barriers / 阅读 / 详情

请问空气源热泵热水器的原理?

2023-08-22 16:08:13
TAG: 原理
共6条回复
okok云

实际上,空气源热泵工作原理,跟我们的家用空调器工作原理没有太大的差别。只不过,我们的家用空调,利用了制冷循环系统的冷端(蒸发器);而热泵则相反,利用了循环系统的热端(冷凝器)。

空调系统制冷时,置于室内的蒸发器,将冷气源源不断的吹向室内。而室外的冷凝器则呼呼的排热。如此看来,制冷的本质,就是把房间内的热量,抽排到室外。房间内的热量被抽走,房间自然就冷下来了。

如果能把冷凝器排放的废热利用起来多好啊!通过设计,把冷凝器放置在一个水桶中,OK,不出半小时或1小时,水桶中的凉水很快就变成一桶热乎乎的洗澡水。这就是热泵热水器。

显然。热泵热水器利用了制冷系统的热端。

看看空气源热泵系统的工作原理图吧!它跟制冷原理几乎没有差别。一个好的热泵系统设计,可以把制冷系统的冷端和热端同时利用上,即,炎热的夏天,室内在制冷,而室外的冷凝器在烧热水。

工作原理:

空气源热泵热水器(机组)是由压缩机、冷凝器、膨胀阀、蒸发器四大部件构成,制冷剂工质在压缩机的活塞作用下,把低温低压(制冷剂)气体压缩成高温高压的气体。高温高压气体进入冷凝器后被冷却成液体,从而放出大量热量,冷水吸收其热量而温度不断上升并成为热水。制冷剂工质通过冷凝器后,再进入储液罐、过滤器、膨胀阀,然后到蒸发器中蒸发,吸收环境中的热量,在压缩机的机械作用下,从冷凝器中放出热量,转变为热水的热量。空气源热泵热水器(机组)是运用逆卡诺循环原理,通过热泵做功使热媒(冷媒)产生物理相变(液态—气态—液态),利用反复循环相变过程中的热量,通过专用水热交热器(冷凝器)向冷水中不断放热,使水逐渐升温。

卡诺循环原理图

苏州马小云

(佛山科霖空气能热泵热水器)空气能热泵热水器原理:

其内部结构主要由四个核心部件:压缩机,冷凝器,膨胀阀,蒸发器组成。

其工作流程是这样的:压缩机将回流的低压冷媒压缩后,变成高温高压的气体排出,高温高压的冷媒气体流经缠绕在水箱外面的铜管,热量经铜管传导到水箱内,冷却下来的冷媒在压力的持续作用下变成液态,经膨胀阀后进入蒸发器,由于蒸发器的压力骤然降低,因此液态的冷媒在此迅速蒸发变成气态,并吸收大量的热量。同时,在风扇的作用下,大量的空气流过蒸发器外表面,空气中的能量被蒸发器吸收,空气温度迅速降低,变成冷气释放。随后吸收了一定能量的冷媒回流到压缩机,进入下一个循环。   

由以上的工作原理可以看出,空气源热泵热水器的工作原理与空调原理有一定相似,应用了逆卡诺原理,通过吸收空气中大量的低温热能,经过压缩机的压缩变为高温热能,传递给水箱中,把水加热起来。整个过程是一种能量转移的过程(从空气中转移到水中),不是能量转换的过程,没有通过电加热元件加热热水,或者燃烧可燃气体加热热水。

coco

  空气源热泵热水器的原理

  空气源热泵热水器由热泵——换热器——节流器——吸热器——热泵等装置构成了一个循环系统。热媒(也叫冷媒)在热泵的作用下在系统中循环流动。它在热泵内完成气态的升压升温过程(通常温度都达到100摄氏度),进入换热器后释放出高温热量加热水,同时冷却并转化为流液态,当它运行到吸热器后,液态迅速吸热蒸发再次转化为气态,同时温度下降至零下20到30摄氏度,这时吸热器周边的空气就会源源不断地将低温热量传递给热媒,热媒不断地循环就实现了空气中的低温热量转变为高温热量并加热冷水过程。空气源热泵热水器具有节能环保的特点,其耗电量大概是是同等容量电热水器的四分之一,燃气热水器的三分之一。

tt白

逆卡诺原理,我们公司网站上有,长沙潺林水暖空调有限公司,主要为用户提供暖通空调产品

Chen

热泵热水器的基本原理:它主要是由压缩机、热交换器、轴流风扇、保温水箱、水泵、储液罐、过滤器、电子膨胀阀和电子自动控制器等组成。接通电源后,轴流风扇开始运转,室外空气通过蒸发器进行热交换,温度降低后的空气被风扇排出系统,同时,蒸发器内部的工质吸热汽化被吸入压缩机,压缩机将这种低压工质气体压缩成高温、高压气体送入冷凝器,被水泵强制循环的水也通过冷凝器,被工质加热后送去供用户使用,而工质被冷却成液体,该液体经膨胀阀节流降温后再次流入蒸发器,如此反复循环工作,空气中的热能被不断“泵”送到水中,使保温水箱里的水温逐渐升高,最后达到55℃左右,正好适合人们洗浴。

cloud123

与空调原理类似

相关推荐

什么是卡诺循环

由两个可逆的等温过程和两个可逆的绝热过程所组成的理想循环。包括四个步骤: 等温膨胀, 绝热膨胀,等温压缩,绝热压缩。即理想气体从状态1(P1,V1,T1)等温膨胀到状态2(P2,V2,T2),再从状态2绝热膨胀到状态3(P3,V3,T3),此后,从状态3等温压缩到状态4(P4,V4,T4),最后从状态4绝热压缩回到状态1。具体可以查看下《物理化学》课本,百度百科词条也讲了不少。
2023-08-14 01:06:013

求卡诺机原理图纸和工作原理说明及为什么不存在的说明

卡诺循环是由两个定温过程和两个绝热过程组成,且假定都是可逆过程。以理想气体为工质的卡诺循环为绝热压缩过程,过程中工质的温度自T2升高到T1,以便在与热源相同的温度下从高温热源吸热;定温膨胀过程,工质在温度T1下自相同温度的高温热源吸取热量q1;绝热膨胀过程,过程中工质的温度自T1降低到T2,以便在与低温热源相同的温度下向低温热源放热;定温压缩过程,工质在温度T2下向同温度的低温热源放出热量q2,从而完成可逆循环。卡诺循环的热效率只决定于高温热源和低温热源的温度,也就是工质吸热和放热时的温度。提高T1,降低T2,可以提高其热效率。因为T1=∞,和T2=0都是不可能的,因而卡诺循环的热效率只能小于1。这就是说,在循环发动机中,不可能将热能全部转化为机械能。当T1=T2时,循环的热效率为零,这就是说,在温度平衡的体系中,热能不可能转化为机械能。要利用热能来产生动力,就一定要有温差,即一定要有高于环境的高温热源。相对于相同温度界限内的任何循环而言,卡诺循环热效率是最高的。一般说来,卡诺循环是实际热动力装置选用循环的最高理想,但是,迄今为止尚未制造出实行卡诺循环的卡诺机。其原因是多种多样的,对于以气体为工质的热力发动机困难在于:第一,要提高卡诺循环热效率,T1和T2的相差要大,因而需要有很大的压力差,和容积压缩比,结果造成pa很高,或者vc极大,这两点都给实际设备带来很大的困难。这时的卡诺循环在pv图上的图形显得狭长,循环功不大,因而摩擦损失等各种不可逆损失所占的比例相对很大,根据动力机传到外界的轴功而计算的有效效率,实际上不高。第二,气体的定温过程不易实现,不易控制。关于卡诺机的相关图纸请参考百度百科:http://baike.baidu.com/view/111772.htm
2023-08-14 01:06:281

卡诺循环的四个过程 卡诺循环的四个过程图

  卡诺循环四个过程是:等温吸热,绝热膨胀,等温放热,绝热压缩。即理想气体从状态1(P1,V1,T1)等温吸热到状态2(P2,V2,T2),再从状态2绝热膨胀到状态3(P3,V3,T3),此后,从状态3等温放热到状态4(P4,V4,T4),最后从状态4绝热压缩回到状态1。这种由两个等温过程和两个绝热过程所构成的循环称为卡诺循环。   卡诺循环通过热力学相关定理我们可以得出,卡诺循环的效率ηc=1-T2/T1,由此可以看出,卡诺循环的效率只与两个热源的热力学温度有关,如果高温热源的温度T1愈高,低温热源的温度T2愈低,则卡诺循环的效率愈高。因为不能获得T1→∞的高温热源或T2=0K(-273℃)的低温热源,所以,卡诺循环的效率必定小于1。    意义:   卡诺根据热质守恒思想和永动机不可能制成的原理,进一步证明了在相同温度的高温热源和相同温度的低温热源之间工作的一切实际热机,其效率都不会大于在同样的热源之间工作的可逆卡诺热机的效率。   卡诺由此推断:理想的可逆卡诺热机的效率有一个极大值,这个极大值仅由加热器和冷凝器的温度决定,一切实际热机的效率都低于这个极值。
2023-08-14 01:06:371

请问现时的冷却方法总的来说有几种?原理、优点等又分别是什么

制冷的方法很多,可分为物理方法和化学方法。但绝大多数为物理方法。下面是一些常见的制冷方式:物质相变制冷冰相变冷却 冰相变冷却是最早使用的降温方法,通俗来说就是直接用冰进行冷却。现在仍在广泛应用于日常生活、农业、科学研究等各种领域。冰融化和冰升华均可用于冷却。实际主要是利用冰融化的潜热。 常压下冰在0摄氏度融化,冰的汽化潜热为335kj/kg。能够满足0摄氏度以上的制冷要求。冰冷却时,常借助空气或水作中间介质以吸收贝冷却对象的潜热。此时,换热过程发生在水或空气与冰表面之间。被冷却物体所能达到的温度一般比冰的溶解温度高5-10摄氏度。厚度10厘米左右的冰块,其比表面积在25-30平方米/立方米之间。为了增大比表面积,可以将冰粉碎成碎冰。水到冰的表面传热系数为116W/(平方米*K)。空气到冰表面的表面传热系数与二者之间的温度差以及空气的运动情况有关。冰盐相变冷却 冰盐是指冰和盐类的混合物。用冰盐制作制冷剂可以获得更低的温度。冰盐冷却是利用冰盐融化过程的吸热。冰盐融化过程的吸热包括冰融化吸热和盐溶解吸热这两种作用。起初,冰吸热在0摄氏度下融化,融化水在冰表面形成一层水膜;接着,盐溶解于水,变成盐水膜,由于溶解要吸收溶解热,造成盐水膜的温度降低;继而,在较低的温度下冰进一步溶化,并通过其表层的盐水膜与被冷却对象发生热交换。这样的过程一直进行到冰的全部融化,与盐形成均匀的盐水溶液。 冰盐冷却能到达的低温程度与盐的种类和混合物中盐与水的比例有关。工业上应用最广的冰盐是冰块与工业食盐NaCl的混合物。干冰相变冷却 固态CO2俗称干冰。 CO2的三相点参数为:温度-56摄氏度,压力0.52MPa。干冰在三相点以上吸热时融化为液态二氧化碳;在三相点和三相点一下吸热时,则直接升华为二氧化碳蒸气。干冰是良好的制冷剂,它化学性质稳定,对人体无害。早在19世纪,干冰冷却就用于食品工业、冷藏运输、医疗、人工降雨、机械零件冷处理和冷配合等方面。此外还有什么半导体制冷什么的,具体原理都是热交换,对外做功之类的还有个激光制冷激光制冷 大家都知道激光有亮度高的特点,利用这个特点可以在极短的时间内在极小的范围内使被激光照射的物体接受到极高的能量.用这种技术可以进行金属焊接和施行人体手术等.而现在科学家们还能利用激光制冷,并把研究对象的温度降低到只有几微开(10-6K),已经非常接近绝对零度了. 激光冷却技术的原理可以用右图说明.图中激光束a和激光束b相向传播,光的频率相同,都略低于原子吸收光谱线的中心频率,即比原子的共振吸收频率低一些.现在考虑一个往右方运动的原子A,这个原子是迎着激光束b运动的,根据多普勒效应,这个原子感受到的激光束b的频率升高,即激光束b的频率进一步接近了原子的共振吸收峰值的位置.原子从激光束b吸收光子的几率增大.这个原子的运动方向和激光束a的传播方向相同,所以它感受到激光束a的频率减小,根据多普勒效应,这个原子感受到的激光束a的频率降低,即激光束a的频率进一步远离了原子的共振吸收峰值的位置,原子从激光束a吸收光子的几率减小.着意味着原子A将受到把它往左推的作用力,阻止它往右运动,即原子A的速度减慢.同样,图中向左运动的原子B将受到激光束a的推力,阻止它向左运动,运动速度也减慢.那么,用上下,左右,前后三对这样的激光束,就可以让朝各个方向运动的原子都减慢运动速度.而物体的温度正是由物体分子平均动能的标志,所以这种方法能够达到制冷的目的.目前,用这个办法已经可以把原子冷却到微开.我知道的大概就这样了,希望能帮到你吧。
2023-08-14 01:06:4810

可逆循环过程热量为0吗?

可以试着画p-v图,图像应该是个正方形吧我们从v-t图中可以得到启示,图像所围成的面积为△s,同理此处的正方形便可以是△t再根据比热便可得出△q
2023-08-14 01:07:163

