barriers / 阅读 / 详情

光纤通信的同名图书

2023-08-08 07:38:19
共1条回复
ardim

同名图书信息

书 名:光纤通信 作 者:聂兵

出版社:北京理工大学出版社

出版时间:2010-1-1

ISBN: 9787564025731

开本:16开

定价:28.00元

内容简介

本书全面讲述了光纤通信的基本理论和应用,主要内容包括:光纤通信系统的组成;光纤(光缆)结构、类型与传输特性,光纤的连接;光无源器件原理与应用;光源、光源调制与光发送机原理和性能指标;光检测器原理,光接收机的组成、原理和性能;光放大及其应用;SDH体系和数字光纤传输系统设计与性能指标;波分复用的原理与技术;SDH传送网,光传送网(OTN),自动交换光网络(ASON),光城域网技术,光接入网结构与应用等。

本书力求在光纤通信系统的原理、应用、设计等方面提供必要的信息,可以作为通信工程、电子信息工程和光电信息工程等相近专业的本科教学用书和光纤通信的技术培训教材,也可作为一般工程技术人员的参考用书。

图书目录

第1章 概述

第2章 光纤光缆

第3章 光无源器件

第4章 光源与光发送机

第5章 光检测器与光接收机

第6章 光放大器

第7章 SDH与数字光纤传输系统

第8章 光波以分复用

第9章 光网络

参考文献

同名图书信息

书 名:光纤通信

作 者:卜爱琴

出版社:北京师范大学出版集团,北京师范大学出版社

出版时间:2009年08月

ISBN: 9787303103300

开本:16开

定价:26元

内容简介

《光纤通信》共分10章:第1章介绍光纤通信的发展现状、光纤通信的基本组成、光纤通信的特点及发展趋势。第2章介绍光纤的结构和分类、光纤的导光原理、光纤的损耗和色散特性、光缆的结构和种类以及光缆的型号。第3章介绍光缆线路的敷设、光纤光缆的接续与成端、光缆线路的测试以及光缆线路的维护。

目录

第4章介绍光源器件的工作原理、基本结构和工作特性。

第5章介绍光电检测器的工作原理、基本结构和工作特性。

第6章介绍无源光器件的种类、作用、主要性能及应用。

第7章介绍PDH光传输系统,包括光发射机和光接收机的组成、工作原理和主要性能指标,光中继器和光放大器的组成与应用、光纤通信常用线路码型及中继距离的计算。

第8章介绍SDH的基本概念、速率与帧结构,SDH的同步复用与映射原理、SDH开销、SDH设备的逻辑功能描述、SDH传送网与自愈网、SDH网同步、网络传输性能及华为OptiX OSN 2500光传输设备。

第9章介绍光波分复用系统,包括密集波分系统(DWDM)的概念和特点,DWDM的基本类型、DWDM系统的基本结构和工作原理、华为OptiX BSW 320GDwDM设备。

第10章介绍光纤通信实训,包括光纤与光缆的接续、光缆交接箱与ODF架的成端、0TDR的使用与光纤的测试、光纤通信系统误码的测试、光发射机和光接收机性能参数的测试及SDH设备的维护。

同名图书信息

光纤通信

作 者:刘世安,彭小娟主编

出 版 社:电子工业出版社

出版时间:2010-1-1

开 本:16开

I S B N :9787121100239

定价:¥29.00

内容简介

本书全面系统地介绍了光纤通信的基础知识,包括光纤通信系统的组成、光纤和光缆、光纤通信的基本器件、光发射机和光接收机、光纤通信系统与设计、SDH技术、波分复用技术、光纤通信新技术和光纤通信常用仪表,在相关章节附有实验实训内容。

本书紧扣行业标准和规范,具有较强的实用性和针对性,既可作为高职高专院校通信、电子信息类相关专业的教材,也可作为光纤通信技术培训用书,并可作为技能鉴定的参考用书。

目录

第1章 光纤通信概论

第2章 光纤和光缆

第3章 光纤通信的基本器件

第4章 光发送机和光接收机

第5章 光纤通信系统与设计

第6章 SDH 技术

第7章 波分复用技术

第8章 光纤通信新技术

第9章 常用光纤通信仪表

同名图书信息

作 者:刘增基书 名:光纤通信

出版社:西安电子科技大学出版社

出版时间:2008.12

ISBN: 7560610290

开本:16开

定价:23元

内容简介

本书全面地介绍了光纤通信系统的基本组成;光纤和光缆的结构和类型,光纤的传输原理和特性,光纤特性的测量;光源、光检测器和光无源器件的类型、原理和性质;光端机的组成和特性;数字光纤通信系统(PDH和SDH);模拟光纤通信系统,包括副载波复用光纤通信系统;光纤通信的若干新技术,如光纤放大器、光波分复用技术、光交换技术、光孤子通信、相干光通信技术、光时分复用技术等;光纤通信网络,包括单波长的SDH传送网,多波长的WDM全光网和光接入网。本书在内容上力求理论上的系统性以及技术上的新颖性和实用性。

目录

第一章 概论

第二章 光纤和光缆

第三章 通信用光器件

第四章 光端机

第五章 数字光纤通信系统

第六章 模拟光纤通信系统

第七章 光纤通信新技术

第八章光纤通信网络

附录A SDH系统光接口标准

附录B PDH系统光线路设备的实例

附录C VSB-AM/SCM系统光链路性能实例

参考文献

图书信息

书名:光纤通信(高职高专教育)/普通高等教育十五国家级规划教材

ISBN:704012623

作者:林达权

出版社:高等教育出版社

定价:20

页数:1

出版日期:2003-8-1

版次:1

开本:现货

包装:平装

简介:《光纤通信》一书是普通高等教育“十五”国家级规划教材,适用于高职高专教育。本书的特点是以宽带通信为中心,理论与实践紧密结合。

本书介绍了光纤通信基本原理、准同步光纤通信原理、同步光纤通信和密集波分复用原理等相关知识。

本书在编写过程中充分考虑了高职高专教育特色,特邀了实践经验丰富的现场工程师参加编写。本书概念清晰、通俗易懂,注重新知识、新技术内容的介绍。

目录:

