barriers / 阅读 / 详情

DS18B20的概述

2023-08-22 14:54:26
TAG: ds
共3条回复
蓓蓓

DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。

1: 技术性能描述

①、 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

② 、测温范围 -55℃~+125℃,固有测温误差(注意,不是分辨率,这里之前是错误的)1℃。

③、支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。

④、工作电源: 3.0~5.5V/DC (可以数据线寄生电源)

⑤ 、在使用中不需要任何外围元件

⑥、 测量结果以9~12位数字量方式串行传送

⑦ 、不锈钢保护管直径 Φ6

⑧ 、适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温

⑨、 标准安装螺纹 M10X1, M12X1.5, G1/2”任选

⑩ 、PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。

DS18B20+ 和 Maxim Integrated 信息

Manufactured by Maxim Integrated, DS18B20+ is a 温度传感器.

ds18b20温度传感器工作原理

clou

ds18b20工作原理如下

DS18B20工作原理是低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号发送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。DS18B20是常用的数字温度传感器,其输出的是数字信号,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。 DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。

康康map

DS18B20数字温度计提供9位至12位摄氏温度测量,并具有报警功能具有非易失用户可编程的上部和下部的触发点。该DS18B20连通以上,通过定义,只需要一根数据线(和地线)为1- wire总线与中央微处理器通信。应用包括暖通空调环境控制、建筑物内温度监测系统、设备、机械、过程监测和控制系统。

ds18b20温度传感器工作原理

相关推荐

ds18b20温度传感器工作的原理是什么

ds18b20温度传感器工作原理DS18B20温度传感器是一种数字温度传感器,它采用1-Wire协议,可以提供9位到12位的温度测量精度。它的工作原理是,它内部有一个热敏电阻,当温度变化时,热敏电阻的电阻值也会发生变化,DS18B20传感器内部有一个模拟电路,它可以将热敏电阻的电阻值转换成数字信号,然后通过1-Wire协议传输出来。
2023-08-13 22:14:251

ds18b20怎么样工作的原理是什么

DS18B20是一种数字温度传感器,它采用1-Wire通信协议,可以通过单总线传输数据。DS18B20使用热敏电阻来测量温度。热敏电阻是一种特殊的电阻,其电阻值会随着温度的变化而变化。DS18B20内部还有一个温度传感器,它可以测量内部的温度并将其转换为数字信号。当DS18B20接入电源时,它会自动进行温度测量并将结果存储在其内部的存储器中。然后,通过1-Wire协议将结果传输给微控制器或其他系统。DS18B20支持多个传感器在一根线上工作,通过64位的唯一识别码来区分.附加特性:工作温度范围:-55~+125摄氏度高精度:±0.5摄氏度支持多种温度量程(9-12位)低功耗,待机电流为1uA左右数据传输速率高达1MbpsDS18B20通过1-Wire协议与微控制器进行通信。1-Wire协议是一种简单的、低成本的、单线通信协议,它可以在微控制器和传感器之间进行数据传输。通信过程:微控制器在总线上发送一个温度转换命令,请求DS18B20进行温度测量。DS18B20接收到命令后,进行温度测量并将结果存储在其内部存储器中。微控制器发送一个读数据命令,请求DS18B20将存储的温度数据发送给微控制器。DS18B20接收到命令后,将存储的温度数据通过总线发送给微控制器。微控制器接收到温度数据后,通过软件转换将其转换为物理单位的温度值。DS18B20还具有高精度和高灵敏度的特点,可用于各种温度监控和控制场景.DS18B20可以使用两种方式工作:轮询模式和中断模式。轮询模式:微控制器定期询问传感器当前的温度值。这种方式简单易用,但会消耗更多的CPU资源。中断模式:微控制器等待DS18B20的中断信号。当DS18B20完成温度测量并存储结果后,会发出中断信号通知微控制器。这种方式可以降低CPU资源消耗。DS18B20还支持多个传感器在同一个总线上工作,可以使用ROM操作来识别和选择不同的传感器。DS18B20是一款非常受欢迎的温度传感器,它简单易用,低功耗,高精度,多功能,并且有很多现成的库可供使用。DS18B20可以通过各种单片机和微控制器来使用,如Arduino,Raspberrypi,STM32,PIC等。在使用DS18B20之前,需要先在单片机或微控制器上配置1-Wire通信接口。1-Wire接口可以使用串行或并行的方式来实现。通常需要使用特定的库来访问DS18B20,这些库可以提供简单易用的接口来读取温度值。库提供了很多函数来读取温度值,配置,操作传感器等.举个例子,使用Arduino来读取DS18B20的温度值,需要先将DS18B20连接到Arduino板上,然后使用OneWire库和DallasTemperature库来实现通信和操作。代码大致如下`C++#include#include//Datawireisconnectedtopin2ontheArduino#defineONE_WIRE_BUS2//SetupaoneWireinstancetocommunicatewithanyOneWiredevices(notjustMaxim/DallastemperatureICs)OneWireoneWire(ONE_WIRE_BUS);//PassouroneWirereferencetoDallasTemperature.DallasTemperaturesensors(oneWire);voidsetup(){Serial.begin(9600);//Startupthelibrarysensors.begin();}voidloop(){//callsensors.requestTemperatures()toissueaglobaltemperature//requesttoalldevicesonthebussensors.requestTemperatures();//SendthecommandtogettemperaturesfloattempC=sensors.getTempCByIndex(0);//printthetemperatureontheserialmonitorSerial.print(Temperatureis:);Serial.print(tempC);Serial.println(Celsius);delay(1000);}`需要注意的是,DS18B20的引脚连接可能因为供应商而不同.通常需要查看数据手册来了解连接方式.
2023-08-13 22:14:321

ds18b20的测温原理是什么解

ds18b20的测温原理解释DS18B20是一种数字温度传感器,它采用1-Wire协议,可以提供高精度的温度测量。它的工作原理是,它内部有一个小型的热敏电阻,当温度变化时,热敏电阻的电阻也会发生变化,这种变化会被DS18B20检测到,然后将其转换成数字信号,最后将数字信号转换成温度值。
2023-08-13 22:14:391

ds18b20的工作原理

ds18b20工作原理如下DS18B20工作原理是低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号发送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。DS18B20是常用的数字温度传感器,其输出的是数字信号,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。 DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。
2023-08-13 22:14:495

18B20这个温度传感器工作原理究竟是怎么样的呢?答案要简洁明了,最好一语就能说出要点。

18B20采用的是半导体测温。经过传感器内部的电路直接将温度变换成数字信号。单片机经过传感器上的单线总线对传感器进行设定和测量。传感器的分辨率为0.0625℃,测量精度±0.5℃(-30~+50℃)。由于输出数字信号,在传输过程中不会损失精度。
2023-08-13 22:15:461

ds1820温度传感器工作原理有人了解吗

DS1820的温度测量原理:内部计数器对一个受温度影响的振荡器的脉冲计数,低温时,振荡器的脉冲可以通过门电路,当到达某一设置高温时,振荡器有脉冲无法通过门电路,计数器设置为-55℃。同时,计数器哦的复位在当前的温度值时,电路对振荡器的温度系数进行补偿,计数器重新开始计数到归零。
2023-08-13 22:15:561

