barriers / 阅读 / 详情

有源滤波器?

2023-08-18 00:07:51
TAG: 滤波器
共1条回复
苏州马小云

问题一:有源滤波与无源滤波有什么区别? 呵呵

胆 区别大着呢。

简单说,无源滤波器,就是电容器+电抗器(即:电感器)的组合,利用LC谐振原理滤波。

有源滤波器,实际上是一个电子式谐波发生器,它产生一个与电网谐波的:幅度相同,方向相反的谐波,去抵消电网的谐波。

问题二:有源电力滤波器的作用是什么? 有源滤波器是通过实时监测谐波信号,然后发出幅值相等,相位相同,方向相反的电流,来抵消谐波电流的。它的主要作用除了滤除谐波,还可抑制闪变、补偿无功等。领步公司可以帮您解决这所有的问题,详情请百度了解。

问题三:有源滤波器的优缺点 优点:可动态滤除各次谐波,对系统内的谐波能够完全吸收;不会产生谐振。缺点:造价太高;受硬件限制,在大容量场合无法使用:有源滤波容量单套不超过100KVA,目前最高适用电网电压不超过690V。

问题四:国内外有源滤波器价格大概多少?差异很大吗? 确实有很大差异,进口的要比国产的贵很多。

问题五:有源滤波器多少钱? 有源滤波器的价格差别特别的大,按电流计的,每A从国产的三百元左右到进口的两千元左右不等,看你预算是多少了,进口的质量确实好些,但是性价比未必高,只知道这些,但愿对你有用。

问题六:什么是有源滤波?什么是无源滤波?"源"指什么? 无源滤波电路:若滤波电路仅由无源元件(电阻、电容、电耿)组成。

有源滤波电路:若滤波电路不仅由无源元件,还由有源元件(双极型管、单极型管、集成运放)组成。

有源电路说白点就是元件必须有工作电源支持。无源电路中的器件不需要工作电源支持。

这里可理解源就是电源。

无源电路中的信号如果没有外部信号补充最后将衰减为零,有源元件定义为可以给外部电路提供大于零的平均功率的元件,而且该平均功率可以持续无限长的时间;反之,则是无源元件。 这时候可理解源就是有源元件提供的信号源。

问题七:什么叫有源滤波电路 什么叫无源滤波 分别是怎样定义的?? 说简单直接一点,有源滤波器就是需要有电源输入,需要提供额定的电压,或者有一穿电调滤波器可以根据输入电压的变化决定滤波器的通带。

而无源滤波器,看名字就知道了,不需要电源输入,直接2个引脚 ,一个输入一个输出就完了。

问题八:国内目前有源滤波器市场如何?怎么价格差距那么大? 近几年,由于国家电力监管部门和企业对电能质量越来越重视,使得电能质量行业如雨后春笋般的发展起来。但是在这些兴起的企业中,绝大多数是没有生产能力、实力薄弱的中央商;甚至有的即便是厂商,也由于市场份额的原因,把同类产品的价格拉到最低,导致整个市场价格差距巨大。

很多不懂行情的用户只拿价格来比较,但是却忽略了产品本身的稳定性和后期的技术服务。在这里还是建议广大企业根据自身情况,选择经验丰富、综合实力强大、产品稳定性好的厂商,不管是国外品牌施耐德、ABB,还是国内品牌北京领步、上海思源,都是可以信得过的大品牌。

问题九:无源滤波器和有源滤波器哪个好 你要看鸡用场合啊,从功能上讲,有源滤波器的应用范围更大,滤波效果相较也更好些,但是有源滤波器的价格是无源滤波器的好几倍,这也是个问题。

一般现在市面上的无源滤波器主要都是针对单次(如5次,7次)来做滤波,在一些较为简单的系统,或系统某次谐波严重,其他谐波没有太大影响,负荷变化不是很大的情况下是经常被应用的。因为无源滤波器在滤波的同时也可以做无功补偿,而且价格较为实惠,所以在其能胜任的场合选用无源滤波器是非常不错的选择。

有源滤波应用范围更广,除无源滤波器应用的场合其可以应用以外,在一些系统要求很高,负荷变化快,环境更恶劣的情况下,这个时候无源已经不能解决问题了,最好的选择就是使用有源滤波器。

希望能对你有帮助,谢谢!

相关推荐

有源滤波器原理是什么

有源滤波器原理有源滤波器是一种电子电路,其主要功能是通过改变输入信号的频率分布来控制信号的特性。它通过使用电子元件(如电阻、电容和二极管)来实现滤波效果。有源滤波器可以分为两类:高通滤波器和低通滤波器。高通滤波器通过通过频率高的信号,而抑制频率低的信号;低通滤波器通过通过频率低的信号,而抑制频率高的信号。有源滤波器的性能取决于多种因素,包括元件的类型、规模和排列方式。滤波器的类型(例如带通、带阻、带通带阻等)可以用来控制信号的特性,并确定它们适用于特定的应用场景。总的来说,有源滤波器是一种重要的电子电路,在很多领域,如音频、通信和控制系统等中都被广泛使用。
2023-08-10 13:48:151

有源电力滤波器的工作原理是什么

摘要:有源电力滤波器的工作原理是通过电流互感器检测负载电流,计算并提取出谐波成分,然后产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。通过原理,我们可以知道有源电力滤波器的作用有实时谐波治理,动态补偿无功,消除三相不平衡等。具体的有源电力滤波器的工作原理是什么以及有源电力滤波器的作用有哪些,继续阅读寻找答案吧!一、有源电力滤波器的工作原理是什么有源电力滤波器通过电流互感器检测负载电流,并通过内部DSP计算,提取出负载电流中的谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,有源电力滤波器还能对不对称三相电路的负序电流分量进行补偿。二、有源电力滤波器的作用有哪些原理是为作用服务的,那么你知道有源电力滤波器的作用有哪些吗?有源电力滤波器的作用是实时谐波治理,动态补偿无功,消除三相不平衡,提高功率因数,节约电能延长电力设备的使用寿命,保持生产供电的连续性和稳定性及安全性,提高生产效率等。有源电力滤波器的工作原理是什么以及有源电力滤波器的作用有哪些的相关内容就介绍到这,相信你已经有了一个更深入的了解,主页还有更多相关知识,欢迎点击查看哦!
2023-08-10 13:48:231

APF电力有源滤波器基本原理

通过实时检测负载电流波形,检测出其中的谐波电流,通过IGBT的触发,将与该谐波电流大小相等方向相反的补偿电流注入供电系统中,实现滤除(抵消)谐波、动态补偿系统无功与电压波动、抑制谐振、提高功率因数等功能,从而达到提高供电系统安全性、节能降耗的目的。断路器合闸后,SntaAPF首先通过预充电电阻对直流母线的电容器充电,即为防止上电后对直流母线电容器的瞬间冲击,8秒钟后,当母线电压Vdc达到额定值后,主接触器闭合。直流电容为储能元件,为通过IGBT逆变器和内部电抗器向外输出补偿电流提供能量。同时,直流电容器通过电源变化板向内部检测与控制板提供工作电源。SntaAPF通过外部CT采集电流信号送至谐波检测模块,该模块将基波与谐波分离,将谐波成分送至检测模块,该模块将采集到的负载谐波成分和SntaAPF输出补偿电流比较,得到的差值作为实时补偿信号输出到驱动电路,由SntaAPF将补偿电流注入到电网中,实现滤除谐波功能。
2023-08-10 13:48:355

有源滤波器的工作原理

有源滤波器是并联谐波补偿装置。利用外部电流互感器实时监测负载电流,内部DSP计算负载电流的谐波含量,并将控制信号发送给逆变器。控制逆变器产生一个注入电网的谐波电流,等于负载的谐波电流和反方向的谐波电流,实现了有源滤波功能。
2023-08-10 13:49:002

有源滤波器和无源滤波器的原理是什么及区

有源滤波器和无源滤波器是两种不同类型的电路,用于对电信号进行滤波处理。有源滤波器是一种使用电子元件(如电阻、电容、电感等)来创建的滤波器,并使用外部电源来驱动电路。有源滤波器可以用来创建高通滤波器、低通滤波器、带通滤波器等不同类型的滤波器。无源滤波器是一种使用阻抗匹配技术的滤波器,不需要外部电源就能工作。无源滤波器主要用于带宽较窄的应用,例如电视信号的滤波。区别:1.工作原理不同:有源滤波器使用电子元件来创建滤波器,而无源滤波器使用阻抗匹配技术。2.使用电源不同:有源滤波器需要外部电源来驱动电路,而无源滤波器不需要。3.应用不同:有源滤波器可用于创建多种类型的滤波器,适用于带宽较宽的应用,而无源滤波器主要用于带宽较窄的应用,例如电视信号的滤波。
2023-08-10 13:49:161

有源滤波器的基本原理

有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。它由指令电流运算电路和补偿电流发生电路两个主要部分组成。指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。技术优势  绿色化效率达97.2%,比效率为95%的有源滤波器年节约电能约6, 500kwh效率更高的拓扑增强型控制算法基于精确模型的热设计和结构优化小型化体积仅为同类主流品牌1/6,占用更少空间 ,活适应不同的工况安装创新,壁挂式或机架式安装使用更少的原材料,保护环境智能化补偿指定次数谐波可调感性、容性无功补偿补偿系统不平衡负载自动检测、抑制系统谐振全功能监控系统模块化N+1冗余,显著提高系统可靠性流水线生产 , 更出色质量保证减少系统单故障点灵活并联,适应不同工况功能特性同时滤除2~50次谐波,或选择2~50次内任意次数谐波进行补偿 响应时间小于300μs采用3DSP+CPLD全数字控制方式和国际知名品牌高速IGBT,闭环控制,精确滤除谐波应用四相线技术,消除中性线电流自动消除谐振,不受电网阻抗和系统阻抗变化影响 具有补偿谐波;同时补偿谐波和无功;同时补偿谐波,无功和负 载三相电流不平衡三种工作模式电子式过负荷保护逆变器控制具备了机器快速的FPGA,功率数字信号处理功能模块化设计,易于扩展 多机并联集中监控功能 远程网络监控功能维护方便,在符合要求的工作环境下工作,非机器故障无需维护产品设计标准国际标准EN 50091-3, EN 61000-6-2, EN55011, EN 50178:1997, IEC 62040-3, IEC 50178:1997, AS 62040-3(VFI SS 111), CISPR11国家标准GB/T14549-93《电能质量:公用电网谐波》GB/T15543-1995 《电能质量:三相电压允许不平衡度》GB/T15945-1995 《电能质量:电力系统频率允许偏差》GB/T12326-2000 《电能质量:电压波动和闪变》GB/T12325-2003 《电能质量:供电电压允许偏差》GB/T18481-2001 《电能质量:暂时过电压和瞬态过电压》GB/T15576-2008 《低压成套无功功率补偿装置》GB7625.11998 《低压电气电子产品发出的谐波电流限值》GB 4208-2008《外壳防护等级(IP代码)》电压输入范围额定工作电压为380V,可承受-40%~+20%的电压波动,频率为50/60Hz, 可承受+/-5%的频率波动,适应各种不同工况的电能质量环境。同时,如果电压波动超过上下限,机器自动闭锁输出,并 发出告警。自动限流自动限定在额定容量范围内100%输出,如果负载侧谐波电流大于机 器额定容量,机器会在额定容量内继续输出电流补偿谐波,不会发生过载导致自身超载或退出运行。负载短路保护可承受负载瞬间短路的冲击,在短路消除后重新启动。并联独立控制并联接入电网,不会因机器故障导致电网发生断电事故。多台YW-APF有源电力滤波器并联系统,如果一台因故障退出运行,剩余的 机器仍能正常工作实现滤波功能。三相电流独立控制各相电流独立控制,单相注入电流,不受系统三相电流不平衡影响,中性线滤波能力为相线的三倍。IP防护等级及防雷保护IP保护等级为IP20;防雷保护能力为20kA。监控系统系统具备快速、完全的故障自检功能,包括市电欠压或过压、母线 过压或过流、风扇故障、功率器件过温、输入保险丝熔断等各种故障自检,所有故障均通过LCD显示屏及LED运行状态灯发出告警信号,同时机器自动采取相对应的操作保护系统。 监控系统在供电或断电情况下可保存500条故障记录,便于分析原因 及排除故障。
2023-08-10 13:49:251

有源谐波滤波器工作原理?

研究生我就是研究滤波的,我解释通俗一点吧,无源滤波器用的是过滤的方式,有源滤波器用的是补偿的方式,就是输出反向的谐波电流来“抵消”负荷的谐波电流,在电力系统应用场合主要是一些谐波大小随机变化的设备,典型的就是冶金用的中频炉和电力机车所产生的负荷,在国内现在是辽宁的那个厂比较厉害,不过说句老实话,用处并不大,我个人觉得性价比太低。
2023-08-10 13:49:422

主要有源滤波器消除谐波的工作原理

简单的pi控制:用检测量和给定值做差之后输入pi控制器,输出量进行调制形成pwm波驱动igbt
2023-08-10 13:50:002

有源滤波器的基本概念

您是不是想知道有源滤波器的工作原理呢?有源滤波器通过外部电流互感器CT,实时检测负载电流,并通过内部DSP计算,提取出负载电流的谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波大小相等、方向相反的电流注入到电网中补偿谐波电流,实现滤波功能。
2023-08-10 13:50:232

求大家给我分析分析有源低通滤波器的工作原理,R1,R2,C1,C2,放大器各有什么作用,怎么实现滤波?谢谢

电容器通交流 阻挡直流我的电子技术学完都很多年了 实在是想不起来了貌似你这个问题很简单的不妨翻一下教科书吧
2023-08-10 13:50:394

无源和有源滤波器各有什么特点

机器电脑 摘录的比较详细了,他们各自的优缺点都列明了,还有一点就是哪种滤波器都不是万能的,具体用哪种?针对你的场合适用不适用要具体问题具体分析的。
2023-08-10 13:50:544

有源滤波器和无源滤波器的区别

有源的用了非线性原件可有放大作用,故可体积小很多。无源的用起器件简单,不太要求体积处用起很方便。
2023-08-10 13:51:163

直流电源为什么要滤波?

不滤波,后道的用电器件会工作不稳定,发热量大,寿命严重缩短。
2023-08-10 13:51:295

制作二阶有源低通滤波器的意义

通过数学建模,我们将物理世界中的电路抽象成了一个数学表达式,从而对该电路的本质原理有了清晰精确、定量化的理解,同时数学模型指导了我们如何去改造这个电路,以到达具体的滤波目的。这正是数学建模的重大意义:
2023-08-10 13:52:008

一级运放和二级运放构成有源滤波器区别

无源滤波器:这种电路主要由无源元件R、L和C组成。有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。Pasternack射频滤波器是一种无源同轴元件,其包括三种基本类型:即带通滤波器、低通滤波器及高通滤波器。这些射频滤波器的基本功能是允许一定频率范围内的信号通过,而阻挡(衰减)该频率范围以外的波。Pasternack射频滤波器可用于多种常见频带,如ISM、RFID、WiFi、蓝牙、Zigbee、GPS L1、GPS L2、GSM、PCS、UMTS、AWS及WIMAX,符合RoHS和REACH规范。Pasternack射频滤波器带SMA连接器,频率范围很宽,从直流到5.9GHz,取决于产品的类型和型号。我们的带通滤波器、低通滤波器和高通滤波器的插入损耗极低,从0.75dB到1.5dB。这些射频滤波器采用梳形线的设计方式构成,并且有杰出的电压驻波比和持久耐用的性能。
2023-08-10 13:52:212

无源滤波具有电力电容器电抗器的谐振特性,为什么有可能造成电路谐振,致使谐波成倍扩大?