热泵原理图

热泵基本原理图:空气源热泵原理图:
2023-08-14 01:07:283

卡诺致冷机的原理是什么

卡诺定理是卡诺1824年提出来的,其表述如下: (1)在相同的高温热源和相同的低温热源之间工作的一切可逆热机,其效率都相等,与工作物质无关。 (2)在相同的高温热源和相同的低温热源之间工作的一切不可逆热机,其效率都小于可逆热机的效率。 §2.3 卡诺定理 热力学第二定律否定了第二类永动机,效率为1的热机是不可能实现的,那么热机的最高效率可以达到多少呢?从热力学第二定律推出的卡诺定理正是解决了这一问题。卡诺认为:“所有工作于同温热源与同温冷源之间的热机,其效率都不能超过可逆机” (换言之,即可逆机的效率最大)。这就是卡诺定理。 设在两个热源之间,有可逆机R(即卡诺机)和任意的热机I在工作(图2.2)。调节两个热机使所作的功相等。可逆机及从高温热源吸热Ql,作功W,放热(Ql-W)到低温热源,其热机效率为 ηk = W/Q1(图中所示是可逆机R倒开的结果)。 另一任意热机I,从高温热源吸热Q1",作功W,放热(Q1"-W)到低温热源,其效率为 ηI = W/Q1" 先假设热机I的效率大于可逆机R(这个假设是否合理,要从根据这个假定所得的结论是否合理来检验)。即 ηI>ηk, 因此得 Ql > Q1" 今若以热机I带动卡诺可逆机R,使R逆向转动,卡诺机成为致冷机,所需的功W由热机I供给,如图2.2所示:及从低温热源吸热(Ql-W),并放热Ql到高温热源。整个复合机循环一周后,在两机中工作的物质均恢复原态,最后除热源有热量交换外,无其它变化。 从低温热源吸热: (Ql - W) - (Q1" - W) = Ql-Q1" > 0 高温热源得到的热: Ql-Q1" 净的结果是热从低温传到高温而没有发生其它的变化。这违反热力学第二定律的克劳修斯说法。所以最初的假设ηI>ηk不能成立。因此应有 ηI≤ηk (2.1) 这就证明了卡诺定理。 根据卡诺定理,可以得到如下的推论:“所有工作于同温热源与同温冷源间的可逆机,其热机效率都相等”。可证明如下:假设两个可逆机Rl和R2,在同温热源与同温冷源间工作。若以Rl带动Rl,使其逆转,则由式(2.1)知 ηR1≤ηR2 (2.2) 反之,若以R2带动Rl,使其逆转,则有 ηR1≥ηR2 (2.3) 因此,若要同时满足式(2.2)和(2.3),则应有 ηR1=ηR2 (2.4) 由此得知,不论参与卡诺循环的工作物质是什么,只要是可逆机,在两个温度相同的低温热源和高温热源之间工作时,热机效率都相等,即任意热机I是可逆机时,式(2.1)用等号,I是不可逆机时用不等号。在上述证明中,并不涉及工作物质的本性,因而与工作物质的本性无关。在明确了ηR与工作物质的本性无关后,我们就可以引用理想气体卡诺循环的结果了。 卡诺定理虽然讨论的是可逆机与不可逆机的热机效率问题,但它具有非常重大的意义。它在公式中引入了一个不等号。前已述及所有的不可逆过程是互相关联的。由一个过程的不可逆性可以推断到另一个过程的不可逆性,因而对所有的不可逆过程就可以找到一个共同的判别准则。由于热功交换的不可逆,而在公式中所引入的不等号,这对于其它过程(包括化学过程)同样可以使用。就是这个不等号解决了化学反应的方向问题。同时,卡诺定理在原则上也解决了热机效率的极限值问题。 、卡诺循环的构成 热力学第二定律指出,热机的热效率不可能达到100%。那么,在一定条件下,热机的热效率最大能达到多少?它又与哪些因素有关?法国工程师卡诺(S. Carnot)在深入考察了蒸汽机工作的基础上,于1824年提出了一种理想的热机工作循环—卡诺循环。 设一热机中有一定量的工质,工作在温度分别为T1和T2的两恒温热源间。卡诺循环由两个可逆的定温过程和两个可逆的绝热过程(定熵)组成(见动画4-8)。 动画 4-8 卡诺循环 四个过程的顺序如下: 定温膨胀过程a-b:工质在定温T1下,从高温热源吸热Q1并作膨胀功Wo。 定熵膨胀过程b-c:工质在可逆绝热条件下膨胀,温度由T1降到T2。 定温压缩过程c-d:工质在定温T1下被压缩,过程中将热量Q2传给低温热源。 定熵压缩过程d-a;工质在可逆绝热条件下被压缩,温度由T2升高至T1,过程终了时,工质的状态回复到循环开始的状态a。 三、逆卡诺循环 如果沿卡诺循环相反的方向进行,就形成卡诺制冷循环和卡诺热泵循环(见动画4-9)。 动画 4-8 逆卡诺循环 对于卡诺制冷循环,工质可逆定温从温度为T2冷库吸热,被可逆绝热压缩后,可逆定温向温度为T1环境介质放热,最后可逆绝热膨胀,进入冷库,完成循环。其制冷系数 对于卡诺热泵循环,工质可逆定温从低温热源T2,如环境介质吸热,被可逆绝热压缩后,可逆定温向高温热源T1,如建筑物室内放热,最后可逆绝热膨胀,完成循环。其供暖系数或热泵工作性能系数 应当指出,逆卡诺循环虽然实际上不能实现,但却为提高制冷机和热泵的完善程度指明了方向,仍具有重要的理论意义。 四、卡诺定理 以理想气体为工质的卡诺循环,已导出其热效率。如果是其他工质完成的卡诺循环,或是两恒温热源间工作的其他热机,其热效率又如何呢?卡诺定理指出: 在相同的高温热源和低温热源之间工作的一切可逆循环,其热效率都相等,与其工质无关。 在相同的高温热源和低温热源之间工作的一切不可逆热机,其热效率不可能大于可逆循环的热效率. (a) (b) 图 4-2 卡诺定理证明用图 下面用反证法对第一定理进行证明:假设在温度为T1的高温热源与温度为T2的低温热源间工作有两个任意的可逆热机R1和R2,如图4-2(a)所示,其热效率分别为和 。假如,则当两个热机从高温热源吸取的热量都为Q1时,根据热效率的定义可知, , 。这时可让热机R1按正向循环工作,用输出功中的一部分 带动热机R2逆向循环工作,如图4-2(b)所示。联合运行的结果是每一循环从低温热源吸收热量,对外作功,高温热源没有任何变化,相当于一台单一热源的第二类永动机。这显然违背了热力学第二定律,因此是不可能的。同样可以证明,也是不可能的。于是只有一种可能性,即。由于上述证明没有限定工质的性质,所以结论对使用任何工质的可逆热机都适用。定理二可以同样采用反证法证明,思路与定理一的证明相同。
2023-08-14 01:08:011

空气能工作用理

空气是气体,容易被压缩,有很强的流动性,被压缩就有势能有流动性就有动能,能量是 可以转换的,所以动能和势能转换可以有热能
2023-08-14 01:08:134

求助可逆过程热温比积分和系统和外界的熵变计算(3.17题)

? 血色玫瑰 ( 2007) ? 祈望 ( 2008) ? 上海往事 ( 2008)
2023-08-14 01:08:222

空气能热泵热水器的工作原理?

直热就是一次性换热,达到设定的温度,循环是多次换热达到设定温度,但现在市场上真正能在冬季一次换热达到55度的少之又少,多数是直热到43度再循环加热到设定温度.
2023-08-14 01:08:314

什么是空气源热泵? 工作原理又是什么呢

低环境温度空气源热泵(冷水)机组:是由电动机驱动的蒸汽压缩制冷循环,以空气为热(冷)源的集中空调或工艺用热(冷)水机组,并能在不低于-20摄氏度的环境温度里制取热水的整体或分体设备。工作原理是基于逆卡诺循环原理建立起来的。 在北方寒冷的冬天,低温空气源热泵机组在风雪湿冷天气制热效果好并且能效高是好产品。有一款空气源热泵是“风雪热泵”。风雪热泵及其主机系统实现以下功能:1.不怕风雪,避免了风雪干扰,结霜少化霜快;2.化解冷池影响,全时提升能效;3.巧妙结合太阳能热利用;4.噪音低、寿命长、维护费用低;5.安全美观。综合功能是提升机组运行效率15%左右,机组寿命延长10%左右,维护费用大大降低。特别适合空气源热泵供暖BOT运营商。采用能量窗技术,主机部分投资节省10%,综合运营利润可提高50%,能效提高、维护费用降低、寿命延长、噪音低不扰民、围护保障避免意外安全事故等。u200d
2023-08-14 01:08:541

空气能热水器是什么原理?真的很省电吗

加热时间比较常````如果你家里人多的话还是别用了`人少的话还可以`修起来也比较麻烦~
2023-08-14 01:09:136

同益空气能的回水温度和补水温度有什么不同

空气能是吸收空气热量的 气温越高,制热越快,水温就升得快,也就更省电
2023-08-14 01:09:314

请问热泵热水器原理

跟家用空调装备一样。就是用制冷剂做为冷热载体,制冷剂在外界蒸发(吸热)在压缩机的推动下到另一个地方放热(冷凝)。可以看一下制冷原理图,把制冷剂流向倒过来看就是热泵原理。
2023-08-14 01:09:392

有谁知道该网站上发动机的工作原理 以及其组成部件

热气机(StirlingEngine)是一种由外部供热使气体在不同温度下作周期性压缩和膨胀的闭式循环往复式发动机,由苏格兰牧师RobertStirling在十九世纪初发明,所以又称斯特林发动机。相对于内燃机燃料在气缸内燃烧的特点热气机又被称作外燃机。现在热气机特指按闭式回热循环工作的热机,不包括斯特林热泵或斯特林制冷机。 热气机工作原理 热气机是一种外燃的、闭式循环往复活塞式热力发动机。 热气机可用氢、氮、氦或空气等作为工质,按斯特林循环工作。在热气机封闭的气缸内充有一定容积的工质。气缸一端为热腔,另一端为冷腔。工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀作功燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。 已设计制造的热气机有多种结构,可利用各种能源,已在航天、陆上、水上和水下等各个领域进行应用。试验热气机的功率传递机构分为曲柄连杆传动、菱形传动、斜盘或摆盘传动、液压传动和自由活塞传动等。 按缸内循环的组成形式分,热气机主要有配气活塞式和双作用式两类。在一个气缸内有两个活塞作规律的相对运动,冷腔与热腔之间用冷却器、回热器和加热器连接,配气活塞推动工质在冷热腔之间往返流动。 热力循环可以分为定温压缩过程、定容回热过程、定温膨胀过程、定容储热过程四个过程。 改良的单缸斯特林发动机示意 http://202.108.15.245/boardfile/mil/20066/20060209083142.gif 已设计制造的热气机有多种结构,可利用各种能源,已在航天、陆上、水上和水下等各个领域进行应用。试验热气机的功率传递机构分为曲柄连杆传动、菱形传动、斜盘或摆盘传动、液压传动和自由活塞传动等。 美国STM公司的民用25KW外燃机 按缸内循环的组成形式分,热气机主要有配气活塞式和双作用式两类。配气活塞式热气机,在一个气缸内有两个活塞作规律的相对运动,冷腔与热腔之间用冷却器、回热器和加热器连接,配气活塞推动工质在冷热腔之间往返流动;双作用式热气机,每个气缸内只有一个活塞,兼起配气活塞和动力活塞的作用。各缸的上部为热腔,下部为冷腔。各热腔经加热器、回热器和冷却器与邻缸的下部冷腔连接,组成一个动力单元。 日本亲潮级潜艇使用的斯特林发动机原理图 热力循环可以分为定温压缩过程、定容回热过程、定温膨胀过程、定容储热过程四个过程。 两缸外燃机工作原理 http://202.108.15.245/boardfile/mil/20066/20060209085020.gif 与内燃机比较热气机所具备的优点: 适用于各种能源,无论是液态的、气态的或固态的燃料,当采用载热系统(如热管)间接加热时,几乎可以使用任何高温热源(太阳能放射性同位素和核反应等),而发动机本身(除加热器外)不需要作任何更改。同时热气机无需压缩机增压,使用一般风机即可满足要求,并允许燃料具有较高的杂质含量。 热气机在运行时,由于燃料在气缸外的燃烧室内连续燃烧,独立于燃气的工质通过加热器吸热,并按斯特林循环对外做功,因此避免了类似内燃机的震爆做功和间歇燃烧过程,从而实现了高效、低噪和低排放运行。高效:总能效率达到80%以上;低噪:1米处裸机噪音底于68dBA;低排放:尾气排放达到欧5标准。 热气机单机容量小,机组容量从20-50kw,可以因地制宜的增减系统容量。结构简单,零件数比内燃机少40%,降价空间大,同时维护成本也较低。 热气机尚存在的主要问题和缺点是制造成本较高,工质密封技术较难,密封件的可靠性和寿命还存在问题,功率调节控制系统较复杂,机器较为笨重。 热气机的未来发展将更多的应用新材料(如陶瓷)和新工艺,以降低造价;对实际循环进行理论研究,完善结构,提高性能指标;在应用方面,正大力研究汽车用的大功率燃煤热气机、太阳能热气机和特种用途热气机等。 热气机分为单缸、2缸、4缸等形式;单缸热气机的燃烧室与冷却器共一室,需要交替向燃烧室中注入燃气、燃烧、排气、注入冷却气体等循环过程,驱动活塞上下运动带动曲轴转动,由于燃烧室需要交替使用,与一般的内燃机一样复杂,很少再发展。2缸热气机的燃烧、冷却过程完全连续,1个汽缸加热、1个冷却,工质在2个气缸中密闭循环,反复被加热冷却,活塞在热气驱动下上下运动驱动曲轴旋转。4缸热气机的气缸上部加热、下部冷却,或相反,工质在相邻两个气缸的上下部间循环,4个活塞交替上下,直接驱动斜盘转动,工作最为平顺。 4缸型的斯特林发动机 热气机的应用 随着全球能源与环保的形势日趋严峻,热气机由于其具有多种能源的广泛适应性和优良的环境特性已越来越受到重视,所以,在水下动力、太阳能动力、空间站动力、热泵空调动力、车用混合推进动力等方面得到了广泛的研究与重视,并且已得到了一些成功的应用。热气机推广中的3个方向包括: 热电联产充分利用它环境污染小和可使用多种燃料及易利用余热的特点,用于热电联产可取得更高的热效率和经济效率。 四联装余热回收系统 低能级的余热回收利用对燃烧系统稍加改进便可利用工场余热、地热和太阳能进行发电或直接驱动水泵,可取得更大的节能效益。 移动式动力源通过对发动机的小型化和轻量化,并改善其控制性能后,亦可以作为推土机、压路机等车辆的动力。 注意斯特林发动机的发明时间是1816,是和蒸汽机差不多的古老的发动机,多年没有引起人们的重视,斯特林发动机的几个特性是非常适合潜艇的,首先是燃烧连续,由于工质不燃烧,因此没有内燃机的爆震现象,噪音低;其次可以使用任何燃料,其燃烧室在外,燃烧的过程与工质无关,或者说只要有热源、冷源就能工作,无论烧煤烧碳都可以,只要能发热就行; 在凡尔纳的科幻小说《海底两万里》中,那艘著名的潜艇诺第留斯号的动力就是斯特林发动机,他的热源是采用钠与水反应生热,说明凡尔纳具有多么的科学远见。 海底两万里漫画 斯特林(RobertStirling,1790—1878) 英国物理学家,热力学研究专家。 斯特林对于热力学的发展有很大贡献。他的科学研究工作主要是热机。热机的研制工作,是18世纪物理学和机械学的中心课题,各种各样的热机殊涌而出,不断互相借鉴,取长补短,热机制造业兴旺起来,工业革命处于高潮时期。 随着热机发展,热力学理论研究提到了重要位置,不少科学家致力于热机理论的研究工作,斯特林便是其中著名的一位。他所提出的斯特林循环,是重要的热机循环之一,亦称“斯特林热气机循环”。这种循环,是封闭式的,采用定容下吸热的气体循环方式。循环过程是:①等容吸热加热;②由外热源等温加热;③等容放热,供吸热用;④向冷体等温放热,完成一个循环。在理想吸热的条件下,这种循环的热效率,等于温度上下限相同的卡诺循环。利用这种循环的“斯特林热机”,具有很多特点,如采用外燃,或外热源供热等。由于这种循环是封闭式循环,可采用传热性能好的工质,同时,工质的腐蚀性也可以很小,如氮气、氢气等气体。充入的气体工质,还可以加大压力,视封闭系统的情况,能够采用远远大于大气压力的高压气体工作,这样可以提高发动机的单位重量的功率,减小发动机的体积和重量。斯特林热机在逆向运转时,可以作为制冷机或热泵机,这种设想在现代已进入了实用研究阶段。 斯特林循环热空气发动机不排废气,除燃烧室内原有的空气外,不需要其他空气,所以适用于都市环境和外层空间。 18世纪末和19世纪初,热机普遍为蒸汽机,它的效率是很低的,只有3%一5%左右,即有95%以上的热能没有得到利用。到1840年,热机的效率也仅仅提高到8%。斯特林对于热力学理论的研究,就是从提高热机效率的目的出发的。他所提出的斯特林循环的效率,在理想状况下,可以无限提高。当然受实际可能的限制,不可能达到100%,但提供了提高热效率的努力方向。
2023-08-14 01:10:051

成为机械工程师需要具备哪些知识?