第一部分光纤光缆和光纤通信的基本器件

第1章概论

1.1 光纤通信发展的几个亮点

1.2 光纤通信系统的组成

1.3 光纤通信系统所涉及的光纤光缆和器件

1.4 光纤通信的优点

1.5 光纤通信的发展趋势

小结

复习思考题

第2章

光纤光缆

2.1光纤光缆的结构

2.2光纤的导光原理

2.3光纤的传输特性

2.4单模光纤和多模光纤

2.5光缆线路敷设

2.6光缆的接续

小结

复习思考题

第3章

光纤参数的测试

3.1 测试项目和要求

3.2 光纤衰减常数的测量

3.3 单模光纤色散特性的测试

3.4 多模光纤衰减常数的测试

3.5 多模光纤带宽的测试

小结

复习思考题

第4章

光源

4.1引言

4.2 半导体的发光机理

4.3 半导体激光器LD

4.4 发光二极管LED

小结

复习思考题

第5章

光检测器

5.1 作用与要求

5.2 PN结形光电二极管

5.3 PIN光电二极管

5.4雪崩光电二极管

小结

复习思考题

第6章光放大器

6.1 光放大器的类型

6.2掺铒光纤放大器的组成

6.3 掺铒光纤放大器的工作原理

6.4 光放大器的应用场合

小结

复习思考题

第7章

光无源器件

7.1 光纤活动连接器

7.2 光衰减器

7.3 光波分复用器

7.4 其它无源器件

小结

复习思考题

第二部分 准同步(PDH)光纤通信原理

第8章

长途光缆通信系统介绍

8.1长途光缆通信系统的组成

8.2PDH光缆通信系统组成举例

小结

复习考思题

第9章复用设备的工作原理

9.1PCM端机方框简图

9.2基群复用设备

9.3 高次群复用设备的工作原理

小结

复习思考题

第10章光端机的工作原理

10.1概述

10.2光端机方框组成

小结

复习思考题

第11章 光端机设备举例

11.1概述

11.2OPTIMUX-H型设备方框组成

11.3OPTIMUX-H型设备机架组成

11.4手持终端

小结

复习思考题

第三部分 同步(SDH)光纤通信和密集波分复用(DWDM)原理

第12章概述

12.1PDH存在的问题

12.2SDH的主要特点

12.3SDH工作波长区和比特率

小结

复习思考题

第13章 帧结构

13.1基本帧结构

13.2STM—N帧结构

13.3STS—N帧结构

小结

复习思考题

第14章SDH复用原理

14.1基本复用结构

14.2STM—1信号的形成

14.3STM—N信号的形成

14.4指针

14.5开销字节

小结

复习思考题

第15章同步设备参考逻辑功能框图

15.1 复合功能(CF)

15.2 单元功能(EF)

15.3 辅助功能

15.4 复用过程与参考模型的对应关系

小结

复习思考题

第16章 接口

16.1 光接口

16.2 电接口

小结

复习思考题

第17章基本网络单元的工作原理

17.1终端复用设备

17.2上/下路复用设备(ADM)

17.3网络转换设备

17.4交叉连接设备(SDXC)

小结

复习思考题

第18章SDH传送网

18.1SDH传送网

18.2SDH网络结构

18.3SDH网的物理拓朴

18.4自愈网

小结

复习思考题

第19章光波分复用

19.1 光波分复用概述

19.2 光波分复用的基本原理

19.3 光波分复用器

19.4 ZXWM-32密集波分复用设备

19.5IP over WDM技术

19.6当前要发展第三代光纤通信

小结

复习思考题

第20章光传输系统的操作维护

20.1ZXSM-2500光传输设备系统结构

20.2ZXSM-2500光传输设备硬件系统

20.3ZXSM-2500光传输设备网管系统

20.4网管系统的功能

20.5设备安装调试流程

20.6ZXSM-150/600/2500设备调测

小结

复习思考题

第21章光纤通信与相关学科

21.1 光纤通信与计算机技术

21.2 光纤通信与交换技术

21.3 光纤通信与数字通信

21.4 光纤通信与用户宽带接入网

小结

复习思考题

附录:中英文索引

参考文献

图书信息

书名:光纤通信 - - 通信用光纤、器件和系统(21世纪信息与通信技术教程)

ISBN:711512300

作者:美国光学学会Michael Bas

出版社:人民邮电出版社

定价:37

页数:330

出版日期:2004-7-1

版次:1

开本:16开

包装:

简介:光纤通信领域所涉及的光纤、光放大器、波分复用和光分/插复用等关键技术的相继问世,使光纤通信领域中发生了一场又一场技术革命。光纤具有巨大的带宽资源,成为通信系统首选的传输媒质;光放大器代替了光-电-光中继器,实现了点到点的全光通信:波分复用不仅使单根光纤的传输容量增加了几倍、几十倍乃至几百倍,而且实现了多种不同类型的通信业务同时在一根光纤上传输;光分/插复用实现了信息在光域上的传送、路由的选择与交换,从而避免出现电子瓶颈的影响,完全满足了未来通信的高速率、大容量、远距离的全光通信要求。为了满足光纤通信日新月异的发展需要,受人民邮电出版社的委托,我们集体翻译了这本《光纤通信》技术专著,以使中国广大从事通信工作的读者能对光纤通信的基本概念、光纤结构、光器件工作原理、光网络组网技术和光纤通信新技术等内容有所了解。

Michael Bass是美国佛罗里达大学光学学院/光学与激光研究和教育中心光学、物理、电子和计算机工程教授。他是从Carnegie-Mellon获得其物理学学士学位,从Michigan大学获得其物理学硕士学位和博士学位的。

本书是由美国光学学会组织的18名世界著名的光纤通信专家集体编写的一本介绍通信用光纤、器件和系统的最新研究成果的专著。书中全面地介绍了光纤通信技术领域中所涉及到的各个分支,如光纤、光纤通信技术、光纤非线性效应、光纤通信用光源、调制器和探测器、光纤放大器、光纤通信线路、光纤通信系统中的光孤子、耦合器、合(分)波器、光纤布拉格光栅、组网微光器件、半导体光放大器、光时分复用通信网、光波分复用(WDM)光纤通信网、光纤通信标准等具体技术内容。

本书内容翔实、技术新颖,既有理论分析计算,又有大量应用实例。由于本书的作者都是光纤通信领域国际知名的专家,所以本书是一本既充分展现作者各自研究专长,又凝聚作者集体智慧的高水平的技术专著。它可供从事光纤生产和工程应用以及从事光纤通信研究的技术人员使用,也可作为高等院校光纤通信技术及相关专业师生的教学参考书。

目录:

第1章 光纤与光纤通信

1.1 术语表

1.2 引言

1.3 工作原理

1.4 光纤色散与衰减

1.4.1 衰减

1.4.2 模间色散

1.4.3 材料色散

1.4.4 波导色散和折射率分布色散

1.4.5 描述光纤的归一化变量

1.4.6 光纤色散的计算

1.5 光纤的偏振特性

1.6 光纤的光学性能和机械性能

1.6.1 衰减测量

1.6.2 色散与带宽测量

1.6.3 光纤色散的位移与平坦

1.6.4 可靠性的评价

1.7 光纤通信

1.7.1 点到点线路

1.7.2 先进的传输技术

1.8 光纤的非线性光学性能

1.8.1 受激散射过程

1.8.2 脉冲压缩与光孤子传输

1.8.3 四波混频

1.8.4 光纤中的光折射非线性

1.9 光纤材料:化学与制造

1.9.1 常用光纤的制造

1.9.2 掺杂剂化学

1.9.3 其它制造方法

1.9.4 红外光纤制造

1.10 参考文献

1.11 进一步阅读的资料

第2章 光纤通信技术及系统概述

2.1 引言

2.2 基本技术

2.2.1 光纤

2.2.2 发射光源

2.2.3 光探测器

2.3接收机灵敏度

2.4 速率和距离限制

2.4.1 提高速率

2.4.2 更长的中继距离

2.5 光放大器

2.5.1 半导体放大器和光纤放大器的比较

2.5.2 光放大器在通信中的应用

2.6 光纤网络

2.7 光纤中的模拟传输

2.7.1 载噪比(CNR)

2.7.2 光纤中的模拟视频传输

2.7.3 非线性畸变

2.8 技术和应用方向

2.9 参考文献

第3章 光纤的非线性效应

3.1 光纤非线性光学的关键问题

3.2 自相位调制和交叉相位调制

3.3受激拉曼散射

3.4受激布里渊散射

3.5 四波混合

3.6 结论

3.7 参考文献

第4章 光纤通信系统用的光源. 调制器和探测器

4.1 引言

4.2 双异质结结构激光二极管

4.2.1 一个密度反转注入有源区

4.2.2 在有源层平面内的载流子的限制

4.2.3 在有源层附近的光的限制

4.2.4 限制载流子注入条形几何结构

4.2.5 光的横向限制

4.2.6 传导光沿着条形方向上的后向反射

4.2.7 安装使光从侧面发出

4.2.8 适合封装在一个密封盒

4.2.9 光纤尾纤连接

4.2.10 寿命

4.3 激光二极管的工作特性

4.3.1 激光器阈值

4.3.2 光输出与电流输入(L-I曲线)