【急】求:DS18B20温度传感器的发展历史和目前国内外发展现状及水平,求详细。。。

DS-18B20 数字温度传感器   DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。   1: 技术性能描述   1.1 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。   1.2 测温范围 -55℃~+125℃,固有测温分辨率0.5℃。   1.3 支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。   1.4 工作电源: 3~5V/DC   1.5 在使用中不需要任何外围元件   1.6 测量结果以9~12位数字量方式串行传送   1.7 不锈钢保护管直径 Φ6   1.8 适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温   1.9 标准安装螺纹 M10X1, M12X1.5, G1/2”任选   1.10 PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。   2:应用范围   2.1 该产品适用于冷冻库,粮仓,储罐,电讯机房,电力机房,电缆线槽等测温和控制领域   2.2 轴瓦,缸体,纺机,空调,等狭小空间工业设备测温和控制。   2.3 汽车空调、冰箱、冷柜、以及中低温干燥箱等。   2.4 供热/制冷管道热量计量,中央空调分户热能计量和工业领域测温和控制   3:产品型号与规格   型 号 测温范围 安装螺纹 电缆长度 适用管道   TS-18B20 -55~125 无 1.5 m   TS-18B20A -55~125 M10X1 1.5m DN15~25   TS-18B20B -55~125 1/2”G 接线盒 DN40~ 60   4:接线说明   特点 独特的一线接口,只需要一条口线通信 多点能力,简化了分布式温度传感应用 无需外部元件 可用数据总线供电,电压范围为3.0 V至5.5 V 无需备用电源 测量温度范围为-55 ° C至+125 ℃ 。华氏相当于是-67 ° F到257华氏度 -10 ° C至+85 ° C范围内精度为±0.5 ° C   温度传感器可编程的分辨率为9~12位 温度转换为12位数字格式最大值为750毫秒 用户可定义的非易失性温度报警设置 应用范围包括恒温控制,工业系统,消费电子产品温度计,或任何热敏感系统   描述该DS18B20的数字温度计提供9至12位(可编程设备温度读数。信息被发送到/从DS18B20 通过1线接口,所以中央微处理器与DS18B20只有一个一条口线连接。为读写以及温度转换可以从数据线本身获得能量,不需要外接电源。 因为每一个DS18B20的包含一个独特的序号,多个ds18b20s可以同时存在于一条总线。这使得温度传感器放置在许多不同的地方。它的用途很多,包括空调环境控制,感测建筑物内温设备或机器,并进行过程监测和控制。   8引脚封装 TO-92封装 用途 描述   5 1 接地 接地   4 2 数字 信号输入输出,一线输出:源极开路   3 3 电源 可选电源管脚。见"寄生功率"一节细节方面。电源必须接地,为行动中,寄生虫功率模式。   不在本表中所有管脚不须接线 。   概况框图图1显示的主要组成部分DS18B20的。DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。该装置信号线高的时候,内部电容器 储存能量通由1线通信线路给片子供电,而且在低电平期间为片子供电直至下一个高电平的到来重新充电。 DS18B20的电源也可以从外部3V-5 .5V的电压得到。   DS18B20采用一线通信接口。因为一线通信接口,必须在先完成ROM设定,否则记忆和控制功能将无法使用。主要首先提供以下功能命令之一: 1 )读ROM, 2 )ROM匹配, 3 )搜索ROM, 4 )跳过ROM, 5 )报警检查。这些指令操作作用在没有一个器件的64位光刻ROM序列号,可以在挂在一线上多个器件选定某一个器件,同时,总线也可以知道总线上挂有有多少,什么样的设备。   若指令成功地使DS18B20完成温度测量,数据存储在DS18B20的存储器。一个控制功能指挥指示DS18B20的演出测温。测量结果将被放置在DS18B20内存中,并可以让阅读发出记忆功能的指挥,阅读内容的片上存储器。温度报警触发器TH和TL都有一字节EEPROM 的数据。如果DS18B20不使用报警检查指令,这些寄存器可作为一般的用户记忆用途。在片上还载有配置字节以理想的解决温度数字转换。写TH,TL指令以及配置字节利用一个记忆功能的指令完成。通过缓存器读寄存器。所有数据的读,写都是从最低位开始。   DS18B20有4个主要的数据部件:   (1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。   (2) DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。   表1 DS18B20温度值格式表   4.3.1   DS18B20的管脚排列如图4.4所示。   图4.4DS18B20的管脚排列如图   DS18B20内部结构主要由四部分组成:64位光刻ROM,温度传感器,温度报警触发器TH和TL,配置寄存器。DS18B20内部结构图如图4.5所示。   图4.5 DS18B20内部结构图   4.3.2存储器   DS18B20的存储器包括高速暂存器RAM和可电擦除RAM,可电擦除RAM又包括温度触发器TH和TL,以及一个配置寄存器。存储器能完整的确定一线端口的通讯,数字开始用写寄存器的命令写进寄存器,接着也可以用读寄存器的命令来确认这些数字。当确认以后就可以用复制寄存器的命令来将这些数字转移到可电擦除RAM中。当修改过寄存器中的数时,这个过程能确保数字的完整性。   高速暂存器RAM是由8个字节的存储器组成;第一和第二个字节是温度的显示位。第三和第四个字节是复制TH和TL,同时第三和第四个字节的数字可以更新;第五个字节是复制配置寄存器,同时第五个字节的数字可以更新;六、七、八三个字节是计算机自身使用。用读寄存器的命令能读出第九个字节,这个字节是对前面的八个字节进行校验。存储器的结构图如图4.6所示。   图4.6 存储器的结构图   4.3.3 64-位光刻ROM   64位光刻ROM的前8位是DS18B20的自身代码,接下来的48位为连续的数字代码,最后的8位是对前56位的CRC校验。64-位的光刻ROM又包括5个ROM的功能命令:读ROM,匹配ROM,跳跃ROM,查找ROM和报警查找。64-位光刻ROM的结构图如图4.7所示。   图4.7位64-位光刻ROM的结构图   4.3.4 DS18B20外部电源的连接方式   DS18B20可以使用外部电源VDD,也可以使用内部的寄生电源。当VDD端口接3.0V—5.5V的电压时是使用外部电源;当VDD端口接地时使用了内部的寄生电源。无论是内部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻。 连接图如图4.8、图4.9所示。   图4.8 使用寄生电源的连接图   图4.9外接电源的连接图   4.3.4 DS18B20温度处理过程   4.3.4.1配置寄存器   配置寄存器是配置不同的位数来确定温度和数字的转化。配置寄存器的结构图如图4.10所示。   图4.10 配置寄存器的结构图   由图4.9可以知道R1,R0是温度的决定位,由R1,R0的不同组合可以配置为9位,10位,11位,12位的温度显示。这样就可以知道不同的温度转化位所对应的转化时间,四种配置的分辨率分别为0.5℃,0.25℃,0.125℃和0.0625℃,出厂时以配置为12位。温度的决定配置图如图8所示。   图4.11 温度的决定配置图   4.3.4.2 温度的读取   DS18B20在出厂时以配置为12位,读取温度时共读取16位,所以把后11位的2进制转化为10进制后在乘以0.0625便为所测的温度,还需要判断正负。前5个数字为符号位,当前5位为1时,读取的温度为负数;当前5位为0时,读取的温度为正数。16位数字摆放是从低位到高位,温度的关系图如图4.12所示。   图4.12为温度的关系图   4.3.4.3.DS18B20控制方法   DS18B20有六条控制命令,如表4.1所示:   表4.1 为DS18B20有六条控制命令   指 令 约定代码 操 作 说 明   温度转换 44H 启动DS18B20进行温度转换   读暂存器 BEH 读暂存器9位二进制数字   写暂存器 4EH 将数据写入暂存器的TH、TL字节   复制暂存器 48H 把暂存器的TH、TL字节写到E2RAM中   重新调E2RAM B8H 把E2RAM中的TH、TL字节写到暂存器TH、TL字节   读电源供电方式 B4H 启动DS18B20发送电源供电方式的信号给主CPU   4.3.4.4 DS18B20的初始化   (1) 先将数据线置高电平“1”。   (2) 延时(该时间要求的不是很严格,但是尽可能的短一点)   (3) 数据线拉到低电平“0”。   (4) 延时750微秒(该时间的时间范围可以从480到960微秒)。   (5) 数据线拉到高电平“1”。   (6) 延时等待(如果初始化成功则在15到60毫秒时间之内产生一个由DS18B20所返回的低电平“0”。据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。   (7) 若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。   (8) 将数据线再次拉高到高电平“1”后结束。   其时序如图4.13所示:   图4.13 初始化时序图   4.3.4.5 DS18B20的写操作   (1) 数据线先置低电平“0”。   (2) 延时确定的时间为15微秒。   (3) 按从低位到高位的顺序发送字节(一次只发送一位)。   (4) 延时时间为45微秒。   (5) 将数据线拉到高电平。   (6) 重复上(1)到(6)的操作直到所有的字节全部发送完为止。   (7) 最后将数据线拉高。   DS18B20的写操作时序图如图4.14所示。   图4.14 DS18B20的写操作时序图   4.3.4.6 DS18B20的读操作   (1)将数据线拉高“1”。   (2)延时2微秒。   (3)将数据线拉低“0”。   (4)延时15微秒。   (5)将数据线拉高“1”。   (6)延时15微秒。   (7)读数据线的状态得到1个状态位,并进行数据处理。   (8)延时30微秒。   DS18B20的读操作时序图如图4.15所示。   图1.15 DS18B20的读操作图   数字温度传感器DS18B20介绍    1、DS18B20的主要特性   1.1、适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数 据线供电   1.2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯   1.3、 DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温   1.4、DS18B20在使用中不需要任何外围元件,全部 传感元件及转换电路集成在形如一只三极管的集成电路内   1.5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃   1.6、可编程 的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温   1.7、在9位分辨率时最多在 93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快   1.8、测量结果直接输出数字温度信号,以"一 线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力   1.9、负压特性:电源极性接反时,芯片不会因发热而烧毁, 但不能正常工作。 2、DS18B20的外形和内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM 、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的外形及管脚排列如下图1:   DS18B20引脚定义: (1)DQ为数字信号输入/输出端;   (2)GND为电源地;   (3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。      图2: DS18B20内部结构图   3、DS18B20工作原理   DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振 随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对 低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重 新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即 为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。   图3: DS18B20测温原理框图 DS18B20有4个主要的数据部件: (1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位 (28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用 是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 (2)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以 0.0625℃/LSB形式表达,其中S为符号位。    表1: DS18B20温度值格式表   这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0, 这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际 温度。 例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FE6FH,-55℃的数字输出为FC90H 。
2023-08-13 22:16:401

测量0至200摄氏度,要求误差0.1度,用什么温度传感器比较好?

pt100
2023-08-13 22:17:093

DS18B20温度传感器如何与单片机相连接

DS18B20电源端接电源,地接地,数据端接单片机。led与单片机直接相连,公共端串200欧电阻(共阴的)接地,共阳接VCC
2023-08-13 22:17:225

AT89S51和DS18B20温度报警器电路原理图

太简单了DS18B20只需AT89S51一根I/O线AT89S51再用一根I/O接一个喇叭即可
2023-08-13 22:17:592

水温传感器一根线的工作原理 希望能深入的了解一下 谢谢啦

液位器么
2023-08-13 22:18:383

ds18b20温度传感器如何实现输出信号为数字信号

DS18B20本身输出的就是数字信号。你只需弄明白它的输出信号格式直接读取即可。
2023-08-13 22:18:482

这个温度传感器是靠什么来探测温度的?ds18b20??红外?超声波?

热敏电阻。 电阻阻值随温度变化
2023-08-13 22:18:563

基于AT89C51和DS18B20制作的温度报警器原理图和单片机内部程序?