当电力电容器在做过度的补偿的时候,就是通常功率因数表大于1的时候可能发生电路谐振。有源滤波器的操作原理就是用前面一个波形做样本,靠IGBT开关链接电容做削峰,填谷的精细操作,所以不会发生谐波。这个讨论不是几句话可以说明白,只有把电路具有深刻认识之后才会理解。
2023-08-10 13:52:433

如何消除或减轻电网中的谐波含量

因为谐波的频率高,单独的谐波不会对电网产生威胁,一旦很多谐波同时出现,问题就严重了,电网最怕谐波叠加到一起了。电感对谐波有很好的阻止作用,所以在谐波较多出现的地方,尽量多布置变压器,把容易产出谐波的设备分开,这类设备最好单独使用电源变压器。电容中串联电抗器没试过,觉得效果应该不会很好。
2023-08-10 13:52:545

谐波治理的方法是什么

通过外部电流采样互感器对负载电流进行实时监测,将采集的模拟信号传递到主控芯片进行分析处理,生成PWM驱动信号控制IGBT功率模块,生成与电网被治理电流幅值相等,极性相反的补偿电流注入电网,对被治理电流进行抵消。
2023-08-10 13:53:142

如何确定有源低通滤波电路中电阻与电容的值

心电放大器一、设计目的 1.1学习三运放电路工作原理与设计方法;1.2 学习差模信号与共模信号;1.3熟悉巴特沃兹低通滤波器的设计。二、设计内容与要求2.1设计心电放大电路,技术指标如下:2.1.1差模放大倍数AVD=100; 2.1.2共模抑制60dB;2.1.3通频带0~30Hz。2.1.4阻带截止深度40dB. 三、心电放大器基本原理心电放大器即心电图( Electrocardiogram) 信号放大器。将Ag2AgCI 电极贴在病人左臂、右臂和大腿上,从体表获得的心电信号经集成运放CF318 构成的前置放大器放大后,再经滤波处理,然后进入ADC 进行模数转换,送记录仪或液晶显示。因此一高阻抗、高增益的放大器是准确获取心电信号的关键。心电放大器模拟部分如下图所示:确定心电放大器的性能指标 (1) 人体心电信号幅度一般在50μV~5 mV ,属于微弱信号,放大器输出信号一般在- 5~ + 5V ,因此,要求放大器的差模电压增益为100左右;(2) 信号的频率范围(通频带) 一般为0-30Hz;(3) 人体内阻、检测电极与皮肤的接触电阻为信号源内阻,阻值一般为几十kΩ ,为了减轻微弱心电信号源的负载,要求放大器的差模输入阻抗大于10 MΩ;(4) 人体相当于一个导体,将接收空间电磁场的各种干扰信号,它们对放大器来说相当于共模信号,因此放大器的共模抑制比为60dB;(5) 要求具有低噪声和低漂移特性。微小信号的放大  方案设计:(1)采用多级集成运放实现差模电压的高增益,且各级增益均衡分配。 (2)三运放放大电路:由于输入阻抗、共模抑制比和噪声主要取决于前级,因此输入级采用集成运放CF318构成前置放大器,该运放能实现高输入阻抗和低噪声。该放大电路分两级,第1 级:A1 、A2 及相应电阻构成前置放大器。第二级采用差分式放大电路实现信号放大。两级总的放大倍数为5倍。电路图如下:该电路输出特性为:当 =100k, =k=51k, = =100k时, Vo=-5Vi该放大器第一级是具有深度电压串联负反馈的电路,所以它的输入电阻很高。如选用相同特性的运放,则它们的共模输出电压和飘移电压也都相等,组成差分式电路以后,可以互相抵消,所以它有很强的共模抑制能力和较小的输出飘移电压,同时该电路可以有较高的差模电压增益。(3)二阶巴特沃兹低通滤波放大电路:具有理想特性的滤波器上很难实现的,只能尽量逼近理想特性,常用的逼近方法有巴特沃兹(Butterworth)最大平坦响应和切比雪夫(C h e b y s h e v )等波动响应。切比雪夫滤波电路的截止频率处衰减快,但通带里有较大波动。在不允许通带里有较大波动的情况下,为了在通带范围内可得到最平坦的幅频曲线,选择Butterworth 型二阶低通滤波电路. 它结构简单,带内纹波小,滤波效率高。由于50 Hz的干扰信号较强,故在滤波电路中,采取低通滤波滤出30Hz 以上的信号,这样就能滤除30Hz以上的干扰信号。因此采用集成运放A4 及电阻、电容组成低通有源滤波器。为满足带宽要求该低通滤波器由C 、R10 构成,上限频率为f H = 30Hz, 由于在滤波电路中采用了RC 低通滤波电路,该电路具有较高的输出阻抗,所以后级放大采用了同相放大电路,该级差模增益为2倍 ,从而保证整个电路放大倍数为125倍左右。另外,由于该滤波器的特性参数对元器件的精度很敏感,因此在设计中需用精密的阻容元件来获得较好的效果。电路原理图如图2 所示。二阶低通滤波器的传递函数 其中, ,等效品质因数Q=1/(3-A),特征角频率 截止频率f=30Hz,C=0.1uF, ,计算得R=53.1k,取标称值为51k,获得的放大倍数为 ,为保证放大倍数A=2,取Rf k.=100KM,R1.=100K。(4)反向比例放大电路:用集成运算放大器A5构成的反向比例放大电路,应为该电路的输入电阻比较大可以直接接在滤波电路后面,整体要求整个电路的放大倍数为100左右,因此此级放大电路的放大倍数约为5~6倍才能满足设计要求。其电路图如下:对于这个电路,其放大倍数为AV=Rf/R1.可以取R1=R2=10K,Rf=51K。(5)将以上三个电路合在一起就组成整个电路的电路图。如下所示:四、器材选择1、 在三运算放大电路中,前面的两个分压电阻阻值应比较大且精度较高,因为在该处要形成一组大小相等,相位相反的差模电压,如果电阻阻值较低或者精度较低都会产生较大的误差,经过集成运放放大后的误差更大,从而影响的本来就很微弱的心电信号的测量。因此可以选金属膜电阻器RJ型阻值为30M的高精度电阻。2、 心电信号的大小大约在5008V~5mV左右,经过第一级三运放放大电路放大后的电压也只是几十毫伏,电压较低,因此功率不会超过一般电阻的额定功率。因此一般的电阻都能够满足要求.可以选用碳膜电阻RT型。3、 对于含有集成运放的电路,都必须要考虑调零的问题,而对于测量心电信号这样的小信号,调零的必要性显得尤为重要。调零方法:在1脚和5脚之间加一个调零电位器,其阻值为0~10KΩ,将输入端短接,测量输出端电压,调节电位器,使输出电压为零即可。4、 本电路要求共模抑制比大于60dB,具有高精度,低漂移,温度系数小,输入电阻大等特点,综合考虑可以选用CF318集成运放。对于集成运放CF318,其各脚功能如下:1,5既可以是调零又可以是相位补偿,2为反相输入端,3为同相输入端,4为负电源,7为正电源,6为输出端,8也是相位补偿。因此用CF318可以直接在1和5之间外接一个电位器对运放以及整个电路进行调零。5、 电路要求共模抑制比为60dB,KCMR=|AVD/AVC|,此电路无法直接计算出共模电压增益,只能通过测量的方法测出共摸电压增益。测量方法:将两输入端接在一起和一个电压为Vi的输入信号相接,测量输出端的电压VO,可以得到AVC=VO/Vi,计算出共摸抑制比。6、 30HZ二阶巴特沃兹低通滤波电路要求所测的信号的频率范围为0~30HZ,要求低通滤波器在0~30Hz平坦特性比较好。巴特沃兹低通滤波器具有最大平坦特性。选用二阶巴特沃兹低通滤波器的各元器件的参数如下:C1=C1=0.108F, R=5.1K,Rf=R1=100K.由于108F以上的电容大都为电解电容,滤波效果不好,而100pF以下的电容容易产生分布电容,因此这里选用CT4型号的中的0.108F的无机介质电容,它的工作电压为40~100V,温度范围-25~85度,完全满足该电路的设计需要。对电阻的要求不是很高,可以选用最常用的碳膜电阻RT型。
2023-08-10 13:53:251

1射级跟随器的基本特点是什么? 2差动式放大器的实质是什么? 3有源滤波器电路有哪几种滤波形式? 4自举电

涉及范围太广泛了,一般人不会在那么多领域都通晓。
2023-08-10 13:53:355

求写一段光学滤波器的发展史

就我目前知道的光学滤波原理都是基于光的干涉产生的。任何光通过不连续的界面都会产生干涉(例如光经过玻璃),在不考虑吸收,色散等因素的影响下(一般不可能,目前貌似还没有一种材料能够在整个电磁波谱内全透),界面反射光是一种振荡形式,在有的波长透过率很高,有些波长透过率很低,透射率也类似;由于工业需求,对于在某一些波段透过率很高,另一写波段透过率很低的光学界面伴随着光学镀膜技术也已趋成熟,通过在基底上面镀一定厚度和折射率的材料,使得在某一波段光学增透膜,增反膜,偏振膜得到发展,其滤波性能也大大提高;随着激光器发展需要,由于激光器输出光只在某一波长极大,所以要求光学滤波器输出具有极小的半高宽,所有光学能量集中在这一波长输出,所以FP滤波器也应运而生,通过在两面反射镜之间夹上一些材料(真空亦可),可以大大提高滤波器输出半高宽。其实目前利用的滤波器我只知道一些,FP滤波器,马克尔逊干涉仪,马赫增德尔干涉仪,光学增透增反膜等,都利用分振幅多光束干涉;还有菲尼尔双面镜和双棱镜,劳埃棱镜,比耶对切棱镜都利用分波面多光束干涉。反正我觉得光学滤波器都是基于光的干涉原理形成的,或者说光的衍射原理。两者其实是对等的!
2023-08-10 13:53:572

微机为什么常采用模拟和数字滤波相结合的方法?

为了减少误差能够更准确。
2023-08-10 13:54:106

最常用的模拟电路

模拟电路(Analog Circuit)是涉及连续函数形式模拟信号的电子电路,与之相对的是数字电路,后者通常只关注0和1两个逻辑电平。“模拟”二字主要指电压(或电流)对于真实信号成比例的再现,它最初来源于希腊语词汇ανu03acλογοu03c2,意思是“成比例的”。一.半导体器件包括半导体特性,半导体二极管,双极结性三极管,场效应三极管等导电性介于良导电体与绝缘体之间,利用半导体材料特殊电特性来完成特定功能的电子器件。二.放大电路的基本原理和分析方法:1.原理:单管共发射极放大电路;双极性三极管的三组态---共射共基共集;场效应管放大电路--共源极放大。分压自偏压式共源极放大,共漏极放大,多级放大,2方法直流通路与交流通路;静态工作点的分析;微变等效电路法;图解法等等。三.放大电路的频率响应单管共射放大电路的频响--下限频率,上限频率和通频带频率失真波特图多级放大电路的频响四.功率放大互补对称功率放大电路——OTL(省去输出变压器),OCL(实用电路)五.集成放大电路放大电路(amplificationcircuit)能够将一个微弱的交流小信号(叠加在直流工作点上),通过一个装置(核心为三极管、场效应管),得到一个波形相似(不失真),但幅值却大很多的交流大信号的输出。实际的放大电路通常是由信号源、晶体三极管构成的放大器及负载组成。偏置电路,差分放大电路,中间级,输出级。六.放大电路的反馈正反馈和负反馈负反馈:四组态——电压串联,电压并联,电流串联,电流并联负反馈。(注意输出电阻和输入电阻的改变)负反馈的分析:Af=1/F(深度负反馈时)七.模拟信号运算电路理想运放的特点(虚短虚地);比例运放(反向比例运放,同向比例运放,差分比例运放);求和电路(反向输入求和,同向输入求和)积分电路,微分电路;对数电路,指数电路;乘法电路,除法电路。八.信号处理电路有源滤波器(低通LPF,高通HPF。带通BPF,带阻BEF)电压比较器(过零比较器,单限比较器,滞回比较器,双限比较器)九.波形发生电路正弦波振荡电路(条件,组成,分析步骤)RC正弦波振荡电路(RC串并联网络选频特性)LC正弦波振荡电路(LC并联网络选频特性电感三点式电容三点式)石英晶体振荡器非正弦波振荡器(矩形波,三角波,锯齿形发生器)十.直流电路单相整流电路滤波电路(电容滤波,电感滤波,复式滤波)倍压整流电路(二倍压整流电路,多倍压整压电路)串联型直流稳压电路是涉及连续函数形式模拟信号的电子电路,与之相对的是数字电路,后者通常只关注0和1两个逻辑电平。“模拟”二字主要指电压(或电流)对于真实信号成比例的再现,它最初来源于希腊语词汇ανu03acλογοu03c2,意思是“成比例的.功能(1)放大电路:用于信号的电压、电流或功率放大。(2)滤波电路:用于信号的提取、变换或抗干扰。(3)运算电路:完成信号的比例、加、减、乘、除、积分、微分、对数、指数等运算。(4)信号转换电路:用于将电流信号转换成电压信号或将电压信号转换为电流信号、将直流信号转换为交流信号或将交流信号转换为直流信号、将直流电压转换成与之成正比的频率……(5)信号发生电路:用于产生正弦波、矩形波、三角波、锯齿波。(6)直流电源:将220V、50Hz交流电转换成不同输出电压和电流的直流电,作为各种电子线路的供电电源。
2023-08-10 13:55:001

串联谐振谐波治理方法有哪些?

一、增加系统容量此方法是通过降低系统阻抗,使串联谐振普及供电电源的容量后普及供电电压的等级,从而提高非线性电气设备的谐波抗干扰性。该方法的代价相对较大,而且-般要求跟电网开发规划相互配合。二、谐波的隔离非线性电气设备产生的谐波会直接影响电流本级电网,更麻烦的是经过变压器后,还会影响到上几级电网。怎样让这些非线性用电设备产生的谐波不影响或少影响其他几级电网,串联谐振也是控制谐波很好的方法。发电机产生的功率通过Y/2、Yo/4、 Yo/Y接线组的变压器 ,发电机产生的3、9次谐波分量非常小,几乎为零。虽然10KV大多 配备Y/YO接线,但35KV也有少量Y/Y0接线,因此10KV和35KV系统中的3、9次谐波分量将大于高压电网。三、安装过滤器当前,变电站侧和用户侧的谐波治理方法通常用安装滤波器减少谐波分量,滤波器分为有源滤波器和无源滤波器。1.有源谐波装置的基本工作原理是将电源侧的电流波形与正弦波进行比较,并通过有源滤波器补偿差额,这是谐波治理的发展方向。目前,由于功率电子元件容量不太大、电压不高、但成本高,所以在这个阶段无法大量取代无源滤波器。随着科学技术的发展,电力电子元件的成本正在下降,这种技术必将主导谐波治理的地位。2.无源滤波器通过L、C串联或并联,以在某次的谐波下产生谐振。当发生串联谐振时,滤波器两端的二次谐波电压非常小,几乎接近零。类滤波器通常连接到变压器的次级侧,因此变压器的- -次侧该次谐波的分也很小,从而达到谐波治理的目的。串联无源滤波器大多用于5、7、的10次谐波治理中,通常同时使分也很小,从而达到谐波治理的目的。串联无源滤波器大多用于5、7、的10次谐波治理中,通常同时使四、增加换向装置的脉动(相位)的数量交直流换流器产生的特定谐波电流次数与其整流电路近似地与谐波的次数成反比。因此,可以消除-系列次数较低,成分较大的谐波,从而减少由谐波源产生的谐波电流。通过改造换流装置后利用相互间有一定移相角的换流变压器,可有效减少谐波量。
2023-08-10 13:55:093