4.3.3 温度与激光器性能的关系

4.3.4 发光的空间特性

4.3.5 激光器光的光谱特性

4.3.6 偏振

4.4 激光二极管的瞬态响应

4.4.1 开通延迟

4.4.2 弛豫振荡

4.4.3 调制响应和增益饱和

4.4.4 频率啁啾

4.5 激光二极管的噪声特性

4.5.1 相对强度噪声(RIN)

4.5.2 信噪比(SNR)

4.5.3 多模激光器的模分配噪声

4.5.4 相位噪声一线宽

4.5.5 外部光反馈和相干破坏

4.6 量于阱激光器和应变激光器

4.6.1 量子阱激光器

4.6.2 应变层量子阱激光器

4.7 分布反馈(DFB)和分布布拉格反射器(DBR)激光器

4.7.1 分布的布拉格反射器(DBR)激光器

4.7.2 分布反馈(DFB)激光器

4.8 发光二极管(LED)

4.8.1 面发光LED

4.8.2 边发光LED

4.8.3 LED的工作特性

4.8.4 瞬态响应

4.8.5 驱动电路和封装

4.9 垂直腔表面发光激光器(VCSEL)

4.9.1 量子阱的数量

4.9.2 镜面反射率

4.9.3 电注入

4.9.4 发射光的空间特性

4.9.5 光输出与电流输出

4.9.6 光谱特性

4.9.7 偏振

4.9.8 其它波长的VCSEL

4.10 锯酸锂调制器

4.10.1 电-光效应

4.10.2 相位调制

4.10.3 Y形干涉型(马赫—曾德尔)调制器

4.10.4 高速工作

4.10.5 插入损耗

4.10.6 偏振无关

4.10.7 光反射率和光损伤

4.10.8 δ-β反向调制器

4.11 光纤系统用电吸收调制器

4.11.1 电吸收强度调制

4.11.2 在半导体中施加一个电场

4.11.3 集成的调制器

4.11.4 工作特性

4.11.5 QW中的电吸收的先进概念

4.12 电-光和电折射半导体调制器

4.12.1 半导体中的电-光效应

4.12.2 半导体中的电折射

4.12.3 半导体干涉型调制器

4.13 PIN二极管

4.13.1 典型的几何形状

4.13.2 灵敏度(响应度)

4.13.3 速度

4.13.4 暗电流

4.13.5 光电二极管的噪声

4.14 雪崩光电二极管. MSM探测器和肖特基二极管

4.14.1 雪崩探测器

4.14.2 MSM探测器

4.14.3 肖特基光电二极管

4.15 参考文献

第5章 光纤放大器

5.1 引言

5.2 掺稀土元素放大器的结构和工作

5.2.1 泵浦配置和最佳的放大器长度

5.2.2 工作状态

5.3 EDFA的物理结构和光的相互作用

5.3.1 EDFA的能级

5.3.2 增益形成

5.3.3 EDFA的泵浦波长的选择

5.3.4 噪声

5.3.5 增益平坦

5.4 其它稀土元素系统中的增益形成

5.4.1 掺镨光纤放大器(PDFA)

5.4.2 掺铒/镱光纤放大器(E/YDFA)

5.5 参考文献

第6章 光纤通信线路(电信. 数据通信和模拟)

6.1 引言

6.2 品质因数:SNR. BER. MER和SFDR

6.3 线路功率预算分析:安装损耗

6.3.1 传输损耗

6.3.2 衰减与波长的关系

6.3.3 连接器损耗和接头损耗

6.4 线路功率预算分析:光功率代价

6.4.1 色散

6.4.2 模分配噪声

6.4.3 消光比

6.4.4 多路串扰

6.4.5 相对强度噪声(RIN)