  希望这个能帮到你。  注册机械工程师资格考试基础考试大纲  一. 高等数学  1.1 空间解析几何向量代数 直线 平面 柱面 旋转曲面 二次曲面 空间曲线  1.2 微分学极限 连续 导数 微分 偏导数 全微分 导数与微分的应用  1.3 积分学不定积分 定积分 广义积分 二重积分 三重积分 平面曲线积分 积分应用  1.4 无穷级数数项级数 幂级数 泰勒级数 傅里叶级数  1.5 常微分方程可分离变量方程 一阶线性方程 可降阶方程 常系数线性方程  1.6 概率与数理统计随机事件与概率 古典概型 一维随机变量的分布和数字特征 数理统计的基本概念参数估计 假设检验 方差分析 一元回归分析  1.7 向量分析  1.8 线性代数行列式 矩阵 n维向量 线性方程组 矩阵的特征值与特征向量二次型  二. 普通物理  2.1 热学气体状态参量 平衡态 理想气体状态方程 理想气体的压力和温度的统计解释 能量按自由度均分原理 理想气体内能 平衡碰撞次数和平均自由程 麦克斯韦速率分布律 功 热量 内能 热力学第一定律及其对理想气体等值过程和绝热过程的应用 气体的摩尔热容 循环过程 热机效率 热力学第二定律及其统计意义 可逆过程和不可逆过程 熵  2.2 波动学机械波的产生和传播 简谐波表达式 波的能量 驻波 声速 超声波 次声波 多普勒效应  2.3 光学相干光的获得 杨氏双缝干涉 光程 薄膜干涉 麦克尔干涉仪 惠更斯——菲涅耳原理 单缝衍射 光学仪器分辨本领 x射线衍射 自然光和偏振光 布儒斯特定律 马吕斯定律 双折射现象 偏振光的干涉 人工双折射及应用  三. 普通化学  3.1 物质结构与物质状态原子核外电子分布 原子、离子的电子结构式 原子轨道和电子云 离子键特征共价键特征及类型 分子结构式 杂化轨道及分子空间构型 极性分子与非极性分子 分子间力与氢键 分压定律及计算 液体蒸气压 沸点 汽化热 晶体类型与物质性质的关系  3.2 溶液溶液的浓度及计算 非电解质稀溶液通性及计算 渗透压 电解质溶液的电离平衡 电离常数及计算 同离子效应和缓冲溶液 水的离子积及ph值 盐类水解平衡及溶液的酸碱性 多相离子平衡 溶度积常数 溶解度计算  3.3 周期表周期表结构 周期 族 原子结构与周期表关系 元素性质 氧化物及其水化物的酸碱性递变规律  3.4 化学反应方程式 化学反应速率与化学平衡化学反应方程式写法及计算 反应热 热化学反应方程式写法 化学反应速率表示方法 浓度、温度对反应速率的影响 速率常数与反应级数 活化能及催化剂化学平衡特征及平衡常数表达式 化学平衡移动原理及计算 压力熵与化学反应方向判断 3.5 氧化还原与电化学氧化剂与还原剂 氧化还原反应方程式写法及配平 原电池组成及符号 电极反应与电池反应 标准电极电势 能斯特方程及电极电势的应用 电解与金属腐蚀  3.6 有机化学有机物特点、分类及命名 官能团及分子结构式有机物的重要化学反应:加成 取代 消去 氧化 加聚与缩聚典型有机物的分子式、性质及用途:甲烷 乙炔 苯 乙醇 酚 乙醛 乙酸 乙酯 乙胺 苯胺 聚氯乙烯 聚乙烯 聚丙烯酸 酯类 工程塑料(ABS) 橡胶 尼龙66  四. 理论力学  4.1 静力学平衡 刚体 力 约束 静力学公理 受力分析 力对点之矩 力对轴之矩 力偶理论 力系的简化 主失 主矩 力系的平衡 物体系统(含平面静定桁架)的平衡 滑动摩擦 摩擦角 自锁 考虑滑动摩擦时物体系统的平衡 重心  4.2 运动学点的运动方式 轨迹 速度和加速度 刚体的平动 刚体的定轴转动 转动方式 角速度和角加速度 刚体内任一点的速度和加速度  4.3 动力学动力学基本定律 质点运动微分方程 动量 冲量 动量定理 动量守恒的条件 质心 质心运动定理 质心运动守恒的条件 动量矩 动量矩定理 动量矩守恒的条件 刚体的定轴转动微分方程 转动惯量 回转半径 转动惯量的平行轴定理 功 动能 势能 动能定理 机械能守恒 惯性力 刚体惯性力系的简化 达朗伯原理 单自由度系统线性振动的微分方程 振动周期 频率和振幅 约束 自由度 广义坐标 虚位移 理想约束 虚位移原理  五. 材料力学  5.1 轴力和轴力图 拉、压杆横截面和斜截面上的应力 强度条件 虎克定律和位移计算 应变能计算  5.2 剪切和挤压的实用计算 剪切虎克定律 切(剪)应力互等定理  5.3 外力偶矩的计算 扭矩和扭矩图 圆轴扭转切(剪)应力及强度条件 扭转角计算及刚度条件 扭转应变能计算  5.4 静矩和形心 惯性矩和惯性积 平行移轴公式 形心主惯性矩  5.5 梁的内力方程 切(剪)力图和弯矩图 分布载荷、剪力、弯矩之间的微分关系 正应力强度条件 切(剪)应力强度条件 梁的合理截面 弯曲中心概念 求梁变形的积分法 迭加法和卡式第二定理  5.6 平面应力状态分析的数值解法和图解法 一点应力状态的主应力和最大切(剪)应力 广义虎克定律 四个常用的强度理论  5.7 斜弯曲 偏心压缩(或拉伸) 拉—弯或压—弯组合 扭—弯组合  5.8 细长压杆的临界力公式 欧拉公式的适用范围 临界应力总图和经验公式 压杆的稳定校核  六. 流体力学  6.1 流体的主要物理性质  6.2 流体静力学流体静压强重力作用下静水压强的分布规律 总压力的计算  6.3 流体动力学基础以流场为对象描述流动流体运动的总流分析 恒定总流连续性方程、能量方程和动量方程  6.4 流动阻力和水头损失实际流体的两种流态——层流和紊流圆管中层流运动、紊流运动的特征沿程水头损失和局部水头损失边界层附面层基本概念和绕流阻力  6.5 孔口、管嘴出流 有压管道恒定流  6.6 明渠恒定均匀流  6.7 渗流定律 井和集水廊道  6.8 相似原理和量纲分析  6.9 流体运动参数(流速、流量、压强)的测量  七. 计算机应用技术  7.1 计算机应用技术硬件的组成及功能 软件的组成及功能 数制转换  7.2 Windows操作系统基本知识、系统启动 有关目录、文件、磁盘及其它操作 网络功能注:以Windows98为基础  7.3 计算机程序设计语言程序结构与基本规定 数据 变量 数组 指针 赋值语句 输入输出的语句 转移语句 条件语句 选择语句 循环语句 函数子程序(或称过程) 顺序文件 随机文件注:鉴于目前情况,暂采用FORTRAN语言  八. 电工电子技术  8.1 电场与磁场库仑定律 高斯定律 环路定律 电磁感应定律  8.2 直流电路电路基本组件 欧姆定律 基尔霍夫定律 迭加原理 戴维南定理  8.3 正弦交流电路正弦量三要素 有效值 复阻抗 单项和三项电路计算 功率及功率因数 串联与并联谐振 安全用电常识  8.4 RC和RL电路暂态过程三要素分析法  8.5 变压器与电动机变压器的电压、电流和阻抗变换 三相异步电动机的使用常用继电—接触器控制电路  8.6 二极管及整流、滤波、稳压电路  8.7 三极管及单管放大电路  8.8 运算放大器理想运放组成的比例 加、减和积分运算电路  8.9 门电路和触发器基本门电路 RS、D、JK触发器  九. 工程经济  9.1 现金流量构成与资金等值计算现金流量 投资 资产 固定资产折旧 成本 经营成本 销售收入 利润 工程项目投资设计的主要税种 资金等值计算的常用公式及应用 复利系数表的用法  9.2 投资经济效果评价方法和参数净现值 内部收益率 净年值 费用现值 费用年值 差额内部收益率 投资回收期 基准折现率 备选方案的类型 寿命相等方案与寿命不等方案的比选  9.3 不确定性分析盈亏平衡分析 盈亏平衡点 固定成本 变动成本 单因素敏感性分析 敏感因素 9.4 投资项目的财务评价工业投资项目可行性研究的基本内容投资项目财务评价的目标与工作内容 盈利能力分析 资金筹措的主要方式 资金成本 债务偿还的主要方式 基础财务报表 全投资经济效果与自有资金经济效果 全投资现金流量表与自有资金现金流量表财务效果计算 偿债能力分析 改扩建和技术改造投资项目财务评价的特点(相对新建项目)  9.5 价值工程价值工程的内容与实施步骤 功能分析  十. 机械原理  10.1 机械、机构、机器  10.2 机构的结构分析机构的组成 平面机构的机构运动简图 平面机构的自由度计算 机构具有确定运动的条件 计算平面机构自由度时应注意的事项(复合铰链、局部自由度、虚约束)  10.3 机械的摩擦、效率和自锁运动副中摩擦力的确定 机械的效率 机械的自锁  10.4 平面连杆机构及其设计连杆机构及其传动特点 平面四杆机构的类型和应用 平面四杆机构的基本知识(有曲柄的条件、急回运动和行程速比系数、传动角和死点) 平面四杆机构的设计(用作图法设计四杆机构)  10.5 凸轮机构及其设计凸轮机构的应用和分类 推杆的常用运动规律 用作图法进行平板凸轮轮廓曲线的设计(对心移动从动件) 滚子半径选取的原则 压力角与基圆半径的关系  10.6 齿轮机构及其设计齿轮机构的应用及分类 轮廓曲线 渐开线齿廓的啮合特点 渐开线标准 直齿圆柱齿轮的基本参数和几何尺寸 渐开线直齿圆柱齿轮的啮合传动 渐开线直齿圆柱齿轮的变位及变位齿轮传动的类型 斜齿圆柱齿轮传动(基本参数与几何尺寸计算、正确啮合条件) 蜗杆传动(特点、主要参数及几何尺寸) 直齿锥齿轮传动的几何参数和尺寸计算  10.7 齿轮系及其设计齿轮系及其分类 定轴轮系的传动比 周转轮系的传动比 复合轮系的传动比 轮系的功用  10.8 机械的平衡回转件的静平衡 动平衡  十一. 机械设计  11.1 机械设计的主要内容 设计机器的一般程序  11.2 螺纹连接螺纹 螺纹牙的类型和紧固件 螺纹连接的预紧和防松 螺纹连接的强度计算 螺栓组连接的设计计算 紧固件的性能等级及许用应力  11.3 挠性传动带传动的类型 V带的类型与结构 带传动的受力分析 V带传动的设计计算 链传动的特点及应用 滚子链的结构 链传动的运动特性 链传动的受力分析  11.4 齿轮传动特点 失效形式 设计准则 计算载荷 常用材料及其选择原则 标准直齿圆柱齿轮传动的强度计算、设计参数、许用应力与精度选择 标准斜齿圆柱齿轮的受力分析  11.5 蜗杆传动特点 失效形式 受力分析 设计准则 常用材料 普通圆柱蜗杆传动的主要参数、几何尺寸计算、传动效率、润滑和热平衡计算  11.6 滑动轴承滑动摩擦的类型及其特点 滑动轴承的失效形式 常用材料及润滑剂选择 普通径向滑动轴承的主要结构型式 轴瓦结构与设计计算  11.7 滚动轴承基本结构 主要类型 代号和使用性能 滚动轴承类型的选择、尺寸的选择(承载能力与寿命) 滚动轴承装置(支撑结构)的设计  11.8 联轴器和离合器主要类型 特点 选用原则  11.9 轴与轴毂连接轴的分类与材料 轴的强度计算(按扭转强度计算,按弯扭合成强度计算) 轴的结构设计 平键和花键连接的类型、特点及强度校核  11.10 弹簧类型 应用  十二. 工程材料及机械制造  12.1 金属材料的主要力学性质  12.2 铁碳合金相图及其应用  12.3 金属塑性变形的微观机制及对金属组织的性能的影响 再结晶对冷变形金属组织和性能的影响  12.4 钢在热处理过程中的组织转变及组织的形态和性能 常用热处理工艺及应用  12.5 金属材料的表面处理技术及应用  12.6 常用钢材、铸铁的牌号、性能及应用  12.7 常用铝合金、铜合金、轴承合金的牌号、性能及应用  12.8 常用工程塑料、合成橡胶、工程陶瓷、复合材料的性能及应用  12.9 工程材料的选用原则和一般步骤  12.10 合金的铸造性能及其对铸件质量的影响  12.11 铸钢、铸铁及铸铝件生产的过程和特点  12.12 砂型铸造的主要工序和场用设备 砂型铸造浇筑位置和分型面的选择 金属型铸造、压铸及熔模铸造的特点和选用  12.13 金属锻造性能及其影响因素  12.14 自由锻和锤上模锻的特点及其工艺过程 其它模锻方法的特点  12.15 板料冲压的特点、工艺过程及应用  12.16 焊接冶金过程及其对焊接质量的影响 焊接热过程对焊接接头组织、性能的影响  12.17 金属材料的焊接性 常用金属材料焊接方法及相关焊接材料的选用  12.18 常用焊接接头和坡口的形式 焊缝布置的主要原则 焊接结构的工艺性  12.19 常用机械零件毛坯的特点及选用原则  12.20 机械加工机械加工过程 零件表面的形成与切削运动 切削要素 工件装夹 定位原理  12.21 机床与夹具金属切削机床的分类、特点、应用及主要技术参数 数控机床的特点及应用 机床夹具的组成、分类及应用  12.22 金属切削原理金属切削过程 常用刀具材料 刀具几何角度 切削力 切削热 刀具磨损 刀具寿命 切削用量及其选择  12.23 机械加工精度与表面质量机械加工精度及其影响因素 机械加工表面质量及其影响因素 提高机械加工精度和表面质量的措施  12.24 机械加工工艺规程常用机械加工方法及可达到的经济精度 机械加工工艺规程编制的步骤和方法 机械加工工艺规程编制的主要问题 加工余量及工序尺寸的确定 工时定额  12.25 机械装配常用机械装配方法特点及应用规范  12.26 特种加工常用特种加工方法的原理、特点及应用  十三. 机械工程控制  13.1 反馈概念 系统的分类 对控制系统的基本要求  13.2 机械系统的模型系统的微分方程 系统的传递函数 传递函数方框图及其简化 反馈控制系统的传递函数  13.3 时间响应时间响应及分析方法 典型输入信号 一阶系统 二阶系统 系统误差分析  13.4 频率特性频率特性及其图示方法 闭环频率特性 频率特性的特征量  13.5 系统的稳定性系统稳定性 劳斯稳定判据 乃奎斯特稳定判据 伯德稳定判据  十四. 热工  14.1 热能转换的定律热力系 状态及状态参数 平衡状态 状态方程 准平衡态过程与可逆过程 功与热量 热力循环热力学第一定律 闭口系统能量方程 稳定流动系统能量方程及其应用热力学第二定律 卡诺循环及卡诺定理 熵 孤立系统的熵增原理 能量的品质和能量贬值原理  14.2 工质的热力性质和热力过程物质的三态及相变过程 理想气体的热力性质和热力过程 蒸汽的热力性质和热力过程 湿空气及其热力过程 理想气体混合物  14.3 热量传递导热 稳态导热的计算 非稳态导热对流换热 自然对流换热及其实验关联式 强迫对流换热及其实验关联式凝结和沸腾时的对流换热辐射换热的定律 黑体间的辐射换热和角系数 灰体间的辐射换热  十五. 测试技术  15.1 信号分析信号与信息 信号分类 周期信号、非周期信号和随机信号的时域和频域特征  15.2 工程中常用传感器的转换原理及应用  15.3 测试装置测试装置的静态响应特性和动态响应特性 不失真测试的条件 测试装置对典型输入信号的响应  15.4 电桥转换原理 信号的调制与解调 滤波器原理 模/数和数/模转换原理  15.5 信号分析仪及微机测试系统 虚拟仪器及工程应用  15.6 典型非电量参量的测量方法位移 速度 加速度 噪声 温度 压力测量  十六. 职业法规  16.1 我国有关基本建设、建筑、环保、安全及节能方面的法律与法规  16.2 工程设计人员的职业道德与行为规范
2023-08-14 01:10:184

谁能给一下大学物理化学的应考公式和概念啊!

1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间)
2023-08-14 01:10:403

热工学的主要内容

热工学(工程热力学、传热学)热工学基本概念  热力学系统 状态 平衡 状态参数状态公理状态方程 热力参数及坐标图 功和热量 热力过程热力循环单位制  准静态过程 可逆过程和不可逆过程  热力学第一定律  热力学第一定律的实质 内能 焓 热力学第一定律在开口系统和闭口系统的表达式 储存能 稳定流动能量方程及其应用  气体性质  理想气体模型及其状态方程 实际气体模型及其状态方程 压缩因子临界参数 对比态及其定律 理想气体比热 混合气体的性质  理想气体基本热力过程及气体压缩  定压 定容 定温和绝热过程 多变过程气体压缩轴功 余隙多极压缩和中间冷却  热力学第二定律  热力学第二定律的实质及表述 卡诺循环和卡诺定理 熵 孤立系统 熵增原理  水蒸汽和湿空气  蒸发 冷凝沸腾汽化 定压发生过程水蒸气图表 水蒸气基本热力过程 湿空气性质 湿空气焓湿图 湿空气基本热力过程  气体和蒸汽的流动  喷管和扩压管 流动的基本特性和基本方程 流速 音速 流量临界状态 绝热节流  动力循环朗肯循环 回热和再热循环 热电循环内燃机循环  致冷循环  空气压缩致冷循环 蒸汽压缩致冷循环 吸收式致冷循环 热泵气体的液化  导热理论基础  导热基本概念 温度场 温度梯度傅里叶定律导热系数导热微分方程 导热过程的单值性条件  稳态导热  通过单平壁和复合平壁的导热 通过单圆筒壁和复合圆筒壁的导热临界热绝缘直径 通过肋壁的导热肋片效率通过接触面的导热  二维稳态导热问题  非稳态导热  非稳态导热过程的特点 对流换热边界条件下非稳态导热 诺模图集总参数法常热流通量边界条件下非稳态导热  导热问题数值解  有限差分法原理 问题导热问题的数值计算 节点方程建立节点方程式求解 非稳态导热问题的数值计算 显式差分格式及其稳定性隐式差分格式  对流换热分析  对流换热过程和影响对流换热的因素 对流换热过程微分方程式对流换热微分方程组 流动边界层 热边界层 边界层换热微分方程组及其求解 边界层换热积分方程组及其求解 动量传递和热量传递的类比物理相似的基本概念 相似原理 实验数据整理方法  单相流体对流换热及准则方程式  管内受迫流动换热 外掠圆管流动换热 自然对流换热 自然对流与受迫对流并存的混合流动换热  凝结与沸腾换热  凝结换热基本特性 膜状凝结换热及计算 影响膜状凝结换热的因素及增强换热的措施 沸腾换热饱和沸腾过程曲线 大空间泡态沸腾换热及计算 泡态沸腾换热的增强  热辐射的基本定律  辐射强度和辐射力普朗克定律斯蒂芬一波尔兹曼定律兰贝特余弦定律基尔霍夫定律  辐射换热计算  黑表面间的辐射换热 角系数的确定方法 角系数及空间热阻灰表面间的辐射换热 有效辐射 表面热阻 遮热板 气体辐射的特点 气体吸收定律 气体的发射率和吸收率 气体与外壳间的辐射换热 太阳辐射  传热和换热器  通过肋壁的传热 复合换热时的传热计算 传热的削弱和增强平均温度差 效能一传热单元数 换热器计算
2023-08-14 01:10:491

