制与试验,并确定了最终的结构形式;超低温绝缘子的研究已完成最终的设计与试制,进入批量制造阶段;超导线圈的真空压力浸渍的工艺研究在国内电绝缘的归口单位---桂林电科所及中科院北京低温中心的密切配合下已完成超低温绝缘胶的配方的研究,正在完成超低温绝缘胶真空压力浸渍的最终工艺试验。超导极向场的线圈位置最佳化和电流波形最佳化,使之既能满足双零和单零的偏滤器位形的要求,又能满足限制器位形的要求,这项工作经过反复的平衡计算与调试、比较,已经满足物理的要求,工程上线圈在装置上的位置以及线圈的截面形状均已确定。 真空室 真空室是直接盛装电浆的容器,除了要为电浆提供一个超高真空环境,要满足装置稳定运行时电浆对电磁的要求以及为诊断电浆的特性、电浆加热、真空抽气、水冷及加料对视窗的要求、中子禁止的要求、还要满足面对电浆部件定位和准直的要求。HT-7U真空室是双层全焊接结构,由于真空室离电浆近,电浆与真空室之间的电磁作用最直接,真空室上所受的电磁力最大,同时真空室要烘烤到250°C,因温度变化所产生的热变形大。设计人员考虑到以上这些因素,对真空室进行了所有可能工况下的多轮受力分析、电磁分析和传热计算,针对每一轮的计算结果对结构设计进行最佳化。目前已完成最新一轮满足各项要求的结构在各种工况下的静应力分析、模态分析、频率回响分析和地震回响分析,为设计的可靠性提供了充分的依据。真空室试验原型段的施工设计正在进行之中,真空室满足热胀冷缩要求的特殊支撑结构的试验平台正在制造过程中,真空室视窗所使用的各种异型波纹管的研制也在紧张的进行。 冷屏与外真空杜瓦 HT-7U的内外冷屏是超导磁体的热屏障,对维持超导磁体的正常运行发挥作重要作用。该部件的电磁分析、受力分析和传热分析的工作都已完成,对传热计算产生重要影响的表面辐射系数的测量已完成,目前该部件已进入工程设计的最后阶段,即将转入施工设计。外真空杜瓦是维持其内部的所有部件都处在基本无对流传热的真空环境中,因而是超导磁体与冷屏维持超低温的保证,同时也是其内部所有部件支撑的基础。该部件的力学分析和电磁分析已结束,施工设计已正式展开。 面对电浆部件 面对等离子体部件直接朝向电浆,其表面性质直接影响电浆杂质的返流和气体再循环,电浆的能量依靠面对电浆部件的冷却系统输运到托卡马克外。面对电浆部件相对电浆的位置的最佳化正与德国马普电浆所合作,利用他们的程式进行计算,已得出初步结果;直接面对电浆的石墨材料正与山西煤化所合作研究,开发参杂石墨与石墨表面的低溅射涂层,用于石墨材料各项性能试验的大功率电子枪和实验系统正在装修一新的实验室中调试;用于试验水冷结构和石墨性能的面对电浆部件的试验件已组装到HT-7超导托卡马克的真空室中,在即将进行的一轮试验中进行各项指标的测试。 装置技术诊断系统 装置技术诊断包括温度测量、应力应变测量、失超保护和短路检测等部分。温度测量从4.5k的液氦温度到350°C面对电浆部件的烘烤温度,要测的温度范围大,且要使用不同的方法。特别是超低温下的温度测量,其温度计的标定费用高,科研人员积极发挥创新的能力,自己开发了一套温度标定系统,且在该系统上进行了HT-7U所有低温温度计的标定。应力应变测量、短路检测和失超保护的探测及放大电路已设计并调试完毕,数据采集和处理的专用程式也已进入调试阶段。 低温系统 低温系统是超导托卡马克核聚变实验装置的关键外围设备之一。它必须保障装置的超导纵场磁体和极向场磁体顺利地从室温降温至3.8-4.6K,并能长达数月保冷,维持超导纵场磁体正常励磁和极向场磁体快脉冲变化的所需的致冷量。HT-7U超导托卡马克装置的低温系统的2KW/4.4K工程设计已全面展开,部分外购设备已到货且已安装到位。新增两只100m3的中压储气罐已安装就序,新增100m3的低压气柜也一稳稳地安放在低温车间的一角,新建压机站的五台崭新的螺杆压机被整齐地安装在低温车间中间,一台氦气干燥器、一台吸附器和两台滤油器已安装完毕。原俄罗斯赠送的OPG100/500二号制冷机的改造工作已经结束,德国FZK赠送的300W/1.8K制冷机的恢复施工即将开展。螺杆压机站的电控部分和气、水、油管线的施工正在紧张地进行。 高功率电源系统 担负著向托卡马克提供不同规格的高功率电源,实现能量传输、功率转换、运行控制等重要任务。为电浆的产生、约束、维持、加热,以及电浆电流、位置、形状、分布和破裂的控制提供必要的工程基础和控制手段。HT-7U纵场电源与极向场电源已完成了系统的分析、计算和方案的比较、最佳化。在设计过程中,科研人员本着保证性能、节约经费的原则,不仅在设计方案上结合本所的具体情况作多种设计相结合的方法,而且充分利用本所的技术储备,积极发挥创新的能力,自行开发重要设备。极向场电源的关键设备,大容量晶闸管、直流高压开关和爆炸开关等目前只能以很高的价格进口,经我所科研人员的努力已完成单元技术试验,正在进行样机的试制。 真空抽气系统 为电浆的稳定运行提供清洁的超高真空环境,为超导磁体正常运行提供真空绝热条件;充气系统则为真空室的壁处理和电浆放电提供工作气体。真空抽气系统完成了总体布局设计,抽速和抽气时间计算;主泵、主阀、测量系统的选择和配备;完成抽气系统主泵和予抽泵16台合计58万元订货。真空抽充气系统的保护和控制已完成最终方案的设计。 低杂波电流驱动系统 不断地给电浆补充能量,是保证托卡马克实现长脉冲稳态运行的重要手段,而离子回旋共振加热则是另一重要手段。HT-7U3.5兆瓦的低杂波系统已完成技术方案的设计,完成了波功率和相位监控、波系统的保护及波源的低压电源的方案设计,准备先期建设的1MW波系统的高压电源及波系统天线的试验件正在制造过程中。离子回旋共振加热已完成波系统的总体设计,确定了4MW/30-110Mhz的波系统方案;完成了波源设计,并正在建造一台1MW,脉冲可达1000秒的射频波源,预计2001年中建成并调试;已完成天线的调配系统设计,并正进行加工前的台面试验。 