6.4.6 抖动

6.4.7 模噪声

6.4.8 辐射引起的损耗

6.5 参考文献

第7章 光纤通信系统中的光孤子

7.1 引言

7.2 经典孤子的特性

7.3 光孤子的性能

7.4 经典的光孤子传输系统

7.5 频率导向滤波器

7.6 可调频率导向滤波器

7.7 波分复用

7.8 色散管理光孤子

7.9 波分复用色散管理光孤子传输

7.10 结论

7.11 参考文献

第8章 熔锥光纤耦合器. 波分复用器和解复用器

8.1 引言

8.2 波长无关

8.3 波分复用

8.4 1xN光功率分配器

8.5 开关和衰减器

8.6 马赫-曾德尔器件

8.7 偏振器件

8.8 结论

8.9 参考文献

第9章 光纤布拉格光栅

9.1 术语表

9.2 引言

9.3 光敏性

9.4 布拉格光栅的性能

9.5 光纤光栅的制造

9.6 光纤光栅的应用

9.7 参考文献

第10章 组网的微光器件

10.1 引言

10.2 通用的器件

10.3 网络功能

10.3.1 衰减器

10.3.2 光功率分配器和方向耦合器

10.3.3 隔离器

10.3.4 环形器

10.3.5 复用器/解复用器/双工器

10.3.6 机械开关

10.4 子器件

10.4.1棱镜

10.4.2 光栅

10.4.3 滤波器

10.4.4 光束分路器

10.4.5 法拉第旋转器

10.4.6 偏振器

10.4.7 自聚焦棒透镜

10.5 器件

10.5.1 衰减器

10.5.2 功率分配和方向耦合器

10.5.3 隔离器和环路器

10.5.4 复用器/解复用器/双工器

10.5.5 机械开关

10.6 参考文献

第11章 半导体光放大器和波长转换

11.1 术语表

11.2 为什么要进行光放大

11.2.1 光纤放大器

11.2.2 半导体放大器

11.3 为什么要进行光波长转换

11.3.1 改变光波长的方案

11.3.2 半导体光波转换器

11.4 参考文献

第12章 光时分复用通信网络

12.1 术语表

12.1.1 定义

12.1.2 缩与

12.1.3 符号

12.2 引言

12.2.1 基本概念

12.2.2 取样

12.2.3 抽样定理

12.2.4 插入

12.2.5 解复用——发射机和接收机的同步

12.2.6 数字信号——脉冲编码调制

12.2.7 脉冲编码调制

12.2.8 模-数转换

12.2.9 二进制数字和线路编码的光表示方法

12.2.10 定时恢复

12.3 时分复用和时分多址

12.3.1 概述

12.3.2 时分多址

12.3.3光域TDMA

12.3.4 时分复用

12.3.5 帧与体系

12.3.6 SONET和频率调整

12.4 器件技术介绍

12.4.1 光时分复用——串行与并行

12.4.2 器件技术——发射机

12.4.3 法布里-珀罗激光器

12.4.4分布反馈激光器

12.4.5 锁模激光器

12.4.6 直接调制或间接调制

12.4.7 外调制

12.4.8 电光调制器

12.4.9 电吸收调制器

12.4.10 光时钟恢复

12.4.11 解复用的全光交换

12.4.12 接收机系统

12.4.13 超高速光时分复用光线路——一个论文实例

12.5 总结与展望

12.6 进一步阅读的资料

第13章 波分复用(WDM)光纤通信网络

13.1 引言

13.1.1 光纤带宽

13.1.2 WDM技术介绍

13.2 光纤损伤

13.2.1 色散

13.2.2 光纤非线性

13.2.3 色散补偿和色散管理

13.3 WDM网络的基本结构

13.3.1 点到点线路

13.3.2 波长路由网络

13.3.3 WDM星. 环和网状结构

13.3.4 网络重构性

13.3.5 电路交换和数据包交换

13.4 WDM网络中的掺铒光纤放大器

13.4.1 EDFA级联的增益峰化

13.4.2 EDFA增益平坦

13.4.3 快速动率瞬变

13.4.4 超宽带EDFA

13.5 动态信道功率均衡

13.6 WDM中的串扰

13.6.1 非相干串扰

13.6.2 相干串扰

13.7 总结

13.8 致谢

13.9 参考文献

第14章 红外光纤

14.1 引言

14.2 非氧化物和重金属氧化物玻璃IR光纤

14.2.1 HMFG光纤

14.2.2 锗酸盐光纤

14.2.3 硫化物光纤

14.3 晶体光纤

14.3.1 PC光纤

14.3.2 SC光纤

14.4 空心波导

14.4.1 空心金属和塑料波导

14.4.2 空心玻璃波导

14.5 总结和结论

14.6 参考文献

第15章 光纤传感器

15.1 引言

15.2 非本征法布里-珀罗干涉传感器

15.3 本征法布里-珀罗干涉传感器

15.4 光纤布拉格光栅传感器

15.4.1 工作原理

15.4.2 布拉格光栅传感器制造

15.4.3 布拉格光栅传感器

15.4.4 布拉格光栅应变传感器的限制因素

15.5 长周期光栅传感器

15.5.1 工作原理

15.5.2 LPG制造过程

15.5.3 长周期光栅的温度敏感性

15.6 传感方案的比较

15.7 结论

15.8 参考文献

15.9 进一步阅读的资料

第16章 光纤通信标准

16.1 引言

16.2 ESCON

16.3 FDDI

16.4 光纤通道标准

16.5 ATM/SONET

16.6吉比特以太网

16.7 参考文献

光纤通信原理

相关推荐

光纤通信原理

光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信.中国光纤通信已进入实用阶段。光纤通信的发展史:光纤通信的诞生和发展是电信史上的一次重要革命与卫星通信、移动通信并列为20世纪90年代的技术。进入21世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量(超高速和超长距离)光波传输系统和网络有了更为迫切的需求。光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。
2023-08-06 04:17:041

光纤通信基本原理介绍

  1、光纤通信的原理就是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤经过光的全反射原理传送;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。   2、光纤通信(Fiber-optic communication),也作光纤通讯。光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式,首先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。光经过调变后便能携带资讯。自1980年代起,光纤通讯系统对于电信工业产生了革命性 ,同时也在数位时代里扮演非常重要的角色。光纤通信传输容量大,保密性好等优点。光纤通信现在已经成为当今最主要的有线通信方式。
2023-08-06 04:17:221

光纤传输原理

光纤通信是利用光波在光纤中传输信息的一种通信方式。由于激光具有高方向性、高相干性、高单色性等明显优势,所以光纤通信中的光波主要是激光,所以又称为激光-光纤通信。光纤通信的原理是:在发射端,要先把传输的信息(如语音)转换成电信号,然后调制在激光器发出的激光束上,使光的强度随电信号的幅度(频率)而变化,再通过光纤发送出去;在接收端,探测器接收到光信号后将其转换成电信号,解调后恢复出原始信息。光纤通信是现代通信网络的主要传输手段。它的发展历史只有一二十年,经历了短波长多模光纤、长波长多模光纤、长波长单模光纤三代。光纤通信的采用是通信史上的一次重大变革。美、日、英、法等20多个国家宣布不再建设有线通信线路,致力于发展光纤通信。中国光纤通信已进入实用阶段。
2023-08-06 04:17:311

光纤通信的原理是什么?

光纤通信有很多优点:它传输频带宽、通信容量大;传输损耗低、中继距离长;线径细、重量轻,原料为石英,节省金属材料,有利于资源合理使用;绝缘、抗电磁干扰性能强;还具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点,可在特殊环境或军事上使用。光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息.随着信息技术传输速度日益更新,光纤技术已得到广泛的重视和应用。在多微机电梯系统中,光纤的应用充分满足了大量的数据通信正确、可靠、高速传输和处理的要求。光纤技术在电梯上的应用,大大提高了整个控制系统的反应速度,使电梯系统的并联群控性能有了明显提高。电梯上所使用的光纤通信装置主要由光源、光电接收器和光纤组成。
2023-08-06 04:17:411

什么是光纤通信?试简述其工作原理。

【答案】:以光纤为信道的通信系统称为光纤通信。其工作原理是:由发送电端机将待传送的模拟信号转换成数字信号,再由发送光端机将电信号转换成相应的光信号,并将它送入光纤中传输至接收端。接收光端机将传来的光信号转换成相应的电信号并进行放大,然后通过接收电端机恢复成原来的模拟信号。
2023-08-06 04:17:511

光纤通讯运用什么原理?

光纤通信是运用光反射原理,把光的全反射限制在光纤内部,用光的信号取代传统通信方式中的电信号。但初期的光纤,光在其中传输时损耗很大。因此,要想用它来通信是不可能的。1966年7月,英国标准电信研究所的英籍华人高锟博士和霍克哈姆就光纤传输的前景发表了具有重大历史意义的论文,论文分析了玻璃纤维损耗大的主要原因,大胆地预言,只要能设法降低玻璃纤维中的杂质,就有可能使光纤损耗从每千米1000分贝降低到每千米20分贝,从而有可能用于通信。这篇论文鼓舞了许多科学家为实现低损耗的光纤而努力。1970年,美国康宁玻璃公司的卡普隆博士等三人,经过多次的试验,终于研制出传输损耗仅为每千米20分贝的光纤。这样低损耗的光纤,在当时是惊人的成就,使光纤通信有了实现的可能。
2023-08-06 04:18:021

光纤通信技术的原理是什么?

光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光纤为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。20世纪80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,光纤通信系统,已达现场实验水平,将得到应用。光弧子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。光纤通信的发展极其迅速,至1991年底,全球已铺设光缆563万千米,到1995年已超过1100万千米。光纤通信在单位时间内能传输的信息量大。一对单模光纤可同时开通35000个电话,而且它还在飞速发展。光纤通信的建设费用正随着使用数量的增大而降低,同时它具有体积小,重量轻,使用金属少,抗电磁干扰、抗辐射性强,保密性好等优点。
2023-08-06 04:18:141

光纤通信原理

光纤通信的原理。首先在发送短信要把要传送的信息变成电信号。然后进行加工处理,调制到由激光器发出的激光束上是光的强度,随电信号的频率变化而变化,并通过光纤发送出去。在接收中检测器收到光信号之后,把它转换成电信号,在进行分解处理,也就是解调后恢复原信息。光纤通信的技术主要是现代网络信息的传输手段,中国光纤通信,目前已经进入了使用的阶段。光纤通信与以前的电气通信相比,它的优点在于传输宽带信息的容量损耗低,在制作成本上,重量更轻,原料更便宜,节省了很多金属的材料,并具有较好的绝缘抗电磁干扰性。
2023-08-06 04:18:241

光纤通讯基本原理

  现代的光纤通讯系统多半包括一个发射器,将电讯号转换成光讯号,再透过光纤将光讯号传递。光纤多半埋在地下,连接不同的建筑物。系统中还包括数种光放大器,以及一个光接收器将光讯号转换回电讯号。在光纤通讯系统中传递的多半是数位讯号,来源包括电脑、电话系统,或是有线电视系统。   光纤通讯也称光纤通信,是指一种利用光与光纤传递资讯的方式。属于有线通信的一种。光经过调变后便能携带资讯。自1980年代起,光纤通讯系统对于电信工业产生了革命性的影响 ,同时也在数位时代里扮演非常重要的角色。光纤通信传输容量大,保密性好等优点。光纤通信现在已经成为当今最主要的有线通信方式。将需传送的信息在发送端输入到发送机中,将信息叠加或调制到作为信息信号载体的载波上,然后将已调制的载波通过传输媒质传送到远处的接收端,由接收机解调出原来的信息。
2023-08-06 04:18:471

光纤的工作原理

传输电信
2023-08-06 04:18:595

光纤电缆的原理和作用是什么?