能否想个办法利用海洋的热能航行而不违反热力学第二定律,如可以,说出方法;如不行,回答原因。

热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,那么它们也必定处于热平衡热力学第一定律:如果一个系统与环境孤立,那么它的内能将不会发生变化。引申得到,体系的内能变化等于它从环境吸收的热量与环境在其之上做功的总和。(delta)U=(delta)w+(delta)q热力学第二定律有几种表述方式:克劳修斯表述:热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物;开尔文-普朗克表述:不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。熵表述:随时间进行,一个孤立体系中的熵总是不会减少。热力学第三定律:通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。R.H.否勒和E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0k,称为0K不能达到原理。一、热力学第一定律在19世纪早期,不少人沉迷于一种神秘机械,这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题激烈的讨论,这种不需要外界提供能量的永动机称为第一类永动机。热力学第一定律是能量守恒定律,它是说能量可以由一种形式变为另一种形式,但其总量既不能增加也不能减少,是守恒的。本世纪初爱因斯坦发现能量和质量可以互变,所以能量守恒定律改为质能守恒定律。这一定律指出物质既不能被消灭也不能被创造,一度被无神论当作宇宙永恒的根据.热力学第一定律的产生是这样的:在18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。二、热力学第二定律在人们认识了能的转化和守恒定律后,制造永动机的梦想并没有停止下来。不少人开始企图从单一热源(比如从空气、海洋)吸收能量,并用来做功。将热转变成功,并没有违背能量守恒,如果能够实现,人类就将有了差不多取之不尽的能源,地球上海水非常丰富,热容很大,仅仅使海水的温度下降1℃,释放出来的热量就足够现代社会用几十万年,从海水中吸取热量做功,则航海不需要携带燃料!这种机械被人们称为第二类永动机。但所有的实验都失败了,因为这违背了自然界的另一条基本规律:热力学第二定律。1824年,法国陆军工程师卡诺设想了一个既不向外做工又没有摩擦的理想热机。通过对热和功在这个热机内两个温度不同的热源之间的简单循环(即卡诺循环)的研究,得出结论:热机必须在两个热源之间工作,热机的效率只取决与热源的温差,热机效率即使在理想状态下也不可能的达到100%。即热量不能完全转化为功。1850年,克劳修斯在卡诺的基础上统一了能量守恒和转化定律与卡诺原理,指出:一个自动运作的机器,不可能把热从低温物体移到高温物体而不发生任何变化,这就是热力学第二定律。不久,开尔文又提出:不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功。这就是热力学第二定律的"开尔文表述"。奥斯特瓦尔德则表述为:第二类永动机不可能制造成功。热力学第二定律有多钟说法,最流行的有两种:1.克劳修斯(Clausius)的表述:"热量由低温物体传给高温物体而不引起其它变化是不可能的"。热量从高温传到低温处的过程可自发进行,反之,热量从低温传到高温处虽可以进行,但有条件,如通过制冷机将热从低温处转到高温处,除了这部分能量转化之外,必然引起其它变化,就是还要消耗电功变成热,就是说,使热量从低温向高温转移的同时,需消耗另一部分功,变成为热。2.开尔文(Kelvin)的表述:"从单一热源取出热使之完全变为功,而不发生其它变化是不可能的"。这种说法的意思是从功转变成热,可不引起其它变化,(如摩擦生热,机械功完全转成热而不发生其它变化),但是其反过程,将热变成功,除了这些能量转换外,必然引起其它变化,否则就不能发生。克劳修斯和开尔文的两种表述实际上是一致的,假如热量可以由低温传给高温物体而不引起其它变化,则热可以完全变为功而不引起其它变化;在上述例子中,如果可以无条件地将低温热源中的热传给高温热源,则整个过程是高温热源中的热完全转变为功(热没有消耗到低温处),并且没有发生其它变化(气体的状态没有变化)。即克劳修斯的说法不成立的话,则开尔文的说法也不能成立,两种表述是一致的。当然,"第二类永动机是不能制成的"也是一种较流行的说法。热力学第二定律是人类从生产和生活实践中所总结出来的经验规律,它的命运不象热力学第一定律那样一帆风顺,从它的诞生到20世纪初都在不断遭受人们的非议和攻击,在各个时期都有不少人用各种方式企图来否定它,他们大多数是想制造所谓的"第二类永动机",当然,都以失败而告终。热力学第二定律有丰富的含义,解释了自然界能量转化方向的深刻的规律,它描述能量自动传递的方向:分子有规则运动的机械能,可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能。克劳修斯说法和开尔文说法都揭示了热的传递和转化的不可逆过程:克劳修斯说法实质上说热传递过程是不可逆的;开尔文说法实质上说功转变为热的过程是不可逆的。正是各种不可逆过程的内在联系,使得热力学第二定律的应用远远超出热功转换的范围,成为整个自然科学中的一条基本规律。但热力学第二定律是有适用范围的,它只能用于宏观观世界,微观世界如个别分子的运动不能用热力学第二定律去恒量,而对于超客观的世界如宇宙,由于它是一个开放的不平衡的体系,热力学第二定律也无法解释其发展规律,因而它后有非平衡态热力学使热力学得以延伸。三、热力学第三定律是否存在降低温度的极限?1702年,法国物理学家阿蒙顿已经提到了"绝对零度"的概念。他从空气受热时体积和压强都随温度的增加而增加设想在某个温度下空气的压力将等于零。根据他的计算,这个温度即后来提出的摄氏温标约为-239℃,后来,兰伯特更精确地重复了阿蒙顿实验,计算出这个温度为-270.3℃。他说,在这个"绝对的冷"的情况下,空气将紧密地挤在一起。他们的这个看法没有得到人们的重视。直到盖-吕萨克定律提出之后,存在绝对零度的思想才得到物理学界的普遍承认。现在我们知道,绝对零度更准确的值是-273.15℃。1848年,英国物理学家汤姆逊在确立热力温标时,重新提出了绝对零度是温度的下限。随着低温技术的发展,人们不断向低温极限冲击,但越是接近绝对零度,温度的降低越困难。1906年,德国化学物理学家能斯特(WaltherNernst,1864-1941)在观察低温现象和化学反应中发现热定理,1912年,能斯特又这一规律表为绝对零度不可能达到原理:"不可能使一个物体冷却到绝对温度的零度。"这就是热力学第三定律。根据热力学第三定律,在绝对零度下一切物质皆停止运动。绝对零度虽然不能达到,但可以无限趋近。迄今为止,人类获得的最接近绝对零度的温度是0.5nK(0.5×10-9K),这是2003年由德国、美国、奥地利等国科学家组成的一个国际科研小组,日前改写的人类创造的最低温度纪录。此外,还有人提出热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。*********************************************************************************************四、克劳修斯和开尔文简介1.克劳修斯(1822~1888)克劳修斯在1822年出生于普鲁士的克斯林。他的母亲是一位女教师,家中有多个兄弟姐妹。他中学毕业后,先考入了哈雷大学,后转入柏林大学学习。为了抚养弟妹,在上学期间他不得不去做家庭补习教师。1850年,克劳修斯被聘为柏林大学副教授并兼任柏林帝国炮兵工程学校的讲师。同年,他对热机过程,特别是卡诺循环进行了精心的研究。克劳修斯从卡诺的热动力机理论出发,以机械热力理论为依据,逐渐发现了热力学基本现象,得出了热力学第二定律的克劳修斯陈述。在《论热的运动力……》一文中,克劳修斯首次提出了热力学第二定律的定义:"热量不能自动地从低温物体传向高温物体。"这与开尔文陈述的热力学第二定律"不可制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用的功,而其他物体不发生任何变化"是等价的,它们是热力学的重要理论基础。同时,他还推导了克劳修斯方程--关于气体的压强、体积、温度和气体普适常数之间的关系,修正了原来的范德瓦尔斯方程。1854年,克劳修斯最先提出了熵的概念,进一步发展了热力学理论。他将热力学定律表达为:宇宙的能量是不变的,而它的熵则总在增加。由于他引进了熵的概念,因而使热力学第二定律公式化,使它的应用更为广泛了。1855年,克劳修斯被聘为苏黎世大学正教授,在这所大学他任教长达十二年。这期间,他除了给大学生讲课外,还积极地进行科学探索。1857年,克劳修斯研究气体动力学理论取得成就,他提出了气体分子绕本身转动的假说。这一年,他发表了《论我们称之为热能的动力类型》一文,在这篇文章中他将气体分子的动能不仅看做是它们的直线运动,而且而且看作是分子中原子旋转和振荡的运动。这样,他就正确地,尽管不是充分地(只有量子理论才能给予充分的解释),确定了实际气体与理想气体的区别。同年,他还研究了电解质和电介质。他重新解释了盐的电解质溶液中分子的运动;他建立了固体的电介质理论。他还提出描述分子极性同电介质常数之间关系的方程。同时他还提出了电解液分解的假说。这一假说,后来经过阿仑尼乌斯的进一步发展成为电解液理论。1858年,克劳修斯通过细心的研究,推导出了气体分子平均自由程公式,找出了分子平均自由程与分子大小和扩散系数之间的关系。同时,他还提出分子运动自由程分布定律。他的研究也为气体分子运动论的建立做出了杰出的贡献。1860年,克劳修斯计算出了气体分子运动速度。后来,他确定了气体对于器壁的压力值相当于分子撞击器壁的平均值。运用与概率论相结合的平均值方法,他开辟了物理学一个极为重要的领域,即创建了统计物理学的学科。在后来的著作中,克劳修斯推导出能表示受压力影响的物体熔点(凝固点)的方程式,后来被称为克拉佩龙-克劳修斯方程。克劳修斯在科学研究方面的主要贡献是建立热力学基础;同时,他在分子运动论以及电解质和固体电介质理论方面也都做出了重大的贡献。鉴于他在物理学各领域中所做出的贡献和取得的成就,1865年,他被选为法国科学院院士。1867年,克劳修斯受聘于维尔茨堡大学,担任教授。在这所大学里他任教两年。在这期间(1868年),他又被选为英国伦敦皇家学会会长。1869年以后,他任波恩大学教授。1870年他最先提出了均功理论。1870年至1871年的战争期间,克劳修斯的膝盖惨遭重伤,因此,不得不将学生们的实验课交给克莱门斯凯特来负责。此人虽然被称为"老一辈人"的代表人物,但他并没有给他的继承者留下任何设备与仪器。也许,正是由于这个原因,尽管克劳修斯是当时最先进的物理学家,波恩大学的实验物理却没能得到应有的发展,也没能形成一种科学流派。克劳修斯不仅在科研方面取得了重大的成就,而且在教学上也取得了良好的效果。他先后在柏林大学、苏黎世大学、维尔茨堡大学和波恩大学执教长达三十余年,桃李芬芳。他培养的很多学生后来都已成为了知名的学者,有的甚至是举世闻名的物理学家。另外,克劳修斯除发表了大量的学术论文外,还出版了一些重要的专著,如《机械热理论》第一卷和第二卷、《势函数和势》等。在克劳修斯的晚年,他不恰当地把热力学第二定律引用到整个宇宙,认为整个宇宙的温度必将达到均衡而不再有热量的传递,从而成为所谓的热寂状态,这就是克劳修斯首先提出来的"热寂说"。热寂说否定了物质不灭性在质上的意义,而且把热力学第二定律的应用范围无限的扩大了。克劳修斯于1888年逝世,终年六十六岁。克劳修斯虽然在晚年错误地提出了"热寂说",但在他的一生的大部分时间里,在科学、教育上做了大量有益的工作。特别是他奠定了热力学理论基础,他的大量学术论文和专著是人类宝贵的财富,他在科学史上的功绩不容否定。他诚挚、勤奋的精神同样值得后人学习。2.开尔文(1824~1907)开尔文是英国著名物理学家、发明家,原名W.汤姆孙。他是本世纪的最伟大的人物之一,是一个伟大的数学物理学家兼电学家。他被看作英帝国的第一位物理学家,同时受到世界其他国家的赞赏。他的一生获得了一切可能给予的荣誉。而他也无愧于这一切,这是他在漫长的一生中所作的实际努力而获得的。这些努力使他不仅有了名望和财富,而且赢得了广泛的声誉。1824年6月26日开尔文生于爱尔兰的贝尔法斯特。他从小聪慧好学,10岁时就进格拉斯哥大学预科学习。17岁时,曾立志:"科学领路到哪里,就在哪里攀登不息"。1845年毕业于剑桥大学,在大学学习期间曾获兰格勒奖金第二名,史密斯奖金第一名。毕业后他赴巴黎跟随物理学家和化学家V.勒尼奥从事实验工作一年,1846年受聘为格拉斯哥大学自然哲学(物理学当时的别名)教授,任职达53年之久。由于装设第一条大西洋海底电缆有功,英政府于1866年封他为爵士,并于1892年晋升为开尔文勋爵,开尔文这个名字就是从此开始的。1890~1895年任伦敦皇家学会会长。1877年被选为法国科学院院士。1904年任格拉斯哥大学校长,直到1907年12月17日在苏格兰的内瑟霍尔逝世为止。开尔文研究范围广泛,在热学、电磁学、流体力学、光学、地球物理、数学、工程应用等方面都做出了贡献。他一生发表论文多达600余篇,取得70种发明专利,他在当时科学界享有极高的名望,受到英国本国和欧美各国科学家、科学团体的推崇。他在热学、电磁学及它们的工程应用方面的研究最为出色。开尔文是热力学的主要奠基人之一,在热力学的发展中作出了一系列的重大贡献。他根据盖-吕萨克、卡诺和克拉珀龙的理论于1848年创立了热力学温标。他指出:"这个温标的特点是它完全不依赖于任何特殊物质的物理性质。"这是现代科学上的标准温标。他是热力学第二定律的两个主要奠基人之一(另一个是克劳修斯),1851年他提出热力学第二定律:"不可能从单一热源吸热使之完全变为有用功而不产生其他影响。"这是公认的热力学第二定律的标准说法。并且指出,如果此定律不成立,就必须承认可以有一种永动机,它借助于使海水或土壤冷却而无限制地得到机械功,即所谓的第二种永动机。他从热力学第二定律断言,能量耗散是普遍的趋势。1852年他与焦耳合作进一步研究气体的内能,对焦耳气体自由膨胀实验作了改进,进行气体膨胀的多孔塞实验,发现了焦耳-汤姆孙效应,即气体经多孔塞绝热膨胀后所引起的温度的变化现象。这一发现成为获得低温的主要方法之一,广泛地应用到低温技术中。1856年他从理论研究上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。这一现象后叫汤姆孙效应。在电学方面,汤姆孙以极高明的技巧研究过各种不同类型的问题,从静电学到瞬变电流。他揭示了傅里叶热传导理论和势理论之间的相似性,讨论了法拉第关于电作用传播的概念,分析了振荡电路及由此产生的交变电流。他的文章影响了麦克斯韦,后者向他请教,希望能和他研究同一课题,并给了他极高的赞誉。开尔文在电磁学理论和工程应用上研究成果卓著。1848年他发明了电像法,这是计算一定形状导体电荷分布所产生的静电场问题的有效方法。他深人研究了莱顿瓶的放电振荡特性,于1853年发表了《莱顿瓶的振荡放电》的论文,推算了振荡的频率,为电磁振荡理论研究作出了开拓性的贡献。他曾用数学方法对电磁场的性质作了有益的探讨,试图用数学公式把电力和磁力统一起来。1846年便成功地完成了电力、磁力和电流的"力的活动影像法",这已经是电磁场理论的雏形了(如果再前进一步,就会深人到电磁波问题)。他曾在日记中写道:"假使我能把物体对于电磁和电流有关的状态重新作一番更特殊的考察,我肯定会超出我现在所知道的范围,不过那当然是以后的事了。"他的伟大之处,在于能把自己的全部研究成果,毫无保留地介绍给了麦克斯韦,并鼓励麦克斯韦建立电磁现象的统一理论,为麦克斯韦最后完成电磁场理论奠定了基础。他十分重视理论联系实际。1875年预言了城市将采用电力照明,1879年又提出了远距离输电的可能性。他的这些设想以后都得以实现。1881年他对电动机进行了改造,大大提高了电动机的实用价值。在电工仪器方面,他的主要贡献是建立电磁量的精确单位标准和设计各种精密的测量仪器。他发明了镜式电流计(大大提高了测量灵敏度)、双臂电桥、虹吸记录器(可自动记录电报信号)等等,大大促进了电测量仪器的发展。根据他的建议,1861年英国科学协会设立了一个电学标准委员会,为近代电学量的单位标准奠定了基础。在工程技术中,1855年他研究了电缆中信号传播情况,解决了长距离海底电缆通讯的一系列理论和技术问题。经过三次失败,历经两年的多方研究与试验,终于在1858年协助装设了第一条大西洋海底电缆,这是开尔文相当出名的一项工作。他善于把教学、科研、工业应用结合在一起,在教学上注意培养学生的实际工作能力。在格拉斯哥大学他组建了英国第一个为学生用的课外实验室。汤姆孙还将物理学用到完全不同的领域。他研究过太阳热能的起源和地球的热平衡。他的方法可靠而有趣,但只由于他不知道太阳和地球上的能量来自核能,因而不可能得到正确的结论。他试图用落到太阳上的陨石或用引力收缩来解释太阳热能的起源。约在1854年,他估算太阳的"年龄"小于5×108年,而这只是我们现在知道的值的十分之一。从地球表面附近的温度梯度,汤姆孙试图推算出地球热的历史和年龄。他的估算仍然太低,仅为4×108年,而实际值约为5×109年。地质学家以地质现象的演变为理论根据,很快就发现他的估算是错误的。他们不能驳倒汤姆孙的数学,但他们肯定他的假定是错误的。同样,生物学家也发现汤姆孙给出的时间进程与最新的进化论的观念相悖。这一争论持续了多年,汤姆孙完全不理解别人的反对意见是正确的。最后,直到放射性和核反应的发现,才证明了汤姆孙假设的前提是完全错误的。流体力学特别是其中的涡旋理论成为汤姆孙最喜爱的学科之一,他受亥姆霍兹工作的启示,发现了一些有价值的定理。他航行的收获之一是在1876年发明了适用于铁船的特殊罗盘,这一发明后来为英国海军所采用,而且一直用到被现代回转罗盘代替为止。汤姆孙的企业生产了许多磁罗盘和水深探测仪,从中大为获利。基于他的实践经验和理论知识,汤姆孙感到迫切需要统一电学单位,公制的引入使法国革命向前跨了一大步,但是电学测量却产生了全新的问题。高斯和韦伯奠定了绝对单位制的理论基础,"绝对"意味着它们与特定的物质或标准无关,仅取决于普适的物理定律。在绝对单位制中如何确定刻度,如何选择合适的倍数因子使它能方便地应用于工业,如何劝说科技界共同接受这一单位制,所有这一切都是重要并且困难的任务。1861年英国科学协会任命一个委员会开始这项工作,汤姆孙是其中的一员。他们努力工作了许多年,一直到1881年,由汤姆孙和亥姆霍兹起主导作用的在巴黎召开的一次国际代表大会,和1893年,在芝加哥召开的另一次代表大会,才正式接受这一新的单位制,并采用伏特、安培、法拉和欧姆等作为电学单位,从此它们被普遍使用。然而,单位制的问题并未就此解决,后来的一些会议又改变了其中某些标准量的定义,它们的实际值也相应变动了,虽然这种变动是非常小的。开尔文一生谦虚勤奋,意志坚强,不怕失败,百折不挠。在对待困难问题上他讲:"我们都感到,对困难必须正视,不能回避;应当把它放在心里,希望能够解决它。无论如何,每个困难一定有解决的法,虽然我们可能一生没有能找到。"他这种终生不懈地为科学事业奋斗的精神,永远为后人敬仰。1896年在格拉斯哥大学庆祝他50周年教授生涯大会上,他说:"有两个字最能代表我50年内在科学研究上的奋斗,就是"失败"两字。"这足以说明他的谦虚品德。为了纪念他在科学上的功绩,国际计量大会把热力学温标(即绝对温标)称为开尔文(开氏)温标,热力学温度以开尔文为单位,是现在国际单位制中七个基本单位之一。开尔文的一生是非常成功的,他可以算作世界上最伟大的科学家中的一位。他于1907年12月17日去世时,得到了几乎整个英国和全世界科学家的哀悼。他的遗体被安葬在威斯敏斯特教堂牛顿墓的旁边。
2023-08-14 01:11:041