电力技术论文参考

  进入二十一世纪以来,我国的电力发展取得了举世瞩目的成就,为我国的经济社会发展作出了重大贡献,这得益于电力技术的快速发展。下文是我为大家搜集整理的关于电力技术论文参考的内容,欢迎大家阅读参考!  电力技术论文参考篇1   浅析电力技术监督管理   摘要 电力企业的技术监督管理作为电力企业管理中的重要组成部分,对整个企业技术监督的发展以及企业管理的发展都有着重要的影响作用。笔者联系我国电力技术监督管理的发展现状,结合自身工作经验,对电力技术监督管理的问题进行论述,主要突出电力技术监督管理的对策,更好促进电力企业的发展。   关键词 电力企业;技术监督;管理创新   技术监督作为企业生产中的重要组成部分,是企业管理中不可忽视的内容。作为国家重要战略资源管理的电力企业,其技术监督管理更是面临着更高的要求。电力企业一直坚决执行国家的相关管理方针和政策,贯彻电力行业的相关规定,不断建立和完善企业技术监督管理体系,注重企业技术监督管理工作人员综合素质的提高,尽力完善企业技术监督管理综合评价体系,确保企业技术监督管理的全面健康发展。在我国社会不断发展进步的背景下,电力企业面临着节能减排的高效要求,因此,电力技术监督管理工作也要求电力技术向着更低能耗的方向发展。立足于这样的趋势下,笔者作为一名电力企业工作人员,更加体会到技术监督管理的创新要求,因此,下面将对电力技术监督管理进行系统论述,主要突出其创新内容。   1 电力企业技术监督管理工作的发展现状   在我国社会不断发展进步的趋势下,我国电力行业的发展取得了一定的成绩,也还存在一定的缺陷,下面,笔者将对我国电力企业技术监督管理的现状进行论述。   1.1 电力企业不断重视企业技术监督管理工作   电力企业作为生产电能的重要产业,其生产出来的产品质量和安全系数都是备受关注的问题。在国家不断加强管理,社会不断加强监督的趋势下,电力企业也更加注重企业技术监督管理的发展了。在电力企业不断重视技术监督管理发展的背景下,企业技术监督管理得到很快发展。   1.2 电力企业的安全生产和经济效益相适应   安全生产与企业的经济效益是相互制约、相互影响的,只有在安全生产的前提下才能实现企业的经济效益,也只有确保了企业的经济效益,才能为企业安全生产提供有效保障。企业技术监督管理是保证企业安全生产的重要手段之一,在企业技术监督管理不断发展的条件下,企业的安全生产也得到了长足进步,使得企业的安全生产与经济效益得到平衡。   1.3 电力行业之间的技术监督得到协调发展   在社会不断发展的条件下,电力行业与其他行业之间的联系也不断密切了,因此,电力行业的技术监督不仅仅是电力行业自身的工作,也是电力行业与其他行业之间一起面临的工作。在电力技术监督不断发展的趋势下,电力行业与其他行业之间的技术监督也更加联系密切,并且促进了与其他行业之间的技术监督协调发展。   2 如何促进电力技术监督管理工作的发展   2.1 不断建立和完善企业技术监督管理体系   由于条件的限制,很多电力企业的技术监督管理体系还在不断探索建立和完善过程中,还没有形成完善的技术监督管理体系,因此,不断建立和完善电力企业技术监督管理体系是尤为重要的。笔者在认真调查的基础上,联系自身工作经验认为,电力技术监督管理可以建立起包括技术监督三级网络和技术监督管理部门以及技术监督深化扩展的技术研究部门的管理体系。其中,技术监督三级网络可以由电力企业的专业技术监督工作团队来担任;而电力技术监督管理部门可以由电力企业的发电运营部、项目管理部和技术监督管理的归口部门来承担,主要任务是理清三级技术监督网络的工作内容和范围,根据国家的相关规定和监督管理标准监督企业技术监督管理工作的开展,保证企业技术监督管理目标的有效实现;技术监督的研究部门主要有企业的研究部门来承担工作任务。   2.2 制度适合企业自身的技术监督标准,确保企业技术监督管理按标准进行   任何企业的技术监督管理工作都应该有相应的标准来严格要求管理工作,所以电力企业也不例外,作为国家的重要战略资源,电力的技术监督管理更是应该按照具体的标准来保证工作的顺利进行,因此,笔者提倡电力企业建立适合企业自身的技术监督管理标准。电力企业技术监督管理标准应该对发电公司的技术监督工作进行全面的界定,划清技术部门的各项职责和权限,并对企业技术监督进行全面合理的评价,确保企业技术监督管理目标的实现。   2.3 推动电力技术监督管理的信息化发展   在全球信息化不断发展的趋势下,众多企业技术监督管理都向着信息化迈进,为应对时代发展的趋势,电力企业技术监督管理也应该向着信息化发展,不断推动技术监督管理的规范化、信息化体系建设。企业根据自身发展的现状,结合企业技术监督管理模式,在企业实行按照级别管理的责任制,实现数据的有效及时管理和资源的共享。在企业技术监督管理目标指导下,促进企业技术监督信息发布平台的建设,为企业技术监督管理提供更加科学合理的支持。笔者认为电力企业的技术监督管理信息系统可以分为两个层级,即电力公司的技术监督管理信息系统以及发电公司的技术监督管理信息系统。两个层级的主要工作任务各有不同,电力公司的技术监督管理主要是对结果进行管理,而发电公司的技术监督管理则主要是完成对过程进行管理。   3 结论   在我国不断强化和谐发展战略的趋势下,电力企业也面临着更艰巨的挑战,要向着更加节能环保的方向发展。电力技术监督管理在电力企业中发挥着重要的作用,对电力企业的管理有着深刻的影响作用。笔者在文中论述了电力企业技术监督管理的发展现状,并结合自身工作经验提出了促进电力技术监督管理发展的对策。   参考文献   [1]肖云莲,王敏.做好电力技术监督的措施[J].云南电力技术,2006(1).   [2]洪波,魏杰.用信息化手段建立新型电力技术监督管理体系[J].云南电业,2007(7).   [3]胡青波.电力技术监督现状与发展的思考[J].天津电力技术,2004(1).   电力技术论文参考篇2   浅论电力滤波技术   【摘要】本文以电力滤波器的基本原理为分析对象,并对电力滤波技能的运用进行了阐述,最后对电力滤波器技能的发展进行了探讨。   【关键词】电力,滤波技术,探究   一、前言   电力滤波技术管理工作的主要任务是运用科学的方法建立技术管理体系,完善电力滤波技术,卓有成效地开展技术工作。   二、电力滤波器的基本原理   一般来说,谐波是沟通体系中的概念,而纹波是关于直流体系来讲的,二者有差异,更有联系。沟通滤波,是期望滤除工频(基波)重量以外的一切谐波重量,确保电源的正弦性。沟通体系的电流畸变首要是由非线性负载导致的。而直流滤波,是期望滤除负载中直流重量以外的一切纹(谐)波重量,这些纹(谐)波重量首要是由直流电(压)源(一般是由沟通电源整流取得)中的纹波电压重量在负载中导致的。而经过傅里叶剖析可知,直流体系中的纹波重量也是由各次谐波重量构成的。在这个意义上讲,沟通体系和直流体系中按捺谐波的意图是相同的:按捺不期望在电源或负载中出现的谐波重量。直流有源电力滤波器(DCAPF)与沟通有源电力滤波器,也即是咱们一般所说的有源电力滤波器(APF),都是选用自动的而不是被迫的办法或手法去吸收或消除谐(纹)波。因而直流有源电力滤波器和沟通有源电力滤波器的作业原理是相同或相近的。可是,因为效果的目标不相同,直流有源电力滤波器也有本身的特点。   三、电力滤波技能的运用   1、PPF的运用   到当前为止,高压大功率谐波管理范畴最首要的滤波办法仍然是无源电力滤波器。PPF选用LC单调谐滤波器或许高通滤波器,电感、电容接受的电压等级比电力电子开关要高得多,并且抵偿容量也要比APF大得多,因而,在高压大功率的运用场合,PPF得到了广泛运用。   2、APF的运用   依照APF的容量和运用规模可将有源滤波器分为小功率运用体系和中等功率运用体系以及大功率运用体系三大类。小功率运用体系首要是指额定功率低于100 kVA的体系,首要运用于负载和电机驱动体系。在这类运用中,一般选用技能领先的动态有源滤波器,如开关频率较高的PWM电压型逆变器或电流型逆变器,其呼应时刻相应来说一般很短,从十几微秒到毫秒。小功率的谐波管理体系运用对比灵敏,能够选用单相有源滤波器,也能够选用三相电力滤波器。当运用于单相电力体系时,选用单相有源滤波器,并且很简单经过改动电路布局完结不相同的抵偿意图。电力电子器材难以接受几百千伏的超高压,即使是最领先的半导体器材也只能接受几千伏,因而,和中等功率运用相同,因为缺少大功率高频电力器材,完结大功率的体系动态逆变器很不经济,也就约束了有源逆变器在大功率体系中的运用。有人提出选用多重化技能和相序脉宽调制技能,来处理功率和开关频率的矛盾,这是一个极好的主意,可是很难完结,并且性价比也很低。   四、电力滤波器技能的发展   1、电力滤波器的接入拓扑   电力滤波器的接入拓扑的基本方式为并联型APF和串联型APF ,并联型滤波器首要用于理性电流源型负载的抵偿,它也是工业上已投入运转最多的一种计划,但因为电源电压直接加在逆变桥上,因而对开关元件的电压等级需求较高。为战胜单独运用时面对的缺点,并联型APF常常与PF混合运用。   2、谐波检测技能   电力滤波器的抵偿效果在很大程度上依赖于能否检测到真实反映欲抵偿的谐波重量的参考信号。因而,电力滤波器规划中的关键技能之一即是找到一种可由负载电流中精确地获取谐波重量的幅值和相位的算法。这种检测办法的速度也是需要考量的重要要素。一般,谐波的检测获取技能可分为直接法和间接法两种。   (一)、基干傅立叶改换的检测办法   选用傅立叶改换(FFT)对电网电流进行核算,得到电网电流中的谐波重量。它是一种纯频域的剖析办法,其长处是能够恣意挑选拟消除的谐波次数,可是核算量大,具有较长的时刻延迟,实时性较差。   (二)、瞬时无功功率法   此办法的实时性较好,但因为检测时选用了数字低通滤波器,因而检测出的成果会有必定的延时。瞬时无功功率理论是当前电力滤波器中选用最多的一种谐波检测办法。   (三)、依据自适应的检测办法   依据自适应搅扰抵消原理,具检测精度高和对电网电压畸变及电网参数改变不灵敏的长处,但动态呼应速度较慢。其改善办法包含用神经网络完结的自适应检测法。检测精度和实时性是判断谐波检测办法的重要指标,各种检测办法都有其长处,但也都存在局限性。跟着各种谐波检测办法的不断改善,以及新的检测办法。   3、电力滤波器的电流盯梢操控战略   当精确地检测出电网中的谐波电流后,怎么操控APF主电路,使APF输出电流盯梢谐波电流改变,是电流盯梢操控战略所需完结的作业。因为谐波电流具有时变和高改变率的特点,这就需求APF电流操控器具有较快动态呼应功能和较高的操控精度,电流操控器的稳定性也是必需要思考的要素。   4、主电路布局及参数规划   当前,电力滤波器主电路首要选用PWM变流器的方式,当选用单个变流器不能满意体系容量需求时,能够选用多重化或多电平的主电路布局方式。   (一)、单个PWM变流器的主电路   布局依据主电路直流侧储能元件的不相同,能够分为电压型和电流型两种。电压型PWM变流器直流侧电容损耗较小,适宜构成大容量电力滤,也是当前干流的PWM布局。实践规划中,储能电容和接入电感的巨细对APF设备的本钱和功能有很大的影响。   (二)、多重化主电路布局方式   多重化布局是经过将多个PWM变流器串联或并联的办法,以完结运用较低开关频率,较小容量的开关器材。   (三)、多电平主电路布局方式   经过添加电力电子器材,规划多电平主电路拓扑布局,将变流器的输出由传统的两电平输出变为多电平输出。其长处是开关频率低,开关器材所接受的电压应力小,因为不运用变压器和电抗器,体积减小而功率进步。多电平主电路操控办法较为杂乱,是当前研讨和运用的方向。   (四)、参数规划   因为APF布局多样,抵偿的谐波源也多种多样,对APF的容量和谐波抵偿的功能指标也有不相同的需求。当前,关于APF主电路各项参数的规划没有一致的理论,参数的挑选过程为:首要依据被抵偿的谐波源挑选主电路布局方式。   (五)、电力滤波技能的研讨方向   怎么经过对谐波理论的进一步研讨,找出非常好的谐波检测算法是进步APF功能的有用手法;优化体系操控战略:寻求非常好的操控战略,如依据体系能量平衡的操控战略,到达对输出电流/电压的精确操控;优化电路规划:改善抵偿功能,操控体系本钱,如多电平主电路布局的研讨。这些研讨的首要意图是进步体系运转的功率,进一步削减抵偿设备的制造本钱和损耗,进步设备的可靠性和易用性,并完结一机多用。   五、结束语   电力滤波技术管理在施工生产中呈面极其重要的地位,我们不仅要努力做好各项工作,还要与其它方面协调一致、相辅相成。从而使技术工作不断得到完善和提高,为工程项目的顺利实施提供可靠的技术保障。   参考文献   [1]粟梅.矩阵变换器――异步电动机高性能调速系统控制策略研究[D].长沙:中南大学信息科学与工程学院, 2005.   [2]谭甜源,罗安,唐欣,等.大功率并联混合型有源电力滤波器的研制[J]中国电机工程学报,2004   [3]姜齐荣,谢小荣,陈建业.电力系统并联补偿――结构、.原理、控制与应用[M]北京:机械工业出版社,2004. 猜你喜欢: 1. 电力技术论文范文 2. 电力技术毕业论文范文 3. 浅谈电力技术论文 4. 有关电力行业技术论文 5. 电力电气论文参考
2023-08-10 13:55:271

