barriers / 阅读 / 详情

您知道电阻加热原理是什么吗?

2023-08-22 08:04:45
共2条回复
cloudcone

众所周知,几乎是任何一个电子线路中,都离不开电阻这一器件的使用。但是,在使用电阻的使用过程,有时候难免会遇到电阻加热的情况。那么您知道电阻加热原理是什么吗?

电阻加热原理:

电阻加热是指利用电流通过电阻体的热效应,对物料进行电加热的方法。电阻加热可广泛应用于从加热熔融金属到加热食物的方方面面。

电阻加热是很简单(也是很老的)基于电力的加热方法,可加热金属、熔融金属或非金属,效率几乎可达到100%,同时工作温度可达到2000℃。故而可应用于高温加热,也可应用于低温加热。

像传统的利用埋入模具中的电热元件加热模具的方法就属于间接电阻加热。其间接电阻加热是让电流通过电热元件或导电介质,例如电阻丝、热敏电阻(PTC)、电热膜等,使电热元件首先发热,然后利用电热元件产生的热量以热传导、热对流或热辐射等方式间接加热目标物体。

以上所介绍的内容,就是电阻加热原理。电阻加热的加热均匀,热效率高,对环境污染少,对于物料的加热温度可在高于室温直到约3000℃的宽广范围内按加热工艺需要选定,且可得到精确的控制。

okok云

电阻加热是指利用电流流过导体的焦耳效应产生的热能对物料进行的。电阻加热分间接电阻加热和直接电阻加热两类。

相关推荐

热敏电阻的工作原理及作用

工作原理:1、热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。2、热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。作用:1、测温。作为测量温度的热敏电阻传感器一般结构较简单,价格较低廉;2、温度补偿。热敏电阻传感器可在一定的温度范围内对某些元器件湿度进行补偿;3、过热保护。当温度大于突变点时,电路中的电流可以内十分之几毫安突变为几十毫安,因此继电器动作,从而实现过热保护。
2023-08-13 05:01:511

热敏电阻的工作原理及作用

热敏电阻的工作原理是,根据温度的变化,电阻值也会相应的变化。作用就是,通过电阻的变化,电阻两端的电压就会变化,所以可以用来制作感知温度变化的传感器。汽车上面最常见的就是水温传感器和室外温度传感器。水温传感器是感知水温变化,然后在仪表通过水温表来体现出来。随着温度的升高,电阻减小,所以仪表上水表电机两端的电压升高,然后水温表指针转动幅度增大。室外温度传感器是感知环境温度的元器件。一旦室外温度传感器损坏或者线路断路,就会影响空调的制冷,而且仪表上显示的温度也不准。热敏电阻是对温度敏感的元器件,作用就是根据对温度的敏感运用在电路当中,来达到想要的目的。水温传感器的种类有四种,但是原理都是一样,运用在电路当中,作用也是一样。
2023-08-13 05:02:001

热敏电阻器利用的是什么原理来进行工作的?

利用的原理是温度引起电阻变化来工作的
2023-08-13 05:02:102

时恒NTC热敏电阻的导电原理是什么?

是的 。这个的话通俗来讲很可以。每个都是不一样的。相比较那些说的。可以咨询一下专业人士的解答
2023-08-13 05:02:205

热敏电阻式温控器的工作原理是怎样的?

热敏电阻式温控器的感温元件是一种可以随温度改变阻值的电阻,称为热敏电阻。热敏电阻式温控器是利用热敏电阻受到电冰箱温度变化影响,其阻值会发生变化的现象,按照惠斯登电桥原理制成的。图3-14所示为惠斯登电桥,在C、D两端接上电源E,根据基尔霍夫定律,当电桥的电阻R2×R2=R3×R4时,A、B两点的电位相等,输出端A和B之间没有电流流过。如果电桥中一个电阻由热敏电阻承担,热敏电阻阻值随温度变化而改变,使平衡被破坏,A、B之间就有电流输出,此电流经过处理后可控制压缩机电动机的运行。图3-14 惠斯登电桥热敏电阻式温控器的工作原理,如图3-15所示。将惠斯登电桥的一个桥路置换为热敏电阻,作为感温元件,三极管V1的发射极和基极接在电桥的一条对角线上,电桥的另一对角线接在18V电源上。W为电冰箱温度调节电位器。当W固定为某一阻值时,若此时电桥平衡,则A点电位与B点电位相等。V1的基极与发射极间电位为零,三极管V1截止,继电器K释放,压缩机停止运行。随着停车后电冰箱内的温度逐渐上升,热敏电阻R1的阻值不断下降,电桥失去平衡,A点电位逐渐增高,三极管的基极电流Ib逐渐增大,集电极电流Ic也相应增大,箱内温度越高,R1阻值越小,Ib越大,Ic也越大。当集电极电流Ic增大到继电器的吸合电流时,继电器K吸合,接通压缩机电动机的电源电路,压缩机开始运行,系统开始进行制冷运行,箱内温度逐渐下降。随着箱内温度的逐步下降,热敏电阻R1阻值逐步增大,此时三极管基极电流Ib变小,集电极电流Ic也变小,Ic值小于继电器的释放电流值时,继电器K释放,压缩机电动机断电停止工作。停机后电冰箱内的温度又逐步上升,热敏电阻R1的阻值又不断下降,使电路进行下一次工作循环,从而实现了电冰箱的温度自动控制。图3-15 热敏电阻式温控器工作原理热敏电阻特性参数见表3-3。表3-3 热敏电阻特性参数
2023-08-13 05:02:381

ptc热敏电阻在电路上是怎么工作原理

高分子PTC热敏电阻是由聚合物基体和使其导电的碳黑粒子组成。由于这种材料具有一定的导电能力,因而其上会有电流通过。当有过电流通过热敏电阻时,产生的热量将使其膨胀,从而碳黑粒子将分离、其电阻将上升。这将促使热敏电阻更快的产生热量,膨胀得更大,进一步使电阻升高。当温度达到125℃时,电阻变化显著,从而使电流明显减小。此时流过热敏电阻的小电流足以使其保持在这个温度和处于高阻状态。当故障排除后,热敏电阻收缩至原来的形状重新将碳黑粒子联结起来,从而使高分子PTC热敏电阻很快冷却并回复到原来的低电阻状态,这样又可以循环工作了。
2023-08-13 05:03:161

水泵用热敏电阻的工作原理是什么?

水泵用热敏电阻是一种具温度敏锐性的半导体电阻,一旦超过一定的温度(居里温度)时,它的电阻值随着温度的升高几乎是呈阶跃式的上升度热敏电阻本体温度的变化可以由流过热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得对于水泵用热敏电阻效应,也就是电阻值阶跃上升的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中去,因此而产生高的电阻这种效应在温度低时被抵消:在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以流动而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地上升,呈现出强烈的PTC效应水泵用热敏电阻的工作原理就是这样的,大家看懂了吗?工作原理也是保障产品设备使用寿命以及性能的关键
2023-08-13 05:03:271

热敏电阻在水泵中的工作原理是怎样的呢?