太阳神夜里会发电吗

不久前,21世纪经济报道的一篇《上海神秘新能源技术有望改写整个产业格局》[1]引发了人们无限的遐想。这篇奇文中的神秘海归简直像是太阳神赫利俄斯派来的门徒,声称其太阳能热发电的效率可以达到80%。赫利俄斯的馈赠太阳能是地球生物接触到的重要能量形式,当赫利俄斯每日驾驭着四匹火马所拉的太阳车在天空中驰骋而过的时候,给大地带来了巨大的能量。据粗略估算,地球1h内从太阳获得的能量要比全球人口1年所消耗的能量还多。[2]那么我们该如何利用这些能量呢?赫利俄斯赐予我们的是光和热。光可以通过对光伏电池充电的方法获取电能。光伏发电技术最先源于20世纪50年代美国贝尔实验室首次研制成功的单晶硅电池。这种依靠光伏效应产生电能的家伙很像是一个充电电池。太阳光照在光伏板上,会导致材料中的PN结发生光电效应,电子重新排列,在光伏板上表现为P极为正,N极为负。当太阳光对电池充电完成后,将PN极接到用户上,即可获取电能。[3]太阳能电池原理示意图热则可以作为太阳能热进行发电。这种发电技术相对简单,反射镜将光线聚焦到集热器上,尽可能的吸收太阳光的热能。这些热能通过热机推动发电机输出能量。是不是很像升级版的“太阳能热水器”?从21世纪经济报道的报道来看,“海归”带回来的是太阳能热发电系统。虽然新闻中将这一发电技术渲染为这位海归带回的赫利俄斯神器,但实际上太阳能热发电系统并不是什么新鲜玩意儿。美国加州的槽式抛物面太阳能热发电系统总容量已达354MW。十余年间,已向电网供应了50亿度电。因为其太阳跟踪能力差,且需要管道和泵的支持,各种阻力和热量损失导致系统的效率只有15%左右。但由于其技术成熟,仍是眼下美国太阳能热发电的主体。北京延庆也在计划建造这样的塔式太阳能热发电站。100面定日镜用以收集太阳光,反射到100米高的太阳能吸热塔的吸热器里,收集的热能加热水,产生水蒸气,从而作为动力发电。[4]塔式太阳能热发电站示意图赫利俄斯的神谕报道中的“海归”声称其太阳能热发电的转化效率可以达到80%,较之目前的太阳能热发电效率跨越了几个时代。那么他从赫利俄斯那儿带回的的神谕是什么样子的呢?让我们来看一下哪些方法可以提高太阳能发电效率吧1、更高效率的太阳能接收器对于太阳能光伏发电而言,太阳能接收器为光伏电池。由于电池中PN结纯度(即充电电池的正负极分布)等因素的影响,一般的光电转化效率只有15%~20%。目前,一些实验室特制的砷化镓光电池可以达到35%左右。[5]但光伏电池产生的是直流电,要输送至电网,还需要经过逆变器逆变为交流电。这个逆变过程也会导致一定的能量损耗,使转换效率下降5%~10%。[2]为此,我们亦需要更高效率的逆变器。使太阳能光伏发电效率能提升至30%。对于太阳能热发电来说,接受太阳能的是集热器。聚集后的太阳光直接照射到集热器的表面(即每根换热管的表面),换热管内工作介质高速流过,吸收了太阳辐射的能量,达到较高的温度和压力,从而推动热机运转。这方面我们可以选取热量吸收性能较好、利于热循环的工质,比如塔式太阳能热发电利用的是高温熔融盐;碟式太阳能热发电利用的是氢或氦。另外,集热器收集的热能转换为电能还需要配以高效的热机。这种热机的效率极限与传统能源的热机类似。区别在于常规汽轮机的蒸汽供应是由锅炉供给,蒸汽温度和压力可以达到很高,这使得目前汽轮机最高热电转化效率可以达到35%左右。而太阳能热发电的温度还无法达到锅炉燃烧的热度量值,故配备常规汽轮机后的效率极限远低于35%。集热器目前我们谈论太阳能热发电时,常常会提及斯特林热机(stirling engine),它对蒸汽要求没有常规汽轮机那么高,更适合太阳能热发电。在凡尔纳的科幻小说《海底两万里》里,那艘著名的潜艇诺第留斯号就是用斯特林机作为发动机。值得一提的是,即使在科幻小说中出尽风头,实际上自斯特林发明斯特林热机这170年以来,斯特林机基本没有什么发展,这有点类似于当年爱迪生对特斯拉交流电的无情打压。在常规汽轮机逐渐成熟的时代里,具有非凡意义的斯特林机遭到了既有技术的压制。如今新兴的太阳能热发电给了斯特林机新的机会,我们不妨期待它在传达赫利俄斯神谕的路途上发挥更大的作用。2、让阳光来得更猛烈些吧更猛烈的太阳光对于光伏发电和热发电的发电效率都有非常积极的意义。就光伏发电而言,更强烈的太阳光可以使光电效应更明显,提高光电转化率;而对于太阳能热发电而言,太阳光的猛烈程度亦直接关系到集热器的温度,集热器的温度越高,产生的蒸汽工质饱和度越高,更多的蒸汽可以参与推动涡轮机做功,效率自然也得到了提升。然而由于太阳神每天不知疲惫地从东跑到西,并且极具博爱精神,不遗余力的到处挥洒他的能量,这给太阳能科学家造成了很大的困扰。为了提高太阳能利用率,缩小太阳能发电装置的体积,一方面,我们必须让太阳能反射镜能跟踪太阳的运转,时刻能捕捉到大束的太阳光并将其聚集。为此,科学家发明了“定日镜”,它能自动跟踪太阳的运转,调整反射镜的方向,便于单元体积的光电或光热转换设备能尽可能多得获取太阳能。另一方面,为了增强对太阳光的聚光效果,我们要提高反射镜的“聚光比”。目前具备定日功能的高聚光比的反射镜造价非常高,使得定日镜的成本仍占一个太阳能电站建造成本的40%以上。这使得带定日镜的太阳能电价一直维持在0.5美元/度以上的高位。高效率与发电成本仍然是太阳能发电需要调和的矛盾。目前太阳能发电的效率前景目前在太阳能光伏发电中,主要还是方位固定的大面积平板式光电转化模式。这种模式的技术较成熟,但转化效率不高。科学家们正在研究高聚光性能的光伏电池。在定日镜的配合下,这种电池时刻处于大束太阳光的焦点上,单元面积内可以吸收更多的太阳光,所以光伏转化效率有所提高,能达到30%左右。不过,光伏电池也因此吸收了更多的热量,必须配备散热装置来降低电池的温度,以保证这些电池的工作寿命。附加的散热系统需要消耗能量,这就又降低了发电的效率。再加上前文提到的直流变交流过程中逆变器的损耗,太阳能光伏发电的效率仍然在30%以下徘徊。“物美价廉的定日镜+高转化率聚光电池+高效率的散热体系+低损耗的逆变器”是目前太阳能光伏发电的主要研究方向。在太阳能热发电中,光热转化效率最高的是碟式太阳能热发电。由于这种碟片式分布的反射镜聚光比可以达到3000以上,一方面使得接收器的吸热面积可以很小,从而实现较小的能量损失(接收器吸收的热量散失程度较低),光热转换比最高可达80%左右;另一方面这样高的聚光比可使接收器的接收温度达800 ℃以上,产生的蒸汽推动高效率的斯特林热机,实现由等容加热- 等温膨胀- 等容冷却- 等温压缩 4 个过程组成的热力循环,这个循环很接近于卡诺循环模型。根据热力学第二定律,在相同的高、低温热源温度T1与T2之间工作的一切循环中,以卡诺循环的热效率为最高。理想状态下,斯特林热机的热力使用效率几乎等于理论最大效率: [6]碟式太阳能热发电然而受限于热机的设计、工质选择、流体流动特性、传热特性、辐射换热等因素, 目前美国SIM公司生产的STM4-120型新一代斯特林发动机效率仅为29.6%。[7]欧美一些科研机构声称在实验室条件下可实现斯特林热机效率达到40%左右。[8]要特别注意的是,斯特林热机40%的效率是现有制造工艺下,最接近于理想卡诺循环下的转化效率,蒸汽推动热机做功几乎不可能再高于此值。如此算来,太阳能热发电的光能→机械能最高转化效率可以达到40%*80%=32%。热机再推动发电机运转,最终总的光电转化效率可以达到30%左右。目前中国科学电工研究所在进行的10KW碟式/斯特林系统的示范工程系统总的设计效率为17.96%。结论: 目前,无论是光伏发电还是光热发电,转化率都不可能超过40%。而那位海归带回的太阳能热发电技术号称达到80%的光电转化率。我们很难想象,这种能对人类能源结构产生巨大影响的史诗级变革会以秘密的形式,悄无声息地展开。更何况如上文所述,这种80%的光电转化率也已经突破了现有的物理学规律。我们与其拿新能源作秀,坐盼赫利俄斯的门徒终有一天从天而降,倒不如先静下心好好学一下太阳能的基础知识。作者:永垂不朽阿涅斯 链接:https://www.guokr.com/article/37936/来源:果壳本文版权属于果壳网(guokr.com),禁止转载。如有需要,请联系sns@guokr.com
2023-08-14 01:11:131

什么是卡诺循环?谢谢

循环是热力学中最理想的一种可逆循环。它以理想气体为工作物质,由两个等温过程和两个绝热过程所组成。这种循环过程是法国物理学家、工程师卡诺于1824年提出的。 (2)说明 ①在整个循环过程中,理想气体经过一系列的状态变化以后,其内能不变,但要作功,并有热量交换。循环分为四个过程进行。在p-V图上用两条等温线和两条绝热线表示(如图)。图中曲线AB和CD是温度为T1和T2的两条等温线,曲线BC和DA是两条绝热线。我们讨论按p-V图上顺时针方向沿封闭曲线ABCDA进行的循环。(这种循环叫做正循界工作物质作正循环的机器叫做热机,它是把热转变为功的一种机器。) 第一过程:A→B,等温膨胀,Q1=EB-EA+w1; 第二过程:B→C,绝热膨胀,O=Ec-EB+W2; 第三过程:C→D等温压缩,-Q2=ED-EC-W3; 第四过程:D→A,绝热压缩,O=EA-ED-W4 把上面四式相加得 Q1-Q2=W1+W2-W3-W4=W0 式中Q是从高温热源吸收的热量,Q2是向低温热源放出的热量,W是理想气体(工作物质)对外所作的净功,在数值上等于p-V图上封闭曲线所包围的面积。 Q1-Q2=W。 上式表示,理想气体经过一个正循环,从高温热源吸收的热量Q1,一部分用于对外作功,另一部分则向低温热源放出(如图)。即热量Q1不能全部转换为功W,转换为功的只是Q1-Q2。通常把热机的热效率表示为ηt=W/ Q1=( Q1-Q2) / Q1=1- Q1/ Q2 由于Q2不可能等于零,所以热机热效率总是小于l,ηt常用百分比表示。 ②卡诺从理论上进一步证明,在卡诺循环中, 等温膨胀时吸收的热量Ql=nRTl 1nV2/V1 (1) 等温压缩时放出的热量Q2=nRT2lnV3/V4, (2) 由绝热方程式TVγ-1=常量,可得T1 TV2γ-1= T2 TV3γ-1 (3) T1 TV1γ-1= T2 TV4γ-1 (4) 式中的T表示高温热源的绝对温度,T表示低温热源的绝对温度。 公式表明:一切热机要完成一次循环,都必须有高温和低温两个热源。热机的热效率只和两个热源的温度有关,和工作物质无关。两个热源的温差愈大,热效率愈高,也就是从热源所吸收的热量的利用率愈大。要提高热效率必须提高高温热源的温度,或降低低温热源的温度。一般采取前者。公式为人们指出了一条提高热机效率的途径。 ③卡诺循环也可以按p-V图的逆时针方向沿封闭曲线ADCBA进行,这种循环,叫做逆循环。在这个逆循环中,外界必须对这个从低温热源吸取热量的系统作功,只要将逆循环重复下去,就可以从低温热源中取出任意数量的热量。作逆循环的机器叫致冷机,它是利用外界作功获得低温的机器。 逆卡诺循环 它由两个等温过程和两个绝热过程组成。假设低温热源(即被冷却物体)的温度为T0,高温热源(即环境介质)的温度为Tk, 则工质的温度 在 吸热过程中为T0, 在放热过程中为Tk, 就是说在吸热和放热过程中工质与冷源及高温热源之间没有温差,即传热是在等温下进行的,压缩和膨胀过程是在没有任何损失情况下进行的。其循环过程为: 首先工质在T0下从冷源(即被冷却物体)吸取热量q0,并进行等温膨胀4-1,然后通过绝热压缩1-2,使其温度由T0升高至环境介质的温度Tk, 再在Tk下进行等温压缩2-3,并向环境介质(即高温热源)放出热量qk, 最后再进行绝热膨胀3-4,使其温度由Tk 降至T0即使工质回到初始状态4,从而完成一个循环。 对于逆卡诺循环来说,由图可知: q0=T0(S1-S4) qk=Tk(S2-S3)=Tk(S1-S4) w0=qk-q0=Tk(S1-S4)-T0(S1-S4)=(Tk-T0)(S1-S4) 则逆卡诺循环制冷系数εk 为: 由上式可见,逆卡诺循环的制冷系数与工质的性质无关,只取决于冷源(即被冷却物体)的温度 T0 和热源(即环境介质)的温度 Tk;降低 Tk,提高 T0 ,均可提高制冷系数。此外,由热力学第二定律还可以证明:“在给定的冷源和热源温度范围内工作的逆循环,以逆卡诺循环的制冷系数为最高”。任何实际制冷循环的制冷系数都小于逆卡诺循环的制冷系数。 总上所述,理想制冷循环应为逆卡诺循环。而实际上逆卡诺循环是无法实现的,但它可以用作评价实际制冷循环完善程度的指标。通常将工作于相同温度间的实际制冷循环的制冷系数ε与逆卡诺循环制冷系数εk之比,称为该制冷机循环的热力完善度,用符号η表示。即: η=ε/εk 热力完善度是用来表示制冷机循环接近逆卡诺循环循环的程度。它也是制冷循环的一个技术经济指标,但它与制冷系数的意义不同,对于工作温度不同的制冷机循环无法按其制冷系数的大小来比较循环的经济性好坏,而只能根据循环的热力完善度的大小来判断。
2023-08-14 01:13:401