光纤电缆的原理利用光的反射,把信号转换成一些类似光的物质 作用是传输信号
2023-08-06 04:19:322

光纤通讯各部件的作用原理

1 发射器的名字叫光发射机,就是将用电信号来调制光源(LED或LD)而产生光信号,实现了用光波做载波来传递信号。光源实际就是个正偏的pn结,LED利用的是原子的自发辐射;LD利用的是原子的受激辐射,产生激光。一般低速数字通信系统和模拟通信系统采用LED,因为其驱动电路简单且线性度好,高速数字通信系统采用LD,因为激光的光谱窄,色散比LED小2 .1放大器这块,你说的方法叫光电光转换,就是先把光信号用光电探测器转换为电信号(类似于光接收机的核心部分)然后放大电信号,重新驱动发射机产生光信号,实现了光放大。2.2关于放大器,补充一点:现在高速光纤通信系统中一般会采用用密集波分复用(DWDM)实现,要是利用光电光的话就要在放大器的前段先加上个解复用器,后端加上个复用器,因为同一个光源不能产生不同波长的光波,得分别放大。若是通信系统采用密集波分复用的话,每个放大器都会极其复杂。2.3顺便说一下,现在光纤通信教材讲的都是直接用光纤放大器实现全光中继,不用光电光转换。你要是有兴趣的话可以搜索一下掺铒光纤放大器的原理,这个用的非常多。3.接收器叫做光接收机。核心是光电探测器,就是一个反偏的pn结(当然还可以是pin和apd,可以认为是改进的pn结)加上各种放大电路,判决电路等组成。光子被探测器接受产生电子,然后被放大器放大,再由判决器判定信号为0或1。另外,要真正学习光纤通信系统的话最好去弄本教材,可以到网上搜索一下。我说的这些都是非常皮毛的东西…我们的教材有好几百页,就讲了光发射机,光纤,光接收机这几块。
2023-08-06 04:19:411

光纤通信与微波通信在原理上有何不同答案尽量简短一些

光纤通信与微波通信最明显的区别是:光纤通信使用光纤作为载体,利用光来传输光信号,可以传输更高速率的信号。微波通信是通过空间无线微波信号传输信号,容易受空间各种因素干扰,带宽比光纤低很多。
2023-08-06 04:19:511

怎样更快的学会光纤基本原理?

光纤就是一种网络传输方式罢了,由服务器端口接出,目前不清楚是否有测试光纤效果相关设备配套出现。
2023-08-06 04:19:592

光纤通信的原理图

光纤通信也作光纤通讯。光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式,首先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。光经过调变后便能携带资讯。自1980年代起,光纤通讯系统对于电信工业产生了革命性 ,同时也在数位时代里扮演非常重要的角色。光纤通信传输容量大,保密性好等优点。光纤通信现在已经成为当今最主要的有线通信方式。2.光纤通信原理—组成部分  最基本的光纤通信系统由光发信机、光收信机、光纤线路、中继器以及无源器件组成。其中光发信机负责将信号转变成适合于在光纤上传输的光信号,光纤线路负责传输信号,而光收信机负责接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。  (1)光发信机----由光源、驱动器和调制器组成,实现电/光转换的光端机。其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。  (2)光收信机----由光检测器和光放大器组成,实现光/电转换的光端机。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。  (3)光纤线路----其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。  (4)中继器----由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲近行政性。  (5)无源器件----包括光纤连接器、耦合器等,完成光纤间的连接、光纤与光端机的连接及耦合。
2023-08-06 04:20:081

光纤通信原理_光纤传输原理图

光纤通信原理 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。掺铒光纤是在石英光纤中掺入了少量的稀土元素铒(Er)离子的光纤,它是掺铒光纤放大器的核心。从20世纪80年代后期开始,掺铒光纤放大器的研究工作不断取得重大的突破。WDM技术、极大地增加了光纤通信的容量。成为当前光纤通信中应用最广的光放大器件。 光纤放大器是光纤通信系统对光信号直接进行放大的光放大器件。在使用光纤的通信系统中,不需将光信号转换为电信号,直接对光信号进行放大的一种技术。掺铒光纤放大器(EDFA即在信号通过的纤芯中掺入了铒离子Er3 + 的光信号放大器)是1985年英国南安普顿大学首先研制成功的光放大器,它是光纤通信中最伟大的发明之一。 掺铒光纤放大器的工作原理: 铒光纤放大器主要是由一段掺铒光纤(长约10-30m)和泵浦光源组成。其工作原理是:掺铒光纤在泵浦光源(波长980nm或1480nm)的作用下产生受激辐射,而且所辐射的光随着输入光信号的变化而变化,这就相当于对输入光信号进行了放大。研究表明,掺铒光纤放大器通常可得到15-40db的增益,中继距离可以在原来的基础上提高100km以上。那么,人们不禁要问:科学家们为什么会想到在光纤放大器中利用掺杂铒元素来提高光波的强度呢?我们知道,铒是稀土元素的一种,而稀土元素又有其特殊的结构特点。长期以来,人们就一直利用在我学器件中掺杂稀土元素的方法,来改善光学器件的性能,所以这并不是一个偶然的因素。另外,为什么泵浦光源的波长选在980nm或1480nm呢?其实,泵浦光源的波长可以是520nm、650nm、980nm、和1480nm,但实践证明波长980nm的泵浦光源激光效率最高,次之是波长1480nm的泵浦光源。 掺铒光纤放大器的基本结构: EDFA的基本结构,它主要由有源媒质(几十米左右长的掺饵石英光纤,芯径3-5微米,掺杂浓度(25-1000)x10-6)、泵浦光源(990或1480nm LD)、光耦合器及光隔离器等组成。信号光与泵浦光在铒光纤内可以在同一方向(同向泵浦)、相反方向(反向泵浦)或两个方向(双向泵浦)传播。当信号光与泵光同时注入到铒光纤中时,铒离子在泵光作用下激发到高能级上,三能级系统),并很快衰变到亚稳态能级上,在入射信号光作用下回到基态时发射对应于信号光的光子,使信号得到放大。其放大的自发发射(ASE)谱,带宽很大(达20-40nm),且有两个峰值分别对应于1530nm和1550nm。 掺铒光纤放大器的优点: 1.掺铒光纤的放大区域恰好与单模光纤的最低损耗区域相重合。那么,被掺铒光纤放大器放大的光在光纤中的传输损耗小,能传输比较远的距离。2.对数字信号的格式及数据率“透明”。单模光纤损耗谱和掺饵光纤放大器的增益谱 3.放大频带宽,能在同一根光纤中传输几十甚至上百个信道。 4.噪声指数低,接近量子极限,意味着可级联多个放大器。 5.增益饱和的恢复时间长,各个信道间的串扰极小。 掺铒光纤放大器的分类: 1.功率放大器(booster-Amplifier),处于合波器之后,用于对合波以后的多个波长信号进行功率提升,然后再进行传输,由于合波后的信号功率一般都比较大,所以,对一功率放大器的噪声指数、增益要求并不是很高,但要求放大后,有比较大的输出功率。 2.线路放大器(Line-Amplifier),处于功率放大器之后,用于周期性地补偿线路传输损耗,一般要求比较小的噪声指数,较大的输出光功率。 3.前置放大器(Pre-Amplifier),处于分波器之前,线路放大器之后,用于信号放大,提高接收机的灵敏度(在光信噪比(OSNR)满足要求情况下,较大的输入功率可以压制接收机本身的噪声,提高接收灵敏度),要求噪声指数很小,对输出功率没有太大的要求。 掺铒光纤放大器的应用: 掺铒光纤放大器在常规光纤数字通信系统中应用,可以省去大量的光中继机,而且中继距离也大为增加,这对于长途光缆干线系统具有重要意义。其主要应用包括:1、可作光距离放大器。传统的电子光纤中继器有许多局限性。如,数字信号和模拟信号相互转换时,中继器要作相应的改变;设备由低速率改变成高速率时,中继器要随之更换;只有传输同一波长的光信号,且结构复杂、价格昂贵,等等。掺铒光纤放大器则克服了这些缺点,不仅不必随信号方式的改变而改变,而且设备扩容或用于光波分复用时,也无需更换。2、可作不发送机的后置放大器及光接收机的前置放大器。作光发送机的后置放大器时,可将激光器的发送功率从0db提高到+10db。作光接收机的前置放大器时,其灵敏度也可大大提高。因此,只需在线路上设1-2个掺铒放大器,其信号传输距离即可提高100-200km。此外,掺铒光纤放大器待解决的问题掺铒光纤放大器的独特优越性已被世人所公认,并且得到越来越广泛的应用。但是,掺铒光纤放大器也存在着一定的局限性。比如,在长距离通信中不能上下话路、各站业务联系比较困难、不便于查找故障、泵浦光源寿命不长,随着光纤通信技术的不断进步,这些问题将会得到完满的解决。 应用物理05号罗尧
2023-08-06 04:20:161