您好,水泵用热敏电阻是一种具温度敏锐性的半导体电阻,一旦超过一定的温度(居里温度)时,它的电阻值随着温度的升高几乎是呈阶跃式的上升度。热敏电阻本体温度的变化可以由流过热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得。对于水泵用热敏电阻效应,也就是电阻值阶跃上升的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中去,因此而产生高的电阻。这种效应在温度低时被抵消:在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以流动。而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地上升,呈现出强烈的PTC效应,了解电器的工作原理很重要,选择正确的热敏电阻厂家也很重要,智旭JEC生产热敏电阻和安规电容,质量有保证!
2023-08-13 05:03:371

功率型NTC热敏电阻如何使用?其工作原理是什么?

NTC热敏电阻可在交流线路上或是在桥式整流器的直流输出处事联使用,达到抑制开机浪涌电流的作用。其工作原理是:当电源开关打开时,NTC 热敏电阻处于冷态,电阻值较大,可有效抑制流经电阻体的浪涌脉冲电流,在浪涌脉冲电流和工作电流的双重作用下,NTC 热敏电用温度会上升,由于其本身具有负温度系数特性,所以温度升高,电阻值急剧下降。在稳态负载电流下,其电阻值将会很小,只有冷态下的1/20~1/50左右,对电流的限制作用会较小,消耗的功率很小,不会影响到整个电源的效率。所以在电源同路中使用时恒电子功率型NTC热敏电阻是抑制开机浪涌电流,保护电子设备免遭破坏的最为简便最为有效的措施。在抑制浪涌方面应用的有MF72、MF73、MF74系列NTC热敏电阻。
2023-08-13 05:03:471

热敏电阻在水泵中的工作原理是怎样的呢?

您好,水泵用热敏电阻是一种具温度敏锐性的半导体电阻,一旦超过一定的温度(居里温度)时,它的电阻值随着温度的升高几乎是呈阶跃式的上升度。热敏电阻本体温度的变化可以由流过热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得。对于水泵用热敏电阻效应,也就是电阻值阶跃上升的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中去,因此而产生高的电阻。这种效应在温度低时被抵消:在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以流动。而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地上升,呈现出强烈的PTC效应,了解电器的工作原理很重要,选择正确的热敏电阻厂家也很重要,智旭JEC生产热敏电阻和安规电容,质量有保证!
2023-08-13 05:03:561

热敏温度计的工作原理???

热敏温度计热敏温度计采用微型半导体热敏电阻作为温度测量元件,对温度变化反应快,灵敏度高,体积小,结构简单。和演示电表配合组成热敏温度计可作为物理演示实验用。半导体热敏电阻的阻值具有很高的温度灵敏度,用一定的电路把热敏电阻阻值的变化转换成电流或电压的变化,由电表显出来以反映温度的变化。如图是J0301型热敏温度计的线路图。图中R1为半导体热敏电阻,R2和R3分别是R1在100℃和0℃时的等值电阻器,R4和R5为三极管3DG6的基极偏置电阻,R6和二极管(2AP型)D为温度补偿电路,R7配合R4为调整热敏元件线性用的半可变电阻器,K1和K2为五位双刀波段开关,作为工作调整用,其中①和⑤档都是用于断开电源的,W1为适应不同演示电表的灵敏度和内阻而设置的可调分流器。
2023-08-13 05:04:051

热敏电阻温度特性的测量原理是什么?

热敏电阻是对温度变化表现出非常灵敏的一种半导体电阻元件,它能测量出温度的微小变化,并且体积小,工作稳定,结构简单因此,它在测温技术、无线电技术、自动化和遥控等方面都有广泛的应用利用热敏电阻作为感温元件,并且配有温度显示装置的温度仪表称为热敏电阻温度计热敏电阻能把温度信号变成信号,从而实现了非电量的测量值得提出的是,电量测量是现代测量技术中简便的测量技术,不仅测量装置简单、造价低、灵敏度高、而且容易实现自动化控制,是测量技术的一个重要的发展趋势热敏电阻的基本特性是它的温度特性,许多材料的电阻随温度的变化而发生变化,纯金属和许多合金的电阻随温度增加而增加,它们具有正的电阻温度系数另外像炭、玻璃硅和锗等材料的电阻随温度的增加而减小,具有负的电阻温度系数在半导体中原子核对价电子的约束力要比金属中大,因载流子数少,故半导体的电阻率较大而纯金属的电阻率较小由于半导体中载流子数目是随着温度的升高而按指数规律急剧增加,载流子越多,导电能力越强,电阻率就越小,因此半导体热敏电阻的阻值随着温度的升高电阻率将按指数规律减少
2023-08-13 05:04:152

热敏电阻

给你指引下方向吧:热敏电阻器对温度敏感性很高,是因为其具有较高的温度系数,比铂电阻等金属电阻的温度系数至少大一个数量级。因此当温度发生变化时,其电阻值变化率也较大。热敏电阻器的主体部分为半导体陶瓷,其导电机理与晶体硅类似。当环境温度发生变化时,导致材料中载流子浓度发生变化,从而使得材料的电阻率发生变化。
2023-08-13 05:04:381

热电偶与热电阻及热敏电阻的有那些相同的地方和不一样的地方?

一、相同点:都是温度检测器。二、不同点:1、工作原理不一样热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。热电阻的测温原理是基于导体或半导体的电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻通常需要把电阻信号通过引线传递到计算机控制装置或者其它二次仪表上。热电偶,当有两种不同的导体或半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为T0 ,称为自由端(也称参考端)或冷端,回路中将产生一个电动势,该电动势的方向和大小与导体的材料及两接点的温度有关。这种现象称为“热电效应”,两种导体组成的回路称为“热电偶”,这两种导体称为“热电极”,产生的电动势则称为“热电动势”。3、特点不一样热敏电阻的主要特点是:(1)灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;(2)工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~-55℃。热电阻,主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的。热电偶:(1)装配简单,更换方便。(2)压簧式感温元件,抗震性能好。(3)测量精度高。(4)测量范围大(-200℃~1300℃,特殊情况下-270℃~2800℃)。3、分类不一样热敏电阻器按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热电阻,分为普通型热电阻、铠装热电阻、端面热电阻等。根据热电偶的性能结构方式可分为:可拆卸式热电偶、隔爆式热电偶、铠装热电偶和压弹簧固定式热电偶等特殊用途的热电偶。参考资料来源:百度百科-热电偶参考资料来源:百度百科-热电阻参考资料来源:百度百科-热敏电阻
2023-08-13 05:04:481

pt100的工作原理

【pt100的工作原理】pt100,是一种温度传感器,又称为铂热电阻。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻的工作原理是:基于电阻的热效应进行温度测量,即电阻体的阻值随温度的变化而变化的特性,即如果热电阻随温度的上升而电阻值也跟著上升就称为正电阻系数,如果热电阻随温度的上升而电阻值反而下降就称为负电阻系数。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。中国最常用的有r0=10ω、r0=100ω和r0=1000ω等几种,它们的分度号分别为pt10、pt100、pt1000;铜电阻有r0=50ω和r0=100ω两种,它们的分度号为cu50和cu100。其中pt100和cu50的应用最为广泛。
2023-08-13 05:05:041