什么是卡诺循环?谢谢

循环是热力学中最理想的一种可逆循环。它以理想气体为工作物质,由两个等温过程和两个绝热过程所组成。这种循环过程是法国物理学家、工程师卡诺于1824年提出的。 (2)说明 ①在整个循环过程中,理想气体经过一系列的状态变化以后,其内能不变,但要作功,并有热量交换。循环分为四个过程进行。在p-V图上用两条等温线和两条绝热线表示(如图)。图中曲线AB和CD是温度为T1和T2的两条等温线,曲线BC和DA是两条绝热线。我们讨论按p-V图上顺时针方向沿封闭曲线ABCDA进行的循环。(这种循环叫做正循界工作物质作正循环的机器叫做热机,它是把热转变为功的一种机器。) 第一过程:A→B,等温膨胀,Q1=EB-EA+w1; 第二过程:B→C,绝热膨胀,O=Ec-EB+W2; 第三过程:C→D等温压缩,-Q2=ED-EC-W3; 第四过程:D→A,绝热压缩,O=EA-ED-W4 把上面四式相加得 Q1-Q2=W1+W2-W3-W4=W0 式中Q是从高温热源吸收的热量,Q2是向低温热源放出的热量,W是理想气体(工作物质)对外所作的净功,在数值上等于p-V图上封闭曲线所包围的面积。 Q1-Q2=W。 上式表示,理想气体经过一个正循环,从高温热源吸收的热量Q1,一部分用于对外作功,另一部分则向低温热源放出(如图)。即热量Q1不能全部转换为功W,转换为功的只是Q1-Q2。通常把热机的热效率表示为ηt=W/ Q1=( Q1-Q2) / Q1=1- Q1/ Q2 由于Q2不可能等于零,所以热机热效率总是小于l,ηt常用百分比表示。 ②卡诺从理论上进一步证明,在卡诺循环中, 等温膨胀时吸收的热量Ql=nRTl 1nV2/V1 (1) 等温压缩时放出的热量Q2=nRT2lnV3/V4, (2) 由绝热方程式TVγ-1=常量,可得T1 TV2γ-1= T2 TV3γ-1 (3) T1 TV1γ-1= T2 TV4γ-1 (4) 式中的T表示高温热源的绝对温度,T表示低温热源的绝对温度。 公式表明:一切热机要完成一次循环,都必须有高温和低温两个热源。热机的热效率只和两个热源的温度有关,和工作物质无关。两个热源的温差愈大,热效率愈高,也就是从热源所吸收的热量的利用率愈大。要提高热效率必须提高高温热源的温度,或降低低温热源的温度。一般采取前者。公式为人们指出了一条提高热机效率的途径。 ③卡诺循环也可以按p-V图的逆时针方向沿封闭曲线ADCBA进行,这种循环,叫做逆循环。在这个逆循环中,外界必须对这个从低温热源吸取热量的系统作功,只要将逆循环重复下去,就可以从低温热源中取出任意数量的热量。作逆循环的机器叫致冷机,它是利用外界作功获得低温的机器。 逆卡诺循环 它由两个等温过程和两个绝热过程组成。假设低温热源(即被冷却物体)的温度为T0,高温热源(即环境介质)的温度为Tk, 则工质的温度 在 吸热过程中为T0, 在放热过程中为Tk, 就是说在吸热和放热过程中工质与冷源及高温热源之间没有温差,即传热是在等温下进行的,压缩和膨胀过程是在没有任何损失情况下进行的。其循环过程为: 首先工质在T0下从冷源(即被冷却物体)吸取热量q0,并进行等温膨胀4-1,然后通过绝热压缩1-2,使其温度由T0升高至环境介质的温度Tk, 再在Tk下进行等温压缩2-3,并向环境介质(即高温热源)放出热量qk, 最后再进行绝热膨胀3-4,使其温度由Tk 降至T0即使工质回到初始状态4,从而完成一个循环。 对于逆卡诺循环来说,由图可知: q0=T0(S1-S4) qk=Tk(S2-S3)=Tk(S1-S4) w0=qk-q0=Tk(S1-S4)-T0(S1-S4)=(Tk-T0)(S1-S4) 则逆卡诺循环制冷系数εk 为: 由上式可见,逆卡诺循环的制冷系数与工质的性质无关,只取决于冷源(即被冷却物体)的温度 T0 和热源(即环境介质)的温度 Tk;降低 Tk,提高 T0 ,均可提高制冷系数。此外,由热力学第二定律还可以证明:“在给定的冷源和热源温度范围内工作的逆循环,以逆卡诺循环的制冷系数为最高”。任何实际制冷循环的制冷系数都小于逆卡诺循环的制冷系数。 总上所述,理想制冷循环应为逆卡诺循环。而实际上逆卡诺循环是无法实现的,但它可以用作评价实际制冷循环完善程度的指标。通常将工作于相同温度间的实际制冷循环的制冷系数ε与逆卡诺循环制冷系数εk之比,称为该制冷机循环的热力完善度,用符号η表示。即: η=ε/εk 热力完善度是用来表示制冷机循环接近逆卡诺循环循环的程度。它也是制冷循环的一个技术经济指标,但它与制冷系数的意义不同,对于工作温度不同的制冷机循环无法按其制冷系数的大小来比较循环的经济性好坏,而只能根据循环的热力完善度的大小来判断。
2023-08-14 01:13:571

压缩机原理图

2023-08-14 01:14:282

空调压缩机原理图

压缩机是制冷系统的心脏,无论是空调、冷库、化工制冷工艺等等工况都要有压缩机这个重要的环节来做保障!制冷压缩机种类和形式很多,根据原理可分容积型和速度型两类,其中容积式是最为普遍的。压缩机是如何压缩气体的呢?简单而说就是通过改变气体的容积来完成气体的压缩和输送过程!任何动力设备都需要有个原动力来作功完成,压缩机也是一样,它需要一个电动机(马达)来带动。容积型压缩机又分为往复式活塞式和回转式两种。1、往复活塞式是通过活塞在气缸内做往复运动改变气体工作容积;活塞式压缩机历史悠久,生产技术成熟。2、回转式压缩机包括刮片(滑片)旋转式压缩机、螺杆式压缩机,目前国内生产的空调器多数采用旋转式压缩机;螺杆式压缩机主要用于大型制冷设备,现在一些大型商场办公楼内也有很多采用螺杆式压缩机。制冷系统主要分几个设备:压缩机-冷凝器-节流装置-蒸发器它的基本原理是这样的,压缩机将冷冻剂压缩成高压饱和气体(氨或氟里昂),这种气态冷冻剂再经过冷凝器冷凝。通过节流装置节流之后,通入到蒸发器中,将所需要冷却的媒介冷却换热。例如将蒸发器连接到楼里的各个房间,蒸发器内的蛇行管将同空气进行换热,再通过鼓风将冷气吹向房间的空气当中。而蒸发器蛇行管内的冷冻剂换热后变成低压蒸气回到压缩机,再被压缩机压缩,这样循环利用就完成了制冷系统。制热系统也大致是这个原理,只是方式相反。补充说明:压缩机、冷凝器、蒸发器是三大核心块,楼主注意,任何制冷系统都是这三块来完成的,包括你们的设备也是一样,流程、原理就是我上面说的,而你所说的抽取地下水只是一个辅助过程,水是用来冷却冷冻剂(氨或氟里昂)的,也就是设计院中的所说术语--循环水,一般需要配套一个冷却塔,可以将水风冷后再处理循环利用或直接排走。制冷,压缩机对工质(一般是氟里昂)进行压缩时,工质的温度会升高,在室外散热后,导回室内膨胀,膨胀时会吸热,而且因为在室外散失了一部分热量,所以膨胀后的温度,一般低于压缩前的温度。制热,就是反过来啦~~这种制热的东西叫热泵,类似于水泵,楼主一定能明白,水泵是将水抽高,热泵是将热由低温物体抽向高温物体,要付出代价的,代价就是要消耗机械功,说的具体些就是消耗压缩机所做的功。工程热力学中对此有论述,楼主有空钻研一下吧,尤其注意关于卡诺循环的讲解。空调分室内机和室外机两部分啊(中央空调也是,室外机就是房顶上那个大包嘛!),室内就是需要调节温度的空间,室外就是大气。
2023-08-14 01:14:451

中央空调压缩机原理

压缩制冷剂(例如氟利昂)变成液态。然后利用液态在常压下变气态时的吸热现象制冷。空气密度是很小的。你拿根打针用的针管。抽满一针管空气,用手堵住出气口,推动针管就是在压缩空气了。用针管就可以吧气体压缩三分之一的体积。空气压缩之后密度会变大体积会变小。会散发热量。理论上有足够的压力和足够低的温度。任何气体都可以压缩成液态的。
2023-08-14 01:14:565

什么是空气源热泵,工作原理又是什么呢

空气源热泵是一种利用高位能使热量从低位热源空气流向高位热源的节能装置。它是热泵的一种形式。顾名思义,热泵也就是像泵那样,可以把不能直接利用的低位热能(如空气、土壤、水中所含的热量)转换为可以利用的高位热能,从而达到节约部分高位能(如煤、燃气、油、电能等)的目的简单说就类似于用空调压缩机制热原理一样。用空气及水中的热量供给需要加热的水或空气。空气能热泵是按照“逆卡诺”原理工作的,逆卡诺循环原理。通过压缩机系统运转工作,吸收空气中热量制造热水。具体过程是:压缩机将冷媒压缩,压缩后温度升高地冷媒,经过水箱中的冷凝器制造热水,热交换后的冷媒回到压缩机进行下一循环,在这一过程中,空气热量通过蒸发器被吸收导入冷媒中,冷媒再导入水中,产生热水。通过压缩机空气制热的新一代热水器,即空气能热泵热水器。形象地说,就是“室外机”像打气筒一样压缩空气,使空气温度升高,然后通过一种-17℃就会沸腾的液体传导热量到室内的储水箱内,再将热量释放传导到水中。
2023-08-14 01:15:412

空气源热泵的原理是什么?

逆卡诺循环
2023-08-14 01:15:581

汽车上的活塞分为几种?

活塞的结构按其作用可分为 顶部 、 头部 和 裙部 三部分组成,其中引导活塞运动和承受侧压力的是 裙部
2023-08-14 01:16:186

烘干热泵的工作原理是什么、?

高温热泵烘干机组,主要有翅片式蒸发器(外机)、压缩机、翅片冷凝器(内机)和膨胀阀四部分组成,通过让工质不断完成蒸发(吸取室外环境中的热量)→压缩→冷凝(在室内烘干房中放出热量)→节流→再蒸发的热力循环过程,从而将外部低温环境里的热量转移到烘干房中,冷媒在压缩机的作用下在系统内循环流动。它在压缩机内完成气态的升压升温过程(温度高达100℃),它进入内机释放出高温热量加热烘干房内空气,同时自己被冷却并转化为流液态,当它运行到外机后,液态迅速吸热蒸发再次转化为气态,同时温度可下降至-20℃~-30℃,这时吸热器周边的空气就会源源不断地将热量传递给冷媒。高温热泵烘干原理图高温热泵烘干机组在工作时,与普通的空调以及热泵机组一样,在蒸发器中吸收低温环境介质中的能量QA:它本身消耗一部分能量,即压缩机耗电QB:通过工质循环系统在冷凝器中时行放热QC,QC=QA+QB,因此高温热泵烘干机组的效率为(QB+QC)/QB,而其他加热设备的加热效率都小于1,因此高温热泵烘干机组加热效率远大于其他加热设备的效率,可以看出,采用高温热泵烘干机组作为烘干装置可以节省能源,同时还降低CO2等污染物的排放量,实现节能减排的效果。
2023-08-14 01:16:476

卡诺循环的相关公式

由两个定温过程和两个绝热过程(见热力过程)所组成的可逆的热力循环。卡诺循环是19世纪法国工程师S.卡诺提出的,因而得名。卡诺循环分正、逆两种。在压-容(p-V)图和温-熵(T-S)图中(见图), ɑ-b-c-d-ɑ为正卡诺循环,ɑ-b为可逆定温吸热过程,工质在温度T1下从相同温度的高温热源吸入热量Q1;b-c为可逆绝热过程,工质温度自T1降为T2;c-d为可逆定温放热过程,工质在温度T2下向相同温度的低温热源排放热量Q2;d-ɑ为可逆绝热过程,工质温度自T2升高到T1,完成一个可逆循环,对外作出净功W。逆卡诺循环与上述正向循环反向,沿ɑ-d-c-b-ɑ方向,因而Q2是工质从低温热源吸入的热量(通称制冷量),Q1是工质排放给高温热源的热量,W是完成逆向循环所需的外界输入的净功。正卡诺循环的热经济指标用卡诺循环热效率ηt表示,逆卡诺循环的热经济指标用卡诺制冷系数ε表示或用卡诺供暖系数ε′表示根据热力学第二定律,在相同的高、低温热源温度T1与T2之间工作的一切循环中,以卡诺循环的热效率为最高,称为卡诺定理。卡诺循环具有极为重要的理论和实际意义。虽然,完全按照卡诺循环工作的装置是难以实现的,但是卡诺循环却为提高各种循环热效率指明了方向和给出了极限值。
2023-08-14 01:17:201

如何推导卡诺循环的效率公式

不知道你在上大学没有,如果上大学的话去图书馆找找热力学的书籍就会有关这个的详细推导,我记得好像是四个过程
2023-08-14 01:17:343

卡诺循环热效率公式及含义

公式:ηt=(T1一T2)/T1)ηt——卡诺循环热效率T1——高温热源的温度,KT2——低温热源的温度,K
2023-08-14 01:17:573

卡诺循环与逆卡诺循环的分析!