这个我有,程序及论文+硬件
2023-08-13 22:19:062

温控报警及显示系统的设计:温控报警

  摘 要:基于AT89S52单片机与DS18B20温度传感器设计了一种温控上下限可调的温度报警及显示系统。该设计具有硬件电路相对简单,价格低廉、可靠性高、实时性好等特点。突出特点在于:具有温控的上、下限,而且温控值可键控调整,使得该设计的应用范围非常广泛,通用性极高。   关键词:AT89S52单片机;DS18B20;温度报警器;温控可调   1.引言   我国的火灾自动报警控制系统经历了从无到有、从简单到复杂的发展过程,其智能化程度也越来越高。在大型仓库、商场、高级写字楼、宾馆等场所大型火灾报警系统的研发,及在居民住宅区、机房、办公室等小型防火单位采用的实用的火灾自动探测报警装置,都离不开温度报警显示,因此研制一种结构简单、价格低廉的温度报警器是非常必要的,其发展前景广阔.本设计采用DS18B20温度传感器,其测温范围为-55~+125℃,并可设置温度报警的上、下值,当温度高于上限或低于下限时,系统自动报警。报警值具有可调性且温度测量范围较广,因此具有较高的应用前景。   2、系统组成框图   本系设计是基于AT89S52单片机的温度报警显示系统,系统组成框图如图1所示。用单片机AT89S52控制温度传感器DS18B20,读取数据。对DS18B20转换后的数据进行处理,将符号位、整数值和小数值分别存放在特定的存储单元中,转换成实际温度值通过液晶屏实时显示。通过键盘输入模块预先设定温度的上下限值,当温度超出报警值时,实时声光报警。   图1.系统组成框图   3.设计原理   (1)控制模块设计   本设计控制模块使用的单片机是最新型号的AT89S52单片机[1]。AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程 Flash存储器。使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8位 CPU 和在系统可编程Flash,使得 AT89S52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。   (2)温度传感模块设计   本设计采用Dallas 最新单线数字温度传感器DS18B20[2]作温度检测器。DS18B20能够直接将所采集得信号进行模/数转换。这样应用系统的硬件电路中就不需要增加类似于ADC0809之类的模/数转换器,可直接送单片机处理,节约成本。DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。测温范围-55~+125℃,以0.5℃递增,可以分别在93.75ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根数据线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高,其封装如图2所示。   图2 DS18B20芯片封装图   (3) 液晶显示模块设计   对于本系统而言,温度值的显示是一个重要的环节。设计中需显示的信息较多,为使显示内容更加丰富,采用LCD液晶显示。JM1602A[3]液晶显示器,它是一种字符点阵液晶显示器,主要由行驱动/列驱动组成,可完成字符点阵显示。JM1602A的实物图如图3所示: 带字库的JM1602可以显示汉字字符且编程简单,构成良好的人机交流界面,增强系统可操作性。另外考虑到本设计要显示字母,采用带字库的液晶显示“DS18B20 OK!”、“TEMP”等信息,直观效果非常好,功能比较强,操作也相对简单。   图3 LCD1602实物图   液晶模块与控制模块的通讯设计电路如图4所示:液晶显示使用并口方式,其中RD0-RD7为单片机的并行数据口, RA1为并行的指令/数据选择信号,RA2为并行的读写选择信号,RA3为并行的使能信号。   图4 LCD1602模块与控制模块通讯电路图   (4)报警模块设计   由于DS18B20具备自动的上、下限,当温度超出或低于报警值时,系统发出信号到报警系统,触发报警电路。报警考虑不同环境的影响采用声/光同时报警。蜂鸣器发出报警峰鸣,发光二极管闪烁。当单片机RC4端口为高电平时,三极管导通蜂鸣器发声报警。这个实验是喇叭里发出滴的按键声音声音,送出的端口是RC4(即单片机的p3.7口),输出1khz频率信号报警,每一秒交换一次。硬件中增加了发光二极管,和蜂鸣器一起接RC4端口,采用高电平触发,结构更简单,实现了声光报警,电路图如图5所示。   图5 声光报警电路图   (5)键盘输入方案   单片机的键盘结构可以采用独立式和矩阵式键盘两种[4]。独立式按键指直接用I/O口线构成单个按键电路,每个独立式按键单独占用一位I/O口线。电路配置灵活,软件结构简单。但在按键数量较多时,I/O口线浪费大。如果应用系统中的键较少,就可采用简单的键盘接口电路。 由于本设计要设置四个按键,按键较少,故采用独立式按键。由单片机的p1.1-p1.4的四个端口分别检测四个按键,通过键扫描程序实时的监测按键是否操作。四个按键的功能如表1所示:      5、系统软件设计   根据本设计温度报警显示的要求,系统首先对单片机的系统进行初始化和常量的设置[5],然后调用温度传感器的初始化子程序初始化芯片,芯片随即开始工作,系统读取转换的温度值通过液晶屏实时显示,键扫描初始设置的温度上下限,比较实时的温度是否超过限制值,一旦超过马上通过声光报警。软件设计流程图如图6所示。   图6 系统软件流程图   6、结语   通过实际测试,本系统可以监控环境温度,实时性较好并可以人为的设制温度上下限,而新型温度器芯片的实用,又使得设计成本下降,因此具有较为广泛的应用前景。   参考文献   [1]周兴华,手把手教你学单片机,北京航空航天大学出版社,67-79, 2007
2023-08-13 22:19:131

求DS18B20详细资料(图文)

DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。2DS18B20的内部结构 DS18B20内部结构如图1所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地,见图4)。 ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。64位ROM的排的循环冗余校验码(CRC=X8+X5+X4+1)。ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。内部结构图
2023-08-13 22:19:211

用单片机控制DS18B20温度传感器采集温度的工作过程是不是这样?

我有现成的程序
2023-08-13 22:19:313

关于温度传感器

jk
2023-08-13 22:19:4310

急,请问一个关于DS18B20温度传感器的问题

DS18B20是单总线数字温度传感器,输出的是数字量。
2023-08-13 22:20:402

DS18B20温度传感器用1602显示和用单片机控制 当温度为25℃时让 P2_0动作 进而通过放大器驱动继电器

程序设计是等于25度还是大于等于25度,这种情况一般都是程序设计的问题
2023-08-13 22:20:493

温度传感器组成部分

温度传感器组成部分   温度传感器组成部分,生活中我们很多的电子设备都是需要用到传感器的,传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,以下分享温度传感器组成部分。   温度传感器组成部分1   温度传感器的结构:测温元件、保护装置,传输装置;有的带固定方式,带接线盒,还有的将带仪表显示的也叫温度传感器。正常看到的是,电机用的温度传感器是个不锈钢保护管(里面是个铂热电阻测温元件)。   一个固定螺丝,然后是引线引到接线盒。其它的温度传感器,测温元件可能是很小,保护装置装好后体积也不大,但主要的结构基本上一样,测温元件+保护+引线。    无线温度传感器的组成部分   系统主要由无线温度传感器、测温通信终端(温度显示仪)、温度检测预警工作站三部分组成。   无线温度传感器:由控制单元、无线数据传输和温度测量三部分组成。测温后,将温度数据通过无线方式传递给测温通讯终端。主要安装在易发热的电缆连接、变压器与开关的表面。   每个无线温度传感器具有唯一的ID编号,实际安装使用时记录每个传感器的安装地点,并与编号一起录入温度检测工作站计算机数据库中。传感器每隔一定时间(可以事先设定)自动发射一次监测点的温度数据,发现温度异常立即报警,可不受发送周期限制。   测温通信终端(温度显示仪):安装在集控室内,负责接收各无线温度传感器发送出的温度数据,在数据库中作长期保存,实时显示监测点。   测温工作站:负责接收各温度显示仪上传的温度数据集中显示、分析处理。通过安装在PC机上的后台监测软件,以电子地图的形式显示各测温点的位置及温度变化,实时在线远程监测。   温度传感器组成部分2   具体来说,数字温度传感器的主要构成包括一个双电流源、一个Δ-ΣA/D转换器、数字逻辑和一个通向数字器件(如与一个微处理器或微控制器连接)的串行接口(如I2C总线、SMBus或SPI)。   数字温度传感器有两种:本地或远程温度传感器,它们均采用某种方法强制两个成比例的电流通过一个连接成二极管形式的NPN或PNP晶体管,均用于测量所导致的VBE变化,使用Δ-ΣA/D转换器对电压采样并将数值转换成数字格式。   强制电流一般采用约10:1的比例。通过强制施加比例电流和测量两个VBE的差值,可消除二极管上IS这一与工艺相关参数的一阶效应。   每个温度传感器在生产过程中均会进行调整,以便与要使用的二极管的理想参数匹配。远程二极管的特性取自2N3904/6。由于本地温度传感器在硅衬底上只是一个简单的`NPN或PNP结构,远程温度传感器几乎总是集成一个本地温度传感器。   因此,远程传感器的作用几乎总是像两个传感器一样。本地温度传感器在同一封装集成了一个热二极管。对于本地传感器,根据封装和位于IC衬底上的本地二极管,热时间常数(即达到最终温度的63.2%所需的时间)为几分钟。总线负载过重或转换过快会造成器件自加热并影响温度精度。   温度数据变为可用所需的时间称为转换速率。该速率由器件内部振荡器和A/D分辨率决定,一般低于100Hz或长于10ms。转换速率越快,温度数据可检索的速度就越快,同时温度传感器消耗的功率也就越大。   由于存在自加热效应,转换速率通常较低。图1显示了一个远程温度传感器和/或本地 温度传感器 的简化框图。   温度传感器组成部分3    一、热电阻温度传感器:   测温原理:热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。   金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即:Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。   半导体热敏电阻的阻值和温度关系为:Rt =AeB/t式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。   测温范围:金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。半导体热敏电阻测温范围只有-50~300℃左右, 且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上)。    二、集成温度传感器:   集成温度传感器有可分为模拟式温度传感器和数字式温度传感器。    1.模拟式温度传感器   测温原理:将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,具有实际尺寸小、使用方便、灵敏度高、线性度好、响应速度快等 优点。   测温范围:LM135235335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,是电压输出型温度传感器,工作特性类似于齐纳稳压管。   该系列器件灵敏度为10mV/K,具有小于1Ω的动态阻抗,工作电流范围从400μA到5mA,精度为1℃,LM135的温度范围为-55℃~+150℃,LM235的温度范围为-40℃~+125℃,LM335为-40℃~+100℃。   封装形式有TO-46、TO-92、SO-8。该器件广泛应用于温度测量、温差测量以及温度补偿系统中。    2.数字式温度传感器   测温原理:将敏感元件、A/D转换单元、存储器等集成在一个芯片上,直接输出反应被测温度的数字信号,使用方便,但响应速度较慢(100ms数量级)。   测温范围:DS18B20是美国Dallas半导体公司生产的世界上第一片支持“一线总线” 接口的数字式温度传感器,供电电压范围为3~5.5V,测温范围为-55℃~+125℃   可编程的9~12位分辨率,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,出厂设置默认为12位,在12位分辨率时最多在750ms内把温度值转换为数字。    三、热电偶温度传感器   测温原理:两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。   热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。   测温范围:常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
2023-08-13 22:21:051

ds18b20的详细介绍和应用

DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且 可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总 线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、 传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1DS18B20简介(1)独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。(2)在使用中不需要任何外围元件。(3)可用数据线供电,电压范围: 3.0" 5.5 V。(4)测温范围:-55 " 125 ℃。固有测温分辨率为0.5 ℃。(5)通过编程可实现9"12位的数字读数方式。(6)用户可自设定非易失性的报警上下限值。(7)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。 (8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。
2023-08-13 22:21:151