电阻产热是什么原理

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度,温度是物体内分子间平动动能的一种表现形式。分子运动愈快,即温度愈高,物体愈热;分子运动愈慢,即温度愈低,物体愈冷。导体中存在大量可自由移动的带电粒子称为载流子。在外电场作用下,载流子作定向运动,形成明显的电流。金属是最常见的一类导体。金属原子最外层的价电子很容易挣脱原子核的束缚,而成为自由电子,留下的正离子(原子实)形成规则的点阵。金属中自由电子的浓度很大,所以金属导体的电导率通常比其他导体材料的大。金属导体的电阻率一般随温度降低而减小。在多电子原子中,电子不仅受核的吸引作用,同时还要受到电子间的排斥作用,以及电子之间交换能的影响。由于不同元素原子的 原子核电荷及电子数不同,所以电子受到的作用和影响也不同,从而使每一种元素原子轨道能量都有各自的数值。电子是遵循量子力学的基本粒子,具有波粒二象性。在中心力场的Slater模型中,核外某一电子受其余电子的排斥作用,可以平均起来看作是这些电子所产生的电子云的作用,并且把这种作用归结为抵消了部分核电荷。我们把一电子对另一电子产生抵消核电荷的影响称为屏蔽效应。对于l值相同的同一类型轨道来说,随着主量子数n的增大,其径向分布的主峰离核越远,使得核对电子的吸引减弱,同时受到其它电子的屏蔽越多,总的屏蔽常数σ也越大,所以轨道能量也就越高。
2023-08-13 05:05:182

为什么半导体材料的热敏电阻具有负温度系数

热敏电阻是指电阻值随温度变化而变化的敏感元件。在工作温度范围内,电阻值随温度上升而增加的是正温度系数(ptc)热敏电阻器;电阻值随温度上升而减小的是负温度系数(ntc)。1、热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。2、热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。
2023-08-13 05:06:163

金属热电阻和热敏电阻的区别?

一、工作原理不同1、热敏电阻:电路正常工作时,热敏电阻温度接近室温,电阻很小。串联不会阻碍电路中的电流通过。当电路因故障过流时,由于加热功率的增加,热敏电阻的温度升高。当温度超过开关温度时,电阻瞬间急剧增加,回路中的电流迅速减小到安全值。2、金属热电阻:热电阻的测温原理是基于导体或半导体的电阻值随温度变化的特性,测量温度和与温度有关的参数。热电阻大多由纯金属材料制成。目前,铂和铜是应用最广泛的材料。现在,镍、锰和铑已经被用来制造热电阻。热电阻通常需要通过导线将电阻信号传送到计算机控制装置或其它二次仪表上。二、特点不同1、热敏电阻:(1)电阻温度系数比金属温度系数大10-100倍,可检测到10-6C的温度变化。(2)工作温度范围宽,常温装置适用于-55~315摄氏度,高温装置适用于315摄氏度以上(目前可达2000摄氏度),低温装置适用于-273~55摄氏度。(3)体积小,足以测量其他温度计不能测量的空隙、空洞和血管的温度。(4)使用方便,电阻值可在0.1~100K之间任意选择;(5)易于加工成复杂形状,能够批量生产的;(6)稳定性好,过载能力强。2、金属热电阻:(1)压力弹簧式温度传感器,抗振性能好;(2)温度测量精度高;(3)机械强度高,耐高温高压;(4)进口薄膜电阻,性能稳定可靠。扩展资料:金属热电阻的安装注意事项:1、热电阻应尽量垂直装在水平或垂直管道上,应安装保护套,以便于维护和更换。2、测量管道内温度时,构件长度应在管道中心线上(即保护管插入深度应为管道直径的一半)。3、温度动圈表安装时,开口尺寸要合适,安装要美观大方。4、高温区域采用高温电缆或高温补偿电缆。5、应根据不同的温度选择不同的测量元件。一般在测量温度低于400℃时选择热阻。6、接线要合理美观,表针指示要正确。参考资料来源:百度百科-热电阻参考资料来源:百度百科-热敏电阻
2023-08-13 05:06:241

电阻制作方式

声敏电阻:用声音大小反映电流的大小,其电阻值可以调节。平时使用的电话、扩音器等都是利用声音震动反映电流大小的。(最原始结构是很多石墨片连接在一起,有声音的时候,石磨压紧,导通电流就大,声音小的时候石墨片空隙就大,导通电流就小;热敏电阻:按温度特性热敏电阻可分为两类,随温度上升电阻增加的为正温度系数热敏电阻,反之为负温度系数热敏电阻。     ⑴ 正温度系数热敏电阻的工作原理   此种热敏电阻以钛酸钡(BaTio3)为基本材料,再掺入适量的稀土元素,利用陶瓷工艺高温烧结尔成。纯钛酸钡是一种绝缘材料,但掺入适量的稀土元素如镧(La)和铌(Nb)等以后,变成了半导体材料,被称半导体化钛酸钡。它是一种多晶体材料,晶粒之间存在着晶粒界面,对于导电电子而言,晶粒间界面相当于一个位垒。当温度低时,由于半导体化钛酸钡内电场的作用,导电电子可以很容易越过位垒,所以电阻值较小;当温度升高到居里点温度(即临界温度,此元件的‘温度控制点" 一般钛酸钡的居里点为120℃)时,内电场受到破坏,不能帮助导电电子越过位垒,所以表现为电阻值的急剧增加。因为这种元件具有未达居里点前电阻随温度变化非常缓慢,具有恒温、调温和自动控温的功能,只发热,不发红,无明火,不易燃烧,电压交、直流3~440V均可,使用寿命长,非常适用于电动机等电器装置的过热探测。     ⑵ 负温度系数热敏电阻的工作原理   负温度系数热敏电阻是以氧化锰、氧化钴、氧化镍、氧化铜和氧化铝等金属氧化物为主要原料,采用陶瓷工艺制造而成。这些金属氧化物材料都具有半导体性质,完全类似于锗、硅晶体材料,体内的载流子(电子和空穴)数目少,电阻较高;温度升高,体内载流子数目增加,自然电阻值降低。负温度系数热敏电阻类型很多,使用区分低温(-60~300℃)、中温(300~600℃)、高温(>600℃)三种,有灵敏度高、稳定性好、响应快、寿命长、价格低等优点,广泛应用于需要定点测温的温度自动控制电路,如冰箱、空调、温室等的温控系统。 热敏电阻与简单的放大电路结合,就可检测千分之一度的温度变化,所以和电子仪表组成测温计,能完成高精度的温度测量。普通用途热敏电阻工作温度为-55℃~+315℃,特殊低温热敏电阻的工作温度低于-55℃,可达-273℃。 压敏电阻:用氧化锌为主要材料金属-氧化物-半导体陶瓷元件构成。 光敏电阻:它的工作原理是基于内光电效应。在半导体光敏材料两端装上电极引线,将其封装在带有透明窗的管壳里就构成光敏电阻。为了增加灵敏度,两电极常做成梳状。构成光敏电阻的材料有金属的硫化物、硒化物、碲化物等半导体。 半导体的导电能力取决于半导体导带内载流子数目的多少。当光敏电阻受到光照时,价带中的电子吸收光子能量后跃迁到导带,成为自由电子,同时产生空穴,电子—空穴对的出现使电阻率变小。光照愈强,光生电子—空穴对就越多,阻值就愈低。当光敏电阻两端加上电压后,流过光敏电阻的电流随光照增大而增大。入射光消失,电子-空穴对逐渐复合,电阻也逐渐恢复原值,电流也逐渐减小。
2023-08-13 05:06:441