总控与数据采集系统 是对整个装置进行实时监测、控制与保护的分散式计算机网路系统。目前总控系统的安全巡检系统、中央控制系统、脉冲充气系统均已完成程式的设计,正在进行调试和预演;中央定时系统正在与国内相关单位合作研制,局域控制网正处于实施阶段。数据采集系统的VAX-CAMAC采集系统、PC-CA MAC采集系统、PC采集系统、VXI采集系统、分散式数据伺服器、数据检索系统和数据采集管理系统均已完成程式设计,正在进行诊断测量系统是一双双监视电浆的眼睛,给出电浆在不同的时间和空间的品质特性。除了HT-7上准备移到HT-7U上的诊断测量设备外,作为托卡马克上的最重要的测量系统之一的电磁测量系统正在进行物理上的计算和磁探针、单匝环、Rogowski线圈、逆磁线圈、鞍形线圈等测量线圈的设计,由美国德克萨斯大学赠送的新型CO2雷射器正在调试,它将用在HT-7U的远红外诊断上,其他诊断系统也在进行物理上的准备或设备上的准备。 中国EAST 中国在1956年制定的“十二年科学规划”中决定开展核聚变研究,经过不懈努力,到二十世纪八十年代,建成了中国环流器一号HL-1以及HT-6B、HT-6M等一批有影响的聚变研究 实验装置。 电浆物理所成立 中国科学院电浆物理研究所成立于1978年9月,主要从事高温电浆物理和受控热核聚变及其相关高技术研究,以探索、开发、解决人类无限而清洁的新能源为最终目的。它是中国最重要的核聚变研究基地之一,是世界实验室在中国设立的核聚变研究中心,也是国际受控热核聚变计画ITER中国工作组最重要的单位之一。 探索新能源过程 电浆所先后建造了中小型托卡马克HT-6B和HT-6M,以及超导托卡马克核聚变HT-7和全超导托卡马克核聚变EAST。目前尚在运行的HT-7超导托卡马克装置是中国第一个超导托卡马克,其实验研究取得了多项重大成果,是继法国之后第二个能产生分钟量级高温电浆放电的托卡马克装置。 EAST装置的主机部分 高11米,直径8米,重400吨,由超高真空室、纵场线圈、极向场线圈、内外冷屏、外真空杜瓦、支撑系统等六大部件组成。其实验运行需要有大规模低温氦制冷、大型高功率脉冲电 源及其回路、大型超导体测试、大型计算机控制和数据采集处理、兆瓦级低杂波电流驱动和射频波加热、大型超高真空、以及多种先进诊断测量等系统支撑。学科涉及面广,技术难度大,许多关键技术目前在国际上尚无经验借鉴。特别是EAST运行需要超大电流、超强磁场、超高温、超低温、超高真空等极限环境,从芯部上亿度高温到线圈中零下269度低温,给装置的设计、制造工艺和材料方面提出了超乎寻常的要求,其难度可见一斑。 EAST装置研制过程 电浆所发展了一系列高新技术,一些技术国际领先,并有着广泛的套用前景,如大型超导磁体、超高真空、偏滤器、超导导体生产等技术。还有一些独创 的技术得到国际同行专家的赞赏和借鉴 ,如将高温超导接头技术运用到托卡马克,并取得相当好的效果,极大地提高装置效率,目前该项技术已被国际ITER项目借鉴。 EAST的建设和投入运行 为世界近堆芯聚变物理和工程研究搭建起了一个重要的实验平台,为我国磁约束核聚变研究的进一步发展,提升中国磁约束聚变物理、工程、技术水平和培养高水平人才奠定了坚实基础。EAST是世界上唯一投入运行的全超导磁体的托卡马克装置,将为国际热核聚变实验堆(ITER)的建设及聚变能的发展做出了重要贡献。 新一代EAST 2006年9月28日,中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的新一代热核聚变装置EAST首次成功完成放电实验,获得电流200千安、时间接近3秒的高温电浆放电。EAST成为世界上第一个建成 并真正运行的全超导非圆截面核聚变实验装置。核反应释放的能量相当于相同质量的物质释放的化学能的数十万倍至百万倍。核反应有核裂变、核聚变两种形式。一个重核在中子的轰击下分裂成高能碎片的反应叫做核裂变,主要反应物是稀少的放射性元素铀、钸等,如核子弹爆炸;两个轻核发生碰撞结合成重核的反应叫做核聚变,主要反应物为氢的同位素氘和氚,如氢弹爆炸、太阳发光发热等。 实验突破 2016年1月28日凌晨零点26分,中国科学院合肥物质科学研究院全超导托卡马克核聚变实验装置EAST成功实现了电子温度超过5千万度、持续时间达102秒的超高温长脉冲等离子体放电,这是国际托卡马克实验装置上电子温度达到5000万度持续时间最长的电浆放电。该成果在未来聚变堆研究中具有里程碑意义,标志着我国在稳态磁约束聚变研究方面继续走在国际前列。目前,EAST已成为国际上稳态磁约束聚变研究的重要实验平台,其研究成果将为未来国际热核聚变实验堆ITER实现稳态高约束放电提供科学和工程实验支持,并将继续为我国下一代聚变装置—中国聚变工程实验堆前期预研奠定重要的科学基础。 2016年10月18日,据美国麻省理工学院官方网站讯息,该校科学家在阿尔卡特C-Mod (Alcator C-Mod) 托卡马克聚变反应堆实验中创造出新的世界纪录,电浆压强首次超过了两个大气压。鉴于高压电浆是实现可控核聚变的关键因素,这意味着人类距获得“取之不尽用之不竭”的清洁能源又近一步。在麻省理工学院服役23年的阿尔卡特C-Mod实验装置曾在2005年制造了1.77个大气压的世界纪录。此次,该装置的电浆压强达到2.05个大气压的新的世界纪录,其中电浆每秒发生300万亿次聚变反应。新纪录在该装置以往成绩的基础上提高了15%,对应的温度达到3500万摄氏度,约是太阳核心温度的两倍。 麻省理工学院阿尔卡特C-Mod装置内部 2016年11月2日讯息,中国科学院合肥物质科学研究院电浆所承担的国家大科学工程“人造太阳”实验装置EAST在第11轮物理实验中再获重大突破,获得超过60秒的稳态高约束模电浆放电。EAST因此成为世界首个实现稳态高约束模运行持续时间达到分钟量级的托卡马克核聚变实验装置。
2023-07-28 15:58:501