太阳能热水器温差控制器的DS18B20数字温度传感器

1.1 独特的单线接口方式,在与DS18B20微处理器连接时仅 需要一条口线即可实现微处理器与DS18B20的双向通讯。1.2 测温范围 -55℃~+125℃,固有测温分辨率0.5℃。1.3 支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现多点测温1.4 工作电源: 3~5V/DC1.5 在使用中不需要任何外围元件,测量结果以9~12位数字量方式串行传送1.6 保护管直径/插入深度 Φ6 /35mm, Φ6 /105mm, Φ6 /150mm等1.7 适用于各种介质工业管道和狭小空间设备测温1.8 标准安装螺纹 M10X1, M12X1.5, G1/2”任选1.9 PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。 2.1 该产品适用于太阳能热水器室内水箱的测温和控制2.2: 也可以用于供热/制冷管道温度计量和工业领域测温和控制3: 型 号 测温范围 安装螺纹 保护管直径 电缆长度TS- 18B20 -55~125 无 Φ6 1.5 mTS- 18B20A -55~125 M10X1 Φ6 1.5mTS- 18B20B -55~125 G 1/2” Φ6 接线盒
2023-08-13 22:21:231

DS18B20工作原理是什么?

DS18B20介绍DS18B20数字温度计提供9位至12位摄氏温度测量,并具有报警功能具有非易失用户可编程的上部和下部的触发点。该DS18B20连通以上,通过定义,只需要一根数据线(和地线)为1- wire总线与中央微处理器通信。应用包括暖通空调环境控制、建筑物内温度监测系统、设备、机械、过程监测和控制系统。
2023-08-13 22:21:514

ds18b20工作原理

ds18b20工作原理如下DS18B20工作原理是低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号发送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。DS18B20是常用的数字温度传感器,其输出的是数字信号,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。 DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。
2023-08-13 22:22:221

DS18B20的原理

什么原理自己看看芯片手册
2023-08-13 22:22:302

DS18B20的数字温度传感器DS18B20介绍

由于每个DS18B20在温度转换期间工作电流达到1mA,当几个温度传感器挂在同一根I/O线上进行多点测温时,只靠7K上拉电阻就无法提供足够的能量,会造成无法转换温度或温度误差极大。ds18b20温度传感器工作原理DS18B20温度传感器是一种数字温度传感器,它采用1-Wire协议,可以提供9位到12位的温度测量精度。DS18BDS1822“一线总线”数字化温度传感器同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C。DS18B20是常用的数字温度传感器,其输出的是数字信号,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。DS18B20的外形和内部结构DS18B20内部结构主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
2023-08-13 22:22:471

18B20这个温度传感器工作原理究竟是怎么样的呢?答案要简洁明了,最好一语就能说出要点。

18B20采用的是半导体测温。经过传感器内部的电路直接将温度变换成数字信号。单片机经过传感器上的单线总线对传感器进行设定和测量。传感器的分辨率为0.0625℃,测量精度±0.5℃(-30~+50℃)。由于输出数字信号,在传输过程中不会损失精度。
2023-08-13 22:22:541

18b20的工作原理

DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。   1: 技术性能描述  ①、 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。   ② 、测温范围 -55℃~+125℃,固有测温分辨率0.5℃。   ③、支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。   ④、工作电源: 3~5V/DC   ⑤ 、在使用中不需要任何外围元件   ⑥、 测量结果以9~12位数字量方式串行传送   ⑦ 、不锈钢保护管直径 Φ6   ⑧ 、适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温   ⑨、 标准安装螺纹 M10X1, M12X1.5, G1/2”任选   ⑩ 、PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。
2023-08-13 22:23:041

DS18B20的数字温度传感器DS18B20介绍

1、DS18B20的主要特性1.1、适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数 据线供电1.2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯1.3、 DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温1.4、DS18B20在使用中不需要任何外围元件,全部 传感元件及转换电路集成在形如一只三极管的集成电路内1.5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃1.6、可编程 的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温1.7、在9位分辨率时最多在 93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快1.8、测量结果直接输出数字温度信号,以"一 线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力1.9、负压特性:电源极性接反时,芯片不会因发热而烧毁, 但不能正常工作。2、DS18B20的外形和内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM 、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的外形及管脚排列如下图1:DS18B20引脚定义:(1)DQ为数字信号输入/输出端;(2)GND为电源地;(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。图2:DS18B20内部结构图3、DS18B20工作原理DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。高温度系数晶振 随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对 低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重 新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即 为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。图3:DS18B20测温原理框图DS18B20有4个主要的数据部件:(1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位 (28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用 是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。(2)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以 0.0625℃/LSB形式表达,其中S为符号位。表1: DS18B20温度值格式表这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0, 这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际 温度。 例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FE6FH,-55℃的数字输出为FC90H 。表2: DS18B20温度数据表(3)DS18B20温度传感器的存储器 DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器 TH、TL和结构寄存器。(4)配置寄存器 该字节各位的意义如下:表3:配置寄存器结构 TM R1 R0 1 1 1 1 1 低五位一直都是"1",TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用 户不要去改动。R1和R0用来设置分辨率,如下表所示:(DS18B20出厂时被设置为12位)表4:温度分辨率设置表 R1 R0 分辨率 温度最大转换时间 0 0 9位 93.75ms 0 1 10位 187.5ms 1 0 11位 375ms 1 1 12位 750ms 4、高速暂存存储器高速暂存存储器由9个字节组成,其分配如表5所示。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在 高速暂存存储器的第0和第1个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式如表1所示。对应的温度计算: 当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变为原码,再计算十进制值。表 2是对应的一部分温度值。第九个字节是 冗余检验字节。表5:DS18B20暂存寄存器分布 寄存器内容 字节地址 温度值低位 (LS Byte) 0 温度值高位 (MS Byte) 1 高温限值(TH) 2 低温限值(TL) 3 配置寄存器 4 保留 5 保留 6 保留 7 CRC校验值 8 根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行 复位操作,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后 释放,当DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。表6:ROM指令表 指 令 约定代码 功 能 读ROM 33H 读DS1820温度传感器ROM中的编码(即64位地址) 符合 ROM 55H 发出此命令之后,接着发出 64 位 ROM 编码,访问单总线上与该编码相对应的 DS1820 使之作出响应,为下一步对该 DS1820 的读写作准备。 搜索 ROM 0FOH 用于确定挂接在同一总线上 DS1820 的个数和识别 64 位 ROM 地址。为操作各器件作好准备。 跳过 ROM 0CCH 忽略 64 位 ROM 地址,直接向 DS1820 发温度变换命令。适用于单片工作。 告警搜索命令 0ECH 执行后只有温度超过设定值上限或下限的片子才做出响应。 表6:RAM指令表 指 令 约定代码 功 能 温度变换 44H 启动DS1820进行温度转换,12位转换时最长为750ms(9位为93.75ms)。结果存入内部9字节RAM中。 读暂存器 0BEH 读内部RAM中9字节的内容 写暂存器 4EH 发出向内部RAM的3、4字节写上、下限温度数据命令,紧跟该命令之后,是传送两字节的数据。 复制暂存器 48H 将RAM中第3 、4字节的内容复制到EEPROM中。 重调 EEPROM 0B8H 将EEPROM中内容恢复到RAM中的第2、3字节。 读供电方式 0B4H 读DS1820的供电模式。寄生供电时DS1820发送“ 0 ”,外接电源供电 DS1820发送“ 1 ”。 5、DS18B20的应用电路DS18B20测温系统具有测温系统简单、测温精度高、连接方便、占用口线少等优点。下面就是DS18B20几个不同应用方式下的 测温电路图:5.1、DS18B20寄生电源供电方式电路图如下面图4所示,在寄生电源供电方式下,DS18B20从单线信号线上汲取能量:在信号线DQ处于高电平期间把能量储存在内部 电容里,在信号线处于低电平期间消耗电容上的电能工作,直到高电平到来再给寄生电源(电容)充电。独特的寄生电源方式有三个好处:1)进行远距离测温时,无需本地电源2)可以在没有常规电源的条件下读取ROM3)电路更加简洁,仅用一根I/O口实现测温要想使DS18B20进行精确的温度转换,I/O线必须保证在温度转换期间提供足够的能量,由 于每个DS18B20在温度转换期间工作电流达到1mA,当几个温度传感器挂在同一根I/O线上进行多点测温时,只靠4.7K上拉电阻就无法提供足够的 能量,会造成无法转换温度或温度误差极大。因此,图4电路只适应于单一温度传感器测温情况下使用,不适宜采用电池供电系统中。并 且工作电源VCC必须保证在5V,当电源电压下降时,寄生电源能够汲取的能量也降低,会使温度误差变大。5.2、DS18B20寄生电源强上拉供电方式电路图改进的寄生电源供电方式如下面图5所示,为了使DS18B20在动态转换周期中获得足够的电流供应,当进行温度转换或拷贝到 E2存储器操作时,用MOSFET把I/O线直接拉到VCC就可提供足够的电流,在发出任何涉及到拷贝到E2存储器或启动温度转换的指令后,必须在最 多10μS内把I/O线转换到强上拉状态。在强上拉方式下可以解决电流供应不走的问题,因此也适合于多点测温应用,缺 点就是要多占用一根I/O口线进行强上拉切换。图5注意:在图4和图5寄生电源供电方式中,DS18B20的VDD引脚必须接地5.3、DS18B20的外部电源供电方式在外部电源供电方式下,DS18B20工作电源由VDD引脚接入,此时I/O线不需要强上拉,不存在电源电流不足的问题,可以保证 转换精度,同时在总线上理论可以挂接任意多个DS18B20传感器,组成多点测温系统。注意:在外部供电的方式下,DS18B20的GND引脚不能悬空 ,否则不能转换温度,读取的温度总是85℃。图6:外部供电方式单点测温电路.....图7:外部供电方式的多点测温电路图外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度 监控系统。站长推荐大家在开发中使用外部电源供电方式,毕竟比寄生电源方式只多接一根VCC引线。在外接电源方式下, 可以充分发挥DS18B20宽电源电压范围的优点,即使电源电压VCC降到3V时,依然能够保证温度量精度。6、DS1820使用中注意事项DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:6.1、较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此 ,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对 DS1820操作部分最好采用汇编语言实现。6.2、在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个 DS1820,在实际应用中并非如此。当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时 要加以注意。6.3、连接DS1820的总线电缆是有长度限制的。试验中,当采用普通信号电缆传输长度超过50m时,读取的 测温数据将发生错误。当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正 常通讯距离进一步加长。这种情况主要是由总线分布电容使信号波形产生畸变造成的。因此,在用DS1820进行长距离测温系统设计时要充分考 虑总线分布电容和阻抗匹配问题。6.4、在DS1820测温程序设计中,向DS1820发出温度转换命令后,程序总要等待DS1820的返回信号,一旦 某个DS1820接触不好或断线,当程序读该DS1820时,将没有返回信号,程序进入死循环。这一点在进行DS1820硬件连接和软件设计时也要给予 一定的重视。 测温电缆线建议采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一组接VCC和地线,屏蔽层在源端单点接地。
2023-08-13 22:23:141