三相电路瞬时无功功率理论

1.电力谐波在高压中压低压都会产生(跟电压等级无关,只是跟处理方法有关)2.有源滤波器与无源滤波器的区别:有源滤波器是指用晶体管或运放构成的包含放大和反馈的滤波器, 无源滤波器是指用电阻/电感/电容等无源元件构成的滤波器. 在小信号下都有 EMC 问题, 当然有源滤波器要考虑供电电源的 EMC 问题, 而无源的就没有电源问题了. 3.无功、有功与谐波的关系:相互制约相互依存4.有源滤波器能检测什么样的电力谐波:有源电力滤波器是一种新型的电力电子装置,可以对电力系统中的谐波进行补偿。和传统的谐波补偿方法相比,有源滤波器具有巨大的技术优势和良好的发展前景。由于有源滤波器具有实时性和准确性的工作特点,如果再结合信号处理和控制技术等学科的优点,就可在实现对有源电力滤波器功能优化的同时,提高有源电力滤波器的性能。瞬时无功功率理论在电力有源器中获得了成功的应用。但是由于瞬时无功功率理论需要两次坐标变换,会使控制系统的计算量非常之大,会出现计算延时,并不能实现真正意义上的瞬时控制。本文主要研究了谐波实时快速检测问题。 1.提出了一类基于重采样和均值滤波的谐波检测法。本文首先从瞬时无功功率理论入手,分别讨论了应用于三相和单相电路的瞬时无功功率理论,分析了瞬时无功功率理论的本质,提出了基于重采样和均值滤波的谐波检测法。该滤波器为一具有线性相位的有限冲激响应(FIR)数字滤波器,可以使得应用于三相电路的控制系统在三分之一个周期处就跟随电网的变化,单相电路的控制系统在一个周期处就跟随电网的变化;重采样理论将被测量信号频谱分成有效信号频谱和无效信号频谱,提出了有效信号频谱不允许混叠,无效信号频谱允许混叠的采样频率确定新方法。5.FIR.IIR模拟滤波器能检测什么样的电力谐波?如何检测? 0 引言 近年来,有源滤波器已成为电力系统研究领域中的热点。在各种电力有源滤波器中,基波或谐波检测是一个重要的环节。目前研究最为广泛的基波或者谐波检测方案,是基于瞬时无功功率理沦的谐波检测方法,这种方法要用到低通或高通滤波器,滤波器阶数越高,检测精度越高,动态过程就越长,即存在检测精度和检测实时性的矛盾。而传统的离散傅立叶变换由于固有的一个周期延迟。并且计算量大,被认为不能实时补偿电力系统谐波。 基于数字带通滤波器的谐波检测是一种很好的瞬时谐波检测方法,可以准确有效地从负载电流中分离出基波分量。本文通过分析和实验证明了这种方法的可行性,并且讨论了带通滤波器的设计方法。1 模拟和数字带通滤波器的比较 模拟带通滤波器一般是用电路元件(如电阻、电容、电感)来构成我们所需要的频率特性电路。模拟带通滤波器的原理是通过对电容、电阻和电感参数的配置,使得模拟滤波器对基波呈现很小的阻抗,而对谐波呈现很大的阻抗,这样当负载电流信号通过该模拟带通滤波器的时候就可以把基波信号提取出来。目前,有些有源滤波器利用模拟电路实现带通滤波器检测负载电流的基波分量,并且在实际中得到了应用。 但是,模拟带通滤波器也有一些自身的缺点。这是由于模拟滤波器的中心频率对电路元件(如电容,电阻,电感)的参数十分敏感,较难设计出合适的参数,而且电路元件的参数会随外界环境的干扰发生变化,这会导致中心频率的偏移,影响滤波结果的准确性。 数字带通滤波器就是用软件来实现上面的滤波过程,可以很好地克服模拟滤波器的缺点,数字带通滤波器的参数一旦确定,就不会发生变化,只要电网的波动频率在我们设计的范围之内,就可以比较好地提取出基波分量。2 基于带通滤波器的谐波检测原理 以二阶带通滤波器为例,二阶带通滤波器传递函数的典型表达式为式中:ωo=2πfo,是中心角频率,fo是中心频率;Q是品质因数。 当ω=ωo时,H(iωo)=1。这说明带通滤波器在中心角频率ωo处的幅值尤衰减,相位无延时,这是带通滤波器的重要特性。这一特性保证了基于带通滤波器的谐波检测方法的准确性。 在有源滤波器里我们选择带通滤波器的中心频率fo为50Hz,则带通滤波器对基波幅疽无衰减,相位无延时,其它次谐波均被滤除,这就能实时地检测出基波。负载电流ia、ib、ic通过带通滤波器得到三相的基波电流ia1、ib1、ic1,用负载电流减去基波电流即可得到三相的谐波电流iah、ibh、ich。据此,谐波电流检测原理如图1所示。这种检测方法不需要坐标变换,只需要对三相电流分别进行带通滤波,大大减少了计算量。3 数字带通滤波器的设计与实现 数字滤波器根据其类型可以分为IIR型和FIR型。PIR型只有零点,不容易像IIR型那样取得比较好的通带与阻带特性.所以,在一般的设计中选用IIR型。IlR型又可以分成Butterworth型滤波器,Chebyshev I型滤波器,Chcbyshev Ⅱ型滤波器和椭圆型滤波器等。MATLAB工具箱里面的数字滤波器设计工具FDATool可以帮助大家方便地选择和设计所需要的数字滤波器。 数字带通滤波器的主要参数包括阶数、滤波器类型、两个截止频率等。高阶滤波器的阻带衰减特性很好,但是,阶数高了之后难以实现。而对于有源滤波器来说,基波和主要谐波的频率相隔比较大,所以对阻带衰减率的要求不是很高,选用2阶滤波器就可以满足条件;又因为Buttermorth滤波器在通带内特性较平,而且实现起来比较简单,经综合考虑后,选用2阶Butterworth带通滤波器。 滤波器截止频率的选取和品质因数Q密切相关。Q越大,对谐波衰减越快,经带通滤波器提取出的基波分量越精确;但是,Q越大,带宽越小,动态响应速度会越慢,还会使数字滤波器的参数相差倍数过大,将增高对字长的要求。带通滤波器的通带宽度BW=ωo/(2πQ)=fo/Qofo是系统的中心频率。这里我们Q取在5左右,使得带宽大概在10Hz左右。选取两个截止频率分别为45Hz和55.6Hz。这里要注意的是。由于带通滤波器的幅频特性的不对称性,中心频率并不是两个截止频率的平均值。两个截止频率的选取标准是保证50Hz中心频率的相移为O并且幅值没有衰减。根据上面的标准设计出滤波器传递函数为滤波器的幅频和相频特性如图2及图3所示。带通滤波器的实现就是在DSP芯片中实现式(2)的传递函数,为了便于程序实现,将式(2)改成差分方程的形式,如式(3)所示。 y(n)=0.003319x(n)-0.003319x(n-2)+1.9924y(n-1)-O.9934y(n-2) (3) 用DSP实现上面的差分方程主要是用3个存储器单元来保存x(n),x(n-1),x(n-2)的值,3个存储单元存储y(n),y(n-1),y(n-2)的值,在每一次中断程序中根据式(3)更新这6个存储单元的数值,最后输出的y(n)就是滤波之后的基波数值。如果采用其他形式的滤波器所需要的中间存储单元的数目可能是不一样的,要根据差分方程里面x(n)和y(n)的项数来确定。 如果带通滤波器程序是在定点DSP实现的话,还要注意滤波器系数的小数点位置选择。数字滤波器系数对滤波器性能影响非常大,一旦滤波器参数相差哪怕是很小一点,滤波器的输出就可能和正确数值相差很远,有时候还可能会使得系统不稳定,所以,应该尽量把系数放大之后冉计箅。这里我们根据3个系数(0.003319,1.9924,O.9934)和DSP(16位定点)的特点,把所有的系数都放大214倍,滤波运算结束之后再缩小214倍,使汁算的结果尽量准确。在滤波器实现中要根据滤波器系数来选择适当的放大倍数,原则就是尽量用满处理器的位数(这里就是16位),这一点非常重要。4 系统仿真和试验结果 实验系统为三相并联型有源滤波器。检测部分的框图如图4所示,其中虚线部分是直流侧电压控制部分。系统的原理是:首先,负载电流通过带通滤波器之后得到基波电流ia1、ib1、ic1;然后,叠加上维持直流侧电压所需要的有功电流△iap、△ibp、△icp,再从总的负载电流中减去这部分电流,得到的就是三相指令电流值;最后,对指令电流值进行PI调节控制逆变器的输出,将谐波电流反相注入电网,使得电网的电流基本为正弦波。系统仿真采用MATLAB里面的Simulink模块,仿真的结果如图5所示。从图5可以看出,补偿之后的电网电流比补偿以前的电流波形大大改善。实验样机容量设计为6kW,输入电压为三相380V,负载为三相不控整流桥.控制部分以TI公司的TMS320LF2407 DSP为核心,负责谐波电流计算和PWM输出控制。 程序主要部分是在AD采样中断里面完成的,在AO中断程序里,首先根据三相的电压和电流采样数值,利用式(3)计算出滤波以后的电流,再汁算出指令电流值,最后通过PI调节之后送给PWM发生电路,控制逆变器的输出。 图6是程序的中间计算结果,图中1为DSP采样的电网电压,2为DSP采样的负载电流,3是负载电流通过带通滤波器得到的基波分量,从图6中可以看出,带通滤波器可以很好地分离出负载电流的基波分量。图7为系统的实验波形,其中图7(a)为有源滤波器投入前的电网电压和电流波形,图7(b)是有源滤波器投入后的电网电压和电流波形,从图7(b)可以看出,基于带通滤波器的有源滤波器能起到很好的谐波抑制作用。5 结语 本文提出了一种基于带通滤波器的谐波检测方法,并通过仿真和实验验证了这种方法在并联型有源滤波器中应用的可行性。得到的主要结论如下: 1)利用带通滤波器可以比较好地检测出负载电流中的基波分量; 2)由于滤波器负载电流一般没有偶次谐波,如果是三相对称系统也没有3次以及3的倍数次谐波,所以,只要带通滤波器的中心频率是50Hz,带宽对系统的影响不是很大,但是,带通滤波器的相频特性对系统的影响比较大; 3)试验证明基于带通滤波器的并联型有源滤波器可以有效抑制电网的谐波电流,但是,这种方法的缺点是它不能同时补偿无功功率。 参考资料:http://hi.baidu.com/trilion/blog/item/1ff880ce224e3131b600c8dd.html
2023-08-10 13:55:481

谁有电力电子的关于开关电源的论文 发给我

  电力电子技术的发展与展望研究  作者:王娟武 班级:机设0918 专业:机电设备维修与管理 学号:0918316 学院:安徽水电学院 日期:2010年12月  当今世界能源消耗增长十分迅速。目前,在所有能源中电力能源约占40%,而电力能源中有40%是经过电力电子设备的转换才到使用者手中。预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。  电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。  现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具 体应用。当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。  一..电力电子技术的发展历史  1. 整流器时代  大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了一股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。  2. 逆变器时代  七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。  3. 变频器时代  进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。  2. 现代电力电子的应用领域  2.1 计算机高效率绿色电源  高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。  计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合  绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。  2.2 通信用高频开关电源  通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。  因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。  2.3 直流-直流(DC/DC)变换器  DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。  通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。  2.4 不间断电源(UPS)  不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。  现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。  目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。  2.5 变频器电源  变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。  国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。  2.6 高频逆变式整流焊机电源  高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。  逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。  由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。  国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。  2.7 大功率开关型高压直流电源  大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。  自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。 国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。  2.8 电力有源滤波器  传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。  电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。  二..现代电力电子技术在电力系统中的应用  1. 发电环节  电力系统的发电环节涉及发电机组的多种设备 ,电力电子备的应用以改善这些设备的运行特性为主要目的。  (l)大型发电机的静止励磁控制  静止励磁采用晶闸管整流自并励方式具有结构简单 、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。  (2)水力、风力发 电机的变速恒频励磁  水力发电的有效功率取决干水头压力和流量,当水头的变化幅度较大时 (尤其是抽水蓄能机组) ,机组的最佳转速便随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。  (3)发电厂风机水泵的变频调速  发电厂的厂用电率平均为 8%,风机水泵耗电量约占火电设备总耗电量的6 5%且运行效率低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有众多的生产厂家,并不完整的系列产品,但具备高压大容量变频器设计和生产能力的企业不多,国内有不少院校和企业正抓紧联合开发。  2. 输电环节  电力电子器件应用于高压输电系统被称为“硅片引起的第二次革命”,大幅度改 善了电力网的稳定运行特性。  (1)直流输电 ( HVDC)和轻型直流输电( HVDC L i g ht )技术 直流输电具有输电容量大、稳定性好、控制调节灵活等优点,对于远距离输电、海底电缆输电及不同频率系统的联网,高压直流输电拥有独特的优势。l 9 7 0年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。从此以后世界上新建的直流输电工程均采用晶闸管换流阀。  (2)柔性交流输电 ( FACTS)技术 FA CTs技术的概念问世20世纪8 0 年代后期,是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压 及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。20世纪9 0年代以来,国外在研究开发的基础上开始将FA CTS技术用于实际电力系统工程。其输出无功的大小,设备结构简单,控制方便,成本较低,所以较早得到应用。  3. 配电环节  配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制既要满足对电压、频率 、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,即用户电力 ( Cu s t o m Po we r ) 技术或DFACTS技术,是在F ACTS各项成熟技术的基础上发展起来的电能质量控制新技术。可以DFACTS设备理解为F AC TS 设备的缩小版,其原理、结构均相同,功能也相似。由于潜在需求巨大,市场介入相对容易,开发投入和生产成本相对较低,随着 电力电子器件价格的不断降低,可以预期D F A C TS设备产品将进入快速发展期。  三.电力电子技术的发展展望  1. 新型电力电子器件  在用新型半导体材料制成的功率器件中,最有希望的是碳化硅(SiC)功率器件。它的性能指标比砷化镓器件还要高一个数量级。碳化硅与其它半导体材料相比,具有下列优异的物理特点:高的禁带宽度,高的饱和电子漂移速度,高的击穿强度,低的介电常数,以及高的热导率。上述这些优异的物理特性,决定了碳化硅在高温、高频率、高功率的应用场合下是极为理想的半导体材料。在同样的耐压和电流水平下,SiC器件的漂移区电阻仅为硅器件的1/200,即使高耐压的SiC场效应管的导通压降,也比单极型、双极型硅器件的低得多。而且,SiC器件的开关时间可达10ns量级,并具有十分优越的FBSOA。SiC可以用来制造射频和微波功率器件、各种高频整流器、MESFETs、MOSFETs和JFETs等。SiC高频功率器件已在Motorola开发成功,并应用于微波和射频装置。GE公司正在开发SiC功率器件和高温器件(包括用于喷气式引擎的传感器)。西屋公司已经制造出了在26GHz频率下工作的甚高频的MESFET。ABB公司正在研制高功率、高电压的SiC整流器和其它SiC低频功率器件,用于工业和电力系统。理论分析表明,SiC功率器件非常接近于理想的功率器件。可以预见,各种SiC器件的研究与开发,必将成为功率器件研究领域的主要潮流之一。可是,SiC材料和功率器件的机理、理论、制造工艺均有大量问题需要解决,它们要真正给电力电子技术领域带来又一次革命,估计还需要至少10年左右的时间。  2. 新能源  电力电子技术在新能源发电技术和电能质量控制技术及节能技术方面有很广阔的发展间。其中风力发电和太阳能发电最受关注,而电力电子技术正是风力发电和太阳能发电的核心技术之一,这给电力电子工程师提供了千载难逢的发展机遇 ,广大 电力电子工程师务可以住这一机遇乘势而上,促进电力电子技术的发展。同时,由于一方面电力电子装置和电弧炉等装置的的大量应用,使得电能质量日益下降,另一方面用 户对电能质量的要求越来越高人们对以有源电力滤波器为代表的电能质量控制装置日益重视,研究开发越来越多。此外,由于电力系统电动机(约占发电量的6 0 % 以上 ) 和照明电源( 约占发电量的 1 0~1 5 %的大量采用,电力电子装置对无功功率和电力谐波都可有很好的补偿作用,因此,电力电子技术被称为节能的技术。目前,由于化石能源日渐枯竭,因此 ,电力电子技术在节能方面受到很大程度的重视,并且发展十分迅速。  3. 电动车辆  中国人多地大石油少,现在中国每年已进口许多石油。在21世纪前半叶,地球上的石油天然气资源日益减少,以至早晚会用尽。特别在中国国情下,城市交通以发展电动车辆为主是必然的趋势。大城市间的磁悬浮列车、城市内的电动高架列车和地铁列车、个人用电动自行车和电动汽车将构成未来的交通网络的主角。其中,大有电力电子产品的用武之地。磁悬浮列车的磁悬浮电源和直线电动机的变频调速;城市高架列车和地铁列车中异步电动机的变频调速;电动自行车和电动汽车中永磁无刷电机的外转子调速,在今后十年里会有很大的发展。这里,电动自行车和电动汽车的普及必须解决无刷电机及其控制器、环保电池、快速充电器和充电站网络服务等几方面的问题。现在看来,在中国推广电动自行车替代摩托车作为代步工具技术上正在趋于成熟。这里必须采用镍-氢电池组和锂离子电池组,消除常规铅-酸电池对环境的污染。这种价格尚偏贵的电池组可以采用向电动自行车用户出租使用的方式,实行由间距合理的电池充电站统一充电和用户自行充电相结合的办法。铅-酸电池与锂离子电池(如36V,10AH)相比,前者重12 kg,后者仅2.4 kg。  电动汽车的发展又是电力电子未来的潜在大市场。首先是高能量密度的清洁电池的突破。比较有希望的是燃料电池,它的起动和稳定运行都要用电力电子产品与之配套。其牵引系统方案中令人最感兴趣、并已有工业应用前景的,要属安装在四个车轮中的外转子盘式永磁无刷直流电动机驱动了。这种电机结构的优化设计、高性能控制调速传动,以及四台电机转动的协调运转,将为电动汽车的舒适运行,零半径转弯提供技术保证。今后十年将是电动汽车实用化发展的关键时期,电力电子产业可以也应该为此做出相应的研究开发工作,积极迎接这个庞大市场的到来。  结束语:  电力电子技术已迅速发展成为一门独立的技术、学科领域。它的应用领域几乎涉及到国民经济的各个工业部门。毫无疑问,它将成为新世纪的关键支撑技术之一。电力电子技术拥有许多微电子技术所具有的特征,比如发展迅速、渗透力强、生命力旺盛,并且能与其它学科相互融合和相互发展。  参 考 文 献  (1)林渭勋. 浅谈半导体高频电力电子技术.电力电子技术选编,浙江大学,1992(384-390)  (2)付宇明 张辉. 电力电子技术在电力系统中的应用.信息技术,2000(162)  (3)王兆安. 我国电力电子技术的新进展..逆变器世界,2008(32)  (4) 陈虹. 电气学科导论. 北京:机械工业出版社,2005
2023-08-10 13:55:571

通信电源 -48V

  着是个国际标准.主要是通讯设备都是直流设备需电压不高但点流大,这样说较为简单如要真正的清楚还是看看通讯电源发展史。  现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。  关键字:电力电子;电源  现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具 体应用。  当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经 济、实用,实现高效率和高品质用电相结合。  1. 电力电子技术的发展  现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。  1.1 整流器时代  大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。  1.2 逆变器时代  七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。  1.3 变频器时代  进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。  2. 现代电力电子的应用领域  2.1 计算机高效率绿色电源  高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。  计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。  2.2 通信用高频开关电源  通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。  因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。  2.3 直流-直流(DC/DC)变换器  DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。  通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。  2.4 不间断电源(UPS)  不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。  现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。  目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lVA、2kVA、3kVA等多种规格的产品。  2.5 变频器电源  变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。  国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。  2.6 高频逆变式整流焊机电源  高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。  逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。  由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。  国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。  2.7 大功率开关型高压直流电源  大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。  自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。  国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。  2.8 电力有源滤波器  传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。  电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流; (2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。  2.9 分布式开关电源供电系统  分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。  八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。  分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。  3. 高频开关电源的发展趋势  在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。  3.1 高频化  理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的 5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合 闸用等各种直流电源也可以根据这一原理进行改造, 成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。  3.2 模块化  模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、 机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量, 在有限的器件容量的情况下满足了大电流输出的要求, 而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。  3.3 数字化  在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC) 问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。  3.4 绿色化  电源系统的绿色化有两层含义:首先是显著节电, 这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。  现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。  总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。
2023-08-10 13:56:071