温控器里的热敏电阻工作原理

其实就是通过 温度的变化 阻值变化 导致 分压 变化 我司专门做此类产品,希望能够给你带来帮助,谢谢~~!limingz_100@yahoo.com.cn
2023-08-13 05:06:542

美国Omega热敏电阻工作原理

与RTD一样,热敏电阻也是温度敏感的电阻。如果说热电偶是最通用的温度传感器而PRTD是最稳定的,则最合适描述热敏电阻的词是敏感。在三种主要的传感器分类中,热敏电阻表现出目前为止最大的随温度参数变化。热敏电阻通常由半导体材料制成。尽管可以使用正温度系数装置,但大多数热敏电阻都是使用负温度系数(TC);即其电阻随着温度升高而减小。负T.C.的大小可以是每摄氏度几个百分点,以便热敏电阻电路能够检测到温度的微小变化,而使用RTD或热电偶电路无法观察到这样的变化。为这一灵敏度提高付出的代价是损失线性度。热敏电阻是一个极端的非线性设备,它高度依赖于工艺参数。因此,制造商无法讲热敏电阻曲线标准化到RTD和热电偶曲线的标准化程度。希望以上回答对你有所帮助,具体的你可以上他们的官网自己看看。谢谢参考资料:Omega中文官网cn.omega.com
2023-08-13 05:07:021

简述热敏电阻在电动机载保护的工作原理?

一上电,有电流冲击,功率型热敏电阻可以减小这个电流冲击。在一定范围内,热敏电阻温度越高,阻值下降。电动机一直工作,阻值就一直 比较低了。
2023-08-13 05:07:121

热敏电阻的工作原理及作用

  工作原理:  1、热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。  2、热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。    作用:  1、测温。作为测量温度的热敏电阻传感器一般结构较简单,价格较低廉;  2、温度补偿。热敏电阻传感器可在一定的温度范围内对某些元器件湿度进行补偿;  3、过热保护。当温度大于突变点时,电路中的电流可以内十分之几毫安突变为几十毫安,因此继电器动作,从而实现过热保护。
2023-08-13 05:07:381

热敏电阻的工作原理及作用

工作原理:1、热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。2、热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。作用:1、测温。作为测量温度的热敏电阻传感器一般结构较简单,价格较低廉;2、温度补偿。热敏电阻传感器可在一定的温度范围内对某些元器件湿度进行补偿;3、过热保护。当温度大于突变点时,电路中的电流可以内十分之几毫安突变为几十毫安,因此继电器动作,从而实现过热保护。
2023-08-13 05:07:501

PTC加热器的原理是什么,有什么功能?

PTC原理PTC加热器又叫PTC发热体,采用PTC陶瓷发热元件与铝管组成。该类型PTC加热器有热阻小、换热效率高的优点,是一种自动恒温、省电的电加热器。突出特点在于安全性能上,任何应用情况下均不会产生如电热管类加热器的表面“发红”现象,从而引起烫伤,火灾等安全隐患。PTC的功能电热驱蚊器、按摩器、保暖器、电烙铁、电熨斗、加湿机、卷发器、直发器、过胶机、电热加香器、热熔胶枪、电熨斗、熔蜡器、电子元件保温、电路板驱潮等。
2023-08-13 05:08:082

热敏电阻在不同温度的情况下,电阻变化率会变化,这些变化有规律吗?如何计算?

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为: σ=q(nμn+pμp) 因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理. 热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性如图1所示.热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强.
2023-08-13 05:08:281

电脑CPU过热导致自动关机保护的工作原理是什么?尽量越详细越好,谢谢

热敏电阻 以下是搬的别人的----------------------------------------可以说热敏电阻是热电阻的一种所以说,原理都是温度引起电阻变化但是现在热电阻一般都被工业化了,基本是指PT100,CU50等常用热电阻他两的区别是:一般热电阻都是指金属热电阻(PT100)等,热敏电阻都是指半导体热电阻由于半导体热电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化,而且电阻值可在0.1~100kΩ间任意选择。所以称为热敏电阻但是热敏电阻阻值随温度变化的曲线呈非线性,而且每个相同型号的线性度也不一样,并且测温范围比较小。所以工业上一般用金属热电阻~也就是我们平常所说的热电阻而热敏电阻一般用在电路板里,比如像你所说的可以类似于一个保险丝。由于其阻值随温度变化大,可以作为保护器使用。当然这只是一方面,它的用途也很多,如热电偶的冷端温度补偿就是靠热敏电阻来补偿另外,由于其阻值与温度的关系非线性严重。。。所以元件的一致性很差,并不能像热电阻一样有标准信号 ----------------------------------------------那倒不会 CPU自动保护的工作原理就是热敏电阻就算你把风扇去了 只要CPU温度过高还是会关机的
2023-08-13 05:08:371

热敏电阻在水泵中的工作原理是怎样的呢?

您好,水泵用热敏电阻是一种具温度敏锐性的半导体电阻,一旦超过一定的温度(居里温度)时,它的电阻值随着温度的升高几乎是呈阶跃式的上升度。热敏电阻本体温度的变化可以由流过热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得。对于水泵用热敏电阻效应,也就是电阻值阶跃上升的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中去,因此而产生高的电阻。这种效应在温度低时被抵消:在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以流动。而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地上升,呈现出强烈的PTC效应,了解电器的工作原理很重要,选择正确的热敏电阻厂家也很重要,智旭JEC生产热敏电阻和安规电容,质量有保证!
2023-08-13 05:09:001