为什么要发明托卡马克磁约束装置

为了解决人类能源问题~
2023-07-28 15:59:013

为什么不能控制核聚变

聚变反应的反应物需要加热到很高的温度,剧烈的热运动使原子核有足够的动能克服库仑斥力,在碰撞的时候发生聚变反应。一旦发生聚变反应就会放出大量的热,大量的热来不及散,以后不需要加热都会使反应继续进行下去,而且无法控制。所以目前可以用聚变反应制造氢弹达到巨大的破坏作用,但是不能利用它发电,因为发电需要控制反应的速率。 目前只能在实验室控制,还不能应用于工业。 现在实验室中已经可以控制了,目前主要的几种可控核聚变方式: 超声波核聚变 激光约束(惯性约束)核聚变 磁约束核聚变(托卡马克 托卡马克(Tokamak)是一种利用磁约束来实现受控核聚变的环性容器。它的名字 Tokamak 来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。 托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。 惯性约束是一种实现核聚变的方法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。
2023-07-28 15:59:091

CAD中英语词汇及命令(4)

CAD中英语词汇及命令大全  running override 整体替代 整体取代   runout 跳动 偏转度   sample 样例 取样   Saturation 饱和度 饱和度   save 保存 储存   Save back 存回 回存   saveas 另存为 另存新档   saveimg 保存图像 储存影像   scale 比例缩放,(缩放)比例 if used as noun 调整比例, 比例   scale factor 比例因子 比例系数   Scaled to Fit 按图纸空间缩放 调整比例到布满   scan 扫描 扫描   Scatter 散布图 散量   scene 场景 场景   schema 模式 纲要   schema 模式 纲要   screen 屏幕 萤幕   script 脚本 脚本   script files 脚本文件 脚本档   scroll bar 滚动条 卷动轴   SDI(MDI) 单文档界面(多文档界面)   SE Isometric 东南等轴测 东南等角   SE Isometric 东南等轴测 东南等角   Search for Help on 搜索帮助 寻找辅助说明主题   section 区域,部分,节(相对于章节) 剖面   section 切割 剖面   section 截面 剖面   see 参见 参阅   segment 段,线段 区段, 线段   select 选择 选取   select all 全部选择 全选   Select object 对象选择 选取物件   selectable 可选择的 可选取   selection 选择集,选择 选取,选项 (作名词用)   selection sets 选择集 选集   Separate 分割 分隔,个别的   Separate 分割 分隔,个别的   Serial number 序列号 序号   session 任务 阶段作业   set 设置(v),集合(n) 设定   setting 设置 设定   shade 着色,灰度(用于单色 Gray ) 描影   shader 着色程序 描影程式   shadow map 阴影贴图 阴影贴图   shape 形 造型   Sharpness 尖锐度 鲜明度   sheet 表,板(for ACIS only) 图纸   Shell 抽壳 薄壳   shell SHELL 薄壳   Shell 抽壳 薄壳   shortcut 快捷键 快显   show 显示 展示   Silhouette 轮廓 剪影   Single Face 单一表面 单面   single-pen plotter 单笔式绘图仪 单笔绘图机   size 数目 尺寸   sizing 调整大小 调整尺寸   sketch 徒手画 徒手描绘   slice 剖切面(as n.) 切割面   slice 剖切 切割面   slide 幻灯片 幻灯片   slide libraries 幻灯库 幻灯片库   smooth shading 平滑着色 平滑描影   smoothing angle 平滑角度 平滑角度   snap 捕捉 锁点   snap angle 捕捉角度 锁点角度   snap grid 捕捉栅格 锁点格点   Snap mode 捕捉模式 锁点模式   snap resolution 捕捉分辨率 锁点解析度   SnapTips 捕捉提示 锁点提示   solid 填充 实体, 2D 实面   solid (二维)填充/(三维)实体 实体, 2D 实面   Solid Fill 实体填充 实面填实   solid modeler 实体建模 实体模型器   solids 实体 实体, 3D 实体   sorting 排序 排序   source applications 源文件   source point 源点 来源点   space 空间 空间   spacing 间距 间距   Special Edit 特定编辑 特殊编辑   specific 指定(的) 特定的   specific 特有的 特定的   specify 指定 指定   specular reflection 镜面反射(高光) 镜面反射   Spelling 拼写检查 拼字   sphere 球面 圆球体   spherical projection 球面投影 球面投影   spline 样条曲线 云形线   spline frame 样条曲线框架 云形线架构   splinedit 样条编辑 云形线编辑   Split 拆分 分割   spooler 缓冲(文件) 排存器   spotlight angles 聚光灯角度   stack 堆栈 堆叠   Stack 堆叠 堆叠   stacked text 叠式文本 堆叠文字   stamp 戳记 戳记   Standard 标准 标准   Start 起点 启动   start angle 起点角度 起始角度   start tangent 起点切向 起始切点   Start Up dialog box “启动”对话框 「启动」对话方块   starting 起始 起点   statements 状态说明 叙述,. 声明, 陈述式   statistics 统计信息 统计值   stats 统计 统计值   status 状态 状态   stlout STL 输出 汇出   Stochastic 随机 推测   Stone Color 石质颜色 石头颜色   straighten 拉直 拉直   stretch 拉伸 拉伸   Strikeout Maybe 删去 删除线   style 样式 字型   substitute 替换 替换   subtract 差集 减去   Suffix 后缀 字尾   support directory 支持目录 支援目录   support files 支持文件 支援档   suppress 禁止 抑制   suppress 不输出 抑制   Suppress 收缩 抑制   surface 曲面 表面, 曲面   SW Isometric 西南等轴测 西南等角   SW Isometric 西南等轴测 西南等角   swap file 交换文件 置换档   swatch 样本 样本   sweep 延伸 扫掠   sweep 抹去 扫掠   sweep 扫掠 扫掠   switch 切换 开关   switch 开关 开关   swivel 旋转 旋转   swivel 旋转 旋转   sym 符号 符号   symbol set 符号集 符号集   symbol table 符号表 符号表   Symmetrical 对称 对称   Synchronize 同步 同步   system requirements 系统需求 系统需求   system variables 系统变量 系统变数   syswindows 系统窗口 系统视窗   tab 附签 标签   table 表 表格   tablet 数字化仪 数位板   tabsurf 平移曲面 板展曲面   tabulated surface 平移曲面 板展曲面   Tag 标记 标签   tangent a. 相切(的)n. 切线 切点   tangential 相切 相切   Taper Faces 倾斜面 锥形面   Taper Faces 倾斜面 锥形面   tapered polyline segments 锥状多段线线段 锥状聚合线段   tapering 锥状 锥形   target 目标(点、对象) 目标   target box 靶框 目标框   template drawing 样板图 样板图面   temporary files 临时文件 暂存档   terminate 终止 终止   tessellation lines 素线 镶嵌线   tesslated text 嵌花文字   Test 测试 测试   tetrahedron 四面体 四面体   text 文字,sometimes 文本 文字   text color 文字色 文字颜色   text control codes 文字控制代码 文字控制码   text editor 文本编辑器 文字编辑器   text fonts 字体 字体   text height 字高 文字高度   text justification 文字对齐 文字对正   text properties 文字特性 文字性质   text style 文字样式 字型   textscr 文本屏 文字萤幕   Textual 文本(的) 文字   texture map 纹理贴图 材质贴图   thaw 解冻 解冻   thickness 厚度 厚度   threshold 阈(值) 临界值   thumbnail 略图   thumbnail preview image 略图预览图像 缩图预览影像   Tick 标记 短斜线   tilde 波浪号 波浪符号 (~)   tile horizontal 水平平铺 非重叠水平式   tile vertical 垂直平铺   tiled viewports 平铺视口 非重叠视埠   tilemode 平铺模式 非重叠模式   tilemode 平铺模式 非重叠模式   time 时间 时间   Timeout 超时 逾时   title block 标题栏 标题栏   toggle 开关,切换 切换   token 标记 记号   tolerance 公差 公差   toolbar 工具栏 工具列   top view 俯顶视图 上视景   topology 拓扑结构 拓朴   toroidal 环形 圆环形   torus 圆环(体/面) 圆环体   trace 宽线 追踪,等宽线   Trace 跟踪 追踪,等宽线   Trailing 后续 结尾   transform 变换 转换   Translation 平移 转译   Transparency 透明 透明度   transparent 图像透明度 透通式   transparent command 透明命令 透通指令   Tree View 树状图   treestat 树状结构 树构状态   triangle 三角形 三角形   trim 修剪 修剪   tripod 三轴架 三向轴   trunctuate 截短 截断   tube 管,圆管 圆管   Turbulence 扰动 乱流   tutorials 教程 导览   Twist 扭曲 扭转   Type 类型 键入   ucsicon UCS 图标 USC 图示   UCSICON UCS 图标 USC 图示   undefine 命令取消 取消定义   underflow 下溢 低溢   underline 下划线 底线   undo 放弃 复原   Unhide 显示 取消隐藏   Unhide 显示 取消隐藏   uninstall 删除安装 解除安装   union 并集 联集   Unload 卸载 释放   unnamed blocks 无名块 未具名块   updating 更新 更新   Upside Down 倒置 上下颠倒   user coordinate system 用户坐标系 使用者座标系统 (UCS)   Validation 校验 检验   variable 变量 变数   vector 矢量 向量   Vein Color 纹理颜色 纹路颜色   vertex 顶点 顶点   vertical dimension 垂直标注 垂直标注   vertices 顶点 顶点   video display 视频播放 视频显示器   view 视图 视景   View Aligned 对齐浏览 对齐视景   viewpoint 视点 检视点   viewport 视口 视埠   viewport configuration 视口配置 视埠规划   viewres 显示精度 视景解析度   virtual screen display 虚屏显示 虚拟萤幕显示   visibility 可见性 可见性   volumetric shadows 体积阴影 体积阴影   vplayer 视口图层 视埠图层控制   vpoint 设置视点 检视点   vports 多视口 视埠   vslide 观看幻灯 检视幻灯片   warning 警告 警告   wblock 写块 制作图块   wedge 楔体表面 楔形体   Weight 权值 权值   weld 接合 接合   What"s new 新特性 新增功能   Width 宽度 宽度   Window 窗口 窗选   window polygon 窗口多边形 多边形窗选   wire 连线 线素   wireframe model 线框模型 线架构模型   word wrap 词语换行 文字折行   working drawing 工作图形 工作图面   World Coordinate System (WCS) 世界坐标系 世界座标系统   xbind 外部参照绑定 外部并入   Xdata 外部数据 延伸资料   xline 参照线 建构线   xplode 分解 炸开   xref 外部参照 外部参考   Xref Log 外部参照记录文件 外部参考记录   xref-dependent layer 依赖外部参照的图层   xref-dependent layer 依赖外部参照的图层   xrefs (external references) 外部参照 外部参考   zoom 缩放 缩放   Zoom limits 图限缩放 缩放范围   Zoom Previous 缩放到上次 缩放前次   Zoom window 按窗口,按作图区缩放 缩放窗选 ;
2023-07-28 15:59:181