自制对讲机,要求发射频率大,距离远,附上电路图

F30-—5型无线对讲机是继F30-2、F30-3型之后推出的一种适于民用的通信设备,该机内部采用金属框架,外配塑料机壳,具有外 形美观、使用方便、通信距离比较远、价格低廉等优点,与F30—2 和F30-3型机相比,F30—5型整机性能有较大提高。 一般来说,提高对讲机的接收 灵敏度和发射功率都能有效地增加通信距离,且提高前者更为显著。 本机接收部分采用了调频接收专用集成电路MC336l做中放.用场效应管K122作高放,超外差二次变频,接收灵敏度可达0.2uV,因此,通信距离比较远。发射部分也采用了调频发射专用集成电路MC2833做前级振荡,C2078做末级功率放大,从而使发射机的调试更加简单,适合广大无线电爱好者自行组装、调试。附图为该机的电 原理图。 一、 主要技术性能指标: 工作方式:调频单工 工作电流:发射≤lA; 接收: 静噪≤20mA; 非静噪≤120mA 工作电压:外接电源 DC7—13.5V; 或 5号充电电池8节 发射功率: 3一5W 调制方式:调频 最大频偏:土 5kHz 接收灵敏度:0.2uV 静噪灵敏度:≤0.2vV 音频功率:≥300mW 天线形式:1.2米拉杆天线或橡胶天线 工作频率:36.100MHz 外形尺寸:145*50*35mm 二、 工作原理: 1、接收部分: 由天线接收到的信号经过 L10、L11、C30、C31 等组成的低通滤波器后,经C35、 L12送入场效应管T4的第一栅进行高放,第二栅接固定偏置,D3、 D4是输入保护二极管。放大后的 信号由C41送入场效应管T5第一栅。 同时,由T7、JT5、C72等组成第一 本振,再由C70、L16三倍频后,经 R21送入T5第二栅,由T5将前级信 号与本振信号进行混频放大,输出的信号经C42、L14选出10.7MHz第一中频信号,再经陶瓷滤波器JT2进一步选频,之后由R23送人T6进行一次中频放大,再经C47将信号送入IC2 16脚。由于高放输入与输出采用了双 调谐回路,所以可以满足通频带宽和选择性的要求。IC2内部由振荡器、混频器、限幅放大器、鉴频器及有源 滤波器、静噪触发电路等组成。第二 本振信号由IC2 1、2脚及外围JT3、 C58、R34组成,该本振频率与16脚 输入信号经IC2内部混频后,由3脚输出,由陶瓷滤波器JT4选出455kHz 的第二中频信号,再进入IC2的5脚 做第二中频放大。放大限幅后进行正交鉴频,8脚外接移相线圈网络,鉴频后的音频信号由9脚输出。 为了使调频接收机在没有收到信号时消除背景噪音,就有必要设制一套静噪电路,从而使接收机在等待状 态下,不发出令人讨厌的“哗哗” 声。另外,静噪电路的设制又可以达到省电的目的,它对在移动状态下使用电池作电源的用户更有意义。 本机的静噪控制原理是通过检测 20kHz频率以上的噪音大小来判断是 否收到信号,具体过程是:由IC2 9脚输出的音频信号分为两路,一路经R32、C57、W2送入低放集成块LM386做功率放大,推动喇叭发出 声音;另—路由C53、Wl、C51等送 入IC2内部有源滤波器滤波,从11脚 输出,再由D8、D9检波后, 经 C48、R30滤波后获得了一个直流电 压。该电压通过12脚送人IC2内部静 噪触发电路,通过14脚输出电平高与低来控制IC3的2脚电位,从而控制IC3的输出与否,最终达到了静噪的 目的。W1用来调整静噪的深度,一 般调到刚好静噪的位置上为最佳。 2、发射部分:IC1是摩托罗拉公司开发的窄频带调频发射专用集成电路。内部包括振荡器、调制器、缓冲器及两只独立的高频三极管。由驻极话筒输出的信号经R9、C14送入ICl的5脚,在其内部放大器放大后送调制器调制。由ICl1、16脚及外围元件JTl、C4组成振荡器。由于振荡器在1脚输出的调制电压作用下,使振荡器的振荡频率在其中心频率附近变动,从而达到了频率调制的目的。调制后的信号经过缓冲器从14脚输出,再经集成电路内部的Q1进行放大,由11脚输出,再经C10、L2选出三倍频后送入T1进行放大。由C20送入T2进行推动放大,由T2输出的信号通过C24、L6送人T3作功率放大。由于T2、T3工作在丙类状态,二次谐波很高,所以要用LC回路选出基波成份。在推动电路中,由C25、L6、C26选频,在功放电路中,由L9、C28组成串联谐振电路,由L10、L11、C29、C30、C31组成低通虑波器对输出的高频信号进行选频和阻抗变换,最后通过天线TX发射出去。三、元器件的选择:1、晶振的选取:假设发射频率定为36.100MHz,由于本电路发射机采用的是三倍频的频率,因此,前级振荡电路中的JTl的标称值应为36.100÷3=12.0333MHz。在接收机中,第一本振频率应为所接收到的信号频率再加上第一中频频率,即36.100+10.7=46.800MHz。由于第一本振电路也采用三倍频电路,因此,JT5的标称值应为46.800÷3=15.600MHz。接收机第二中频为455kHz,所以,JT3的标称值为10.7一0.455=10.245MH2。 对于其它频点也可按此法计算。2、其它元器件的选择:T4、T5为K122场效应管。T1、T6、T7可选用C9018,T2为D467,T3选用C2078,各三极管管脚排列顺序不尽相同。D1、D5均为5V左右的稳压管。L3、L5、L7为12uH的电感,也可在大于100K/1W的电阻上,用0.1mm漆包线绕100匝代之。L2、L16可用10LV315线圈代。L4、L6、L8、L9、L10、L11均用0.51mm漆包线在4mm的圆棒上分别绕8T、9T、8T、12T、7T、8T。JT2为10.7MH2滤波器。JT4采用455kHZ五端陶瓷滤波器。D2为红色发光二极管做发射工作指示,D6为绿色发光二极管做接收工作指示;W2为带开关的电位器,W1为不带开关的电位器。其余电阻、电容尽量选择小体积的。四、制作和调试方法由于对讲机的工作条件相对较差,为确保机器可靠工作,在焊接元件之前,元件引脚均应先上锡,焊接时,引脚也要尽可能的短,以防止杂散电容的分布,避免不必要的耦合。W1、W2的连接是用焊接线从印板的相应元件上引出,引线走印板的插元件面,不要走覆铜面。电位器,天线插座安装在上盖上,注意一定要紧固,防止松动。印板与金属屏蔽框之间也要用焊锡焊牢。 将所有元件焊好,仔细检查无误后即可通电调试。在业余条件下,可按以下方法调试,最好能有一台频率计来配合,这样比较方便一些。 1、 发射机的调试:由于发射机采用了集成电路,各阻容、电感元件参数选择比较准确,一般无需过多调试即可工作。调试时,可先将数字频率计接在ICl 11脚上,频率应为JTl的标称值,如有误差,可调整C5进行校准,如仍不能校准,可适当增加或减少C4容量,再调C5,直至频率符合要求。接着,再测T1c极频率,此点频率应为3倍JTl的频率,如不符,可适当调节L2中的磁芯。之后,可用O.01u高频瓷片电容与一只12V0.3A小灯泡串联接在天线插口上,发射机正常工作时,小灯泡应发出较亮的光,如较暗,可分别细调(拨动)L2、L4,L6、L9、L10、L11,其中L9和C28组成串联谐振电路,拨动L9的匝距对发射机的输出功率有较大影响,应仔细调节。小灯泡亮度正常之后可将其拆除,然后插上天线,将频率计的探测引线垂直放置,此时,频率计的示值应仍为3倍的JTl的值。如若不符,则需重新调节L2、L4、L6、L9、L10、L11直至符合要求。2、 接收机的调试:可利用已调好的发射机做信号源来调整接收机。此时,可将发射机的电源降至6V左右,不接天线,这样可以减少发射信号强度,便于调整接收机。先将频率计接在R21与L16的公共端上,此点频率应为JT5的3倍频率,如不符可调整L16中的磁芯。如略有偏差可调整C74。再测IC2 1脚频率应为10.245MHz。之后将静噪电位器W1旋置最浅位置,即不静噪,此时,喇叭将发出调频接收机固有的“哗哗”声,打开已调好的另一发射机(信号源)并送话,将接收机与发射机拉开约2—3米,不接天线,按照从后往前的顺序,分别调整L15、L14、L13、L12,使喇叭发出宏亮、清晰的声音,再将接收机插上天线,拉大距离微调L15一L12,直至距离最远、声音最清晰为止。最后再检查一下静噪功能是否正常,然后将甲、乙两机对调,再按上述方法调整,即可全部调试完毕。 在调试和使用对讲机过程中,如出现故障,不能正常工作,则应先检查电源电压是否正常,元件有无焊错或损坏,各跳线是否联接可靠,如无问题,可先用万用表对各三极管、集成电路的电压进行检测,看有无异常。如有异常,则应检查故障原因,寻找故障元件。如各点电压正常,则可按已述调试方法,重新调试。下面就试举几例说明维修过程。 1、 发射机无功率输出。遇此故障可在电源回路上串接一块电流表,观察总电流,在电源电压为 9.6V时,总电流应在800—900mA左右,如明显偏高,则说明有短路处,应先予以排除。当T3工作不正常时,电流将大幅下降,约80一100mA,以此可判断故障是在功放级之前还是之后。本例故障中总电流正常,说明T3及T3以前各级工作基本正常,故障很可能在T3至天线插口之间的通路上。经仔细检查,果然发现L9一端已断裂,从而使发射信号不能送至天线,导致无信号输出。究其原因是由于在调试时反复拨动L9,致使L9引脚弯折次数过多而断裂,重新焊好L9并做适当调整后,故障排除。 2、 故障现象同上。测回路总电流只有 30mA,明显偏低,可见最起码是T3未工作。用频率计测量IC1 11脚,频率正常,再测TI的c极,频率为36.100MHz,正常。再测T2的c极时,频率值变化较大,显然不正常,再用万用表测T2的b极电压,为0V,与正常值不符,随即更换一只D467后,故障排除。另外,C20开路时也会引起此故障。 3、 接收机静噪失控。不论静噪电位器 W1旋置何处,均不能静噪,喇叭中始终有“哗哗”声。查阅IC2的内部框图可知,11一14脚为静噪控制端,D8、D9、C48分别起检波和滤波作用,其工作状态好坏直接影响静噪电路,应重点检查。经查C48已呈低阻状态,其电阻正反向均只有十几欧,更换C48后故障排除。假设C48、D8、D9工作正常,则可一边调节W1一边用万用表检测IC211一14脚,看电压有无突变。如没有变化,则可考虑更换IC2一试。 4、 接收机收不到对方信号,但有正常的“哗哗”声,也可静噪。出现这种现象一般是 T6及T6以前的高放、混频部分出了故障,信号通路被阻断,可利用自制的信号寻迹器来检测,将信号按照从后往前的顺序分别注入T6的b极,T5第一栅及T4第一栅,看喇叭是否发声。本例中,从T6、T5注入信号,喇叭均发声,而从T4注入信号时则无声,再从L13与C41公共端注入信号,仍无声,可见,C41有故障,焊下后测量,已开路,更换一只后,试机已可以正常接收信号了。 5、 通信距离近。这是此类型对讲机中最常见的一种故障,检修起来也比较繁琐,接收机和发射机的某一部分工作不正常均能引起此故障,此时,应先判断是发射机的故障还是接收机的故障,可先测量发射机的总电流、频率是否正常,有无功率输出,确认发射机无故障后,再着手检查接收机。先用万用表测量各点电压看是否正常,之后,再用频率计测量 IC2 1脚、L16与R21公共端的频率,看是否符合要求,本例中,L16与R21公共端的频率不对,再测T7的c极频率,此点未经3倍频,正常值应为15.600MHz,而实际值在几十MHz内无规则变化,试调节L16无效。再用万用表复测T7各脚电压,正常。随即仔细查看有关元件,发现L16屏蔽罩松动,C70引脚过长,且已弯曲,两极轻微相碰。将C70焊下,剪短引脚,重新焊好,并焊牢L16屏蔽罩,通电开机,再调L16,本振频率已符合要求。经实际拉距测试,已恢复原先通讯距离。由于电路板上元件排列很紧凑,易发生引脚相碰从而引发故障,因此在组装、调试、维修时,应注意避免引脚相碰。 在实际检修中,还发现拉杆天线内部的加感线圈经常与天线插头内的插针脱焊断开,使天线未起作用,从而引发通讯距离近的故障。分析其原因主要是由于天线采用Q9型插头、插座,在反复装、拆过程中,均需转动插头外圈,使之能与插座的内槽吻合。而同时,插头内插针也随之产生扭矩,产生松扣现象,使焊在插针上的加感线圈引脚被拉断。检修时,可将插针连同加感线圈一同取出,重新拧紧,焊好加感线圈.再在易松扣的位置上点一点儿502胶水,晾干后重新装回。插座亦做相应处理。经过这样处理后,就不会再发生此类故障了。
2023-08-10 13:56:171

音响里装分频器和不装分频器有什么区别 区别大不大,懂的回复 不懂勿扰

那就所有的音频电流同时加入低音、中音、高音喇叭,低音无所为,中音可能被烧坏,高音立即被烧坏。
2023-08-10 13:56:256

电力电子技术的应用及其发展:电力电子技术第5版pdf

  电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等血多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。下面着重讨论电力电子技术在电力系统中的一些应用。      一、发电环节      电力系统的发电环节设计发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。   大型发电机的静止励磁控制。静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有力条件。   水力、风力发电机的变速恒频励磁。水力发电的有效功率取决于水头压力和流量,当水头的变化幅度较大时(尤其是抽水蓄能机组),机组的最佳转速亦随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大的风能的转速随风速而变化。为了获得最大的有效功率,可使机组变速运行,通过调整转子励磁电流的频   率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。      二、永磁无刷电动机及其“直流变频”调速      永磁无刷电动机采用永磁代替电流激磁,可使电机效率提高4-8个百分点。当它用位置传感器或靠软件计算代替位置传感器信号按电子换向器控制工作、电枢电流为方波运行的,即为永磁无刷直流电机模式,又称“自控式同步电机”。当它靠外加变频器控制、电枢电流为正弦波运行的,则为永磁同步电动机模式,又称为“他控式同步电机”。这种电机兼有交-直流电动机二者的优点,调速范围宽,电机结构简单,低速转矩比较大,对电动机械来讲有可能做到在很宽速度范围内直接驱动,从而减少噪声(免去变速箱或皮带传动),还有电机惯量小等长处。      三、在高压直流输电(HVDC)方面的应用      直流输电在技术方面有许多优点:(1)不存在系统稳定问题,可实现电网的非同期互联;(2)可以限制短路电流;(3)没有电容充电电流;(4)线路有功损耗小;(5)输送相同功率时,线路造价低;(6)调节速度快,运行可靠;(7)适宜于海下输电。随着大功率电子器件(如:可关断的晶闸管、MOS控制的晶闸管、绝缘门极双极性三极管等)开断能力不断提高,新的大功率电力电子器件的出现和投入应用,高压直流输电设备的性能必将进一步得以改善,设备结构得以简化,从而减少换流站的占地面积、降低工程造价。      四、在电力谐波治理方面的应用      有源滤波是治理日益严重的电力系统谐波的最理想方法之一。有源滤波器的概念最早是在20世纪70年代初提出来的,即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,从而实现实时补偿谐波电流的目的。随着中国电能质量治理工作的深入开展,使用以瞬时无功功率理论为理论基础的有源滤波器进行谐波治理将会有巨大的市场潜力。      五、电力电子技术在电动车驱动系统中的应用      下图给出了电动车驱动系统的大致框图,其中主要由电机、功率变换和控制技术三部分组成。   电动车用电机及其控制图如下:   为了满足电动车驱动系统性能和现有电机控制技术的需要,目前国外电动车实际应用的电机主要有交流永磁同步电机和开关磁阻电机。   以交流同步电机和无刷直流电机为代表的交流永磁电动机具有低重量、低损耗、高效率、高能量密度、高可靠性和免维修等优点,使得交流永磁电动机在电动车中得到了广泛应用。然而传统的交流电机控制方法如变压变频(VVVF)并不能满足电动车进一步改进性能的要求。一个主要原因就是直交轴互相作用的非线性动态模型。随着微机时代的出现,磁场定向矢量控制(FOC)技术目前已发展成熟,广泛应用于交流电机。   尽管开关磁阻电机的原理已经有近百年的历史了,然而它的广泛应用却是最近几年的事。开关磁阻电机结构紧密、坚固、效率高,低速时可提供很大转矩,且驱动器结构简单。它的缺点也很明显,振动大,噪声大,特别是仍需励磁,使得它的效率和能量密度不能和交流永磁电机相提并论。   电力电子技术的创新与电力电子器件制造工艺,已成为世界各国工业自动化控制和机电一体化领域竞争最激烈的阵地,各发达国家均在这一领域注入极大的人力,物力和财力,使之进入高科技行业,就电力电子技术的理论研究言,目前日本、美国及法国、荷兰、丹麦等西欧国家可以说是齐头并进,在这些国家各种先进的电力电子功率量不断开发完善,促进电力电子技术向着高频化迈进,实现用电设备的高效节能,为真正实现工控设备的小型化,轻量化,智能化奠定了重要的技术基础,也为21世纪电力电子技术的不断拓展创新描绘了广阔的前景。我国开发研制电力电子器件的综合技术能力与国外发达国家相比,仍有较大的差距,要发展和创新我国电力电子技术,并形成产业化规模,就必须走有中国特色的产学创新之路,即牢牢坚持和掌握产、学、研相结合的方法走共同发展之路。从跟踪国外先进技术,逐步走上自主创新,从交叉学科的相互渗透中创新,从器件开发选择及电路结构变换上创新,这对电力技术创新是尤其实用的。也要从器件制造工艺技术引导创新,从新材料科学的应用上创新,以此推动电力电子器制造工艺的技术创新,提高器件的可靠性。由此形成基础积累型的创新之路。并要把技术创新与产品应用及市场推广有机结合,已加快科技创新的自我强化的循环,促进和带动技术创新有着稳定的基础,以使我国电力电子技术及器件制造工艺技术有以长足的发展,并形成一个全新的圾阳产业,转化为巨大的生产力,推动我国工业领域由粗板型经营走向集型,促进国民经济以高速、高度、可持续发展。 本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
2023-08-10 13:57:011

什么是有源?