光纤传输数据的原理是什么?

光电转换,光信号,转换为电信号认为定义光在某个特性下的意思,然后一一对应即可传输就像文字能表达意思,原因是,某个文字有它对应的含义问:为何光纤速度快?原理解析篇!答:一说到“光纤”,人们首先就会联想到与铜线传导电信号相比,其数据传输速度更快。这是为什么呢?下面就来介绍一下这方面的情况。光具有每秒可环绕地球7圈半的速度。也许有人认为这一点是光通信比使用铜线的电通信快的原因,其实完全错了。因为通信中所说的速度不是信号传输的快慢,而是传输数据的能力。仅从信号传输的速度来看,在铜线中传导的电信号与在光纤中传导的光信号并没有太大的差别。但在相同时间里,使用光纤通信的线路所传输的数据量远大于铜线,所以速度就快。在光纤通信中,发送方将电信号转换成了激光的闪烁(即激光信号)。要想在短时间内传输大量的信息,就要增加闪烁次数。也就是说,短时间内能够多大程度地使激光闪烁,将决定数据传输速度的高低。使用铜线传导电信号时原理也是如此。通过打开和关闭电信号,或反转正、负极性,来传输数据。能多大程度地更快地打开和关闭电信号、反转电极极性,将决定其数据传输速度。两者的不同就在于光纤打开和关闭信号的速度(即频率)极限远远高于铜线。这就是使用光纤能够进行高速通信的最主要的原因。使用铜线的通信不仅是电信号的打开和关闭,还通过各种方法提高传输速度。使用双绞线的千兆位以太网,通过详细地改变电压值,可一次传输5位信息,而不是打开和关闭的2位信息,而且还通过把4对双绞线组成一束实现了1Gbit/秒的传输速度。千兆位以太网的传输方式可以说作为电信号通信技术现今为止已经接近了极限。而光纤通信使用一根光纤就已经实现了相当于千兆位的1000倍的Tbit /秒级通信。而且,光纤通信速度目前远远没有达到极限。据美国贝尔实验室2001年6月公布的估算结果称,从理论上来讲在光纤通信中足以实现100Tbit/秒的传输速度。现有技术丝毫没有充分发挥光纤的潜力。与已经接近极限的电信号通信技术相比,光纤通信技术仍有巨大的发展空间。从电信号通信技术发展历程来看光纤通信技术的发展阶段,目前的光通信技术可以说只相当于十几年前1200bit/秒的调制解调器。
2023-08-06 04:20:261

论述光纤通信的基本原理,系统构成和关键技术

fahtyjkyufcgbhsnjdghkmk,yuyt
2023-08-06 04:20:372

哪位高手,谢谢,帮帮忙!!!!!!!!!光纤通信原理!急急急!!!!!!!

1 光纤通信的三个低损耗窗口是1310nm、850nm、__________μm。C 1.55 2 由于光纤通信中采用介质波导来传输信号,而且光信号又是集中在纤芯中传输的,因此光纤通信具有很强的__________能力。B 抗电磁干扰 3 均匀平面波在均匀介质中传播时,其E和H是一个随时间和空间作__________变化的波。B 谐振 4 阶跃型光纤的单模传输条件是__________,所传单模为__________。C 0>V>2.40483,LP01 5 在渐变型光纤中不同射线具有相同轴向速度的现象称为__________。B 自聚焦 6 渐变型光纤的最佳折射指数分布是指__________型折射指数分布。D 平方律 7 色散位移单模光纤是指工作波长为__________nm的单模光纤,在该波长上可获得最小衰减和最小色散。A 1550 8 单模光纤的色散包括__________和__________。C 材料色散、波导色散 9 表示光纤色散程度的物理量是__________。C 时延差 10 费米能级Ef可视为能级被电子占据的界限,它是反映物质中电子在各能级上__________的参量。A 分布 11 处于高能级E2的电子,在未受外界激发的情况下,自发地跃迁到低能级E1,从而发射出一个能量为hf(= E2-E1)的光子的过程称为__________。A 自发辐射 12 激光器的阈值条件只决定于__________。B 光学谐振腔的固有损耗 13 随着激光器温度的上升,其阈值电流会变________,输出光功率会变__________。B 大、小 14 光电检测器是利用材料的__________,来实现光电转换的器件。B 光电效应 15 为了使雪崩光电二极管APD正常工作,在其P-N结上应加__________。C 低反向偏压 D 高反向偏压 (不知道是那一个了)16 __________是描述光电检测器光电转换能力的一种物理量。B 转换效率 17 EDFA结构中,掺铒光纤中的铒离子有__________个工作能级。 C 4 18 EDFA结构中,用于防止反射光影响光放大器的工作稳定性,保证光信号正向传输的器件是__________。B 光隔离器
2023-08-06 04:20:441

光纤通信原理

研究生课程
2023-08-06 04:21:051

光纤是利用什么原理传输光信号的?