谁知道ds18b20

ds18b20工作原理如下DS18B20工作原理是低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号发送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。DS18B20是常用的数字温度传感器,其输出的是数字信号,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。 DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。
2023-08-13 22:23:301

有谁了解--温度传感器?

  有很多,也不知道是不是你要的。温度传感器  前言  温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下3个阶段:  1.传统的分立式温度传感器(含敏感元件),主要是能够进行非电量和电量之间转换。2.模拟集成温度传感器/控制器。  3.智能温度传感器。目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。  温度传感器的分类  温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。  接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这是的示值即为被测对象的温度。这种测温方法精度比较高,并可测量物体内部的温度分布。但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。  非接触测温的测温元件与被测对象互不接触。常用的是辐射热交换原理。此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大。  温度传感器的发展  1.传统的分立式温度传感器——热电偶传感器  热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-50~1600℃进行连续测量,特殊的热电偶如金铁——镍铬,最低可测到-269℃,钨——铼最高可达2800℃。  2.模拟集成温度传感器  集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。  模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温,不需要进行非线性校准,外围电路简单。  2.1光纤传感器  光纤式测温原理  光纤测温技术可分为两类:一是利用辐射式测量原理,光纤作为传输光通量的导体,配合光敏元件构成结构型传感器;二是光纤本身就是感温部件同时又是传输光通量的功能型传感器。光纤挠性好、透光谱段宽、传输损耗低,无论是就地使用或远传均十分方便而且光纤直径小,可以单根、成束、Y型或阵列方式使用,结构布置简单且体积小。因此,作为温度计,适用的检测对象几乎无所不包,可用于其他温度计难以应用的特殊场合,如密封、高电压、强磁场、核辐射、严格防爆、防水、防腐、特小空间或特小工件等等。目前,光纤测温技术主要有全辐射测温法、单辐射测温法、双波长测温法及多波长测温等  2.1.1 全辐射测温法  全辐射测温法是测量全波段的辐射能量,由普朗克定律:  测量中由于周围背景的辐射、测试距离、介质的吸收、发射及透过率等的变化都会严重影响准确度。同时辐射率也很难预知。但因该高温计的结构简单,使用操作方便,而且自动测量,测温范围宽,故在工业中一般作为固定目标的监控温度装置。该类光纤温度计测量范围一般在600~3000℃,最大误差为16℃。  2.1.2 单辐射测温法  由黑体辐射定律可知,物体在某温度下的单色辐射度是温度的单值函数,而且单色辐射度的增长速度较温度升高快得多,可以通过对于单辐射亮度的测量获得温度信息。在常用温度与波长范围内,单色辐射亮度用维恩公式表示:  2.1.3 双波长测温法  双波长测温法是利用不同工作波长的两路信号比值与温度的单值关系确定物体温度。两路信号的比值由下式给出:  际应用时,测得R(T)后,通过查表获知温度T。同时,恰当地选择λ1和λ2,使被测物体在这两特定波段内,ε(λ1,T)与ε(λ2,T)近似相等,就可得到与辐射率无关的目标真实温度。这种方法响应快,不受电磁感应影响,抗干扰能力强。特别在有灰尘,烟雾等恶劣环境下,对目标不充满视场的运动或振动物体测温,优越性显著。但是,由于它假设两波段的发射率相等,这只有灰体才满足,因此在实际应用中受到了限制。该类仪器测温范围一般在600~3000℃,准确度可达2℃。  2.1.4 多波长辐射测温法  多波长辐射测温法是利用目标的多光谱辐射测量信息,经过数据处理得到真温和材料光谱发射率。考虑到多波长高温计有n个通道,其中第i个通道的输出信号Si可表示为:  将式(9)~(13)中的任何一式与式(8)联合,便可通过拟合或解方程的方法求得温度T和光谱发射率。Coates[8,9]在1988年讨论了式(9)、(10)假设下多波长高温计数据拟合方法和精度问题。1991年Mansoor[10]等总结了多波长高温计数据拟合方法和精度问题。 该方法有很高的精度,目前欧共体及美国联合课题组的Hiernaut等人已研究出亚毫米级的6波长高温计(图4),用于2000~5000K真温的测量[11]。哈尔滨工业大学研制成了棱镜分光的35波长高温计,并用于烧蚀材料的真温测量。多波长高温计在辐射真温测量中已显出很大潜力,在高温,甚高温,特别是瞬变高温对象的真温测量方面,多波长高温计量是很有前途的仪器。该类仪器测温范围广,可用于600~5000℃温度区真温的测量,准确度可达±1%。  2.1.5 结 论  光纤技术的发展,为非接触式测温在生产中的应用提供了非常有利的条件。光纤测温技术解决了许多热电偶和常规红外测温仪无法解决的问题。而在高温领域,光纤测温技术越来越显示出强大的生命力。全辐射测温法是测量全波段的辐射能量而得到温度,周围背景的辐射、介质吸收率的变化和辐射率εT的预测都会给测量带来困难,因此难于实现较高的精度。单辐射测温法所选波段越窄越好,可是带宽过窄会使探测器接收的能量变得太小,从而影响其测量准确度。多波长辐射测温法是一种很精确的方法,但工艺比较复杂,且造价高,推广应用有一定困难。双波长测温法采用波长窄带比较技术,克服了上述方法的诸多不足,在非常恶劣的条件下,如有烟雾、灰尘、蒸汽和颗粒的环境中,目标表面发射率变化的条件下,仍可获得较高的精度  2.2半导体吸收式光纤温度传感器是一种传光型光纤温度传感器。所谓传光型光纤温度传感器是指在光纤传感系统中,光纤仅作为光波的传输通路,而利用其它如光学式或机械式的敏感元件来感受被测温度的变化。这种类型主要使用数值孔径和芯径大的阶跃型多模光纤。由于它利用光纤来传输信号,因此它也具有光纤传感器的电绝缘、抗电磁干扰和安全防爆等优点,适用于传统传感器所不能胜任的测量场所。在这类传感器中,半导体吸收式光纤温度传感器是研究得比较深入的一种。  半导体吸收式光纤温度传感器由一个半导体吸收器、光纤、光发射器和包括光探测器的信号处理系统等组成。它体积小,灵敏度高,工作可靠,容易制作,而且没有杂散光损耗。因此应用于象高压电力装置中的温度测量等一些特别场合中,是十分有价值的。  B 半导体吸收式光纤温度传感器的测温原理  半导体吸收式光纤温度传感器是利用了半导体材料的吸收光谱随温度变化的特性实现的。根据 的研究,在 20~972K 温度范围内,半导体的禁带宽度能量Eg 与  温度T 的关系为  "  3.智能温度传感器  智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶。目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。  智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。  3.1数字温度传感器。  随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中。其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等。  一、DS1722的工作原理  1 、DS1722的主要特点  DS1722是一种低价位、低功耗的三总线式数字温度传感器,其主要特点如表1所示。  2、DS1722的内部结构  数字温度传感器DS1722有8管脚m-SOP封装和8管脚SOIC封装两种,其引脚排列如图1所示。它由四个主要部分组成:精密温度传感器、模数转换器、SPI/三线接口电子器件和数据寄存器,其内部结构如图2所示。  开始供电时,DS1722处于能量关闭状态,供电之后用户通过改变寄存器分辨率使其处于连续转换温度模式或者单一转换模式。在连续转换模式下,DS1722连续转换温度并将结果存于温度寄存器中,读温度寄存器中的内容不影响其温度转换;在单一转换模式,DS1722执行一次温度转换,结果存于温度寄存器中,然后回到关闭模式,这种转换模式适用于对温度敏感的应用场合。在应用中,用户可以通过程序设置分辨率寄存器来实现不同的温度分辨率,其分辨率有8位、9位、10位、11位或12位五种,对应温度分辨率分别为1.0℃、0.5℃、0.25℃、0.125℃或0.0625℃,温度转换结果的默认分辨率为9位。DS1722有摩托罗拉串行接口和标准三线接口两种通信接口,用户可以通过SERMODE管脚选择通信标准。  3、DS1722温度操作方法  传感器DS1722将温度转换成数字量后以二进制的补码格式存储于温度寄存器中,通过SPI或者三线接口,温度寄存器中地址01H和02H中的数据可以被读出。输出数据的地址如表2所示,输出数据的二进制形式与十六进制形式的精确关系如表3所示。在表3中,假定DS1722 配置为12位分辨率。数据通过数字接口连续传送,MSB(最高有效位)首先通过SPI传输,LSB(最低有效位)首先通过三线传输。  4、DS1722的工作程序  DS1722的所有的工作程序由SPI接口或者三总线通信接口通过选择状态寄存器位置适合的地址来完成。表4为寄存器的地址表格,说明了DS1722两个寄存器(状态和温度)的地址。  1SHOT是单步温度转换位,SD是关闭断路位。如果SD位为“1”,则不进行连续温度转换,1SHOT位写入“1”时,DS1722执行一次温度转换并且把结果存在温度寄存器的地址位01h(LSB)和02h(MSB)中,完成温度转换后1SHOT自动清“0”。如果SD位是“0”,则进入连续转换模式,DS1722将连续执行温度转换并且将全部的结果存入温度寄存器中。虽然写到1SHOT位的数据被忽略,但是用户还是对这一位有读/写访问权限。如果把SD改为“1”,进行中的转换将继续进行直至完成并且存储结果,然后装置将进入低功率关闭模式。  传感器上电时默认1SHOT位为“0”。R0,R1,R2为温度分辨率位,如表5所示(x=任意值)。用户可以读写访问R2,R1和R0位,上电默认状态时R2=“0”,R1=“0”,R0=“1”(9位转换)。此时,通信口保持有效,用户对SD位有读/写访问权限,并且其默认值是“1”(关闭模式)。  二、智能温度传感器DS18B20的原理与应用  DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。  2DS18B20的内部结构  DS18B20采用3脚PR35封装或8脚SOIC封装,其内部结构框图如图1所示。  (1) 64 b闪速ROM的结构如下:  开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前56位的CRC校验码,这也是多个DS18B20可以采用一线进行通信的原因。  (2) 非易市失性温度报警触发器TH和TL,可通过软件写入用户报警上下限。  (3) 高速暂存存储器  DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM。后者用于存储TH,TL值。数据先写入RAM,经校验后再传给E2RAM。而配置寄存器为高速暂存器中的第5个字节,他的内容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转换为相应精度的数值。该字节各位的定义如下:  低5位一直都是1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动,R1和R0决定温度转换的精度位数,即是来设置分辨率,如表1所示(DS18B20出厂时被设置为12位)。  由表1可见,设定的分辨率越高,所需要的温度数据转换时间就越长。因此,在实际应用中要在分辨率和转换时间权衡考虑。  高速暂存存储器除了配置寄存器外,还有其他8个字节组成,其分配如下所示。其中温度信息(第1,2字节)、TH和TL值第3,4字节、第6~8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。  当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0062 5 ℃/LSB形式表示。温度值格式如下:  对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变换为原码,再计算十进制值。表2是对应的一部分温度值。  DS18B20完成温度转换后,就把测得的温度值与TH,TL作比较,若T>TH或T<TL,则将该器件内的告警标志置位,并对主机发出的告警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行告警搜索。  (4) CRC的产生  在64 b ROM的最高有效字节中存储有循环冗余校验码(CRC)。主机根据ROM的前56位来计算CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数据是否正确。  3DS18B20的测温原理  DS18B20的测温原理如图2所示,图中低温度系数晶振的振荡频率受温度的影响很小〔1〕,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55 ℃所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。  另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。各种操作的时序图与DS1820相同,可参看文献〔2〕。  4DS18B20与单片机的典型接口设计  以MCS51单片机为例,图3中采用寄生电源供电方式, P11口接单线总线为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管和89C51的P10来完成对总线的上拉〔2〕。当DS18B20处于写存储器操作和温度A/D变换操作时,总线上必须有强的上拉,上拉开启时间最大为10 μs。采用寄生电源供电方式是VDD和GND端均接地。由于单线制只有一根线,因此发送接收口必须是三态的。主机控制DS18B20完成温度转换必须经过3个步骤:初始化、ROM操作指令、存储器操作指令。假设单片机系统所用的晶振频率为12 MHz,根据DS18B20的初始化时序、写时序和读时序,分别编写3个子程序:INIT为初始化子程序,WRITE为写(命令或数据)子程序,READ为读数据子程序,所有的数据读写均由最低位开始,实际在实验中不用这种方式,只要在数据线上加一个上拉电阻4.7 kΩ,另外2个脚分别接电源和地。  5DS18B20的精确延时问题  虽然DS18B20有诸多优点,但使用起来并非易事,由于采用单总线数据传输方式,DS18B20的数据I/O均由同一条线完成。因此,对读写的操作时序要求严格。为保证DS18B20的严格I/O时序,需要做较精确的延时。在DS18B20操作中,用到的延时有15 μs,90 μs,270 μs,540 μs等。因这些延时均为15 μs的整数倍,因此可编写一个DELAY15(n)函数,源码如下:  只要用该函数进行大约15 μs×N的延时即可。有了比较精确的延时保证,就可以对DS18B20进行读写操作、温度转换及显示等操作。  3.2智能温度传感器发展的新趋势  (1)提高测温精度和分辨力  智能温度传感器,采用的是8位A/D转换器,其测温精度较低,分辨力只能达到1℃。目前国外已相继推出多种高速度、高分辨力的智能温度传感器,所用的是9~12位A/D转换器,分辨力一般可达0.5~0.0625℃。由美国DALLAS半导体公司新研制的DS1624型高分辨力智能温度传感器,能输出13位二进制数据,其分辨力高达0.03125℃,测温精度为±0.2℃。为了提高多通道智能温度传感器的转换速率,也有的芯片采用高速逐次逼近式A/D转换器。已AD7817型5通道智能温度传感器为例,它对本地传感器、每一路远程传感器的转换时间仅为27微秒、9微秒。  (2)增加测试功能  温度传感器的测试功能也在不断增强。例如,DS1629型单线智能温度传感器增加了实时日历时钟(RTC),使其功能更加完善。DS1624还增加了存储功能,利用芯片内部256字节的E*EPROM存储器,可存储用户的短信息。另外,智能温度传感器正从单通道想多通道的方向发展,这为研制和开发多路温度测控系统创造了良好条件。  传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D转换速率,分辨力及最大转换时间。  你可以去http://www.baidu.com/s?wd=%CE%C2%B6%C8%B4%AB%B8%D0%C6%F7%D4%AD%C0%ED&lm=0&si=&rn=10&ie=gb2312&ct=0&cl=3&f=1&rsp=8 上面看看。很多选择。祝你好运
2023-08-13 22:23:401