有缘就是有缘,有份无缘无份缘无份,这个你清楚吗?
2023-08-10 13:57:1214

模拟电子技术基础的图书目录

第1章 半导体二极管及其基本电路 11.1 半导体的基础知识 11.1.1 半导体材料 11.1.2 半导体的共价键结构 11.1.3 本征半导体 21.1.4 杂质半导体 31.2 PN结的形成及其特性 41.2.1 PN结的形成 41.2.2 PN结的单向导电性 51.2.3 PN结的电容效应 71.3 半导体二极管 81.3.1 二极管的结构及类型 81.3.2 二极管的伏安特性 91.3.3 二极管的主要参数 101.4 二极管基本电路及其分析方法 101.4.1 二极管的等效电路 101.4.2 二极管应用的典型电路 121.5 特殊二极管 131.5.1 稳压二极管 141.5.2 发光二极管 161.5.3 光电二极管 161.5.4 变容二极管 161.5.5 特殊二极管的应用 161.6 仿真例题 17小结 18习题 18第2章 晶体三极管及其放大电路基础 222.1 晶体三极管 222.1.1 三极管的结构及类型 222.1.2 三极管的放大原理 232.1.3 三极管共发射极的伏安特性曲线 252.1.4 三极管的主要参数 272.2 三极管放大电路的各项指标 282.3 放大电路的分析方法 302.3.1 单管共发射极基本放大电路的组成 302.3.2 估算分析法 322.3.3 图解分析法 332.3.4 小信号模型分析法 362.4 放大电路静态工作点Q的设置 462.4.1 温度对静态工作点的影响 462.4.2 固定偏置电路 462.4.3 射极偏置电路 462.5 三极管组合放大电路 482.5.1 共集-共射放大电路 482.5.2 共集-共集放大电路 502.6 放大电路的频率响应 522.6.1 研究放大电路频率响应的重要性及一些基本概念 522.6.2 三极管的高频等效模型 542.6.3 阻容耦合单管共发射极放大电路的频率响应 552.7 仿真例题 60小结 61习题 62第3章 场效应管及其放大电路 683.1 结型场效应管 683.1.1 结型场效应管(JFET)的类型和结构 683.1.2 结型场效应管的工作原理 693.1.3 结型场效应管的特性曲线 713.1.4 结型场效应管的主要参数 743.2 绝缘栅型场效应管 753.2.1 绝缘栅型场效应管(MOSFET)的类型和结构 753.2.2 绝缘栅型场效应管的工作原理、特性曲线、参数 763.3 各种场效应管特性比较及使用时的注意事项 793.3.1 各种场效应管的特性比较 793.3.2 使用场效应管的注意事项 803.4 场效应管放大电路 803.4.1 场效应管放大电路的静态分析 803.4.2 场效应管的微变模型 823.4.3 场效应管放大电路的动态分析 833.4.4 场效应管多级放大电路 873.5 仿真例题 89小结 89习题 90第4章 功率放大电路 954.1 概述 954.1.1 功率放大电路的作用 954.1.2 功率放大电路的特点 964.2 功率放大电路提高效率的方法 974.2.1 最简单的功率放大电路——射极输出器 974.2.2 功率放大电路提高效率的主要途径 994.3 乙类双电源互补对称功率放大电路 1004.3.1 电路组成和工作原理 1004.3.2 输出功率及效率 1014.3.3 功率管的选择 1034.3.4 交越失真 1054.4 甲乙类互补对称功率放大电路 1064.4.1 甲乙类双电源互补对称电路 1064.4.2 甲乙类单电源互补对称电路 1074.5 集成功率放大器 1084.6 仿真例题 110小结 112习题 112第5章 模拟集成电路基础 1165.1 概述 1165.1.1 模拟集成电路的特点 1165.1.2 集成运放的基本电路组成 1175.2 电流源电路 1185.2.1 镜像电流源 1185.2.2 微电流源 1195.2.3 多路电流源 1205.2.4 电流源的主要作用 1205.3 差分放大电路 1215.3.1 直接耦合放大电路的零点漂移问题 1215.3.2 发射极耦合差分放大电路的分析 1215.3.3 带恒流源偏置的差分放大电路 1285.3.4 差分放大电路的几种接法 1295.4 通用型集成运算放大器 1325.5 集成运放的主要参数和电压传输特性 1355.5.1 集成运放的主要参数 1355.5.2 集成运放的电压传输特性 1365.6 专用集成运算放大器 1385.7 仿真例题 139小结 141习题 142第6章 负反馈放大电路 1476.1 反馈的基本概念与分类 1476.1.1 反馈的概念 1476.1.2 反馈的组成框图 1486.1.3 反馈的分类及判断 1496.2 负反馈放大电路的四种组态 1566.2.1 电压串联负反馈放大电路 1566.2.2 电流串联负反馈放大电路 1576.2.3 电压并联负反馈放大电路 1586.2.4 电流并联负反馈放大电路 1606.3 反馈的一般表达式 1616.4 负反馈对放大电路性能的影响 1626.4.1 提高闭环增益的稳定性 1626.4.2 减小非线性失真 1636.4.3 抑制反馈环内干扰和噪声 1646.4.4 对输入电阻和输出电阻的影响 1646.4.5 放大电路引入负反馈的一般原则 1666.5 深度负反馈条件下的近似计算 1666.5.1 深度负反馈下的“虚短”和“虚断” 1666.5.2 深度负反馈下的近似计算 1676.6 仿真例题 170小结 172习题 172第7章 模拟信号的运算与处理 1777.1 运算放大器特性 1777.2 基本运算电路 1787.2.1 比例运算电路 1797.2.2 加法电路和加法-减法电路 1817.2.3 积分运算电路和微分运算电路 1837.2.4 对数运算电路和反对数运算电路 1857.2.5 模拟乘法运算电路 1867.3 有源滤波器 1897.3.1 低通滤波电路 1897.3.2 高通滤波电路 1917.3.3 带通滤波电路和带阻滤波电路 1917.4 PSpice仿真 192小结 194习题 195第8章 信号产生电路 1998.1 正弦波产生振荡的条件 1998.2 正弦波振荡器的基本组成 2018.3 RC桥式正弦波振荡电路 2018.4 LC正弦波振荡电路 2048.4.1 LC并联谐振回路特性 2048.4.2 变压器反馈式LC振荡电路 2068.4.3 三点式LC振荡电路 2078.4.4 石英晶体振荡电路 2098.5 非正弦信号产生电路 2108.5.1 电压比较器 2108.5.2 方波产生电路 2148.5.3 三角波产生电路 2158.5.4 锯齿波产生电路 2178.5.5 集成函数发生器 2188.6 PSpice仿真 219小结 220习题 221第9章 直流稳压电源 2259.1 直流电源的组成 2259.2 整流电路 2259.2.1 半波整流电路 2269.2.2 全波整流电路 2279.2.3 桥式整流电路 2299.3 滤波电路 2299.3.1 电容滤波电路 2309.3.2 电感滤波电路 2329.3.3 其他形式的滤波电路 2329.4 稳压电路 2339.4.1 稳压管稳压电路 2339.4.2 串联型稳压电路 2379.5 集成稳压器 2399.5.1 三端固定输出集成稳压器 2399.5.2 三端可调输出集成稳压器 2419.6 PSpice仿真 242小结 243习题 243附录A 符号表 246参考文献 250
2023-08-10 13:57:401

电子专业 面试题

技术问题和应变能力
2023-08-10 13:57:573

数电模电与电工电子是不是一样的

不太一样,电工电子比较笼统一点
2023-08-10 13:58:074

有源电力滤波器(APF)的工作原理是什么?

市面上有很多这样的产品,其工作原理大都一致,以Sinexcel APF为例,其工作原理为:通过外部电流互感器CT,实时检测负载电流,并通过内部DSP计算,提取出负载电流的谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波大小相等、方向相反的电流注入到电网中补偿谐波电流,实现滤波功能。
2023-08-10 13:58:281

有源滤波与无源滤波有什么区别?

有源滤波与无源滤波主要是控制原理不同。
2023-08-10 13:58:416

有源滤波柜的作用?

问题一:有源电力滤波器的作用是什么? 有源滤波器是通过实时监测谐波信号,然后发出幅值相等,相位相同,方向相反的电流,来抵消谐波电流的。它的主要作用除了滤除谐波,还可抑制闪变、补偿无功等。领步公司可以帮您解决这所有的问题,详情请百度了解。 问题二:有源滤波器对用电设备有哪些好处? 德殷有源滤波器能解决如下问题: 1,敏感性负载相互干扰,计算机出错、死机,2,保护装置污误动或拒动,开关跳闸;3,伺服电机产生脉动,交流电机产生振动,噪音增大;4,产生线路传导电磁干扰,数字传输鼓掌,通讯剪断;5,全自动化设备PC主板损坏;6,照明和显示设备闪烁等等 问题三:安装有源滤波器APF有什么好处? 德殷有源滤波器APF能提高输变、配电设备资源的效率,保证系统电压稳定;保证电网电能的品质、波形真实稳定、频率稳定,减少电网负担,增加电网可用容量;德殷有源滤波器APF能解决如下问题: 1,敏感性负载相互干扰,计算机出错、死机,2,保护装置污误动或拒动,开关跳闸;3,伺服电机产生脉动,交流电机产生振动,噪音增大;4,产生线路传导电磁干扰,数字传输鼓掌,通讯剪断;5,全自动化设备PC主板损坏;6,照明和显示设备闪烁等等;德殷有源电力滤波器APF能解决电力变压器和发电机因损耗增大而产生过热、损坏,噪音增大的问题;能解决电缆过热,绝缘老化,电容器介质损耗增大、过热的问题;能解决中线电流增大、过热的问题;德殷有源滤波器能提高变压器和发电机的使用容量。 问题四:有源滤波器有什么功能或优势?它的工作原理是什么? 与无源滤波器相比较,有源滤波器是一种新型的、较复杂和昂贵的解决方案。它属于电力电子装置,即使初始条件发生变化,也可以同时消除不同频率的干扰。它可以单独使用,或专门用于严重的污染源设备,如静止不间断电源的整流器。 其工作原理是通过检测电源的谐波,然后注入相同频谱但相位相反的分量来消除的,确保在电源入口处谐波含量低。因此,有源滤波器提供了一个可选的瞬时谐波补偿方案,减少了电气损耗。此外,它还提高了功率因数,甚至可以补偿一些不平衡电流。目前已经有不少的应用案例,在大功率场合可以将多个单元并联使用,其容量可达数百千伏安。北京有一家自己研发生产的有源滤波器的公司就还不错的,新能动力家的产品也是有蛮多地方应用的。 问题五:有源滤波器的优缺点 优点:可动态滤除各次谐波,对系统内的谐波能够完全吸收;不会产生谐振。缺点:造价太高;受硬件限制,在大容量场合无法使用:有源滤波容量单套不超过100KVA,目前最高适用电网电压不超过690V。 问题六:有源滤波器在配电系统中的应用,电容柜里已有电抗器,和有源滤波柜 1.首先采样不能取原来补偿的柜子。也就是信号不能包括电抗了电容了。 2.你柜子运行,电抗会有声音这是肯定的,因为高频产生的也是一个谐波。抚3.你说的重了,是的,电抗有特定次的,5、7次的比较多,但是有源滤波是2-50,也就意味着会吸收一部分,释放一部分,全部滤除容量较大,也就是说可以用,但是会有干扰,尽量在采集信号和接地上做处理。 4.设计理念就是补偿别的剩下的补不了的,别的只能滤除5、7,这个装置滤除剩下的。 问题七:有源低通滤波器的运放起着什么作用 无论是无源还是有源滤波器,都是基于同样的原形,从滤波特性本身来讲都是一样的。 无源RC滤波器不能等同于有源RC滤波器,有源RC和无源LC可以实现出Bottworth函数,而用无源RC实现这个函数是很不理想的,它的最低衰耗值极高(此点鲜为人知)。所以一般不用无源RC函数作滤波器逼近函数。 不仅如此,而且经过计算,无源低通二阶滤波器的品质因数非常的低,最高能达到0.5,但是这个还不是所有的频率都能够达到的。 运放起放大作用,这样说不知道您能理解吗,运放就两个作用,比较和放大。 问题八:有源滤波器的应用场合 萨顿斯有源电力滤波器可广泛应用于工业、商业和机关团体的配电网中,如:电力系统、电解电镀企业、水处理设备、石化企业、大型商场及办公大楼、精密电子企业、机场/港口的供电系统、医疗机构等。根据应用对象不同,HTAPF-I型有源电力滤波器的应用将起到保障供电可靠性、降低干扰、提高产品质量、增长设备寿命减少设备损坏等作用。■通信行业为了满足大规模数据中心机房的运行需要,通信配电系统中的UPS使用容量在大幅上升。据调查,通信低压配电系统主要的谐波源设备为UPS、开关电源、变频空调等。其产生的谐波含量都较高,且这些谐波源设备的位移功率因数极高。通过使用有源滤波器可以提高通信系统及配电系统的稳定性,延长通信设备及电力设备的使用寿命,并且使配电系统更符合谐波环境的设计规范。■半导体行业大多数半导体行业的3次谐波非常严重,主要是由于企业中使用了大量的单相整流设备。3次谐波属于零序谐波,具备在中性线汇集的特点,导致中性线压力过大,甚至出现打火现象,存在着极大的生产安全隐患。谐波还会造成断路器跳闸,耽误生产时间。3次谐波在变压器内形成环流,加速了变压器的老化。严重的谐波污染必然对配电系统中的设备使用效率和寿命造成影响。■石化行业由于生产的需要,石化行业中存在着大量泵类负载,并且不少泵类负载都配有变频器。变频器的大量应用使石化行业配电系统中的谐波含量大大增加。目前绝大部分变频器整流环节都是应用6脉冲将交流转化为直流,因此产生的谐波以5次、7次、11次为主。其主要危害表现为对电力设备的危害及在计量方面的偏差。使用有源滤波器可以很好地解决这方面的问题。■化纤行业为大幅提高熔化率、提高玻璃的熔化质量,以及延长炉龄、节省能源,在化纤行业常用到电助熔加热设备,借助电极把电直接送入燃料加热的玻璃池窑中。这些设备会产生大量的谐波,且三相谐波的频谱和幅值差别比较大。■钢铁/中频加热行业钢铁业中常用到的中频炉、轧机、电弧炉等设备都会对电网的电能质量产生重大的影响,使电容补偿柜过载保护动作频繁、变压器和供电线路发热严重、熔断器频繁熔断等,甚至引起电压跌落、闪变。■汽车制造业焊机是汽车制造业中不可少的设备,由于焊机具有随机性、快速性及冲击性的特点,使大量使用焊机造成严重的电能质量问题,造成焊接质量不稳、自动化程度高的机器人由于电压不稳而不能工作,无功补偿系统无法正常使用等情况。■直流电机谐波治理大型直流电机场所都需要先通过整流设备将交流电转换为直流电,由于此类工程的负载容量都较大,因此在交流侧存在严重的谐波污染,造成电压畸变,严重时会引起事故。■自动化生产线和精密设备的使用在自动化生产线和精密设备场合,谐波会影响到其正常使用,使智能控制系统、PLC系统等出现故障。■医院系统医院对供电的连续性和可靠性有非常严格的要求,0类场所自动恢复供电时间T≤15S,1类场所自动恢复供电时间0.5S≤T≤15S, 2类场所自动恢复供电时间T≤0.5S,电压总谐波畸变率THDu≤3%,X光机、CT机、核磁共振都是谐波含量极高的负载。■剧场/体育馆可控硅调光系统、大型LED设备等都是谐波源,在运行过程中会产生大量的三次谐波,不但造成配电系统的电力设备效率低下,而且还会造成灯光频闪,对通信、有线电视等微弱电回路产生杂音,甚至产生故障。 问题九:有源滤波器能不能实现无功补偿的功能? 不能,虽然SVG和APF原理一样,都是逆变器原理,但是有源滤波产生的波形和线路中的谐波触反向,以抵消线路谐波,而SVG是产生和线路同频不同相的电流而发出或者吸收无功,两者产生的波形不一样,故而不能实现无功补偿,虽然功率因数与谐波有一定的关系,但是与无功没有太大的关系。
2023-08-10 13:59:081