热敏电阻的发展过程

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为:σ=q(nμn+pμp)因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理.热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性如图1所示.热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强.由于半导体热敏电阻有独特的性能,所以在应用方面,它不仅可以作为测量元件(如测量温度、流量、液位等),还可以作为控制元件(如热敏开关、限流器)和电路补偿元件.热敏电阻广泛用于家用电器、电力工业、通讯、军事科学、宇航等各个领域,发展前景极其广阔.一、PTC热敏电阻PTC(Positive Temperature Coeff1Cient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作恒定温度传感器.该材料是以BaTiO3或SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、Bi、Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系数的Mn、Fe、Cu、Cr的氧化物和起其他作用的添加物,采用一般陶瓷工艺成形、高温烧结而使钛酸铂等及其固溶体半导化,从而得到正特性的热敏电阻材料.其温度系数及居里点温度随组分及烧结条件(尤其是冷却温度)不同而变化.钛酸钡晶体属于钙钛矿型结构,是一种铁电材料,纯钛酸钡是一种绝缘材料.在钛酸钡材料中加入微量稀土元素,进行适当热处理后,在居里温度附近,电阻率陡增几个数量级,产生PTC效应,此效应与BaTiO3晶体的铁电性及其在居里温度附近材料的相变有关.钛酸钡半导瓷是一种多晶材料,晶粒之间存在着晶粒间界面.该半导瓷当达到某一特定温度或电压,晶体粒界就发生变化,从而电阻急剧变化.钛酸钡半导瓷的PTC效应起因于粒界(晶粒间界).对于导电电子来说,晶粒间界面相当于一个势垒.当温度低时,由于钛酸钡内电场的作用,导致电子极容易越过势垒,则电阻值较小.当温度升高到居里点温度(即临界温度)附近时,内电场受到破坏,它不能帮助导电电子越过势垒.这相当于势垒升高,电阻值突然增大,产生PTC效应.钛酸钡半导瓷的PTC效应的物理模型有海望表面势垒模型、丹尼尔斯等人的钡缺位模型和叠加势垒模型,它们分别从不同方面对PTC效应作出了合理解释.实验表明,在工作温度范围内,PTC热敏电阻的电阻-温度特性可近似用实验公式表示:RT=RT0expBp(T-T0)式中RT、RT0表示温度为T、T0时电阻值,Bp为该种材料的材料常数.PTC效应起源于陶瓷的粒界和粒界间析出相的性质,并随杂质种类、浓度、烧结条件等而产生显著变化.最近,进入实用化的热敏电阻中有利用硅片的硅温度敏感元件,这是体型且精度高的PTC热敏电阻,由n型硅构成,因其中的杂质产生的电子散射随温度上升而增加,从而电阻增加.PTC热敏电阻于1950年出现,随后1954年出现了以钛酸钡为主要材料的PTC热敏电阻.PTC热敏电阻在工业上可用作温度的测量与控制,也用于汽车某部位的温度检测与调节,还大量用于民用设备,如控制瞬间开水器的水温、空调器与冷库的温度,利用本身加热作气体分析和风速机等方面.下面简介一例对加热器、马达、变压器、大功率晶体管等电器的加热和过热保护方面的应用。PTC热敏电阻除用作加热元件外,同时还能起到“开关”的作用,兼有敏感元件、加热器和开关三种功能,称之为“热敏开关”,如图2和3所示.电流通过元件后引起温度升高,即发热体的温度上升,当超过居里点温度后,电阻增加,从而限制电流增加,于是电流的下降导致元件温度降低,电阻值的减小又使电路电流增加,元件温度升高,周而复始,因此具有使温度保持在特定范围的功能,又起到开关作用.利用这种阻温特性做成加热源,作为加热元件应用的有暖风器、电烙铁、烘衣柜、空调等,还可对电器起到过热保护作用.二、NTC热敏电阻NTC(Negative Temperature Coeff1Cient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料.NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数,电阻值可近似表示为:式中RT、RT0分别为温度T、T0时的电阻值,Bn为材料常数.陶瓷晶粒本身由于温度变化而使电阻率发生变化,这是由半导体特性决定的.NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了N1C热敏电阻器.NTC热敏电阻器广泛用于测温、控温、温度补偿等方面.下面介绍一个温度测量的应用实例,NTC热敏电阻测温用原理如图4所示.它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.RT为NTC热敏电阻器;R2和R3是电桥平衡电阻;R1为起始电阻;R4为满刻度电阻,校验表头,也称校验电阻;R7、R8和W为分压电阻,为电桥提供一个稳定的直流电源.R6与表头(微安表)串联,起修正表头刻度和限制流经表头的电流的作用.R5与表头并联,起保护作用.在不平衡电桥臂(即R1、RT)接入一只热敏元件RT作温度传感探头.由于热敏电阻器的阻值随温度的变化而变化,因而使接在电桥对角线间的表头指示也相应变化.这就是热敏电阻器温度计的工作原理.热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量.三、CTR热敏电阻临界温度热敏电阻CTR(Crit1Cal Temperature Resistor)具有负电阻突变特性,在某一温度下,电阻值随温度的增加激剧减小,具有很大的负温度系数.构成材料是钒、钡、锶、磷等元素氧化物的混合烧结体,是半玻璃状的半导体,也称CTR为玻璃态热敏电阻.骤变温度随添加锗、钨、钼等的氧化物而变.这是由于不同杂质的掺入,使氧化钒的晶格间隔不同造成的.若在适当的还原气氛中五氧化二钒变成二氧化钒,则电阻急变温度变大;若进一步还原为三氧化二钒,则急变消失.产生电阻急变的温度对应于半玻璃半导体物性急变的位置,因此产生半导体-金属相移.CTR能够作为控温报警等应用.热敏电阻的理论研究和应用开发已取得了引人注目的成果.随着高、精、尖科技的应用,对热敏电阻的导电机理和应用的更深层次的探索,以及对性能优良的新材料的深入研究,将会取得迅速发展. 更详细资料参阅NTC测温补偿热敏电阻: http://www.sinochip.net/TechSheet/3.htm NTC功率型热敏电阻: http://www.sinochip.net/TechSheet/30.htm 过流保护PTC热敏电阻: http://www.sinochip.net/TechSheet/17.htm 灯丝预热PTC热敏电阻: http://www.sinochip.net/TechSheet/31.htm希望采纳
2023-08-13 05:09:111

热敏电阻在电热水壶的工作原理是什么呢?

超过限定温度自动断开或关闭。
2023-08-13 05:09:272

请问电高压锅热敏电阻的工作原理是什么?