DS18B20温度传感器如何与单片机相连接

DS18B20与单片机连接一个IO口就够,只需要满足相应的时序就能读到温度数据。至于1602显示,只要能读到温度数据,将数据转为字符串发送给1602就可以。该温度传感器是数字传感器,内含处理器芯片,直接输出温度数字信号,单片机采用查询的方式回读数据后进行换算输出。三通道18B20温度测量数码管显示。-55-+125℃,用1位数码管显示当前通道号,4位数码管显示18B20当前通道温度值,负号位与正温度百位1用同一位数码管显示,该位为0不显示。扩展资料:DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号发送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。参考资料来源:百度百科-DS18B20
2023-08-13 22:24:011

温度传感器数据用十六进制进行存储时的标志是怎么确定的?

後缀加H即为十六进制
2023-08-13 22:24:181

如何用温控器控制直流电机正反转

需要的配件:温控器一只、带四组触点的接触器两只(吸合时3通1断,断开时3断1通)。为了方便描述元件用符号代替:接触器A、接触器B、温控器C。先将电机的正负极以相反方向分别接在两只接触器,A合B断电机反转,A断B合电机正转。工作原理很简单,将C串联在A的控制线圈,温度未达到时C为接通,则A得电吸合,A的三组触点接通,(可用其中两组接电机,使其反转)一组触点断开,再将A吸合时断开的这组触点作为控制开关接在B的控制线圈回路,即形成了A吸合时B断开。
2023-08-13 22:24:295

求热敏电阻温度、热电偶测温的缺点和ds18b20的优点。从电路设计等方面说都行。谢了!

采用热敏电阻,可满足40℃至90℃测量范围,但热敏电阻可靠性差,测量温度准确率低,对于小于1℃的温度信号是不适用的,热电偶要加上补偿电路且材料价高,还得经过专门的接口电路转换成数字信号才能由微处理器进行处理。DS18B20单线数字温度传感器,即“一线器件”,其具有独特的优点: ( 1 )采用单总线的接口方式与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。单总线具有经济性好,抗干扰能力强,适合于恶劣环境的现场温度测量,使用方便等优点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。 ( 2 )测量温度范围宽,测量精度高。DS18B20 的测量范围为-55℃ ~+125℃ ;在-10~+85℃ 范围内,精度为±0.5℃ 。 ( 3 )在使用中不需要任何外围元器件即可实现测温。 ( 4 )多点组网功能。多个DS18B20可以并联在惟一的三线上,实现多点测温。 ( 5 )供电方式灵活。DS18B20可以通过内部寄生电路从数据线上获取电源。因此,当数据线上的时序满足一定的要求时,可以不接外电源,从而使系统结构更趋简单,可靠性更高。 ( 6 )测量参数可配置。DS18B20的测量分辨率可通过程序设定9~12位。 ( 7 ) 负压特性。电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 ( 8 )掉电保护功能。DS18B20内部含有EEPROM,在系统掉电以后,它仍可保存分辨率及报警温度的设定值。 DS18B20 具有体积更小、适用电压更宽、更经济、可选更小的封装方式,更宽的电压适用范围,适合于构建自己的经济的测温系统,因此也就被设计者们所青睐。
2023-08-13 22:24:563

温度传感器DS1820和DS18B20区别在哪里?