有源滤波器,有源滤波器是什么意思

以LC或RC等器件组成的无源滤波器进行信号处理时,它们的滤波特性(尤其是RC组成的多阶滤波)往往不容易做的很好,且会产生衰减,如果配上放大器(运放、晶体管),利用放大、反馈等手段,可以取得比较理想的幅频响应,并且可抵消衰减甚至得到增益。例如可以做出最平坦幅频响应的巴特沃斯滤波器、通带内等纹波的切比雪夫滤波器、阻带等纹波的反切比雪夫滤波器、通带阻带均有纹波具有最窄过渡带的椭圆滤波器、时域最平坦特性的贝塞尔滤波器等,而用无源RC滤波器时很难形成这些复杂滤波特性形态。由于放大器需要电源,所以被称有源滤波器。
2023-08-10 13:59:182

有源滤波柜的作用

问题一:有源电力滤波器的作用是什么? 有源滤波器是通过实时监测谐波信号,然后发出幅值相等,相位相同,方向相反的电流,来抵消谐波电流的。它的主要作用除了滤除谐波,还可抑制闪变、补偿无功等。领步公司可以帮您解决这所有的问题,详情请百度了解。 问题二:有源滤波器对用电设备有哪些好处? 德殷有源滤波器能解决如下问题: 1,敏感性负载相互干扰,计算机出错、死机,2,保护装置污误动或拒动,开关跳闸;3,伺服电机产生脉动,交流电机产生振动,噪音增大;4,产生线路传导电磁干扰,数字传输鼓掌,通讯剪断;5,全自动化设备PC主板损坏;6,照明和显示设备闪烁等等 问题三:安装有源滤波器APF有什么好处? 德殷有源滤波器APF能提高输变、配电设备资源的效率,保证系统电压稳定;保证电网电能的品质、波形真实稳定、频率稳定,减少电网负担,增加电网可用容量;德殷有源滤波器APF能解决如下问题: 1,敏感性负载相互干扰,计算机出错、死机,2,保护装置污误动或拒动,开关跳闸;3,伺服电机产生脉动,交流电机产生振动,噪音增大;4,产生线路传导电磁干扰,数字传输鼓掌,通讯剪断;5,全自动化设备PC主板损坏;6,照明和显示设备闪烁等等;德殷有源电力滤波器APF能解决电力变压器和发电机因损耗增大而产生过热、损坏,噪音增大的问题;能解决电缆过热,绝缘老化,电容器介质损耗增大、过热的问题;能解决中线电流增大、过热的问题;德殷有源滤波器能提高变压器和发电机的使用容量。 问题四:有源滤波器有什么功能或优势?它的工作原理是什么? 与无源滤波器相比较,有源滤波器是一种新型的、较复杂和昂贵的解决方案。它属于电力电子装置,即使初始条件发生变化,也可以同时消除不同频率的干扰。它可以单独使用,或专门用于严重的污染源设备,如静止不间断电源的整流器。 其工作原理是通过检测电源的谐波,然后注入相同频谱但相位相反的分量来消除的,确保在电源入口处谐波含量低。因此,有源滤波器提供了一个可选的瞬时谐波补偿方案,减少了电气损耗。此外,它还提高了功率因数,甚至可以补偿一些不平衡电流。目前已经有不少的应用案例,在大功率场合可以将多个单元并联使用,其容量可达数百千伏安。北京有一家自己研发生产的有源滤波器的公司就还不错的,新能动力家的产品也是有蛮多地方应用的。 问题五:有源滤波器的优缺点 优点:可动态滤除各次谐波,对系统内的谐波能够完全吸收;不会产生谐振。缺点:造价太高;受硬件限制,在大容量场合无法使用:有源滤波容量单套不超过100KVA,目前最高适用电网电压不超过690V。 问题六:有源滤波器在配电系统中的应用,电容柜里已有电抗器,和有源滤波柜 1.首先采样不能取原来补偿的柜子。也就是信号不能包括电抗了电容了。 2.你柜子运行,电抗会有声音这是肯定的,因为高频产生的也是一个谐波。抚3.你说的重了,是的,电抗有特定次的,5、7次的比较多,但是有源滤波是2-50,也就意味着会吸收一部分,释放一部分,全部滤除容量较大,也就是说可以用,但是会有干扰,尽量在采集信号和接地上做处理。 4.设计理念就是补偿别的剩下的补不了的,别的只能滤除5、7,这个装置滤除剩下的。 问题七:有源低通滤波器的运放起着什么作用 无论是无源还是有源滤波器,都是基于同样的原形,从滤波特性本身来讲都是一样的。 无源RC滤波器不能等同于有源RC滤波器,有源RC和无源LC可以实现出Bottworth函数,而用无源RC实现这个函数是很不理想的,它的最低衰耗值极高(此点鲜为人知)。所以一般不用无源RC函数作滤波器逼近函数。 不仅如此,而且经过计算,无源低通二阶滤波器的品质因数非常的低,最高能达到0.5,但是这个还不是所有的频率都能够达到的。 运放起放大作用,这样说不知道您能理解吗,运放就两个作用,比较和放大。 问题八:有源滤波器的应用场合 萨顿斯有源电力滤波器可广泛应用于工业、商业和机关团体的配电网中,如:电力系统、电解电镀企业、水处理设备、石化企业、大型商场及办公大楼、精密电子企业、机场/港口的供电系统、医疗机构等。根据应用对象不同,HTAPF-I型有源电力滤波器的应用将起到保障供电可靠性、降低干扰、提高产品质量、增长设备寿命减少设备损坏等作用。■通信行业为了满足大规模数据中心机房的运行需要,通信配电系统中的UPS使用容量在大幅上升。据调查,通信低压配电系统主要的谐波源设备为UPS、开关电源、变频空调等。其产生的谐波含量都较高,且这些谐波源设备的位移功率因数极高。通过使用有源滤波器可以提高通信系统及配电系统的稳定性,延长通信设备及电力设备的使用寿命,并且使配电系统更符合谐波环境的设计规范。■半导体行业大多数半导体行业的3次谐波非常严重,主要是由于企业中使用了大量的单相整流设备。3次谐波属于零序谐波,具备在中性线汇集的特点,导致中性线压力过大,甚至出现打火现象,存在着极大的生产安全隐患。谐波还会造成断路器跳闸,耽误生产时间。3次谐波在变压器内形成环流,加速了变压器的老化。严重的谐波污染必然对配电系统中的设备使用效率和寿命造成影响。■石化行业由于生产的需要,石化行业中存在着大量泵类负载,并且不少泵类负载都配有变频器。变频器的大量应用使石化行业配电系统中的谐波含量大大增加。目前绝大部分变频器整流环节都是应用6脉冲将交流转化为直流,因此产生的谐波以5次、7次、11次为主。其主要危害表现为对电力设备的危害及在计量方面的偏差。使用有源滤波器可以很好地解决这方面的问题。■化纤行业为大幅提高熔化率、提高玻璃的熔化质量,以及延长炉龄、节省能源,在化纤行业常用到电助熔加热设备,借助电极把电直接送入燃料加热的玻璃池窑中。这些设备会产生大量的谐波,且三相谐波的频谱和幅值差别比较大。■钢铁/中频加热行业钢铁业中常用到的中频炉、轧机、电弧炉等设备都会对电网的电能质量产生重大的影响,使电容补偿柜过载保护动作频繁、变压器和供电线路发热严重、熔断器频繁熔断等,甚至引起电压跌落、闪变。■汽车制造业焊机是汽车制造业中不可少的设备,由于焊机具有随机性、快速性及冲击性的特点,使大量使用焊机造成严重的电能质量问题,造成焊接质量不稳、自动化程度高的机器人由于电压不稳而不能工作,无功补偿系统无法正常使用等情况。■直流电机谐波治理大型直流电机场所都需要先通过整流设备将交流电转换为直流电,由于此类工程的负载容量都较大,因此在交流侧存在严重的谐波污染,造成电压畸变,严重时会引起事故。■自动化生产线和精密设备的使用在自动化生产线和精密设备场合,谐波会影响到其正常使用,使智能控制系统、PLC系统等出现故障。■医院系统医院对供电的连续性和可靠性有非常严格的要求,0类场所自动恢复供电时间T≤15S,1类场所自动恢复供电时间0.5S≤T≤15S, 2类场所自动恢复供电时间T≤0.5S,电压总谐波畸变率THDu≤3%,X光机、CT机、核磁共振都是谐波含量极高的负载。■剧场/体育馆可控硅调光系统、大型LED设备等都是谐波源,在运行过程中会产生大量的三次谐波,不但造成配电系统的电力设备效率低下,而且还会造成灯光频闪,对通信、有线电视等微弱电回路产生杂音,甚至产生故障。 问题九:有源滤波器能不能实现无功补偿的功能? 不能,虽然SVG和APF原理一样,都是逆变器原理,但是有源滤波产生的波形和线路中的谐波触反向,以抵消线路谐波,而SVG是产生和线路同频不同相的电流而发出或者吸收无功,两者产生的波形不一样,故而不能实现无功补偿,虽然功率因数与谐波有一定的关系,但是与无功没有太大的关系。
2023-08-10 13:59:281

有源滤波器和无源滤波器有什么区别

有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿。之所以称为有源,顾名思义该装置需要提供电源(用以补偿主电路的谐波),其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高!工作原理有源滤波器是用电流互感器采集直流线路上的电流,经采样,将所得的电流信号进行谐波分离算法的处理,得到谐波参考信号,作为的调制信号,与三角波相比,从而得到开关信号,用此开关信号去控制单相桥,根据技术的原理,将上下桥臂的开关信号反接,就可得到与线上谐波信号大小相等、方向相反的谐波电流,将线上的谐波电流抵消掉。这是前馈控制部分。再将有源滤波器接入点后的线上电流的谐波分量反馈回来,作为调节器的输入,调整前馈控制的误差.无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。区别无源滤波器和有源滤波器,存在以下的区别:工作原理无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。谐波处理无源滤波器只能滤除某频率范围内的谐波;但完全可以解决系统中的谐波问题,解决企业用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除特定次数的谐波。阻抗影响无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。频率影响无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。负载影响无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,仅发生补偿效果不足而已。负载变化对谐波补偿效果的影响。无源滤波器补偿效果随着负载的变化而变化;有源滤波器不受负载变化影响。设备造价无源滤波器较低;有源滤波器太高。应用对比1.有源滤波容量单套不超过100KVA,无源滤波则无此限制。2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同时提供无功功率补偿。3.有源滤波目前最高适用电网电压不超过450V,而低压无源滤波最高适用电网电压可达3000V。4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场合无法使用,适用于电信、医院等用电功率较小且谐波频率较高的单位,优于无源滤波。
2023-08-10 13:59:393

有源虑波器和无源虑波器应用场合有什么区别,

他们的应用场合其实没有那么严格的划分,首先要肯定是有源比无源应用的场合更大更广,他可以不受谐波大小、功率因数的限制等,适应于任何的环境中,而无源要考虑功率因数的情况,因为无源是整组投入的,如果功率因数超过1的话,是投切不上的,同时还要考虑无源滤波器的耐流值等等是否满足等条件,还要考量系统的短路阻抗等等因数,这些都关系到滤波的效果,他们两者都是用在电源中的,没有刻意说有源是用在模拟电路中的说法。
2023-08-10 13:59:502

有源滤波与无源滤波有什么区别?

绿波杰能举个简单的例子来说明一下:就像我们去食堂吃饭一样,那些大锅菜就是无源滤波器,小炒就是有源滤波器。翻译一下:无源滤波器的滤波能力及滤除谐波的频段,在设计时就已确定好了,不可更改的;有源滤波器,里面有采样系统,根据采样结果,施加以大小相同,方向相反的谐波电流,予以抵消,所以,其滤波能力和效果在一定范围内是可变的。不知道解释清楚了没有?
2023-08-10 14:00:024

如何正确区别无源和有源电力滤波器

有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿。之所以称为有源,顾名思义该装置需要提供电源(用以补偿主电路的谐波),其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高!工作原理有源滤波器是用电流互感器采集直流线路上的电流,经采样,将所得的电流信号进行谐波分离算法的处理,得到谐波参考信号,作为的调制信号,与三角波相比,从而得到开关信号,用此开关信号去控制单相桥,根据技术的原理,将上下桥臂的开关信号反接,就可得到与线上谐波信号大小相等、方向相反的谐波电流,将线上的谐波电流抵消掉。这是前馈控制部分。再将有源滤波器接入点后的线上电流的谐波分量反馈回来,作为调节器的输入,调整前馈控制的误差.无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。区别无源滤波器和有源滤波器,存在以下的区别:工作原理无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。谐波处理无源滤波器只能滤除某频率范围内的谐波;但完全可以解决系统中的谐波问题,解决用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除特定次数的谐波。阻抗影响无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。频率影响无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。负载影响无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,仅发生补偿效果不足而已。负载变化对谐波补偿效果的影响。无源滤波器补偿效果随着负载的变化而变化;有源滤波器不受负载变化影响。设备造价无源滤波器较低;有源滤波器太高。应用对比有源滤波容量单套不超过100KVA,无源滤波则无此限制。2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同时提供无功功率补偿。3.有源滤波目前最高适用电网电压不超过450V,而低压无源滤波最高适用电网电压可达3000V。4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场合无法使用,适用于电信、等用电功率较小且谐波频率较高的单位,优于无源滤波。
2023-08-10 14:00:331

无源滤波器和有源滤波器的区别有哪些?