(1)通信容量大、传输距离远;一根光纤的潜在带宽可达20THz。采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。目前400Gbit/s系统已经投入商业使用。光纤的损耗极低,在光波长为1.55μm附近,石英光纤损耗可低于0.2dB/km,这比目前任何传输媒质的损耗都低。因此,无中继传输距离可达几十、甚至上百公里。 (2)信号干扰小、保密性能好; (3)抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。 (4)光纤尺寸小、重量轻,便于铺设和运输; (5)材料来源丰富,环境保护好,有利于节约有色金属铜。 (6)无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。 (7)光缆适应性强,寿命长。 (8)质地脆,机械强度差。 (9)光纤的切断和接续需要一定的工具、设备和技术。 (10)分路、耦合不灵活。 (11)光纤光缆的弯曲半径不能过小(>20cm) (12)有供电困难问题。 利用光波在光导纤维中传输信息的通信方式.由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信.
2023-08-06 04:21:152

光纤通信原理难么

相比无线通信,就是传输信道不同,因此在DSP算法上,大部分无线算法与光纤通信一致,在涉及到光纤信道的部分,比如色散,偏振,光纤非线性等的补偿均衡上算法有差异。另外光载波一般在193.1THz,传输带宽比无线通信大,目前可以做到单波100G/200G/400G/600G,800G有演示系统。调制方式上,根据成本和传输容量.距离的不同可以选择相干或是非相干的调制方式,例如接入网对成本要求较高,传输距离一般25km以内,通常会选择非相干的方式,采用EML/DML等激光器。而数据中心通常采用DML/VCSEL激光器,传输距离一般几十米。
2023-08-06 04:21:253

光纤是什么 深入了解光纤的原理和应用?

光纤还应用于航空航天领域。由于光纤具有抗干扰的优点,因此可以用于飞机和卫星等设备的通信和控制系统中。光纤还应用于航空航天领域。由于光纤具有抗干扰的优点,因此可以用于飞机和卫星等设备的通信和控制系统中。光纤的核心部分是由折射率较高的材料制成,而外部包覆的是折射率较低的材料,当光线从核心部分射入时,由于两种材料的折射率不同,光线会在核心部分发生多次全反射,从而不断地向前传输。总之,光纤是一种非常重要的光学导体,它的应用领域十分广泛。随着人们对通信速度和容量的需求不断提高,光纤的应用前景也将越来越广阔。光纤还应用于航空航天领域。由于光纤具有抗干扰的优点,因此可以用于飞机和卫星等设备的通信和控制系统中。光纤的核心部分是由折射率较高的材料制成,而外部包覆的是折射率较低的材料,当光线从核心部分射入时,由于两种材料的折射率不同,光线会在核心部分发生多次全反射,从而不断地向前传输。
2023-08-06 04:21:332

求光纤传输数据的原理?

光纤传输,即以光导纤维为介质进行的数据、信号传输。光导纤维,不仅可用来传输模拟信号和数字信号,而且可以满足视频传输的需求。光纤传输一般使用光缆进行,单根光导纤维的数据传输速率能达几Gbps,在不使用中继器的情况下,传输距离能达几十公里。传输过程是由发光二极管LED或注入型激光二极管ILD发出光信号沿光媒体传播,在另一端则有PIN或APD光电二极管作为检波器接收信号。对光载波的调制为移幅键控法,又称亮度调制(Intensity Modulation)。典型的做法是在给定的频率下,以光的出现和消失来表示两个二进制数字。发光二极管LED和注入型激光二极管ILD的信号都可以用这种方法调制,PIN和ILD检波器直接响应亮度调制。功率放大:将光放大器置于光发送端之前,以提高入纤的光功率。使整个线路系统的光功率得到提高。在线中继放大:建筑群较大或楼间距离较远时,可起中继放大作用,提高光功率。前置放大:在接收端的光电检测器之后将微信号进行放大,以提高接收能力。
2023-08-06 04:21:442

光纤通信原理以及性能影响因素是什么?

光纤发射机将数字信号转化为光脉冲,光脉冲在光纤内利用全反射进行传输,到达接收机后,光脉冲又被还原成数字信号。光在光纤中传输会发生衰减,衰减过大的情况下,会导致误码率增高,信息传输丢包,其他的光纤参数对光纤传输性能的影响不大。
2023-08-06 04:21:551

光纤通信和微波通信的原理区别

一个用激光一个用微波,一个是有线一个是无线。呵呵为了2分真正的答案楼下接吧
2023-08-06 04:22:052

简述波分复用光纤通信系统的工作原理。

【答案】:波分复用(WDM)是指在一根光纤上,同时传输波长不同的多个光载波信号,而每一个光载波可以通过频分复用(FDM)或时分复用(TDM)方式,各自载荷多路模拟信号或多路数字信号。目前单模光纤的工作波长由两个,即1.3 、1.55 ,这两个波长的低损耗区共约,相当的频带宽度,而每个激光管的带宽只有几埃到几十埃,因而,如一根光纤只传输 一个光源的信号,那就只利用了这一巨大带宽的极小部分。采用波分复用方式可以充分的利用光纤具有丰富的频带资源,极大的增加光纤线路的通信容量。N个光发射机分别发射N个不同波长,经过光波分复用器WDM合到一起,耦合进单根光纤中传输。到接收端,经过具有光波长选择功能的解复用器DWDM,将不同波长的光信号分开,送到N个光接收机接收 。
2023-08-06 04:22:261

光纤是用什么原理?光是怎样将转化成其它形式的信号?

简单点说 一端是电信号转化为光(发光元件 如发光2几管) 另一端光信号转化成电(太阳能电池见过吧)
2023-08-06 04:22:353

自愈式环网光纤通信的工作原理

如果你是收发分离的光模块,可以通过两根光纤分别将发射端口及接收端口接到衰减器,调整衰减量看是否可以通信。如果是单纤双向的模块,由于收发波长不同,不能实现光自环,必须通过外接光源来实现。希望我的回答对您有帮助!
2023-08-06 04:23:471

网络技术:什么是光纤通信

光纤通信技术从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。   光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。光纤通信之所以发展迅猛,主要缘于它具有以下特点: (1)通信容量大、传输距离远; (2)信号串扰小、保密性能好; (3)抗电磁干扰、传输质量佳; (4)光纤尺寸小、重量轻,便于敷设和运输; (5)材料来源丰富,环境保护好; (6)无辐射,难于窃听; (7)光缆适应性强,寿命长。
2023-08-06 04:23:541

光通信原理与技术有那些?

光通信,即光纤通信,英文名称为Optical Communication,是一种以光波为载体,以光纤为传输媒介的通信方式,其过程为:调制装置将原始信息转变为电信号,再经发送端转变为光信号;其次,将处理后的光信号送至光纤等光学信道中进行传输;最后,接收端接受信道中的光信号,将其转换为电信号,并通过解调装置恢复原始信息。常用的光通信技术有:大气激光通信、光纤通信、蓝绿光通信、红外线通信、紫外线通信等
2023-08-06 04:24:041

光纤通信的原理是什么?

光的反射
2023-08-06 04:24:287

光纤通信的工作原理是什么

1、光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息.2、光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信.中国光纤通信已进入实用阶段.3、光纤通信的诞生和发展是电信史上的一次重要革命与卫星通信、移动通信并列为20世纪90年代的技术。进入21世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量(超高速和超长距离)光波传输系统和网络有了更为迫切的需求。4、光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。5、通信的发展过程是以不断提高载波频率来扩大通信容量的过程,光频作为载频已达通信载波的上限,因为光是一种频率极高的电磁波 ,因此用光作为载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,光通信是人们早就追求的目标,也是通信发展的必然方向。6、光纤通信与以往的电气通信相比,主要区别在于有很多优点:它传输频带宽、通信容量大;传输损耗低、中继距离长;线径细、重量轻,原料为石英,节省金属材料,有利于资源合理使用;绝缘、抗电磁干扰性能强;还具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点,可在特殊环境或军事上使用。
2023-08-06 04:24:471

光纤传输的基本原理是什么?

光的全反射的原理光纤通信是利用光波在光导纤维中传输信息的通信方式。由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信。光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤。采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信。中国光纤通信已进入实用阶段。
2023-08-06 04:25:031

光纤通信利用什么原理?