solidworks有环形折弯 Toroidal Bend 功能吗?我知道PRO/E有,我想从平面弯成环状。

有,solidworks里面叫做弯曲折弯,在插入-特征-弯曲命令
2023-07-28 15:59:282

惊!我国科学家在研造钢铁侠的核聚变装置?

出品:中国科普博览 SELF格致论道讲坛导语: 煤、石油、天然气,这些人类赖以生存的不可再生能源,终有一天将被耗尽,人类社会会停止发展吗?答案是否定的,因为存在这样一种大科学装置,未来只需200公斤的重水和锂就能支撑上海一年的用电量! 这不是科幻,这是承载着人类能源希望的 “人造太阳”托卡马克。它像太阳一样产生无穷、永久的清洁能源,为此,中科院SELF讲坛联合墨子沙龙邀请到中国工程院李建刚院士进行深度解读。---专家介绍--- 李建刚:中国工程院院士,中科院等离子体物理研究所研究员,中国科技大学教授,中国磁约束聚变专家委员会召集人 ,《plasma science & technology》主编,长期从事聚变研究,在超导托卡马克工程系统的设计、关键技术、建设、集成、科研等方面取得了多项重大成果,人造太阳 受控的核聚变装置。什么是人造太阳?托卡马克又是什么? 李建刚院士做了这样一个类比:电影《钢铁侠》里,钢铁侠胸前可发巨大光束的离子发射器其实就是一个人造太阳。由于仿造原理是太阳内部的热核聚变反应,所以称之为“人造太阳”。当把装置内的气体加热到上亿度之后,它会发生巨变进而产生巨大的能量。而这种受控的核聚变装置叫托卡马克(Tokamak),名字来源于环形(Toroidal)、真空室(Kamera)、磁(Magnet)、线圈(Kotushka)。 可大规模生产的无限量清洁能源。人造太阳有上亿度的温度,若要把它装进普通的容器里,在顷刻之间就能烟消云散。于是科学家想到一个办法——用磁的方法将这团上亿度的等离子体火球悬浮起来,在不与容器周边的材料接触的条件下,进行加热、控制,进而成为“太阳”。 然而,现实操作却异常复杂。 首先,悬浮起这团等离子体的火球不是普通的磁场,而是比地球南北极的磁场还要高两万倍以上的一个巨大磁场。 有了磁场还不够,还要考虑悬浮所需的燃料。好在,这种燃料并不难获得。李建刚院士指出,这种燃料是氢的同位素——氘和氚,它们在海水里含量大,资源无限丰富。而且聚变之后的产物就是能源中子和氦气,完全不含其他高放的废料。从这个角度来说,人造太阳作为资源来说是无限的而且绝对清洁,是可以大规模生产的。关于聚变电站的原理,李院士说,首先得有一个类似笼子的磁体外壳(磁笼子),把它形成一个等离子体,用超高温物体使它加热到上亿度,从而能产生氦和中子。中子跑到包层材料中使它加热,加热之后通过水使它转换成蒸汽,通过蒸汽发电。 中国的聚变之路过去50年,聚变的发展虽然不如计算机一样家喻户晓,但成绩还是非常可观。尤其是在一些发达国家,例如欧洲、美国和日本,他们在一些大装置上都同时实现了可控的核聚变。 其实在很多年前,中国也开始做核聚变,托卡马克最早是苏联人的发明,在90年代初期,中国用价值400万人民币的羽绒服、瓷器和上好的家具在他们手里换来了1800万卢布的托卡马克装置。我们花了一年半的时间把它全部拆掉,又花了两年的时间把它装起来,在这上面做了大量的实验,成绩很不错,在其他国家聚变反应时间只能维持2、3秒钟的时候,我们的装置能多维持60秒钟。 也许有人会问,为什么聚变时间这么短,只有两三秒钟? 李院士说,因为磁笼子是用常规的铜线制作的,耗能大,但未来发电不可能只在弹指之间,必须是长久的、稳定的,所以我们大胆设想,降低温度使电阻为零,那么消耗的能量也变为零,我们便能够轻易得到聚变能量。听起来很容易,但实际操作并不简单。 造出一个太阳?难难难,难于上青天!科学家们遇到的第一个难点是超导。为了可以长久的、稳定发生聚变反应,就要实现电阻为零,要实现电阻为零,必须进行超导。什么是超导?就是把上亿度的磁笼子悬浮在-269度的这样一个圆环里面。 第二个难点是,一旦聚变发生,会产生强烈的冲击波,即使被悬浮起来,它同样与周边材料有强相互作用。所以对可控范围和时间要求务必精确到零点几毫米零点几毫秒以下,否则一旦偏心,什么都将付之一炬。 解决第一个难点,首先需要用线圈使它悬浮起来,控制它处于中心位置不偏离。其次,装置内要保持真空减少能量损失,内部一共有5层真空,类似一个超大的保温炉,这样才能实现一亿度和-269度的结合。 解决第二个难点的思路是从材料上下手。在聚变装置里面,汇集了当今世界的各种极致技术,而采用的材料,也是世界上最硬的一种合金——钨合金。在上亿度的空间里既要悬浮起来,还要同时防止冲击波,难度可见一斑。 30年孤岛苦钻研,为什么中国一定要做?东方超环李建刚院士感叹道,从能源的需求上来说,中国比任何一个国家都更加需要能源。虽然我们没有发达国家那么雄厚的资金和研究基础,但几任国家领导人都坚持我们必须做下去。 李建刚院士最早接触到这个项目的时候,国内经济不像现在这样景气,即使在全球范围内,从事这个研究的人也很少,但在10年间,李建刚院士和他的团队还是突破了诸多难点,创造了几秒钟几百万度等离子体放电的纪录。 在九五大工程时,“人造太阳”这个提议在国内100多个提议中胜出。“人造太阳”计划要率先在全世界实现一个全超导的托卡马克——东方超环。保证它能稳定持久的进行放电,中心温度比太阳内部还要高五到六倍。虽然在当时,这个计划还只是验证了实验的可行性。 只有实验可行性明显是不够的。1985年冷战时期,里根和戈尔巴乔夫共同提议要在地球上建一个人造太阳,这个提议是要验证聚变的工程可行性。经过谈判,一共有七方参加,欧盟出资45%,中国、日本、美国、韩国、印度各出资9%,总耗资100亿欧元。这是中国当时参加的最大的一个国际合作项目。 通过这个项目,现在国内的企业发展得非常好,在西安拥有了全世界技术最先进,规模最大,产量最高的超导公司,一年生产150吨线圈短样,可用于满足航母起落架的需求。在山西,太钢钢铁集团现在能年产15000吨的耐强辐射不锈钢材料。虽然现在离聚变实现还有一段距离,但通过国际合作,中间过程的这些技术都能很好地应用于国民经济当中。 未来中国的聚变到底怎么做?60年内实现商用聚变到底什么时候能实现? 李建刚院士表示,希望在十年之后建造中国自己的工程堆来演示发电,在50年到60年间能够商用化。目前已经有了初步的聚变堆设计图,它外表看起来像一只大鹏,象征着人类追求聚变的梦想,也象征着中华民族腾飞的梦想。经过今后二三十年的努力,这个中国制造的人造太阳将会冉冉升起。 李建刚院士提起,自己在上大学的时候便拥有这样一个梦想,那就是在他有生之年造出一个人造太阳。 “美国、欧洲、日本,他们都是发达国家,它们被过去文明的光芒所照耀,但这个世界上还有很多地方是黑暗沉寂的。作为一个中国人,我希望人造太阳最好而且必须建在中国,不仅为我们国家提供长期发展的能源,还要照亮世界上其他没有被文明照亮的地方!”“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。本文由科普中国融合创作出品,转载请注明出处。
2023-07-28 15:59:451