二、无源滤波器的分类无源滤波器主要可以分为两大类:调谐滤波器和高通滤波器。 2.1、调谐滤波器调谐滤波器包括单调谐滤波器和双调谐滤波器,可以滤除某一次(单调谐)或两次(双调谐)谐波,该谐波的频率称为调谐滤波器的谐振频率; 2.2、高通滤波器高通滤波器也称为减幅滤波器,主要包括一阶高通滤波器、二阶高通滤波器、三阶高通滤波器和c型滤波器,用来大幅衰减高于某一频率的谐波,该频率称为高通滤波器的截止频率。 三、无源滤波器和有源滤波器的区别无源滤波器和有源滤波器,存在以下的区别: 3.1、工作原理无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。 3.2、谐波处理能力无源滤波器只能滤除固定次数的谐波;但完全可以解决系统中的谐波问题,解决企业用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除各次谐波。 3.3、系统阻抗变化的影响无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。 3.4、频率变化的影响无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。 3.3、负载增加的影响无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,仅发生补偿效果不足而已。 3.6、负载变化对谐波补偿效果的影响无源滤波器随着负载的变化而变化;有源滤波器不受负载变化影响。 3.7、设备造价无源滤波器较低;有源滤波器太高。 3.8、应用场合对比分析1.有源滤波容量单套不超过100KVA,无源滤波则无此限制; 2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同时提供无功功率补偿。 3.有源滤波目前最高适用电网电压不超过430V,而低压无源滤波最高适用电网电压可达3000V。 4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场合无法使用,适用于电信、医院等用电功率较小且谐波频率较高的单位,优于无源滤波。
2023-08-10 14:00:441

它们各属于哪一种滤波器

无源滤波器:这种电路主要有无源元件R、L和C组成。有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。无源滤波装置该装置由电容器、电抗器,有时还包括电阻器等无源元件组成,以对某次谐波或其以上次谐波形成低阻抗通路,以达到抑制高次谐波的作用;由于SC的调节范围要由感性区扩大到容性区,所以滤波器与动态控制的电抗器一起并联,这样既满足无功补偿、改善功率因数,又能消除高次谐波的影响。国际上广泛使用的滤波器种类有:各阶次单调谐滤波器、双调谐滤波器、二阶宽颇带与三阶宽频带高通滤波器等。1单调谐滤波器:一阶单调谐滤波器的优点是滤波效果好,结构简单;缺点是电能损耗比较大,但随着品质因数的提高而减少,同时又随谐波次数的减少而增加,而电炉正好是低次谐波,主要是2~7次,因此,基波损耗较大。二阶单调谐滤波器当品质因数在50以下时,基波损耗可减少20~50%,属节能型,滤波效果等效。三阶单调谐滤波器是损耗最小的滤波器,但组成复杂些,投资也高些,用于电弧炉系统中,2次滤波器选用三阶滤波器为好,其它次选用二阶单调谐滤波器。2高通(宽频带滤波器,一般用于某次及以上次的谐波抑制。当在电弧炉等非线性负荷系统中采用时,对5次以上起滤波作用时,通过参数调整,可形成该滤波器回路对5次及以上次谐波的低阻抗通路。有源滤波器虽然无源滤波器具有投资少、效率高、结构简单及维护方便等优点,在现阶段广泛用于配电网中,但由于滤波器特性受系统参数影响大,只能消除特定的几次谐波,而对某些次谐波会产生放大作用,甚至谐振现象等因素,随着电力电子技术的发展,人们将滤波研究方向逐步转向有源滤波器(Active PowerFliter,缩写为APF。APF即利用可控的功率半导体器件向电网注入与谐波源电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。它与无源滤波器相比,有以下特点:a.不仅能补偿各次谐波,还可抑制闪变,补偿无功,有一机多能的特点,在性价比上较为合理;b.滤波特性不受系统阻抗等的影响,可消除与系统阻抗发生谐振的危险;c.具有自适应功能,可自动跟踪补偿变化着的谐波,即具有高度可控性和快速响应性等特点一、无源滤波器的优点无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。二、无源滤波器的分类无源滤波器主要可以分为两大类:调谐滤波器和高通滤波器。2.1、调谐滤波器调谐滤波器包括单调谐滤波器和双调谐滤波器,可以滤除某一次(单调谐)或两次(双调谐)谐波,该谐波的频率称为调谐滤波器的谐振频率;2.2、高通滤波器高通滤波器也称为减幅滤波器,主要包括一阶高通滤波器、二阶高通滤波器、三阶高通滤波器和c型滤波器,用来大幅衰减高于某一频率的谐波,该频率称为高通滤波器的截止频率。三、无源滤波器和有源滤波器的区别无源滤波器和有源滤波器,存在以下的区别:3.1、工作原理无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。3.2、谐波处理能力无源滤波器只能滤除固定次数的谐波;但完全可以解决系统中的谐波问题,解决企业用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除各次谐波。3.3、系统阻抗变化的影响无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。3.4、频率变化的影响无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。3.3、负载增加的影响无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,仅发生补偿效果不足而已。3.6、负载变化对谐波补偿效果的影响无源滤波器随着负载的变化而变化;有源滤波器不受负载变化影响。3.7、设备造价无源滤波器较低;有源滤波器太高。3.8、应用场合对比1.有源滤波容量单套不超过KA,无源滤波则无此限制;   2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同时提供无功功率补偿。   3.有源滤波目前最高适用电网电压不超过,而低压无源滤波最高适用电网电压可达。   4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场合无法使用,适用于、等用电功率较小且谐波频率较高的单位,优于无源滤波。无源滤波器又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。无源滤波器的优点  无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。无源滤波器的分类  无源滤波器主要可以分为两大类:调谐滤波器和高通滤波器。  调谐滤波器  调谐滤波器包括单调谐滤波器和双调谐滤波器,可以滤除某一次(单调谐)或两次(双调谐)谐波,该谐波的频率称为调谐滤波器的谐振频率;  高通滤波器  高通滤波器也称为减幅滤波器,主要包括一阶高通滤波器、二阶高通滤波器、三阶高通滤波器和c型滤波器,用来大幅衰减高于某一频率的谐波,该频率称为高通滤波器的截止频率。无源滤波器的发展历程  3.1、年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。  3.2、20世纪50年代无源滤波器日趋成熟。  3.3、自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展;  3.4、到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。  3.5、80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。  3.6、90年代至现在主要致力于把各类滤波器应用于各类产品的和研制。  当然,对滤波器本身的研究仍在不断进行。我国滤波器行业现状  我国广泛使用滤波器是50年代后期的事,当时主要用于话路滤波和报路滤波。   经过半个世纪的发展,我国滤波器在研制、生产和应用等方面已纳入国际发展步伐,但由于缺少专门研制机构,集成工艺和材料工业跟不上来,使得我国许多新型滤波器的研制应用与国际发展有一段距离。无源滤波器和有源滤波器的区别  无源滤波器和有源滤波器,存在以下的区别:  工作原理  无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。  谐波处理能力  无源滤波器只能滤除固定次数的谐波;但完全可以解决系统中的谐波问题,解决企业用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除各次谐波。  系统阻抗变化的影响  无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。  频率变化的影响  无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。  负载增加的影响  无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,仅发生补偿效果不足而已。  负载变化对谐波补偿效果的影响  无源滤波器随着负载的变化而变化;有源滤波器不受负载变化影响。  设备造价  无源滤波器较低;有源滤波器太高。  应用场合对比  1.有源滤波容量单套不超过KA,无源滤波则无此限制;  2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同时提供无功功率补偿。  3.有源滤波目前最高适用电网电压不超过,而低压无源滤波最高适用电网电压可达。     4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场合无法使用,适用于、等用电功率较小且谐波频率较高的单位,优于无源滤波。主要发展情况  由于无源滤波的具有大容量低价位的优点,钢铁行业的滤波都采用无源滤波,目前国内滤波场(电力谐波治理场)上主要以无源滤波为主。实在不行换一个 或者在硬之城上面找找这个型号的资料
2023-08-10 14:00:541

lc滤波器什么情况下会发生谐波放大和共振

有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿。之所以称为有源,顾名思义该装置需要提供电源(用以补偿主电路的谐波),其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高!工作原理有源滤波器是用电流互感器采集直流线路上的电流,经采样,将所得的电流信号进行谐波分离算法的处理,得到谐波参考信号,作为的调制信号,与三角波相比,从而得到开关信号,用此开关信号去控制单相桥,根据技术的原理,将上下桥臂的开关信号反接,就可得到与线上谐波信号大小相等、方向相反的谐波电流,将线上的谐波电流抵消掉。这是前馈控制部分。再将有源滤波器接入点后的线上电流的谐波分量反馈回来,作为调节器的输入,调整前馈控制的误差.无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。区别无源滤波器和有源滤波器,存在以下的区别:工作原理无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。谐波处理无源滤波器只能滤除某频率范围内的谐波;但完全可以解决系统中的谐波问题,解决用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除特定次数的谐波。阻抗影响无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。频率影响无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。负载影响无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,仅发生补偿效果不足而已。负载变化对谐波补偿效果的影响。无源滤波器补偿效果随着负载的变化而变化;有源滤波器不受负载变化影响。设备造价无源滤波器较低;有源滤波器太高。应用对比有源滤波容量单套不超过100KVA,无源滤波则无此限制。2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同时提供无功功率补偿。3.有源滤波目前最高适用电网电压不超过450V,而低压无源滤波最高适用电网电压可达3000V。4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场合无法使用,适用于电信、等用电功率较小且谐波频率较高的单位,优于无源滤波。
2023-08-10 14:01:051

什么品牌的有源电力滤波器APF比较好

麦克斯韦电气 ,从2008年就开始自主研发的APF了,产品稳定性与可靠性都非常高,已经是国内顶尖品牌了,对APF的研究非常专注,核心元器件都采用国际知名品牌研发设计,产品的各项技术标准均超过相关电气技术标准。在江苏、四川、贵州、北京、深圳等全国各地都有办事处。单套设备最大谐波治理能力可达1200A,达到国际最先进的技术水平,产品覆盖面广,包括壁挂式、柜式、3P3L、3P4L等等。
2023-08-10 14:01:1610

关于声学的资料

声学是研究媒质中机械波的产生、传播、接收和效应的物理学分支学科。媒质包括各种状态的物质,可以是弹性媒质也可以是非弹性媒质;机械波是指质点运动变化的传播现象。就该词的本义,系指任何与听觉有关的事物。但依通常所用,其一系指物理学中关于声音的属性、产生和传播的分支学科;其二系指建筑物适合清晰地听讲话、听音乐的质量。声音由物体(比如乐器)的振动而产生,通过空气传播到耳鼓,耳鼓也产生同率振动。声音的高低(pitch)取决于物体振动的速度。物体振动快就产生“高音”,振动慢就产生“低音”。物体每秒钟的振动速率,叫做声音的“频率”声音的响度(loudness)取决于振动的“振幅”。比如,用力地用琴弓拉一根小提琴弦时,这根弦就大距离地向左右两边摆动,由此产生强振动,发出一个响亮的声音;而轻轻地用琴弓拉一根弦时,这根弦仅仅小距离左右摆动,产生的振动弱而发出一个轻柔的声音。较小的乐器产生的振动较快,较大的乐器产生的振动较慢。如双簧管的发音比它同类的大管要高。同样的道理,小提琴的发音比大提琴高;按指的发音比空弦音高;小男孩的嗓音比成年男子的嗓音高等等。制约音高的还有其他一些因素,如振动体的质量和张力。总的说,较细的小提琴弦比较粗的振动快,发音也高;一根弦的发音会随着弦轴拧紧而音升高。不同的乐器和人声会发出各种音质(quality)不同的声音,这是因为几乎所有的振动都是复合的。如一根正在发音的小提琴弦不仅全长振动,各分段同时也在振动,根据分段各自不同的长度发音。这些分段振动发出的音不易用听觉辨别出来,然而这些音都纳入了整体音响效果。泛音列中的任何一个音(如G,D或B)的泛音的数目都是随八度连续升高而倍增。泛音的级数还可说明各泛音的频率与基音频率的比率。如大字组“G”的频率是每秒钟振动96次,高音谱表上的“B”(第五泛音)的振动次数是5*96=480,即每秒钟振动480次。尽管这些泛音通常可以从复合音中听到,但在某些乐器上,一些泛音可分别获得。用特定的吹奏方法,一件铜管乐器可以发出其他泛音而不是第一泛音,或者说基音。用手指轻触一条弦的二分之一处,然后用弓拉弦,就会发出有特殊的清脆音色的第二泛音;在弦长的三分之一处触弦,同样会发出第三泛音等。(在弦乐谱上泛音以音符上方的“o”记号标记。自然泛音“natural harmonics”是从空弦上发出的泛音;人工泛音“artificial harmonics”是从加了按指的弦上发出。)声音的传播(transmission of sound)通常通过空气。一条弦、一个鼓面或声带等的振动使附近的空气粒子产生同样的振动,这些粒子把振动又传递到其他粒子,这样连续传递直到最初的能渐渐耗尽。压力向邻近空气传播的过程产生我们所说的声波(sound waves)。声波与水运动产生的水波不同,声波没有朝前的运动,只是空气粒子振动并产生松紧交替的压力,依次传递到人或动物的耳鼓产生相同的影响(也就是振动),引起我们主观的“声音”效果。判断不同的音高或音程,人的听觉遵守-条叫做“韦伯-费希纳定律”(Weber-Fechner law)的感觉法则。这条定律阐明:感觉的增加量和刺激的比率相等。音高的八度感觉是一个2:1的频率比。对声音响度的判断有两个“极限点”:听觉阀和痛觉阀。如果声音强度在听觉阀的极限点认为是1,声音强度在痛觉阀的极限点就是1兆。按照韦伯-费希纳定律,声学家使用的响度级是对数,基于10:1的强度比率,这就是我们知道的1贝(bel)。响度的感觉范围被分成12个大单位,1贝的增加量又分成10个称作分贝(decibel)的较小增加量,即1贝=10分贝。1分贝的响度差别对我们的中声区听觉来说大约是人耳可感觉到的最小变化量。当我们同时听两个振动频率相近的音时,它们的振动必然在固定的音程中以重合形式出现,在感觉上音响彼此互相加强,这样一次称为一个振差(beat)。钢琴调音师在调整某一弦的音高与另一弦一致的过程中,会听到振差在频率中减少,直到随正确的调音逐渐消失。当振差的速率超过每秒钟20次,就会听到一个轻声的低音。当我们同时听两个很响的音时,会产生第三个音,即合成音或引发音(combination tone或resultant tone)。这个低音相当于两个音振动数的差,叫差音(difference tone)。还可以产生第四个音(一个弱而高的合成音),它相当于两个音振动数的和,叫加成音(summation tone)。同光线可以反射一样,亦有声反射(reflection of sound),比如我们都听到过的回声。同理,如果有阻碍物挡住了声振动的通行会产生声影(sound shadows)。然而不同于光振动,声振动倾向于围绕阻碍物“衍射”(diffract),并且不是任何固体都能产生一个完全的声影。大多数固体都程度不等地传递声振动,而只有少数固体(如玻璃)传递光振动。共鸣(resonance)一词指一物体对一个特定音的响应,即这一物体由于那个音而振动。如果把两个调音相同的音叉放置在彼此靠近的地方,其中一个发声,另一个会产生和应振动,亦发出这个音。这时首先发音的音叉就是声音发生器(generator),随后和振的音叉就是共鸣器(resonator)。我们经常会发现教堂的某一窗户对管风琴的某个音产生反应,产生振动;房间里的某一金属或玻璃物体对特定的人声或乐器声也会产生类似的响应。从共鸣这个词的严格科学意义说,这一现象是真正的共鸣(“再发声”)。这一词还有不太严格的用法。它有时指地板、墙壁及大厅顶棚对演奏或演唱的任何音而不局限于某个音的响应。一个大厅共鸣过分或是吸音过强(“太干”)都会使表演者和观众有不适感(一个有回声的大厅常被描述为“共鸣过分”,其实在单纯的声音反射和和应振动的增强之间有明确的区别)。混响时间应以声音每次减弱60分贝为限(原始辐射强度的百万分之一)。墙壁和顶棚的制造材料应是既回响不过分又吸音不太强。声学工程师已经研究出建筑材料的吸音的综合效能系数,但是吸音能力难得在音高的整体幅面统一贯穿进行。只有木头或某些声学材料对整个频率范围有基本均等的吸音能力。放大器和扬声器可以用来(如今经常这样使用)克服建筑物原初设计不完善所带来的问题。大多数现代大厅建筑都可以进行电子“调音”,并备有活动面板、活动天棚和混响室可适应任何类型正在演出的音乐。  声学是研究媒质中声波的产生、传播、接收、性质及其与其他物质相互作用的科学。  声学是经典物理学中历史最悠久而当前仍在前沿的一个分支学科。因而它既古老而又颇具年轻活力。  声学是物理学中很早就得到发展的学科。声音是自然界中非常普遍、直观的现象,它很早就被人们所认识,无论是中国还是古代希腊,对声音、特别是在音律方面都有相当的研究。我国在3400多年以前的商代对乐器的制造和乐律学就已有丰富的知识,以后在声音的产生、传播、乐器制造、乐律学以及建筑和生产技术中声学效应的应用等方面,都有许多丰富的经验总结和卓越的发现和发明。国外对声的研究亦开始得很早,早在公元前500年,毕达哥拉斯就研究了音阶与和声问题,而对声学的系统研究则始于17世纪初伽利略对单摆周期和物体振动的研究。17世纪牛顿力学形成,把声学现象和机械运动统一起来,促进了声学的发展。声学的基本理论早在19世纪中叶就已相当完善,当时许多优秀的数学家、物理学家都对它作出过卓越的贡献。1877年英国物理学家瑞利(Lord John William Rayleigh,1842~1919)发表巨著《声学原理》集其大成,使声学成为物理学中一门严谨的相对独立的分支学科,并由此拉开了现代声学的序幕。
2023-08-10 14:02:361

晶振的原理及作用?

晶振一般指晶体振荡器。 晶体振荡器是指从一块石英晶体上按一定方位角切下薄片(简称为晶片),石英晶体谐振器,简称为石英晶体或晶体、晶振;而在封装内部添加IC组成振荡电路的晶体元件称为晶体振荡器。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。 石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。
2023-08-10 14:02:498