该问题分错分类了
2023-08-13 22:25:225

温度传感器DS18B20和单片机AT89C51,怎么焊接啊,电路图也看不太懂,求具体操作步骤和相应的电路解释。

DS18B20是最简单的电路,没什么难的吧。
2023-08-13 22:25:422

数字温度传感器ds18b20什么时候进行报警搜索,怎样检测报警标志位

  数字温度传感器根据温度的设置来达到报警的目的。  数字温度传感器DS18b20只能测量温度,本身并无报警功能。当需要用它来监控温度时,需要在程序中,设定报警温度的上限与下限。然后实时读取温度值并与这个温度限值进行比较,高于 上限或低于下限量,通过点亮不同颜色的LED灯或驱动蜂鸣器来完成报警功能。比如,设定温度上限为32℃,下限设定为25℃,void deal(uint t) //报警温度范围设定{ uchar i; //定义变量 if((t>warn_l2)&&(t<=warn_l1)) //大于25度小于27度 warn(40,0x01); //长音报警,显示温度 else if(t<=warn_l2) //小于25度 warn(10,0x03); //短音报警,显示温度 else if((t<warn_h2)&&(t>=warn_h1)) //小于32度大于30度 warn(40,0x04); //长音报警,显示温度 else if(t>=warn_h2) //高于32度 warn(10,0x0c); //短音报警,显示温度 else //正常范围 { for(i=40;i>0;i--) //循环 dis_temp(get_temp()); //显示正常温度 }}
2023-08-13 22:26:002

DS18B20温度传感器调试过程:(不是一个元器件调试,是整个电路板的)

1、先调试数码管能正确显示数值。2、然后调试DS18B20获取正确的温度值。3、把温度值送显示就可以。
2023-08-13 22:26:101

ds18b20温度传感器是什么东西

温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
2023-08-13 22:26:391

本人初次学习ds18b20温度传感器,看手册好迷糊,大哥大姐能否详细介绍一下?? 财富不多了,我会挣的加分

想啊
2023-08-13 22:27:002

数字式温度传感器DS18B20的内置温度传感器器类型是什么?

上网搜一下呀。
2023-08-13 22:27:122

求大神解释一下DS18B20和这个单片机的连接以及是怎么实现温度信号检测的,谢谢!

看图,这个图示总线画法,18b20的DQ端连接在单片机33脚。18b20是数字精密温度传感器,通过单总线形式直接输出温度的数字信号,单片机拿到信号以后稍作解码就可以得到值。
2023-08-13 22:27:381

如何用pic单片机写DS18B20数字温度传感器的程序

#include<pic.h>//单总线的运用.DS18B20数字温度传感器(在I/O口上进行总线操作时,读取数据要用或运算,发送数据要用与运算)#define uchar unsigned char//宏定义#define uint unsigned int///这几个宏定义为了DQ 是要读和写程序所以直接宏定义可以简化设置输入输出状态#define DQ RC1 //宏定义DQ等同于RC1这个端口#define DQ_HIGH() TRISC1=1 //宏定义DQ高电平时设为输入状态(即DQ_HIGH()字符串等同于TRISC1=1)#define DQ_LOW() TRISC1=0;DQ=0 //宏定义DQ低电平时设为输出状态且RC1端口拉低电平(即DQ_LOW()字符串等同于TRISC1=0且RC1=0)uint temper;//先定义一个要显示温度的变量uchar a1,a2,a3,a4;//定义数码管显示的4个变量,我们只取小数前两位和后两位__CONFIG(0x3b31);//设置配置位const uchar table[]={0x3f,0x06,0x5b,0x4f,//注意code是用在51单片机中的程序储存器中,const是一个常量,pic和51的单片机也可以共用的常量,但要写在前头 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71,0x20};//数码管数字表从0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,无显示const uchar table1[]={0xbf,0x86,0xdb,0xcf,//带小数点的0,1,2,3,4,5,6,7,8,9 0xe6,0xed,0xfd,0x87,0xff,0xef};void delayus(uint,uchar);//微秒的延时声明void delay(uint x);//毫秒的延时声明void init();void disp(uchar num1,uchar num2,uchar num3,uchar num4);void reset();void write_byte(uchar date);uchar read_byte();void get_tem();void main(){ init();//调用初始化 while(1)//因为要不断地循环扫描键盘检测是否按下所以要进行死循环 {// NOP();//单片机的空指令可以当作1us延时使用,不用声明,但一定要大写// delayus(0,0);//20us可用软件调试仿真的Stopwatch可得20us,30us,45us,70us,500us,750us// delayus(1,1);//30us// delayus(2,2);//45us// delayus(4,4);//70us// delayus(70,30);//750us// delayus(50,10);//500us get_tem();//调用获取DS18B20温度程序 // for(num=20;num>0;num--)//隔20us变更一次// disp(a1,a2,a3,a4);//同时调用数码管 }}void reset()//DS18B20的初始化工作时序而不是单片机的{ uchar st=1;//在初始化中要读DS18B20返回的低电平,所以要先定义一个变量st,且等于1 DQ_HIGH();//上面已定义了等同于TRISC1=1即设置RC1为输入状态,又因为原理图上有上拉电阻,所以为高电平 NOP();NOP();//延时2us while(st)//循环st=0为假说明DS18B20已经返回0响应了确定存在,退出while { DQ_LOW();//上面已定义了等同于TRISC1=0,RC1=0即设置RC1为输出状态,且输出低电平 delayus(70,30);//延时750us DQ_HIGH();//拉到高电平 delayus(4,4);//延时40us if(DQ==1)//进行判断如果等于1,则at=1,DS18B20没有返回低电平未有响应 st=1;//等于1则要超过或循环while语句重新发送给DS18B20响应,不可能一次就确定18b20的存在 else st=0;//循环直到st=0为假说明DS18B20已经返回0响应了 delayus(50,10);//因为已经有返回响应,确定DS18B20的存在,所以要延时500us再退出while } DQ_HIGH();//重新拉高,也叫释放总线}void write_byte(uchar date)//DS18B20的写工作时序,里面的date是单片机要发送的数据{ uchar i,temp;//定义一个for循环的变量和发送数据中的一个位的变量 DQ_HIGH();//先置高电平 NOP();NOP();//延时2us for(i=8;i>0;i--)//因为发送一个数据有8位 { temp=date&0x01;//和00000001与,无论date是什么数与之后只有最低位是有效的,temp得到的其实是date的最低的一位 DQ_LOW();//置低电平 delayus(0,0);//延时20us if(temp==1)//说明date的最低位是1,用if,else语句把数据从最低位到高一位一位的发送 DQ_HIGH();//因为temp=1表示数据线要置高电平 else DQ_LOW();//表示temp=0数据线要置低电平 delayus(2,2);//延时45us DQ_HIGH();//重新拉高,也叫释放总线 date=date>>1;//发送完一位后需要把date右移一位才能进行循环,如原来是01010101,右移1位后得到00101010,最低位被移走即发送 }}uchar read_byte()//DS18B20的读工作时序,因为是读所以是一个带返回值的函数,括号里面不用写变量,因为单片机只是读取而不发送任何东西{ uchar i,date;//再定义一个for循环的变量i和接收数据的变量date static bit j;//定义一个状态位,j是一个位的变量 for(i=8;i>0;i--)//因为接收一个数据有8位 { date=date>>1;//先将数据右移一位其实这里只移动7位,加上或运算移动一位就共8位 DQ_HIGH();//先要确定数据线拉高 NOP();NOP();//延时2us DQ_LOW();//将数据线拉低 NOP();NOP();NOP();NOP();NOP();NOP();//延时6us DQ_HIGH();//拉高 NOP();NOP();NOP();NOP();//延时4us j=DQ;//把RC1数据线的状态附给状态位j,这样读取到的数据线高低电平就是j的变化 if(j==1)//如果等于1,则说明是高电平,等于0时不需要或运算,因为或运算相当于右移,最高位自动补0 date=date|0x80;//只有读回来的数是1时才和10000000或运算,因为第一个读回来的是最低位,如果第二个又读回到要放在倒数第二位会不好放,所以要将最低位或运算放在最高位,这里已经移动过一次了 //如date是1或运算后得10000000,而这里只读取一次,循环后可得第二个11000000如果是0则直接填10000000 delayus(1,1);//延时30us } return (date);//把接收到的数据返回去经单片机}void get_tem()//获取温度指令将数据化为温度给数码管显示的函数{ uchar temp1,temp2,num;//因为同时一次从低到高读两个字节,定义两个字节的变量,是下面的指令的变量 float aaa;//定义一个浮点数等于aaa的变量,提高精确度 reset();//调用DS18B20初始化相当复位 write_byte(0xcc);//ccH,因为只接了一个不需要配对,跳过了匹配的ROM指令 write_byte(0x44);//发送温度转换指令44H for(num=100;num>0;num--)//隔100次,数码管闪一次 disp(a1,a2,a3,a4);//同时调用数码管 reset();//重新复位 write_byte(0xcc);//ccH,因为只接了一个不需要配对,跳过了匹配的ROM指令 write_byte(0xbe);//BEH是指接下来我要读你的指令 temp1=read_byte(); temp2=read_byte();//因为同时一次从低到高读两个字节// temper=(temp2*256+temp1)*0.0625*100;//将温度转换成十六位温度数据,转换成十进制还需要乘以0.0625,因为我们只显示4个数码管,后两个是小数,不好提取就乘以100变成整数再提取 aaa=(temp2*256+temp1)*0.0625*100;//因为前面定义temper是一个整形的变量,乘出来的会是取整数精确度不高,附给用浮点数float表示的aaa就可以乘出小数部分 temper=(int)aaa;//再将aaa强制转换给整形temper,这时的整形temper就可以是带小数的了,注意书写格式//这里面是强制转换的指令 a1=temper/1000;//因上一条程序已化为4位整数,提取对最高位千位求模 a2=temper%1000/100;//提取对百位求模 a3=temper%100/10;//提取对十位求模 a4=temper%10;//提取对个位求佘}void delayus(uint x,uchar y)//定义一个整形一个字符形变量表示微秒{ uint i; uchar j; for(i=x;i>0;i--); for(j=y;j>0;j--);}void delay(uint x)//延迟函数x表示毫秒{ uint a,b; for(a=x;a>0;a--) for(b=110;b>0;b--);//嵌套}void init(){ TRISD=0;//因为RD接的是数码管设置全为输出状态 TRISA=0;//设置数码管的位选为全输出状态 PORTD=0;//设置输出先全部关闭 PORTA=0;//在初始化时数码管不能显示}void disp(uchar num1,uchar num2,uchar num3,uchar num4)//数码管的扫描函数,要在里面有4个变量,每一个为一个数码管显示的数{ PORTD=table[num1];//调用数码管的显示函数(注第一个是显示0)这是从左到右第一个数码管要显示的段选 PORTA=0x20;//00100000由原理图可得第一个数码管是由RA5控制位选的 delay(10);//因为是要动态,所以要加延时,但时间不能太长 PORTD=table1[num2];//调用数码管的显示函数(注第一个是显示0)这是第二个数码管要显示的段选,显示的小带小数点的 PORTA=0x10;//00010000由原理图可得第二个数码管是由RA4控制位选的 delay(10);//因为是要动态,所以要加延时,但时间不能太长 PORTD=table[num3];//调用数码管的显示函数(注第一个是显示0)这是第三个数码管要显示的段选 PORTA=0x08;//00001000由原理图可得第三个数码管是由RA3控制位选的 delay(10);//因为是要动态,所以要加延时,但时间不能太长 PORTD=table[num4];//调用数码管的显示函数(注第一个是显示0)这是第四个数码管要显示的段选 PORTA=0x04;//00000100由原理图可得第四个数码管是由RA2控制位选的 delay(10);//因为是要动态,所以要加延时,但时间不能太长}
2023-08-13 22:27:481

温度传感器ds18b20 可应用在哪些方面?