热敏电阻是感应锅内温度阻值也会有相应的变化传给主控板来控制锅内温度
2023-08-13 05:09:551

热敏电阻特性测量测量及应用

更详细的在<a href=" http://baike.baidu.com/view/284445.htm" target="_blank"> http://baike.baidu.com/view/284445.htm</a>热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为: σ=q(nμn+pμp) 因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理. 热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性如图1所示.热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强.由于半导体热敏电阻有独特的性能,所以在应用方面,它不仅可以作为测量元件(如测量温度、流量、液位等),还可以作为控制元件(如热敏开关、限流器)和电路补偿元件.热敏电阻广泛用于家用电器、电力工业、通讯、军事科学、宇航等各个领域,发展前景极其广阔. 一、PTC热敏电阻 PTC(Positive Temperature Coeff1Cient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作恒定温度传感器.该材料是以BaTiO3或SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、Bi、Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系数的Mn、Fe、Cu、Cr的氧化物和起其他作用的添加物,采用一般陶瓷工艺成形、高温烧结而使钛酸铂等及其固溶体半导化,从而得到正特性的热敏电阻材料.其温度系数及居里点温度随组分及烧结条件(尤其是冷却温度)不同而变化. 钛酸钡晶体属于钙钛矿型结构,是一种铁电材料,纯钛酸钡是一种绝缘材料.在钛酸钡材料中加入微量稀土元素,进行适当热处理后,在居里温度附近,电阻率陡增几个数量级,产生PTC效应,此效应与BaTiO3晶体的铁电性及其在居里温度附近材料的相变有关.钛酸钡半导瓷是一种多晶材料,晶粒之间存在着晶粒间界面.该半导瓷当达到某一特定温度或电压,晶体粒界就发生变化,从而电阻急剧变化. 钛酸钡半导瓷的PTC效应起因于粒界(晶粒间界).对于导电电子来说,晶粒间界面相当于一个势垒.当温度低时,由于钛酸钡内电场的作用,导致电子极容易越过势垒,则电阻值较小.当温度升高到居里点温度(即临界温度)附近时,内电场受到破坏,它不能帮助导电电子越过势垒.这相当于势垒升高,电阻值突然增大,产生PTC效应.钛酸钡半导瓷的PTC效应的物理模型有海望表面势垒模型、丹尼尔斯等人的钡缺位模型和叠加势垒模型,它们分别从不同方面对PTC效应作出了合理解释. 实验表明,在工作温度范围内,PTC热敏电阻的电阻-温度特性可近似用实验公式表示: RT=RT0expBp(T-T0) 式中RT、RT0表示温度为T、T0时电阻值,Bp为该种材料的材料常数. PTC效应起源于陶瓷的粒界和粒界间析出相的性质,并随杂质种类、浓度、烧结条件等而产生显著变化.最近,进入实用化的热敏电阻中有利用硅片的硅温度敏感元件,这是体型且精度高的PTC热敏电阻,由n型硅构成,因其中的杂质产生的电子散射随温度上升而增加,从而电阻增加. PTC热敏电阻于1950年出现,随后1954年出现了以钛酸钡为主要材料的PTC热敏电阻.PTC热敏电阻在工业上可用作温度的测量与控制,也用于汽车某部位的温度检测与调节,还大量用于民用设备,如控制瞬间开水器的水温、空调器与冷库的温度,利用本身加热作气体分析和风速机等方面.下面简介一例对加热器、马达、变压器、大功率晶体管等电器的加热和过热保护方面的应用。 PTC热敏电阻除用作加热元件外,同时还能起到“开关”的作用,兼有敏感元件、加热器和开关三种功能,称之为“热敏开关”,如图2和3所示.电流通过元件后引起温度升高,即发热体的温度上升,当超过居里点温度后,电阻增加,从而限制电流增加,于是电流的下降导致元件温度降低,电阻值的减小又使电路电流增加,元件温度升高,周而复始,因此具有使温度保持在特定范围的功能,又起到开关作用.利用这种阻温特性做成加热源,作为加热元件应用的有暖风器、电烙铁、烘衣柜、空调等,还可对电器起到过热保护作用.
2023-08-13 05:10:061

NTC温度传感器的ntc热敏电阻工作原理

负温度系数热敏电阻器是以锰、钴、镍和铜等金属氧化物为主要材料, 采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2[%]~-6.5[%]。
2023-08-13 05:11:441

简述半导体热敏电组的原理

半导体热敏电阻的工作原理:按温度特性热敏电阻可分为两类,随温度上升电阻增加的为正温度系数热敏电阻,反之为负温度系数热敏电阻。⑴ 正温度系数热敏电阻的工作原理此种热敏电阻以钛酸钡(BaTio3)为基本材料,再掺入适量的稀土元素,利用陶瓷工艺高温烧结尔成。纯钛酸钡是一种绝缘材料,但掺入适量的稀土元素如镧(La)和铌(Nb)等以后,变成了半导体材料,被称半导体化钛酸钡。它是一种多晶体材料,晶粒之间存在着晶粒界面,对于导电电子而言,晶粒间界面相当于一个位垒。当温度低时,由于半导体化钛酸钡内电场的作用,导电电子可以很容易越过位垒,所以电阻值较小;当温度升高到居里点温度(即临界温度,此元件的‘温度控制点" 一般钛酸钡的居里点为120℃)时,内电场受到破坏,不能帮助导电电子越过位垒,所以表现为电阻值的急剧增加。因为这种元件具有未达居里点前电阻随温度变化非常缓慢,具有恒温、调温和自动控温的功能,只发热,不发红,无明火,不易燃烧,电压交、直流3~440V均可,使用寿命长,非常适用于电动机等电器装置的过热探测。⑵ 负温度系数热敏电阻的工作原理负温度系数热敏电阻是以氧化锰、氧化钴、氧化镍、氧化铜和氧化铝等金属氧化物为主要原料,采用陶瓷工艺制造而成。这些金属氧化物材料都具有半导体性质,完全类似于锗、硅晶体材料,体内的载流子(电子和空穴)数目少,电阻较高;温度升高,体内载流子数目增加,自然电阻值降低。负温度系数热敏电阻类型很多,使用区分低温(-60~300℃)、中温(300~600℃)、高温(>600℃)三种,有灵敏度高、稳定性好、响应快、寿命长、价格低等优点,广泛应用于需要定点测温的温度自动控制电路,如冰箱、空调、温室等的温控系统。热敏电阻与简单的放大电路结合,就可检测千分之一度的温度变化,所以和电子仪表组成测温计,能完成高精度的温度测量。普通用途热敏电阻工作温度为-55℃~+315℃,特殊低温热敏电阻的工作温度低于-55℃,可达-273℃。
2023-08-13 05:12:121

NTC功率热敏电阻抑制浪涌电流的工作原理是什么呢?

1、NTC功率热敏电阻主要抑制电源输入开关瞬间的浪涌电流。2、因为电源开关瞬间,输入的浪涌电流很大,为了减小浪涌电流,串负温热敏电阻,当输入电流稳定后,由于热敏电阻温度升高,阻值大幅下降,相当于没有电阻,降低了功耗。
2023-08-13 05:13:251

冰箱用PTC的工作原理是什么?

PTC(Positive Temperature Coefficient)是一种特殊的电阻元件,它的电阻值随着温度的升高而增加。冰箱中使用PTC的原理是:当冰箱内部温度升高时,PTC电阻器的电阻值也会增加,从而限制电流的流动,从而降低加热器的功率,从而降低冰箱内部的温度。当冰箱内部温度降低时,PTC电阻器的电阻值也会降低,从而增加电流的流动,从而增加加热器的功率,从而提高冰箱内部的温度。
2023-08-13 05:13:344

压敏电阻 热敏电阻 光敏电阻的原理作用

其实都是一样的,都是利用PN结对压力、温度、光线的变化来控制电流的变化的器件
2023-08-13 05:13:452

PTC效应的PTC的工作原理

PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度) 时,它的电阻值随着温度的升高几乎是呈阶跃式的增高。PTC热敏电阻本体温度的变化可以由流过PTC热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得。 陶瓷材料通常用作高电阻的优良绝缘体,而陶瓷PTC热敏电阻是以钛酸钡为基,掺杂其它的多晶陶瓷材料制造的,具有较低的电阻及半导特性.通过有目的的掺杂一种化学价较高的材料作为晶体的点阵元来达到的:在晶格中钡离子或钛酸盐离子的一部分被较高价的离子所替代,因而得到了一定数量产生导电性的自由电子。对于PTC热敏电阻效应,也就是电阻值阶跃增高的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中,因此而产生高的电阻.这种效应在温度低时被抵消;在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以自由地流动.而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地增高,呈现出强烈的PTC效应。PTC热敏电阻是开发早、种类多、发展较成熟的敏感元器件.PTC热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化。若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为:σ=q(nμn+pμp)因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理.
2023-08-13 05:13:551