如何控制核聚变反应速度?

目前主要的几种可控核聚变方式: 超声波核聚变 激光约束(惯性约束)核聚变 磁约束核聚变(托卡马克) 托卡马克(Tokamak)是一种利用磁约束来实现受控核聚变的环性容器。它的名字 Tokamak 来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。托卡马克的中央是一个环形的真空室(有点像轮胎),外面缠绕着多组一定形态的线圈。真空室内充入一定气体,在灯丝的热电子或者微波等预电离手段的作用下,产生少量离子,然后通过感应或者微波、中性束注入等方式,激发并维持一个强大的环形等离子体电流。这个等离子体电流与外面的线圈电流一起,产生一定的螺旋型磁场,将其中的等离子体约束住,并使其与外界尽可能地绝热。这样,等离子体才能被感应、中性束、离子回旋共振、电子回旋共振、低杂波等方式加热到上亿度的高温,以达到核聚变的目的。相比其他的磁约束受控核聚变方式,托卡马克的优势地位的建立来源于前苏联的T-3托卡马克的实验结果。1968年8月在苏联新西伯利亚召开的第三届等离子体物理和受控核聚变研究国际会议上,阿齐莫维齐宣布在苏联的T-3托卡马克上实现了电子温度 1 keV,质子温度 0.5 keV,nτ=10的18次方m-3.s,这是受控核聚变研究的重大突破,在国际上掀起了一股托卡马克的热潮,各国相继建造或改建了一批大型托卡马克装置。其中比较著名的有:美国普林斯顿大学由仿星器-C改建成的 ST Tokamak,美国橡树岭国家实验室的奥尔马克(Ormark),法国冯克奈-奥-罗兹研究所的 TFR Tokamak,英国卡拉姆实验室的克利奥(Cleo),西德马克斯-普朗克研究所的 Pulsator Tokamak。
2023-07-28 16:00:571

谁知道核聚变反应详细过程,和所需原料

核聚变反应主要借助氢同位素。核聚变不会产生核裂变所出现的长期和高水平的核辐射,不产生核废料,当然也不产生温室气体,基本不污染环境。   利用核能的最终目标是要实现受控核聚变。裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的较重的原子核而释出能量。最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读"川",又叫超重氢)聚合成较重的原子核如氦而释出能量。核聚变较之核裂变有两个重大优点。一是地球上蕴藏的核聚变能远比核裂变能丰富得多。据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘。1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量。地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂。  第二个优点是既干净又安全。因为它不会产生污染环境的放射性物质,所以是干净的。同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的。  目前实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近于成功,但要达到工业应用还差得远。按照目前技术水平,要建立托卡马克型核聚变装置,需要几千亿美元。  另一种实现核聚变的方法是惯性约束法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。  原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的。  尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登。
2023-07-28 16:01:201

有几个机械专业英语词组需要翻译

plugs pipe 插头管,套treaded w/o seal ring 有花纹的w/o密封环schnoor plate washer施诺尔洗板机winder 络筒机stopper 制动器,闭锁装置,塞子tri-clamp room三钳室jack axis杰克轴bush casing衬套套管,绝缘套管preassembled cable预装电缆plug pipe插件管frame pulley机身滑轮ferrites with toroidal core 有环形线圈核心的铁氧体,电机的转子定子同学,我知道的就这些了,你稍微综合理解下
2023-07-28 16:01:272

什么是 核聚变?

http://baike.baidu.com/view/22214.html?wtp=tt 里面很详细
2023-07-28 16:01:385

什么是核聚变?

就是利用一个原子去分裂成多个原子(这是在很短的时间内完成的),这个过程就被称为核裂变,因为核裂变的过程中具有放射性,所以核裂变也会被用于核导弹这一类军事武器。
2023-07-28 16:01:572