1、氧传感器:当氧传感器故障时,ECU无法获取这些信息,就不知道喷射的汽油量是否正确,而不合适的油气空燃比会导致发动机功率降低,增加排放污染;2、轮速传感器:它主要是收集汽车的转速来判断汽车有没有打滑的征兆,所以,就有一一个专门收集汽车轮速的传感器来完成这项工作,一般安装在每个车轮的轮毂上,而一旦传感器损坏,ABS会失效;3、水温传感器:当水温传感器故障后,往往冷车启动时显示的还是热车时的温度信号,ECU得不到正确的信号,只能供给发动机较稀薄的混合气,所以发动机冷车不易启动,且还会伴随怠速运转不稳定,加速动力不足的问题;4、电子油门踏板位置传感器:当传感器失效后,ECU无法测得油门位置信号,无法获得油门门踏板的正确位置,所以会出现发动机加速无力的现象,甚至出现发动机不能加速的情况;5、进气压力传感器:进气压力传感器顾名思义就是随着发动机不同的转速负荷,感应一系列的电阻和压力变化,转换成电压信号,供ECU修正喷油量和点火正时角度。一般安装在节气门边上,假如故障了会引起点火困难、怠速不稳、加速无力等问题。
2023-08-13 22:27:592

由18B20和单片机构成的数字温度计,精度如何提高?测量范围怎么扩大的?

DS18B20与申矽凌的CT1820都是单线式通讯的数字温度传感器,用起来简单! 精度仅仅与两个因素有关。1,所监测环境与1820传感器接触面的媒介是否贴近真实,直接测试空气温度则可忽略,但如果要加上探头远距离测试或密封测试液体温度,则要考虑! 如果不是太糟糕的温度探头供应商做的探头,也基本可忽略不计!2,另外一个就是传感器本身的精度,也是重点中的重点!当前可用NTC电阻、PT100, PT1000, 光纤光栅测温,以及半导体IC。 其实各有千秋。A, 做体温计用Sorting出的NTC电阻是最便宜、高效的方案做温度监测的,因为体温只是从36~42度区间要求精确而已。B, 做廉价的温度计、无需过计量认证的也在用NTC电阻,据说有些品牌的汽车也在用NTC电阻!C, 工业用,一般用昂贵的PT100,有的甚至用高贵的PT1000。 那可是女人最爱的东东呀!D, 剩下的就是小D了, 利用半导体的负温度特性原理做成的或模拟AD590或数字的温度传感器CT1820(DS18B20), CT75(LM75), CT7301 等等,因其高精度、低功耗、高可靠性以及纤薄的体型,其应用从PC、工业、消费类电子都能看到其身影!
2023-08-13 22:28:092

DS18B20 为什么3脚接+3 1脚接地 之后会大量发热 很烫手是什么问题

18b20是1脚接地,2脚接信号且需接上拉电阻,三脚接电源
2023-08-13 22:28:204

基于52单片机的ds18b20温度传感器,用它连接到电路中,通电后它的温度急剧上升,没法行使其功能,怎么办?

百度 一下 ds18b20_百度百科 J讲解的比较详细
2023-08-13 22:28:364

智利红酒有哪些品牌

摘要:智利红酒有哪些品牌?除了耳熟能详的活灵魂之外,智利还有别的顶级葡萄酒吗?当然!下面,就来介绍下11大顶级的智利葡萄酒。【智利红酒品牌】智利红酒有哪些品牌11大顶级的智利葡萄酒智利红酒有哪些品牌:法国有拉菲拉图,意大利有西施佳雅,西班牙有维加西西里亚,澳大利亚有奔富,美国有啸鹰,那么智利有什么呢?除了耳熟能详的活灵魂之外,还有别的顶级葡萄酒吗?那么,本文将为您列举数十年来智利11大最顶级的、也最受各大酒评家们青睐的葡萄酒。11大顶级的智利葡萄酒:1、活灵魂干红(Almaviva)该款酒是法国木桐酒庄与智利干露酒庄联手的结晶,葡萄产自智利著名的迈坡谷(MaipoValley),采用典型的波尔多红葡萄混酿而成,体现了两种文化巧妙的碰撞:智利提供土壤、气候及葡萄园,而法国贡献出酿酒技术和传统,最终酿造出异常雅致和复杂的葡萄酒。该酒一经面世就获得了智利以及国际葡萄酒界的高度赞扬,被誉为“智利酒王”。活灵魂2008曾获得罗伯特?帕克92分的高分评价。2、安第雅干红和酷银干红(AntiyalandKuyen)两款酒都出自智利著名酿酒师阿尔瓦罗?埃斯皮诺萨(AlvaroEspinoza)之手,葡萄采用安第雅酒庄的迈坡葡萄园,数年来,两款酒都得到了世界酒评家们的高分评价。2005年份的安第雅干红和酷银干红分别获得罗伯特?帕克92年和90分的评分。3、阿帕塔丘干红CasaLapostolleClosApalta拉博丝特酒庄旗下的阿帕塔干红(CasaLapostolle)得益于阿帕尔塔园独特的半干燥型微气候,群山阻挡了来自太平洋的恶劣气候,也赋予了这里更长的日照时间和干燥气候,因此这里的葡萄品质高,丹宁成熟度好。所有的葡萄均在气温最凉爽的夜晚采用人工采摘,并进行人工去梗,最终该酒风味极为凝练,口感也如天鹅绒般顺滑。2009年份阿帕塔干红获得《葡萄酒观察家》96分的高分评价。4、干露魔爵红干红ConchayToroDonMelchorCabernetSauvignon传奇酿酒师安立克?迪拉多(EnriqueTirado)是干露魔爵干红的首席酿酒师。在他的指导下,魔爵红成为智利获奖最多的葡萄酒。2001年份魔爵红葡萄酒获得了《葡萄酒倡导家》95分的高分,是智利葡萄酒中所获得的评分最高。5、干露园中园赤霞珠干红ConchayToroTerrunyoCabernetSauvignon该款产自干露酒庄的园中园干红多次获得国际大奖。《葡萄酒爱好者》(WineEnthusiast)曾这样描述其2005年份酒:“该款智利赤霞珠在醒酒的作用下很快就能释放出饱满的成熟覆盆子味、醋栗味和黑莓味,口感柔和,风味浓郁,余味顺滑成熟”。其2007年份酒曾获得罗伯特?帕克91分的评分。6、干露胭脂佳美娜干红ConchayToroCarmindePeumoCarmenere该款干红可能是智利佳美娜葡萄酒所获评分最高的。罗伯特?帕克曾这样描述该酒:“胭脂干红是干露酒庄的代表作,是‘智利酒王"之称的有力竞争者。”他给该酒打出了97分的高分。7、伊拉苏马克西米诺干红ErrazurizDonMaximiano2006该款干红是伊拉苏酒庄旗下酒款之一,采用位于阿空加瓜谷(AconcaguaValley)的葡萄园中的赤霞珠、品丽珠(CabernetFranc)、味而多(PetitVerdot)和西拉(Shiraz)混酿而成。自2005年份以来,该酒所获评分基本都在90分以上,其中,2006年份酒获得罗伯帕克94的高分评价。8、蒙特斯紫衣天使干红MontesPurpleAngel20052005年的紫衣天使干红采用92%佳美娜和8%味儿多混酿而成。葡萄都来自空加瓜谷(ColchaguaValley)产区,其中一半佳美娜产自蒙特斯酒庄著名的阿帕塔园(LaFincadeApalta),带给葡萄酒凝练的风味和优雅的口感,而另一半来自酒庄天使园(Archangel),赋予了该酒强劲酒体。该年份酒曾获得罗伯特?帕克92分的评分。9、蒙特斯欧法M干红MontesAlphaM2010在过去的5年里,欧法M干红都给各大酒评家们留下了深刻的印象。该款2010年份酒颜色深红,果香浓郁,口感雅致,果味馥郁,充满红色水果味和醋栗味,还伴着一抹雪松和肉桂气息,单宁充沛且如天鹅绒般顺滑,结构平衡,5%味而多的加入更是增添了该酒的复杂性,回味也更加悠长,陈年潜力至少20年以上。10、圣派德罗限量版西拉干红VinaSanPedro1865LimitedEditionSyrah2007该款干红葡萄酒是智利第三大酒庄——圣派德罗酒庄的旗舰酒款,葡萄产自智利北部的艾尔齐谷(Elqui),曾获得《葡萄酒观察家》90分的较高分评价。11、桑塔丽塔皇家堡赤霞珠干红SantaRitaCasaRealCabernetSauvignon
2023-08-13 22:16:241