什么是热敏电阻

热敏电阻充当电路中的无源元件。它们是一种准确、廉价且可靠的温度测量方法。虽然热敏电阻在极热或极冷的温度下都不能很好地工作,但它们是许多不同应用的首选传感器。当需要精确的温度读数时,热敏电阻是理想的选择。热敏电阻的用途热敏电阻有多种应用。它们被广泛用作在许多不同液体和环境空气环境中测量温度的热敏电阻温度计。热敏电阻的一些最常见用途包括:数字温度计(恒温器)汽车应用(测量汽车和卡车的油温和冷却液温度)家用电器(如微波炉、冰箱和烤箱)电路保护(即浪涌保护)可充电电池(确保保持正确的电池温度)测量电工材料的热导率在许多基本电子电路中很有用(例如,作为初学者 Arduino 入门套件的一部分)温度补偿(即保持电阻以补偿电路另一部分温度变化引起的影响)用于惠斯通电桥电路热敏电阻如何工作热敏电阻的工作原理是其电阻取决于其温度。我们可以使用欧姆表测量热敏电阻的电阻。如果我们知道温度变化将如何影响热敏电阻电阻之间的确切关系,那么通过测量热敏电阻的电阻,我们可以得出它的温度。电阻变化的程度取决于热敏电阻中使用的材料类型。热敏电阻的温度和电阻之间的关系是非线性的。有两种类型的热敏电阻:负温度系数 (NTC) 热敏电阻正温度系数 (PTC) 热敏电阻NTC热敏电阻在 NTC 热敏电阻中,当温度升高时,电阻会降低。当温度降低时,电阻会增加。因此,在 NTC 热敏电阻中,温度和电阻成反比。这些是最常见的类型热敏电阻.PTC热敏电阻PTC热敏电阻在温度和电阻之间具有相反的关系。当温度升高时,电阻增加。并且当温度降低时,电阻会降低。因此,在 PTC 热敏电阻中,温度和电阻成反比。虽然 PTC 热敏电阻不像 NTC 热敏电阻那样常见,但它们经常用作电路保护的一种形式。类似于保险丝的功能,PTC热敏电阻可以充当限流设备。当电流通过设备时,会引起少量的电阻发热。如果电流大到足以产生比设备向周围环境损失的热量更多的热量,那么设备就会升温。在 PTC 热敏电阻中,这种升温也会导致其电阻增加。这会产生一种自我增强效应,推动电阻向上,从而限制电流。通过这种方式,它起到了限流装置的作用——保护电路热敏电阻结构为了制造热敏电阻,将两种或多种由金属氧化物制成的半导体粉末与粘合剂混合以形成浆料。这种浆液的小滴在引线上形成。出于干燥目的,我们必须将其放入烧结炉中。在此过程中,浆料将收缩到引线上以进行电连接。这种加工过的金属氧化物是通过在其上涂上玻璃涂层来密封的。这种玻璃涂层使热敏电阻具有防水性能——有助于提高其稳定性。市场上有不同形状和尺寸的热敏电阻。较小的热敏电阻采用直径从 0.15 毫米到 1.5 毫米的珠子形式。热敏电阻也可以是圆盘和垫圈的形式,通过在高压下将热敏电阻材料压制成直径为 3 毫米至 25 毫米的扁平圆柱形。温度传感器的类型热敏电阻的典型尺寸为 0.125 毫米至 1.5 毫米。市售热敏电阻的标称值有1K、2K、10K、20K、100K等,这个值表示25℃温度下的电阻值。热敏电阻有不同的型号:珠型、棒型、圆盘型等。热敏电阻的主要优点是体积小,成本相对较低。这种尺寸优势意味着在护套中工作的热敏电阻的时间常数很小,尽管尺寸减小也会降低其散热能力,从而使自热效应更大。这种效应会永久损坏热敏电阻。为防止这种情况,与电阻温度计相比,热敏电阻必须在低电流下工作——导致测量灵敏度降低。
2023-08-13 05:14:101

热敏电阻特性测量测量及应用

更详细的在<a href=" http://baike.baidu.com/view/284445.htm" target="_blank"> http://baike.baidu.com/view/284445.htm</a>热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为: σ=q(nμn+pμp) 因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理. 热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性如图1所示.热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强.由于半导体热敏电阻有独特的性能,所以在应用方面,它不仅可以作为测量元件(如测量温度、流量、液位等),还可以作为控制元件(如热敏开关、限流器)和电路补偿元件.热敏电阻广泛用于家用电器、电力工业、通讯、军事科学、宇航等各个领域,发展前景极其广阔. 一、PTC热敏电阻 PTC(Positive Temperature Coeff1Cient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作恒定温度传感器.该材料是以BaTiO3或SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、Bi、Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系数的Mn、Fe、Cu、Cr的氧化物和起其他作用的添加物,采用一般陶瓷工艺成形、高温烧结而使钛酸铂等及其固溶体半导化,从而得到正特性的热敏电阻材料.其温度系数及居里点温度随组分及烧结条件(尤其是冷却温度)不同而变化. 钛酸钡晶体属于钙钛矿型结构,是一种铁电材料,纯钛酸钡是一种绝缘材料.在钛酸钡材料中加入微量稀土元素,进行适当热处理后,在居里温度附近,电阻率陡增几个数量级,产生PTC效应,此效应与BaTiO3晶体的铁电性及其在居里温度附近材料的相变有关.钛酸钡半导瓷是一种多晶材料,晶粒之间存在着晶粒间界面.该半导瓷当达到某一特定温度或电压,晶体粒界就发生变化,从而电阻急剧变化. 钛酸钡半导瓷的PTC效应起因于粒界(晶粒间界).对于导电电子来说,晶粒间界面相当于一个势垒.当温度低时,由于钛酸钡内电场的作用,导致电子极容易越过势垒,则电阻值较小.当温度升高到居里点温度(即临界温度)附近时,内电场受到破坏,它不能帮助导电电子越过势垒.这相当于势垒升高,电阻值突然增大,产生PTC效应.钛酸钡半导瓷的PTC效应的物理模型有海望表面势垒模型、丹尼尔斯等人的钡缺位模型和叠加势垒模型,它们分别从不同方面对PTC效应作出了合理解释. 实验表明,在工作温度范围内,PTC热敏电阻的电阻-温度特性可近似用实验公式表示: RT=RT0expBp(T-T0) 式中RT、RT0表示温度为T、T0时电阻值,Bp为该种材料的材料常数. PTC效应起源于陶瓷的粒界和粒界间析出相的性质,并随杂质种类、浓度、烧结条件等而产生显著变化.最近,进入实用化的热敏电阻中有利用硅片的硅温度敏感元件,这是体型且精度高的PTC热敏电阻,由n型硅构成,因其中的杂质产生的电子散射随温度上升而增加,从而电阻增加. PTC热敏电阻于1950年出现,随后1954年出现了以钛酸钡为主要材料的PTC热敏电阻.PTC热敏电阻在工业上可用作温度的测量与控制,也用于汽车某部位的温度检测与调节,还大量用于民用设备,如控制瞬间开水器的水温、空调器与冷库的温度,利用本身加热作气体分析和风速机等方面.下面简介一例对加热器、马达、变压器、大功率晶体管等电器的加热和过热保护方面的应用。 PTC热敏电阻除用作加热元件外,同时还能起到“开关”的作用,兼有敏感元件、加热器和开关三种功能,称之为“热敏开关”,如图2和3所示.电流通过元件后引起温度升高,即发热体的温度上升,当超过居里点温度后,电阻增加,从而限制电流增加,于是电流的下降导致元件温度降低,电阻值的减小又使电路电流增加,元件温度升高,周而复始,因此具有使温度保持在特定范围的功能,又起到开关作用.利用这种阻温特性做成加热源,作为加热元件应用的有暖风器、电烙铁、烘衣柜、空调等,还可对电器起到过热保护作用.
2023-08-13 05:14:181