可控核聚变启动一次要多少电能

大家知道,物质由分子构成,分子由原子构成,原子中的原子核又由质子和中子构成,原子核外包覆与质子数量相等的电子。质子带正电,中子不带电。电子受原子核中的正电的 吸引,在"轨道"上围绕原子核旋转。不同元素的电子、质子数量也不同,如氢和氢同位素都只有1个质子和1个电子,铀是天然元素中最重的原子,有92个质子和92个电子。核聚变是指由质量轻的原子,在超高温超高压条件下,发生原子核互相聚合作用,生成较重的原子核,并释放出巨大的能量。核聚变又称为热核聚变。例如,氢的同位素氘和氚的原子聚合生成氦原子。核聚变所释放的能量是核裂变的百倍。1千克氘全部聚变释放的能量相当11000吨煤炭。氢在自然界存在3种同位素,也就是氕、氘 (重氢)、氚(超重氢)。它们的原子结构参见图1.氘和氚聚合生成氦的示意见图2.图1.氢在自然界存在的三种同位素图2.氘-氚聚合反应示意图利用氢的核聚变原理,人类早已实现了氘氚核聚变---氢弹爆炸,但氢弹是不可控制的核聚变,瞬间能量释放只能给人类带来灾难。如果能让氢核聚变反应按照人们的需要,长期持续释放,就能利用氢核聚变所释放的能量来发电,为人类提供最清洁而又是取之不尽的能源。现在不是已经有了利用釉裂变的原子能发电站了吗,为什么还要搞氢核聚变发电站呢?这是因为氢核聚变基本上没有放射性污染,核裂变却是核污染可怕。就从经济上看,制取1千克浓缩铀的费用是1.2万美元,而制取1千克氘的费用只有300美元;一座百万千瓦的核聚变电站,每年耗氘量只需304千克;而一座百万千瓦裂变式核电站,需要30-40吨核燃料;因此氢核聚变发电具有极大的优势。大家知道,质量轻的原子核之间的静电斥力最小,也最容易发生聚变反应,所以人类要实现核聚变的物质一般是首先选择氢的同位素氘和氚。氢是宇宙中最多的,也是最轻的元素,它在自然界中存在的同位素有氕、氘 、氚。在氢的同位素中,氘和氚之间的聚变最容易,氘和氘之间的聚变就困难些,氕和氕之间的聚变就更困难了。因此人们在考虑聚变时,先考虑氘-氚之间 的聚变,后考虑氘-氘之间的聚变。要可控制地利用核聚变作为清洁能源,根据实现起来的易难程度和核污染轻重程度,科学家认为,有三类核聚变人类是可以控制利用的。“第一代”核聚变是氢的核聚变(氘氚聚变和氘氘聚变)。这类核聚变的实现起点较低,释放出来的少量中子可以被控制和利用,是一种最便宜的清洁能源。现在全世界的科学家都在设法实现的,就是这种可控的氢核聚变。“第二代”核聚变是氘和氦3的反应。这个反应本身不产生中子,但是可能出现的氘氘反应会产生中子,只是中子的总量非常非常少。这类核聚变更清洁了,但实现起点也高了。“第三代”核聚变是让氦3跟氦3反应。这种聚变完全不会产生中子,是最清洁最安全的。当然,这种核聚变要实现可控就更困难了。要知道,虽然在理论上是最简单的,但是可控氘-氚聚变还没有完全实现呢。2.氢核聚变的原料氢核聚变要用的材料是氘和氚。氘在海水中的含量还是比较高的,只需要通过精馏法取得重水,然后再电解重水就能得到氘。氘很容易获得,尽管氘-氘反应也是氢核聚变的一种形式,但是产生氘-氘反应所需要的点火温度很高,科学家现在还实现不了。另外,氘-氘反应太猛烈了,科学家只能在实验室条件下做一次性的实验,现在还谈不上控制氘-氘反应,很难让它链式反应下去。还好,人们发现了氘-氚反应的烈度要小很多,它的反应速度仅仅是氘-氘反应的100分之一,而点火温度反倒低得多,很适合人类在现有条件下的研究和利用。氚不同于氘,氚是地球上最稀有的元素,由于氚的半衰期只有12到26年,所以在地球诞生之初的氚早已衰变得无影无踪了。现在人类所用的氚都是人工制造而非天然提取的。氚是地球上最贵的东西之一,一克氚价值超过30万美元。这么贵的原料,用作核聚变发电显然是无法接受的,幸好人们可以利用锂来获得氚。锂元素在地球上的资源非常丰富。一方面海水中就含有足够的氯化锂。另一方面,中国是世界锂资源最丰富的国家,碳酸锂矿产丰富。从这些锂盐中很容易分离出锂。锂的2种同位素,锂-6和锂-7,在被中子轰击之后,就会裂变,其产物都是氚和氦。所以,人们只要将锂的靶件植入重水反应堆中,就可以方便地获得氚。在氢核聚变反应堆内,氚和氘反应后,除了形成一个氦原子核之外,还有一个多余的中子,并且能量很高。人们只需要在核聚变的反应体之内保持一定比例的锂原子浓度,那么中子就会轰击锂核,促使锂核裂变,产生一个新的氚。这个氚则继续参与氚-氘反应,继而产生新的中子。于是,链式反应就形成了。所以,理论上讲,人们只需要向反应堆内提供两种原料,即氘和锂,就能实现氘-氚聚变反应,并且能维持这种聚变反应。氘在自然界取之不尽。从1升海水里提取的氘,在聚变反应中所释放的能量,相当于燃烧300升汽油。如果把自然界的氘和氚全部用于聚变反应,释放出来的能量足够人类使用100亿年。与核裂变相比,氘和氚的聚变能量是一种安全、核污染很低、原料成本低廉的能源。3.可控氢核聚变的实现方法之一,磁约束核聚变(托卡马克)氢的聚变反应在太阳上已经持续了近50亿年,至少还可以再燃烧50亿年。在其它恒星上,也几乎都在燃烧着氢的同位素氘和氚。根据这个事实不难知道,人们要在地球上实现氘-氚聚合反应,就得用太阳的温度点火起步。太阳中心温度达到1500万摄氏度,在太阳内部还存在巨大的压力,这种高温高压才能使氢核聚变不间断地进行。在地球上没办法获得巨大的压力,只能通过提高温度来弥补,这就是说,在地球上要温度近亿度才能实现氢核聚变。那么,如何点火开始氢的核聚变呢,如何让聚变后产生的近亿摄氏度的等离子体能够长时间地保持在反应堆里,使聚变反应稳定持续地进行下去呢。仅靠地球上的物质材料是做不到的这些的,怎么办?在20世纪50年代,当时的苏联科学家阿齐莫维齐等人首先提出磁约束核聚变的方法并发明了托卡马克装置。托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候,托卡马克的内部会产生巨大的螺旋型磁场,不仅能把氢的等离子体约束住,而且能把它加热到很高的温度,以达到核聚变的目的。托卡马克是一种利用磁约束来实现受控核聚变的环性容器。它的名字托卡马克Tokamak来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。参见图3.图3.托卡马克装置示意图1954年,第一个托卡马克装置在原苏联库尔恰托夫原子能研究所建成。70年代初,在苏联T3托卡马克上获得超过1000万度的等离子体,国际上很快形成了较大规模的以托卡马克为主流的磁约束研究方向。那时,世界上只有苏联、美国、法国和日本这4个国家利用小型的托卡马克做核聚变研究工作。中国的西南物理研究院于1984年建成中国环流器一号(HL-1),这也是用来研究等离子体的装置。后来,解体的苏联于1990年赠送给我国一套纵向超导托卡马克实验装置T-7,在此基础上,中国于1995年建成超导装置HT-7,这已是一个中型的聚变研究装置。经不断改进,HT-7已成为一个宠大的实验系统。它包括超导托卡马克装置本体、大型超高真空系统、大型计算机控制和数据采集处理系统、大型高功率脉冲电源及其回路系统、全国规模最大的低温氦制冷系统、兆瓦级低杂波电流驱动和射频波加热系统以及数十种复杂的诊断测量系统。它在以后的实验中,取得若干具有国际影响的重大科研成果。特别是在2003年3月31日,实验取得了重大突破,获得63.95秒的等离子体放电,在当时世界领先。2007年5月24日,在欧盟总部布鲁塞尔,中国、欧盟、美国、韩国、日本、俄罗斯和印度7方代表共同草签了《成立国际组织联合实施国际热核聚变反应堆(ITER Tokamak )计划的协定》,这是一项国际协作的协定,当时计划历时35年,其中建造阶段10年、运行和开发利用阶段20年、去活化阶段5年,耗资46亿欧元。这7国的科学家决心共同打造这个“人造太阳”,要实现可控核聚变。ITER Tokamak是一个超大型的氢核聚变反应堆,其主要组件包括:---真空室。用于盛放等离子体,并将反应室置于真空中。---中性束注入器(离子回旋系统)。将加速器释放的粒子束注入等离子体中,以便将等离子体加热到临界温度。---磁场线圈(极向环形)。用于产生超导磁体,用磁场来约束、定型和抑制等离子体。---变压器和中央螺线管。为磁场线圈供电。---冷却设备(冷冻机、低温泵)。用于冷却磁体。---包层模块 。由锂制成,用于吸收核聚变反应中的热量和高能中子。---收集器 。排出核聚变反应中的氦产品。ITER Tokamak磁约束核聚变的作用机制和实现过程大致是这样的:---核聚变反应堆加热氘和氚燃料的气流,使之形成高温的等离子体。接下来,反应堆的磁约束力对等离子体施加压力,继而发生核聚变。---启动核聚变反应所需的电能约为 70 兆瓦特,但该反应所产生的电能约为 500 兆瓦特。---核聚变反应要求至少持续 300 到 500 秒(最终将形成持续的核聚变反应)。---等离子体反应室外部的锂包层将吸收核聚变反应中释放的高能中子,从而产生更多的氚燃料。在高能中子的作用下,这些包层也会被加热。---水冷回路将热量转移至热交换器,最终形成蒸气。---蒸气将被重新压缩成水,以便让热交换器吸收反应堆中的更多热量。ITER Tokamak的设计结构参见图4,核聚变发电系统设计参见图5.ITER Tokamak 的建设目的之一,是研究和测试可控的持续的核聚变反应可行性。计划在2019年实现磁约束等离子体,2026—2027年实现氘-氚聚变反应,在ITER装置上的研究工作至少要持续到2039年。二是,最终将ITER装置转变为一座可以运行的核聚变发电站。
2023-07-28 16:02:131

热传导率,氧化诱导时间,线膨胀系数,纵向回缩率,环向应力用英语怎么翻译啊?