①在整个循环过程中,理想气体经过一系列的状态变化以后,其内能不变,但要作功,并有热量交换。循环分为四个过程进行。在p-V图上用两条等温线和两条绝热线表示(如图)。图中曲线AB和CD是温度为T1和T2的两条等温线,曲线BC和DA是两条绝热线。我们讨论按p-V图上顺时针方向沿封闭曲线ABCDA进行的循环。(这种循环叫做正循界工作物质作正循环的机器叫做热机,它是把热转变为功的一种机器。) 第一过程:A→B,等温膨胀,Q1=EB-EA+w1; 第二过程:B→C,绝热膨胀,O=Ec-EB+W2; 第三过程:C→D等温压缩,-Q2=ED-EC-W3; 第四过程:D→A,绝热压缩,O=EA-ED-W4 把上面四式相加得 Q1-Q2=W1+W2-W3-W4=W0 式中Q是从高温热源吸收的热量,Q2是向低温热源放出的热量,W是理想气体(工作物质)对外所作的净功,在数值上等于p-V图上封闭曲线所包围的面积。 Q1-Q2=W。 上式表示,理想气体经过一个正循环,从高温热源吸收的热量Q1,一部分用于对外作功,另一部分则向低温热源放出(如图)。即热量Q1不能全部转换为功W,转换为功的只是Q1-Q2。通常把热机的热效率表示为ηt=W/ Q1=( Q1-Q2) / Q1=1- Q1/ Q2 由于Q2不可能等于零,所以热机热效率总是小于l,ηt常用百分比表示。 ②卡诺从理论上进一步证明,在卡诺循环中, 等温膨胀时吸收的热量Ql=nRTl 1nV2/V1 (1) 等温压缩时放出的热量Q2=nRT2lnV3/V4, (2) 由绝热方程式TVγ-1=常量,可得T1 TV2γ-1= T2 TV3γ-1 (3) T1 TV1γ-1= T2 TV4γ-1 (4) 式中的T表示高温热源的绝对温度,T表示低温热源的绝对温度。 公式表明:一切热机要完成一次循环,都必须有高温和低温两个热源。热机的热效率只和两个热源的温度有关,和工作物质无关。两个热源的温差愈大,热效率愈高,也就是从热源所吸收的热量的利用率愈大。要提高热效率必须提高高温热源的温度,或降低低温热源的温度。一般采取前者。公式为人们指出了一条提高热机效率的途径。 ③卡诺循环也可以按p-V图的逆时针方向沿封闭曲线ADCBA进行,这种循环,叫做逆循环。在这个逆循环中,外界必须对这个从低温热源吸取热量的系统作功,只要将逆循环重复下去,就可以从低温热源中取出任意数量的热量。作逆循环的机器叫致冷机,它是利用外界作功获得低温的机器。 逆卡诺循环 它由两个等温过程和两个绝热过程组成。假设低温热源(即被冷却物体)的温度为T0,高温热源(即环境介质)的温度为Tk, 则工质的温度 在 吸热过程中为T0, 在放热过程中为Tk, 就是说在吸热和放热过程中工质与冷源及高温热源之间没有温差,即传热是在等温下进行的,压缩和膨胀过程是在没有任何损失情况下进行的。其循环过程为: 首先工质在T0下从冷源(即被冷却物体)吸取热量q0,并进行等温膨胀4-1,然后通过绝热压缩1-2,使其温度由T0升高至环境介质的温度Tk, 再在Tk下进行等温压缩2-3,并向环境介质(即高温热源)放出热量qk, 最后再进行绝热膨胀3-4,使其温度由Tk 降至T0即使工质回到初始状态4,从而完成一个循环。 对于逆卡诺循环来说,由图可知: q0=T0(S1-S4) qk=Tk(S2-S3)=Tk(S1-S4) w0=qk-q0=Tk(S1-S4)-T0(S1-S4)=(Tk-T0)(S1-S4) 则逆卡诺循环制冷系数εk 为: 由上式可见,逆卡诺循环的制冷系数与工质的性质无关,只取决于冷源(即被冷却物体)的温度 T0 和热源(即环境介质)的温度 Tk;降低 Tk,提高 T0 ,均可提高制冷系数。此外,由热力学第二定律还可以证明:“在给定的冷源和热源温度范围内工作的逆循环,以逆卡诺循环的制冷系数为最高”。任何实际制冷循环的制冷系数都小于逆卡诺循环的制冷系数。 总上所述,理想制冷循环应为逆卡诺循环。而实际上逆卡诺循环是无法实现的,但它可以用作评价实际制冷循环完善程度的指标。通常将工作于相同温度间的实际制冷循环的制冷系数ε与逆卡诺循环制冷系数εk之比,称为该制冷机循环的热力完善度,用符号η表示。即: η=ε/εk 热力完善度是用来表示制冷机循环接近逆卡诺循环循环的程度。它也是制冷循环的一个技术经济指标,但它与制冷系数的意义不同,对于工作温度不同的制冷机循环无法按其制冷系数的大小来比较循环的经济性好坏,而只能根据循环的热力完善度的大小来判断。希望采纳
2023-08-14 01:18:061

大学物理热力学基础问题。 P-V图怎么看。绝热线和等温线和卡诺循环怎么看?

卡诺循环是热力学中最理想的一种可逆循环。它以理想气体为工作物质,由两个等温过程和两个绝热过程所组成。这种循环过程是法国物理学家、工程师卡诺于1824年提出的。(2)说明 ①在整个循环过程中,理想气体经过一系列的状态变化以后,其内能不变,但要作功,并有热量交换。循环分为四个过程进行。在p-V图上用两条等温线和两条绝热线表示(如图)。图中曲线AB和CD是温度为T1和T2的两条等温线,曲线BC和DA是两条绝热线。我们讨论按p-V图上顺时针方向沿封闭曲线ABCDA进行的循环。(这种循环叫做正循界工作物质作正循环的机器叫做热机,它是把热转变为功的一种机器。) 第一过程:A→B,等温膨胀,Q1=EB-EA+w1; 第二过程:B→C,绝热膨胀,O=Ec-EB+W2; 第三过程:C→D等温压缩,-Q2=ED-EC-W3; 第四过程:D→A,绝热压缩,O=EA-ED-W4 把上面四式相加得 Q1-Q2=W1+W2-W3-W4=W0式中Q是从高温热源吸收的热量,Q2是向低温热源放出的热量,W是理想气体(工作物质)对外所作的净功,在数值上等于p-V图上封闭曲线所包围的面积。 Q1-Q2=W。上式表示,理想气体经过一个正循环,从高温热源吸收的热量Q1,一部分用于对外作功,另一部分则向低温热源放出(如图)。即热量Q1不能全部转换为功W,转换为功的只是Q1-Q2。通常把热机的热效率表示为ηt=W/ Q1=( Q1-Q2) / Q1=1- Q1/ Q2 由于Q2不可能等于零,所以热机热效率总是小于l,ηt常用百分比表示。 ②卡诺从理论上进一步证明,在卡诺循环中, 等温膨胀时吸收的热量Ql=nRTl 1nV2/V1 (1) 等温压缩时放出的热量Q2=nRT2lnV3/V4, (2) 由绝热方程式TVγ-1=常量,可得T1 TV2γ-1= T2 TV3γ-1 (3) T1 TV1γ-1= T2 TV4γ-1 (4)式中的T表示高温热源的绝对温度,T表示低温热源的绝对温度。 公式表明:一切热机要完成一次循环,都必须有高温和低温两个热源。热机的热效率只和两个热源的温度有关,和工作物质无关。两个热源的温差愈大,热效率愈高,也就是从热源所吸收的热量的利用率愈大。要提高热效率必须提高高温热源的温度,或降低低温热源的温度。一般采取前者。公式为人们指出了一条提高热机效率的途径。 ③卡诺循环也可以按p-V图的逆时针方向沿封闭曲线ADCBA进行,这种循环,叫做逆循环。在这个逆循环中,外界必须对这个从低温热源吸取热量的系统作功,只要将逆循环重复下去,就可以从低温热源中取出任意数量的热量。作逆循环的机器叫致冷机,它是利用外界作功获得低温的机器。逆卡诺循环它由两个等温过程和两个绝热过程组成。假设低温热源(即被冷却物体)的温度为T0,高温热源(即环境介质)的温度为Tk, 则工质的温度 在 吸热过程中为T0, 在放热过程中为Tk, 就是说在吸热和放热过程中工质与冷源及高温热源之间没有温差,即传热是在等温下进行的,压缩和膨胀过程是在没有任何损失情况下进行的。其循环过程为:首先工质在T0下从冷源(即被冷却物体)吸取热量q0,并进行等温膨胀4-1,然后通过绝热压缩1-2,使其温度由T0升高至环境介质的温度Tk, 再在Tk下进行等温压缩2-3,并向环境介质(即高温热源)放出热量qk, 最后再进行绝热膨胀3-4,使其温度由Tk 降至T0即使工质回到初始状态4,从而完成一个循环。对于逆卡诺循环来说,由图可知: q0=T0(S1-S4) qk=Tk(S2-S3)=Tk(S1-S4)w0=qk-q0=Tk(S1-S4)-T0(S1-S4)=(Tk-T0)(S1-S4)则逆卡诺循环制冷系数εk 为:由上式可见,逆卡诺循环的制冷系数与工质的性质无关,只取决于冷源(即被冷却物体)的温度 T0 和热源(即环境介质)的温度 Tk;降低 Tk,提高 T0 ,均可提高制冷系数。此外,由热力学第二定律还可以证明:“在给定的冷源和热源温度范围内工作的逆循环,以逆卡诺循环的制冷系数为最高”。任何实际制冷循环的制冷系数都小于逆卡诺循环的制冷系数。总上所述,理想制冷循环应为逆卡诺循环。而实际上逆卡诺循环是无法实现的,但它可以用作评价实际制冷循环完善程度的指标。通常将工作于相同温度间的实际制冷循环的制冷系数ε与逆卡诺循环制冷系数εk之比,称为该制冷机循环的热力完善度,用符号η表示。即: η=ε/εk热力完善度是用来表示制冷机循环接近逆卡诺循环循环的程度。它也是制冷循环的一个技术经济指标,但它与制冷系数的意义不同,对于工作温度不同的制冷机循环无法按其制冷系数的大小来比较循环的经济性好坏,而只能根据循环的热力完善度的大小来判断。
2023-08-14 01:18:321

高分求.~~~”卡诺循环”和”逆卡诺循环”有何区别

卡诺循环就是为了研究热机的一种假设模型逆卡诺循环则是解释制冷机的模型要问区别那就是具体过程的顺序反过来就可以卡诺循环的四个过程:等温膨胀 绝热膨胀 等温压缩 绝热压缩逆卡诺循环就倒过来一个是利用热源的一部分热做功,另一个是利用做功把热量从低温物质转移到高温物质。这个是粗略的比较。
2023-08-14 01:18:422

物理,四题 谢谢

循环是可逆的热力循环中的理想。它是一种理想的气体为工质,它由两个等温过程和两个绝热过程组成。这个周期是法国物理学家,工程师卡诺提出了1824年(2)说明①在整个周期中,通过在一系列国家改变其内部的能量不变的理想气体,但做的工作,并且进行热交换。周期分为四个过程。在PV图显示(如图)有两个等温线和两个绝热。曲线AB和CD是T1和T2的温度,2等温线曲面BC和DA是两个绝热。我们通过在沿着一个闭合曲线ABCDA进行顺时针方向的pV图讨论的循环。 (这个周期被称为通过该材料的正社区工作作为一个机器称为循环热机,其热转变为机器的一个函数。)第一步骤:A→B,等温膨胀,Q1 = EB-EA + W1; 第二个进程:B→C,绝热膨胀,O =的Ec-EB + W2; 第三种方法:C→D的等温压缩,-Q2 = ED-EC-W3; 第四道工序:D→A,绝热压缩,O = EA-ED-W4 加入四式Q1-Q2 = W1 + W2 -W3-W4 = W0 其中Q从热源吸收的热量,Q2被排出到低温热源,W是理想气体(工作物)上的面积等于PV图的值进行外部网工作封闭由封闭曲线。 Q1-Q2 = W·论式,理想的气体通过一个常规周期,从热源Q 1所吸收的热量,对外部工作的一部分,并部分地向低温热释放(图)。这还不是全部转化为热量Q1功率W,转化为工作刚刚Q1-Q2。热机的热效率,通常表示为ηT= W / Q 1 =(Q1-Q2)/ Q 1 = 1 - Q 1 / Q 2 Q2由于零是不可能的,因此,将热机的热效率始终比升以下, ηT通常以百分比表示。 ②卡诺理论进一步证明了卡诺循环,当等温膨胀吸热QL = NRTL 1nV2 / V1(1)的等温压缩时所释放的热量Q2 = nRT2lnV3 / V4,(2)由绝热方程TVγ-1 =常数,我们可以得到的T1TV2γ-1 = T 2TV3γ-1(3) T1TV1γ-1 = T2的TV4γ-1(4)中国其中T是高温热源的绝对温度,T为低温热源的绝对温度。 公式表明:所有的热量保密完成一个周期,必须有两个高低温热源。热机的热效率,只有两个热源的温度,和独立的工作物质。越大两个热源之间的温度差,更高的热效率,这是将热从由更大吸收的热量的利用率。以提高热源温度的热效率,必须增加或降低低温热源的温度。一般取前者。它指出,公式为提高热机的方法的效率。 ③卡诺循环PV图,也可以逆时针沿闭合曲线ADCBA进行这个循环,称为逆循环。在这个逆循环,外界必须作出这样的系统,用于从低温热源功率上的热量,只要逆循环反复进行,则可以从低温热源移除任何数量的热量。对于一个机器称为逆循环冷却器,它是利用外界作功来获得低温机。 逆卡诺循环由两个等温过程和两个绝热过程组成。假设低温热源(即冷却对象)温度T0,高温热源(即环境介质)温度Tk时,工作流体在吸热过程为T 0,则放热过程为Tk的温度,即在工作流体与冷源和热源之间的温度差之间没有吸热和放热过程中,该热传递在没有任何损耗的情况下等温压缩和膨胀过程中进行。它的周期是:从冷源绘制在T0(即冷却体)通过绝热压缩热Q0,并等温膨胀4-1,然后1-2,它的温度从T 0升高到温度Tk环境第一工作流体介质中,然后在Tk的等温压缩2-3,对环境介质(即高温热源)放出热量的qk,最后3-4绝热膨胀,其温度由Tk的T0的下降,即使工人转回到初始状态4中,从而完成一个循环。 对于逆卡诺循环,图中显示: Q0 = T0(S1-S4)的qk = Tk的(S2-S3)= Tk的(S1-S4) W0 =的qk -q0 = Tk的(S1-S4)-T0(S1-S4)=(Tk的-T 0)(S1-S4)逆卡诺循环的制冷系数εk为:从上述公式可看出,无论逆卡诺循环工作流体的冷却系数的性质和只取决于冷源(即冷却体)温度T0和热源(即环境介质)温度Tk; Tk的降低,提高T0,可以提高散热系数。另外,根据热力学第二定律也可以证明:“。冷加工和热源的温度在给定范围内的逆循环,以逆卡诺循环的制冷系数为最高”不到任何实际制冷循环系数逆卡诺循环的制冷系数。最后的总,理想的制冷循环应逆卡诺循环。实际上逆卡诺循环是无法实现的,但它可以被用来作为冷冻循环评估的完美指标的实际程度。热成熟比通常工作在ε实际制冷循环系数之间相同的温度和逆卡诺循环的制冷系数εk的,称为制冷循环中,由符号η表示。即:η=ε/εk完美程度的热被用来指示如何接近冰箱逆卡诺循环循环循环。它也是制冷循环的技术经济指标,但它是一个不同的感制冷系数的,它的大小不能被用来比较循环冷却系数经济的好坏为不同的工作温度冷却器循环,而是仅根据热力学循环的完美大小来确定的程度。
2023-08-14 01:19:391