光的全反射
2023-08-06 04:25:132

光纤通信基本原理介绍 光纤通信简介

1、光纤通信的原理就是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤经过光的全反射原理传送;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。 2、光纤通信(Fiber-optic communication),也作光纤通讯。光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式,首先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。光经过调变后便能携带资讯。自1980年代起,光纤通讯系统对于电信工业产生了革命性 ,同时也在数位时代里扮演非常重要的角色。光纤通信传输容量大,保密性好等优点。光纤通信现在已经成为当今最主要的有线通信方式。
2023-08-06 04:25:201

光纤通信原理

我高中学了点、、。。内层的折射率大于外层折射率,光传到那去就会发生全反射,速度很快。
2023-08-06 04:25:316

光纤通讯运用什么原理?

光纤通信是运用光反射原理,把光的全反射限制在光纤内部,用光的信号取代传统通信方式中的电信号。但初期的光纤,光在其中传输时损耗很大。因此,要想用它来通信是不可能的。1966年7月,英国标准电信研究所的英籍华人高锟博士和霍克哈姆就光纤传输的前景发表了具有重大历史意义的论文,论文分析了玻璃纤维损耗大的主要原因,大胆地预言,只要能设法降低玻璃纤维中的杂质,就有可能使光纤损耗从每千米1000分贝降低到每千米20分贝,从而有可能用于通信。这篇论文鼓舞了许多科学家为实现低损耗的光纤而努力。1970年,美国康宁玻璃公司的卡普隆博士等三人,经过多次的试验,终于研制出传输损耗仅为每千米20分贝的光纤。这样低损耗的光纤,在当时是惊人的成就,使光纤通信有了实现的可能。
2023-08-06 04:25:501

光纤通信原理

光纤通信的原理。首先在发送短信要把要传送的信息变成电信号。然后进行加工处理,调制到由激光器发出的激光束上是光的强度,随电信号的频率变化而变化,并通过光纤发送出去。在接收中检测器收到光信号之后,把它转换成电信号,在进行分解处理,也就是解调后恢复原信息。光纤通信的技术主要是现代网络信息的传输手段,中国光纤通信,目前已经进入了使用的阶段。光纤通信与以前的电气通信相比,它的优点在于传输宽带信息的容量损耗低,在制作成本上,重量更轻,原料更便宜,节省了很多金属的材料,并具有较好的绝缘抗电磁干扰性。
2023-08-06 04:26:001

光纤通信技术的原理是什么?

光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。光模块的作用就是光电转换,发送端把电信号转换成光信号,通过光纤传送后,接收端再把光信号转换成电信号。有民用的例如光猫,光端机,还有工业级Profibus-DP光纤模块。一般应用在以太网电缆无法覆盖、必须使用光纤来延长传输距离的实际网络环境中,且通常定位于宽带城域网的接入层应用;
2023-08-06 04:26:222

我想知道光纤传输的基本原理

光的全反射。然后就是光电转换器的工作了。
2023-08-06 04:26:334

光纤传输的基本原理是什么?

光的全反射的原理x0dx0ax0dx0a光纤通信是利用光波在光导纤维中传输信息的通信方式。由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信。x0dx0ax0dx0a光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。x0dx0ax0dx0a光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤。采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信。中国光纤通信已进入实用阶段。
2023-08-06 04:27:031

光纤通信是用什么原理来传输的?

光纤通信有很多优点:它传输频带宽、通信容量大;传输损耗低、中继距离长;线径细、重量轻,原料为石英,节省金属材料,有利于资源合理使用;绝缘、抗电磁干扰性能强;还具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点,可在特殊环境或军事上使用。光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息.随着信息技术传输速度日益更新,光纤技术已得到广泛的重视和应用。在多微机电梯系统中,光纤的应用充分满足了大量的数据通信正确、可靠、高速传输和处理的要求。光纤技术在电梯上的应用,大大提高了整个控制系统的反应速度,使电梯系统的并联群控性能有了明显提高。电梯上所使用的光纤通信装置主要由光源、光电接收器和光纤组成。
2023-08-06 04:27:111

光纤通讯基本原理

光纤通讯就是以光导纤维做传输载体的通讯形式!把要传输的模拟或数字讯号调制为光波讯号!由光导纤维组成的光缆进行传输!在终端进行解调还原!这就是光纤通讯!光纤通讯的最大优势是其载承容量是传统导线的数百至上千倍!解决了现代通讯的庞大信息传输量!
2023-08-06 04:27:522

光纤工作原理

反射
2023-08-06 04:28:029

光纤通信原理图

1、光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。2、随着信息技术传输速度日益更新,光纤技术已得到广泛的重视和应用。在多微机电梯系统中,光纤的应用充分满足了大量的数据通信正确、可靠、高速传输和处理的要求。光纤技术在电梯上的应用,大大提高了整个控制系统的反应速度,使电梯系统的并联群控性能有了明显提高。电梯上所使用的光纤通信装置主要由光源、光电接收器和光纤组成。
2023-08-06 04:28:421

光纤检测缺陷原理

光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,可作为光传导工具。传输原理是“光的全反射”。前香港中文大学校长高锟和George A. Hockham首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖。微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤的一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。在日常生活中,由于光在光导纤维的传导损耗比电在电线传导的损耗低得多,光纤被用作长距离的信息传递。通常光纤与光缆两个名词会被混淆。多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆。光纤外层的保护层和绝缘层可防止周围环境对光纤的伤害,如水、火、电击等。光缆分为:缆皮、芳纶丝、缓冲层和光纤。光纤和同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。在多模光纤中,芯的直径是50μm和62.5μm两种, 大致与人的头发的粗细相当。而单模光纤芯的直径为8μm~10μm,常用的是9/125μm。芯外面包围着一层折射率比芯低的玻璃封套, 俗称包层,包层使得光线保持在芯内。再外面的是一层薄的塑料外套,即涂覆层,用来保护包层。光纤通常被扎成束,外面有外壳保护。 纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。说明:9/125μm指光纤的纤核为9μm,包层为125μm,9/125μm是单模光纤的一个重要的特征,50/125μm指光纤的纤核为50μm,包层为125μm,50/125μm是多模光纤的一个重要的特征。其中金砖国家光缆计划是直接连通5个金砖国家的海底光缆项目,将于2014年初开工,2015年中启用。该项目总长3.4万千米,其中直接连通5个金砖国家的海底光缆长约2.4万千米。2013年,全球100G光纤的收入预计将首次超过10亿美元。该公司分析了2013年一季度全球光网络市场的财务结果,发现了一些趋势,包括一个令人失望的趋势,即市场的总体增长仍然是困难的,只有日本的富士公司利润逐年增长。虽然光纤市场在第一季度出现衰退的情况并不少见,但这次下降令人担忧是因为这已经是连续第五个季度市场有所下降,并且季度收入达到六年来的最低值。100G光纤的情况较为乐观,不管环比、同比都表现出强劲增长。2013年一季度,100G光纤的出货量较2012年四季度增长了41%,收入较2012年四季度增长了24%。以此计算,年收入有望首次超过10亿美元。2013年一季度,有20家供应商出售100G光纤,将有更多的厂商加入市场竞争。供应商持谨慎乐观的态度,短期订单量看涨,长期订单量并不乐观。
2023-08-06 04:28:512

光纤照明的原理是什么呀!

无损光的传输
2023-08-06 04:29:035

光纤作为光纤通信的介质,主要利用了什么原理?

看那个回复最多的吧
2023-08-06 04:29:244

光纤的特点和原理

光纤通信是利用光波在光导纤维中传输信息的通信方式。由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信。 光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。 光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤。采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信。中国光纤通信已进入实用阶段。
2023-08-06 04:29:353