热传导率, thermal conductivity(TC)氧化诱导时间, oxidation induction time(OIT)线膨胀系数, coefficient of linear expansion 纵向回缩率, longitudinal reversion环向应力, toroidal stress好专业啊。。。
2023-07-28 16:02:211

大学生写学术论文的格式?

不同的文章不同的格式
2023-07-28 16:02:442

跪求!!!关于毕业论文

采访那些新鲜的事,尽量的去观察生活的每一天,每一个细节,或许,你还真会发现点什么。
2023-07-28 16:03:025

污泥处理的要求

1、污泥应进行减量化、稳定化和无害化处理并安全、有效处置。2、在污泥消化池、污泥气管道、储气维、污泥气燃烧装置等具火灾或爆炸危险的场所,应采取安全防范措施。3、污泥气应综合利用,不得擅自向大气排放。4、污泥浓缩脱水机房应通风良好。溶药场所应采取防滑措施。5、污泥堆肥场地应采取防渗和收集处理渗沥液等措施,防止水体污染。6、污泥热干化车间和污泥料仓应采取通风防爆的安全措施。7、污泥热干化、污泥焚烧车间必须具有烟气净化处理设施。经净化处理后,排放的烟气应符合国家现行相关标准的规定。
2023-07-28 16:03:202

磁约束核聚变的基本原理

磁约束(magnetic confinement),用磁场来约束等离子体中带电粒子的运动。主要为可控核聚变提供理论与技术支持,其主要形式为托卡马克装置与仿星器装置。基本原理磁约束的基本原理是带电粒子在磁场中受的洛伦兹力。物理原理氘、氚等较轻的原子核聚合成较重的原子核时,会释放大量核能,但这种聚变反应只能在极高温下进行,任何固体材料都将熔毁。因此,需要用特殊形态的磁场把由氘、氚等原子核及自由电子组成的一定密度的高温等离子体约束在有限体积内,使之脱离器壁并限制其热导,这是实现受控热核聚变的重要条件。工作原理两端呈瓶颈状的磁力线,因瓶颈处磁场较强(也称作磁镜)能将带电粒子反射回来 ,从而限制粒子的纵向(沿磁力线方向)移动,使粒子在作回旋运动的同时,不断地来回穿梭,被约束在两端的磁镜之间,但是仍有一部分其轨道与磁力线的夹角小于某值的带电粒子会逃逸出去。为了避免带电粒子的流失,曾经把磁力线连同等离子体弯曲连接成环形;后来又改进为呈8字形的圆环形磁力线管,称为仿星器;实验上现最有成效的磁约束装置是托卡马克装置,又称环流器,它是环形螺线管,其中的磁力线具有螺旋形状。相关装置托卡马克环流器(即tokamak,音译为托卡马克)。它的名字来源于环形(toroidal)、真空室(kamera)、磁(magnet)、线圈(kotushka)。是目前性能最好的一种磁约束装置。(下面是环流器的图)环流器仿星器为了避免带电粒子的流失,科学家曾经把磁力线连同等离子体弯曲连接成环形。后来又改进为呈8字形的圆环形磁力线管,称为仿星器。尽管托卡马克被认为是人类未来最具有实用价值的可控核聚变装置,但仿星器也得到了世界不少科学家的研究兴趣。仿星器最早是由 Lyman Spitzer发明的并且在第二年建成,它在50-60年代曾十分流行。德国科学家认为,仿星器可能是最适合未来核聚变电厂的类型。德国正在建造的世界上最大的仿星器实验室被命名为Wendelstein X-7。行业活动2014年9月4-5号,中国磁约束核聚变第二次战略研讨会在西安召开。会议形成共识,要加快制定我国磁约束核聚变技术路线图,进一步明确目标,提出具体的解决方案,深入研究支持措施和对策。[1] 2014年3月15-16日,首次磁约束核聚变能发展研究战略研讨会在北京召开。会议分析了磁约束核聚变能研究国际动态、我国磁约束核聚变能专项部署情况、研究基础和进展,从国内两大托卡马克装置能力提升、聚变堆设计研究、等离子体物理理论与实验、聚变材料、安全与防护、高校人才培养的效果评估与模式等方面对我国磁约束核聚变能发展战略进行了研讨。
2023-07-28 16:03:302

宇宙到底是个什么样子的,很玄妙吗?

宇宙是什么形状的呢,是象地球一样的圆形,还是象银河系一样的扁平?这同样是令人费解的一个问题。经过多年的探索,不久之前一个由多国天文学家组成的研究小组,首次向人们展示了宇宙形成初期的景象,显示出当时的宇宙只相当于现代宇宙的千分之一,而且温度比较高。通过再现宇宙形成初期的景象,天文学家证实了这样一种观点:宇宙的形状是扁平的,而且自形成以来一直在不断扩展。但是这种说法也未必完美。 下面是science上关于宇宙形状的近期报道: 时空结构将宇宙微波背景(CMB)和宇宙的重要结构连在了一起。但是究竟时空结构是什么,而CMB的测量又能告诉我们什么呢? 在爱因斯坦的广义相对论中,空间和时间被连接在一个有弹性的“簇拓扑空间”——一个数学对象中,这个拓扑空间的每个小片粗看象一个四维的橡胶片。光线沿拓扑空间的轮廓前进,这个轮廓被叫做测地线。在一个平坦的平面上,从一个远距离对象发出的平行光将保持和它们接近一个观测者时同样远近的分隔。但是在一个有正曲率的表面,如一个球,接近的光线将移动更远的间隔,使得远处的物体看起来比正常物体更大。在一个有负曲率的表面,如一个马鞍,平行光束将更紧密的结合在一起,使得物体看起来更小。 因为弯曲的簇拓扑空间对光的扭曲不同于扁平的簇拓扑空间,所以弯曲的簇拓扑空间也应该产生不同种类的CMB。用微波探测器(叫做BOOMERANG)观察到的1-degree-wide波正好是理论预言的扁平宇宙所应该有的,对于这个结论大部分物理学家至少希望用微波各向异性探针的(MAP"S)图象证实。一些研究者希望MAP将给出关于宇宙大小和形状的更多详细而精确的信息。“当我们看微波背景的时候,我们基本上留意到了球的表面,” 普林斯顿大学的一个天体物理学家和MAP科学队的一个成员David Spergel解释道。如果宇宙是无限的,那么“最后散射的表面”将不能给出关于它的形状的线索。但是如果宇宙是有限的,那么时空和安置在时空当中的散射表面必需使它们自身向后弯。一个足够巨大的球将会把自己相交贯穿至少形成一个圆周,正如一个围绕着销子搭接起来的圆盘一样。 实际上,Spergel说,因为光能通过不止一个路径穿过弯曲的时空,所以天文学家将看到一个交叉点不是一次而是两次,与一对圆周在天空的不同部分描绘出冷点和热点的方式相同。在美国的Spergel组和在巴黎天文台由Jean-Pierre Luminet领导的组正在研制一些运算法则以搜索在MAP数据中的这种信号。其间,数学家Jeff Weeks,一个纽约州的自由记者已经写了一个把一对圆周转化为宇宙模式的计算机运算法则。Weeks说,对形象化最容易的是一个“曲面(toroidal)”宇宙比最后散射的表面小。他指出,在包围着一个圆环面的两维宇宙中,天文学家看起来将在假想出的空间的盒子的相对的两个壁上看到同样的点。相似的,在三维曲面(toroidal)宇宙中,天文学家将在相对的方向看到三对圆周。 toroidality仅仅是对扁平的有限宇宙来说10个不同toroidality之中最简单的一个。如果宇宙被证实是弯曲的——这一点在当前还不是事实——那么对Weeks的运算法则来说将会有无限多的可能性去尝试。“我们将开始尽可能快的关注任何可用的数据,”Weeks说。如果宇宙合作,他们可以不用等太长时间,Spergel说:“两年后,我们就能知道我们住在一个有限的宇宙中。” 注解:CMB是从各个方向袭击地球的持续的电磁声波。这些遥远的声音是大爆炸之后的遗留辐射。CMB也叫做宇宙背景辐射和微波宇宙背景。采纳哦
2023-07-28 16:03:441