电阻的作用和工作原理

1、冠发电阻原理:电阻器由电阻体、骨架和引出端三部分构成(实芯电阻器的电阻体与骨架合二为一),而决定阻值的只是电阻体。通常,都是根据欧姆定律来定义电阻,给电阻加一个恒定电压,会产生多大电流;也可以,通过焦耳定律来定义,当电阻流过一个电流,单位时间内会产生多少热量。2、限流:有些时候电路中需要一组几十毫安的电源,但是其电压在电路中其他地方都用不到,此时单独弄一组DCDC或者LDO都不太合适,因为电流太小。此时可以使用稳压管稳压电路。3、分压:分压例如ADC采样电路,DCDC输出电压反馈,电平转换等等。
2023-08-13 05:14:272

热敏传感器主要分哪几种基本类型,简述它们的工作原理

分正特性和负特性两种,热敏电阻的工作原理是:电阻值随着温度变化而变化,正特性的热敏电阻,随着温度升高阻值增大,负特性的热敏电阻,随着温度升高阻值减小
2023-08-13 05:15:041

电阻式温度传感器的工作原理是什么?有几种类型?

1.电阻式传感器主要有PT100,PT1000,Cu50这些,工作原理就是利用这些热敏电阻材质自身的特性:阻值随着温度的增加线性增加或者降低。2.一般有NTC热敏电阻(负温度系数)和PTC热敏电阻(正温度系数)两种;可以通过专用的热敏电阻测试仪HPS2535或者HPS2530观察阻值变化,如果随着温度增加,阻值也增大的是PTC型的热敏电阻;如果随着温度减少,阻值是降低的是NTC型的热敏电阻。
2023-08-13 05:15:151

17A 热保护器 与PTC热敏电阻的区别,工作原理,和使用方法的区别?

1、17A保护器:纯粹的双金属片温控开关。2、PTC热敏电阻:可恢复型温度保险。3、17A+PTC:前两种的组合。优点是保护后需要人工断电才能恢复,避免过热现象周期性重复。
2023-08-13 05:15:261

汽车上的热敏电阻主要特点是什么

对于热敏电阻估计大部分人是不了解的,这个热敏电阻究竟是干什么的,那么下面就让我们同电子之家一起来了解一下热敏电阻型号的工作原理以及特点的介绍吧。  热敏电阻型号  一,热敏电阻  热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。  二,特点  ①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;  ②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~-55℃;  ③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;  ④使用方便,电阻值可在0.1~100kΩ间任意选择;  ⑤易加工成复杂的形状,可大批量生产;  ⑥稳定性好、过载能力强。  三,工作原理  热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能热敏电阻动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流
2023-08-13 05:15:591

汽车上的热敏电阻主要特点是什么?

对于热敏电阻估计大部分人是不了解的,这个热敏电阻究竟是干什么的,那么下面就让我们同电子之家一起来了解一下热敏电阻型号的工作原理以及特点的介绍吧。  热敏电阻型号  一,热敏电阻  热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。  二,特点  ①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;  ②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~-55℃;  ③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;  ④使用方便,电阻值可在0.1~100kΩ间任意选择;  ⑤易加工成复杂的形状,可大批量生产;  ⑥稳定性好、过载能力强。  三,工作原理  热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能热敏电阻动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流
2023-08-13 05:16:072

急需关于冷敏电阻和热敏电阻的资料

热敏电阻分为正温度系数(PTC)和负温度系数(NTC)热敏电阻,热敏电阻的主要特点是:①灵敏度较高,②工作温度范围宽,常温器件适用于-40℃~125℃,③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强.
2023-08-13 05:16:372

电阻传感器的工作的原理是什么

电阻传感器通常用来测量电阻或温度。当温度升高时,电阻通常会增加,这使得电阻传感器可以用来测量温度。当电阻传感器被放置在待测物体上,待测物体的温度升高时,电阻传感器的电阻也会升高。这些变化可以通过改变电流或电压来测量。例如,对于热电偶电阻传感器,两根导线之间的温度差会导致电压差。这个电压差可以通过测量这两根导线之间的电压来计算出来。另一种常见的电阻传感器是基于电阻丝的,它们通常使用热敏电阻丝,其电阻会随着温度的升高而升高。电阻传感器的精度取决于其设计,但通常在±1%到±5%之间。电阻传感器的响应时间也取决于其设计,但通常在几毫秒到几秒之间。电阻传感器通常是低成本,耐用和稳定的。
2023-08-13 05:16:461

光电门是什么,怎样测速度啊?

光电门是一个象门样的装置,一边安装发光装置,一边安装接收装置并与计时装置连接。当物体通过光电门时光被挡住,计时器开始计时当物体离开时停止计时,这样就可以根据物体大小与运动时间计算物体运动的速度;若计时装置具备运算功能,使用随机配置的挡光片(宽度一定),可以直接测量物体的瞬时速度。光电门是由一个小的聚光灯泡和一个光敏管组成的,聚光灯泡对准光敏管,光敏管前面有一个小孔可以接收光的照射.光敏门与计时仪是按以下方式联接的.即当两个光电门的任一个被挡住时,计时仪开始计时;当两个光电门中任一个被再次挡光时,计时终止.计时仪显示的是两次挡光之间的时间间隔.
2023-08-13 05:15:501

简述托盘的概念及其优点

塑料托盘作为物流运作过程中重要的装卸、储存和运输设备,与叉车配套使用在现代物流中发挥着巨大的作用。托盘给现代物流业带来的效益主要体现在:可以实现物品包装的单元化、规范化和标准化,保护物品,方便物流和商流;物品运输的集装化,提高运输效率,降低运输成本;物品存放的立体化、物品流通过程的自动化;物品装卸的机械化、自动化,提高装卸效率和速度;物品数据处理的信息化,提高现代物流的系统管理水平。山东诺亚方舟塑料托盘公司研发人员吸取总结其他托盘生产企业的经验,采用国际先进模具设计软件设计开发的塑料托盘模具,较之其他厂家开发较早的塑料托盘模具,在力学结构、流道分布和外观结构(托盘整体外观样式)方面更趋科学、合理,托盘制品整体承载性好、抗冲击性强、耐温性好。双面、单面、川字底、九脚底、平面、网格、网孔、田字底系列托盘及垫板广泛应用于石油化工、啤酒、饮料、食品医药、烟草饲料、服装电子、仓储物流、港口码头等生产、运输、仓储和流通领域,广泛供应北京塑料托盘、天津塑料托盘、上海塑料托盘及全国其他各省市塑料托盘市场。
2023-08-13 05:15:502