核聚变技术难点与解决办法

核聚变要比核裂变复杂、困难得多。而可控核聚变又要比制造氢弹难得多。先说一下历史上可控核聚变碰到的难题:主要是温度。因为氘核是带电的,由于库仑力的存在,很难把它们凑一块儿,而聚变主要靠强核力,但是核子之间的距离小于10fm时才会有核力的作用。要凑那么近,肯定需要极高的温度(粒子动能)来克服库仑力。所需温度的理论值是5亿6千万K,但后来修正为1亿K左右,因为之前主要是用平均动能来算的,而实际上很多粒子的动能大于平均动能。可1亿K也不是好玩的,有什么材质的容器能顶得住1亿K啊?况且还不能使聚变材料降温。上世纪50年代,美国佬跟欧洲佬先开始尝试和总结。目前我们使用的几种可控核聚变方式:超声波核聚变、激光约束(惯性约束)核聚变、磁约束核聚变(托卡马克)。目前世界上最常用就是托卡马克磁约束装置,Tokamak来源于拉丁文的环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka),就是利用磁约束来实现受控核聚变的环性容器。至于这个装置具体怎么做,以后再聊。目前的难题:Q值(输出功率与输入功率之比)的提高。因为Q值小于1的话,其实就是亏了,这种聚变将没有任何经济效益。而如果想要Q值大,最简单的办法就是增加单次核聚变的材料,可这样的话,对能量吸收和控制装置的要求就高了。目前估计各大国已经把Q值做到1.5以上了。还有两个难题,这是目前各国都还没有解决的。1、就是持续不间断地提供高温所需的能量。Q值1.5意味着:产出150吨TNT当量的能量,就要投入100吨TNT当量的能量,而且还是持续的!就像大片里的那样:一台科幻设备一开动,整个城市的灯都灭了。2、即使能够持续供电。但你投入的是1个电,而它产生的却是1.5的热及辐射等。而如果把它转化成电的话,如果转化率小于66%的话,还是亏了。目前全球在这一技术上还没有突破。另外,2006年9月28日,中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的新一代热核聚变装置EAST(HT-7U超导托卡马克)首次成功完成放电实验,获得电流200千安、时间接近3秒的高温等离子体放电。
2023-07-28 16:03:521

核聚变的反应条件

聚变反应需要高温,一个聚变反应释放出的能量很少,也是放出一些中子,这种小规模的核聚变反应还是可以借助人为的方法避开高温获得的,但如果要是大量的,就必须热核反应,使聚变反应变成一个自持的反应,就是自己维持自己的反应,就像烧火一样,煤要烧起来的话,一部分燃烧了,这部分燃烧产生的能量又影响到另外一部分温度提高了,另一部分又燃烧了,能量越多,煤燃起来的就越来越旺。聚变也是同样的性质,一个聚变了之后,能够放出一些中子,同时也产生一些能量,靠本身的聚变提供热的能量,维持温度。但这个温度要维持到一个很高的温度才能够维持热核聚变反应,温度要达到好几百万个摄氏度才能发生聚变反应,当少于这个温度的时候,聚变一会儿就熄灭了,就像烧火一样,火烧的不旺一会儿就灭了。这么高的高温,人为和其他的办法很难达到,只有靠原子核的裂变。聚变有一个好处就是没有核污染,而裂变有核污染。
2023-07-28 16:04:013

磁约束的基本原理

磁约束(magnetic confinement),用磁场来约束等离子体中带电粒子的运动。主要为可控核聚变提供理论与技术支持,其主要形式为托卡马克装置与仿星器装置。基本原理磁约束的基本原理是带电粒子在磁场中受的洛伦兹力。物理原理氘、氚等较轻的原子核聚合成较重的原子核时,会释放大量核能,但这种聚变反应只能在极高温下进行,任何固体材料都将熔毁。因此,需要用特殊形态的磁场把由氘、氚等原子核及自由电子组成的一定密度的高温等离子体约束在有限体积内,使之脱离器壁并限制其热导,这是实现受控热核聚变的重要条件。工作原理两端呈瓶颈状的磁力线,因瓶颈处磁场较强(也称作磁镜)能将带电粒子反射回来 ,从而限制粒子的纵向(沿磁力线方向)移动,使粒子在作回旋运动的同时,不断地来回穿梭,被约束在两端的磁镜之间,但是仍有一部分其轨道与磁力线的夹角小于某值的带电粒子会逃逸出去。为了避免带电粒子的流失,曾经把磁力线连同等离子体弯曲连接成环形;后来又改进为呈8字形的圆环形磁力线管,称为仿星器;实验上现最有成效的磁约束装置是托卡马克装置,又称环流器,它是环形螺线管,其中的磁力线具有螺旋形状。相关装置托卡马克环流器(即tokamak,音译为托卡马克)。它的名字来源于环形(toroidal)、真空室(kamera)、磁(magnet)、线圈(kotushka)。是目前性能最好的一种磁约束装置。(下面是环流器的图)环流器仿星器为了避免带电粒子的流失,科学家曾经把磁力线连同等离子体弯曲连接成环形。后来又改进为呈8字形的圆环形磁力线管,称为仿星器。尽管托卡马克被认为是人类未来最具有实用价值的可控核聚变装置,但仿星器也得到了世界不少科学家的研究兴趣。仿星器最早是由 Lyman Spitzer发明的并且在第二年建成,它在50-60年代曾十分流行。德国科学家认为,仿星器可能是最适合未来核聚变电厂的类型。德国正在建造的世界上最大的仿星器实验室被命名为Wendelstein X-7。行业活动2014年9月4-5号,中国磁约束核聚变第二次战略研讨会在西安召开。会议形成共识,要加快制定我国磁约束核聚变技术路线图,进一步明确目标,提出具体的解决方案,深入研究支持措施和对策。[1] 2014年3月15-16日,首次磁约束核聚变能发展研究战略研讨会在北京召开。会议分析了磁约束核聚变能研究国际动态、我国磁约束核聚变能专项部署情况、研究基础和进展,从国内两大托卡马克装置能力提升、聚变堆设计研究、等离子体物理理论与实验、聚变材料、安全与防护、高校人才培养的效果评估与模式等方面对我国磁约束核聚变能发展战略进行了研讨。
2023-07-28 16:04:211