艾格特的足球明星

姓名:艾格特英文名: Aegerter生日:1980-05-05场上位置:中前卫合同到期:2010-06-30身高:178厘米体重:68公斤惯用脚:左脚出生地:未知(瑞士)国籍:瑞士代表国家队:出场0次,进0球欧洲三大杯:出场26次,进4球欧洲冠军联赛:出场12次,进2球 艾格特家用中央空调式热水器引领新一人热水器市场热潮为保证企业的可持续发展,云田公司组织一支精干的技术人才队伍。经过两年刻苦努力及反复检验测试。终于在2007年初正式将艾格特弟四代空调式热水器推上市场,上市伊始,便得到了社会各界方方面面消费者的好评。艾格特第四代空调式热水器不仅外观设计新颖独特,而且安装使用方便。可以广泛应用各类家庭、公寓、复式楼和别墅等场所。是新型的家用中央热水系统。1、实用新型:独特的承压水箱外挂设计,不占用家庭内任何空间。适用进入各类家庭。2、安全保障: 没有中毒、爆炸、触电的危险,有效保证人身安全。3、即开即用: 使用方便简单,全天候24小时为全家人提供服务。4、节能环保: 耗能是电热水器的1/4,燃气热水器的1/3,太阳能热水器的1/2。不产生任何废气、废物、废渣,保证环保、清新的生活环境。正因为艾格特第四代热水器具有美观大方、人居智能的优点和过硬的产品产品质量。先后获得国家六项专利证书、ISO-9001质量体系认证、3C电器认证和欧盟CE电器认证。并由中国人民保险公司承保全款机型。 为此,在国家在“两会”提出节能减排的方针政策期间。艾格特第四代空调式热水器被凤凰卫视采访并全球转播。并在CCTV和各地方电台播出形象广告宣传片。艾格特在国内热水器行业内处于技术依靠地位,品牌形象家喻户晓。 工作原理图工作原理艾格特空调式热水器是继燃气热水器、电热水器、太阳能热水器升级以后的第四代家用热水器。它利用“逆卡诺循环”的原理在主机通过制冷剂大量吸收空气中的热能,经过压缩机做功升温,然后用热交换机把热能释放到水中加热加以利用。主机只需要消耗一小部分的电能满足空气压缩机和风机等设备,就可将处于低温环境空气中的热量转移到水箱中,据此原理我们生产出高效、安全、节能、环保、方便的产品“制热过程中的能量转换效率最高可达450%以上。使用期长达15年的艾格特空调式热水器!” 空调式热水器安装示意图示意图说明 主机经过热泵压缩,将大气中的热量转化到承压水箱中使水制热。图中显示蓝色是冷水道,红色是热水管道,能同时向各个洗手间或厨房,因首创把主机和承压水箱(可保温有压力)全部放置在室外,丝毫不占用房子空间,有时间温度微电脑自动控制,帮在任何时间都有热水,随时调温想用就用,此机的工作原理解决了热水器的许多弊病。空调式热水器客户安装实景中小机型是经典与现代的完美组合,能够用理性而睿智的态度演义您讲究高品质且简单舒适的生活态度。大机型容量,舒适一点。温暖而又低调地调地奢华着,肯定自己才能标榜自己。舒适是在一举手,一投足之间。更是一道生活中不可逾越的风景。以下安装实景仅供客户参考,具体安装须根据现场环境由专业人员操作执行!艾格特走进千家万户,随时随地随心所浴不受寅摆放地方的限制“零空间”占用。主机及水箱像空调一样悬挂于室外墙。流线型的外形,清雅美观。来满足您对家庭整体设计风格的选择。本产品不但无须人手开关及打理,而且可以让您的家中任何需要热水的地方全天候24小时即开即用,无须等待。感受犹如置身“五星级”酒店那样方便、舒适、快捷。 六大优势之一外挂式设计独创新颖的外观设计。首创主机+水箱可外墙悬挂。真正到室内零空间占用。解决传统机型,位置的空间摆放限制。独有的外型设计与众不同,能进入每个不同的千家万户。真正家用中央热水系统,获6项国家专利。六大优势之二方便、舒适不受四季天气及阴雨天影响。全天候二十四小时即开即用。特制的承压水箱内胆,保证水量充足洗着方便、舒适。六大优势之三安全可靠去除了前三代的大部分弊病,如煤气中毒、缺氧杜绝爆炸、漏电等。由于空调式热水器克服了前三代热水器的弊端,因而彻底改变了热水器市场。因为这种新型热能来源于空气,因而不存在触电、中毒、隐患,使用更安全、更环保、更节约,能效比高达450%六大优势之四环保、节能、减排响应国家号召的节能减排,因为此热泵产生热量制取热水,从空气之中吸收的热量,是比其他热水器的成本更低,而且特别环保,并在小区内产生热效应。在大多数欧美国家,它可已进入了千家万户;有的发达国家使用的比例高达70%;在日本、政府也正在增加补贴,促进第四代热水器市场的发展。六大优势之五人居智能本品采用微电脑控制器,时刻显示运形状态。自动保温及停电保护启动系统等,像酒店一样,随时想洗就洗。可全天候自动运行,全方位的提供洗浴用水以及洗菜、做饭,只要有水管连接的地方,随时都可以使用到热水,真正做到家用中央热水系统。由于空调式热水器可靠的安全性与良好的保温性,可长时间保温,这就是它能节约的关键所在!六大优势之六节能、省钱、独离尊贵中央供热水器系统,超长使用寿命达10-15年,高回报投资收益,省钱、省心,一次投资长期使用。专家认为,中国属于资源短缺的国家,燃气资源,电力资源相对缺乏,所以空调式热水器必将受到政府和广大用户的青睐,并必定是未来市场的一匹黑马。
2023-08-14 01:19:511

阿玛迪斯战记lob.exe下载

我有啊,可以传给你,加170239288
2023-08-14 01:15:184

空气和水中苹果氧化的原理

氧气不易溶于水 苹果氧化是因为苹果中的二价铁被氧气氧化成三价。
2023-08-14 01:15:182

物流专员工资这么高真的假的? 有做过这份工作的朋友吗

假的,苏州招聘过去,其实是劳务公司在帮合作工厂招聘普工,而且还交七七八八的一些费用(到苏州的住宿费170多、体检费200多、买被子350元等),承诺转正后退回,其实压根就没有,9月份去苏州应聘,没想到一个物流专员尽有50多人去应聘,到苏州后第二天一早会安排大巴车送到各个合作工厂做普工,当时我们有二十多人被送去泰州进厂,说是一个月后可转正,想想每天都从全国各地赶来的人,哪里可以转正的,只不过就是到工厂做普工,上了半天班,第二天果断走人。
2023-08-14 01:15:224

求东方神起TOHOSHINKI-26th Survivor中文歌词

SURVIVOR - 东方神起 日文+罗马音+中文翻译制作:芽芽Everytime Everyday 今谁もが Survivor everytime everyday imadaremoga survivoreverytime everyday 现在谁都是survivorLooking for Everywhere この事态に Don"t give up looking for everwhere konochitaini don`t give uplooking for everywhere 现在这种局面 don`t give upここから立ち上がって光探して kokokaratachikagatte hikarisagashite从这里站起来 寻找光芒チャンスに変えよう一绪に Let"s try chance nikaeyou ishyoni let`s try将它变成机会 一起let`s tryOh baby let"s try! oh baby let`s try心に One Smile 见つけたら Shine on me kokoroni one smile miciketara shine on me给心 one smile 如果发现 shine on meTwo Smile 重ねたら Shine on me two smile kasanetara shine on metwo smile 如果重叠 shine on me世界が辉くように Smile Smile segaigakagayakuyouni smile smile让世界闪耀 smile smile 生き抜く Survivor ikiruku surivor努力活出 survivor君がいれば回り道でも Not so bad kimigaireba mawarimichidemo not so bad只要有你 即使绕道 not s bad忘れかけた大切なもの Rememberwasurekaketadaisetsunamono remember忘却的珍贵事物 rememberひとりではできないことでもhotoridewadekinaikotodemo 无法独自完成的事情気持ちを合わせて始めれば We can kimchioawasetehajimereba we can心绪交融开始吧 we canOh baby we can! oh baby we canどこかに One Dream いつの日か Still on dokokani one dream icinohika still on无论何时 one dream 无论何地 still onTwo Dream 动き出す Brand new worldtwo dream udokikasu brand new worldtwo dream 出动吧 brand new world谁かを爱するように Dream Dream dareoaisuruyouni dream dream爱上谁 dream dream抱きしめて daikishimete拥抱吧心に One Love 明日なら So easy kokoroni one love ashitanara so easy给心 one love 如果明天 so easyTwo Love 繋いだら Be happy two love cinaidara be happytwo love 如果相连 be happy自分を信じるように Love Love jibuoxinjiruyouni love love相信自己 love love生き抜く Survivor ikiruku survivor努力活出 survvor谁もが Survivordaremoga survivor 每个人都是 survivor共に行く Survivortomoniiku survivor一起走下去 surviorsmile dream loveEverybody Everybody night everybody everybody night心に One Smile 见つけたら Shine on me kokoroni one smile miciketara shine on me给心 one smile 如果发现 shine on meTwo Smile 重ねたら Shine on metwo smile kasanetara shine on metwo smile 如果重叠 shine on me世界が辉くように Smile Smilesegaigakagayakuyouni smile smile 让世界闪耀 smile smile抱きしめて生きようdaikishimeteikiyou 拥抱着活下去心に One Love 明日なら So easy kokoroni one love ashitanara so easy给心 one love 如果明天 so easyTwo Love 繋いだら Be happytwo love cinaidara be happytwo love 如果相连 be happy自分を信じるように Love Love jibuoxinjiruyouni love love相信自己 love love生き抜く Survivorikiruku surivor 努力活出 survivor
2023-08-14 01:15:223

谁知道万宝路的由来?

MenAlwaysRemenberLoveBecauseOfRomanceOnly
2023-08-14 01:15:225

透析的主要疗法

将患者的血液和透析液同时引进透析器(两者的流动方向相反),利用透析器(人工肾)的半透膜,将血中蓄积的过多毒素和过多的水分清出体外,并补充碱基以纠正酸中毒,调整电解质紊乱,替代肾脏的排泄功能。血液透析器俗称人工肾,有空心纤维型、盘管型及平板型3种 。最常用的是空心纤维型 ,由1~1.5万根空心纤维组成,空心纤维的壁即透析膜,具半透膜性质。血液透析时血液流入每根空心纤维内,而透析液在每根空心纤维外流过 ,血液的流动方向与透析液流动方向相反,通过半透膜原理清除毒物,通过超滤及渗透清除水分。适应症和禁忌症血液透析的适应症包括:①急性肾功能衰竭。②急性药物或毒物中毒。③慢性肾功能衰竭。④肾移植前的肾功能衰竭或移植后排异反应使移植肾无功能者。⑤其他疾病(肝功能衰竭、精神分裂症、牛皮癣等)。血液透析的相对禁忌症包括:①病情极危重、低血压、休克者。②严重感染败血症者。③严重心肌功能不全或冠心病者。④大手术后3日内者。⑤严重出血倾向 、脑出血及严重贫血者。⑥精神病不合作者。⑦恶性肿瘤患者。一般患者需每周血液透析3次,每次4~5小时 。应尽早开始透析以利纠正由于毒素蓄积过多导致的不可逆性脏器损伤及机体的代谢紊乱,当肌酐清除率下降为10~12mL/min时即应开始透析。15~60岁患者透析效果好且安全,但由于透析技术的不断改进和新透析设备的不断出现,70岁以上的患者亦可获得好疗效。为保证透析患者的生存质量 ,提高康复率 ,血透患者应保证每日摄入蛋白质1.0~1.2克/千克及146.3千焦/千克,同时应摄入足够的水溶性维生素及微量元素以补充透析丢失量。透析患者的5年存活率各国报道不一,约为50%~80%,10年存活率超过50%者亦有报道。什么情况下适合做血液透析肾脏病人什么情况下适合进行血液透析?血液透析无绝对禁忌症,但并非所有病人都适用于血液透析。年龄超过70岁或4岁以下儿童,作血液透析往往难以维持,最好行腹膜透析。恶性肿瘤,老年性痴呆,脑血管病等生命不能长久维持的病人;慢性肝脏病变,休克或心血管功能耐受体外循环者;严重出血危险者;患者有精神异常不合作者和家属不同意者都不能做血透。慢性肾功能衰竭的病人,半数以上是由慢性肾炎发展而来。所以对于慢性肾炎病人残存肾功能的保护是十分重要的。维持血压在正常水平是保护残存肾功能的主要措施之一。高血压可导致肾小球硬化,一般血压应维持在18.7-12.0千帕以下。降压治疗要作到坚持合理用药,切不可因血压降下来就万事大吉,自动停药,血压上升再重新用药。因血压的波动对肾功能十分不利。慢性肾炎病人的高血压,多经休息,限制水钠摄入及应透过现象看本质,即可达到降压目的。另一些病人还需加用硝苯地平及巯甲丙脯酸等药物。另外,高质量低蛋白质、低脂肪饮食,坚持服用益肾系列,同时治疗慢性肾炎的并发症,如贫血、心脏损害、感染及纠正水、电解质紊乱等,均可改善、减缓肾功能损害的发展过程。血液透析适应症:(1)慢性维持性血液透析的适应症:具有慢性肾衰的临床表现,血尿素氮超过20毫摩尔/升,血肌酐超过400微摩尔/升者即可施行维持性血液透析。(2)急诊透析指征:①药物不能控制的高血钾(超过6.5毫摩尔/升);②药物不能治疗的少尿、无尿、高度浮肿;③慢性肾衰合并急性心功能衰竭、肺水肿、脑水肿;④药物不能控制的高血压;⑤药物不能纠正的代谢性酸中毒;⑥并发心苞炎、消化道出血和中枢神经系统症状。 腹膜透析是利用腹膜作半透膜 ,通过腹透管向腹腔注入腹透液,通过弥散原理清除毒素,纠正电解质及酸碱平衡紊乱,通过渗透原理(向腹透液内加葡萄糖以提高腹透液的渗透压)以达到超滤脱水,替代肾脏的排泄功能。注意事项腹膜透析的设备较血液透析简单,可在床边操作,又可避免体液平衡的突然变化。腹膜透析分为持续性非卧床式腹膜透析(CAPD,患者可随身携带设备自由活动)、持续性循环式腹膜透析(CCPD ,优点同CAPD,夜间依靠腹壁透析机进行透析,白天仍可工作)及间歇性腹膜透析(用于急性患者)。一般每日应进行4~6次腹透,每次灌入2000mL腹透液。腹膜透析无需依赖机器 ,操作简便,无需特殊培训人员,故价格低廉,在基层医疗单位均可开展。虽然腹膜透析和血液透析的适应症相同,但各有利弊,不能互相取代,故应根据患者的原发病因、病情及医疗、经济条件作适当选择,使患者得到最大效益。下述情况应优先考虑腹膜透析:①高龄、心血管系统功能差者。②建立血液透析血管通路困难者。③出血倾向严重不能作血液透析全身肝素化者。④糖尿病肾病尿毒症者,将胰岛素加入腹腔,可使血糖控制较好。下述情况为腹膜透析的禁忌症 :①腹部大手术后3日内 。②腹膜有粘连或有肠梗阻者 。③腹壁有感染无法殖入腹透管者。④腹腔肿瘤、肠瘘、膈疝等 。无菌操作不严格可引起腹膜炎,反复发作腹膜炎可使腹壁的透析面积减少,透析疗效减退。此外由于腹膜上的膜孔大于血透器膜上的孔径,故营养物质从腹透液的丢失较血透时严重。故严格的无菌操作以及足够的营养是腹膜透析成功的保证。腹膜透析的存活率第1.2.3.4.5年分别为90%、80%、70% 、65%及46% ,约每年递减10% ,世界上有报道已存活20年者。缺点1.诱发感染:由于腹膜透析专用的导管在换液时须和透析袋连接,故有腹腔感染的可能,所以在做任何和腹膜透析治疗相关的步骤时,都要先彻底地洗净双手。以目前的技术,腹膜炎的发生率已大幅降低。2. 体重和血中甘油三酯增加:由于透析液是利用葡萄糖来排除多余水分,所以可能在透析时吸收了部分的葡萄糖,可能使病人的体重增加、血甘油三酯及其他脂质升高,所以需要适当的运动及减少糖分摄取。3. 蛋白质流失过多:在透析的过程中会流失少许蛋白质及维生素,所以需从食物中补充。除了维持原有正常的饮食习惯外,可多摄取一些鱼、肉、蛋、奶等优质蛋白,而维生素的最佳来源为水果蔬菜,补给身体所需。
2023-08-14 01:15:241

削了的苹果为什么会氧化?

  当苹果削好皮或切开后放置一会儿,切口面的颜色就会由浅变深,最后变成深褐色。   发生色变反应主要是这些植物体内存在着酚类化合物。例如:多元酚类、儿茶酚等。酚类化合物易被氧化成醌类化合物,即发生变色反应变成黄色,随着反应的量的增加颜色就逐渐加深,最后变成深褐色。氧化反应的发生是由于与空气中氧的接触和细胞中酚氧化酶的释放。   在组织没有损伤之前,酚氧化酶存在于细胞器中,不能与酚类化合物接触,而空气中的氧更没法进入,因而不发生氧化变色反应。当细胞组织受损伤以后,酚氧化酶就被释放出来与酚类化合物接触,催化酚类化合物的氧化,再加上空气中氧的作用,就会发生变色反应。其中多元酚类能直接被氧化成醌类化合物而变色。而儿茶酚分子则在酚氧化酶的作用下发生聚合。两个儿茶酚分子连接在一起,形成儿茶酚二聚体,二聚体又可以两两相接,形成四聚体。单个的儿茶酚分子及其二聚体和四聚体都是没有颜色的,但是儿茶酚四聚体可以形成多聚体,而多聚体是紫色的。所以多聚体形成得越多,切口面的颜色就会越深。   苹果变色以后,所含的维生素C会减少,影响营养价值。为了防止切开后的苹果变色,可以不让它与空气接触,最好的办法是把苹果泡在盐水里。   ■让切开的苹果不变色 另外一些容易变色的水果也可仿此方法处理,效果俱佳!
2023-08-14 01:15:251

什么是透析平衡?

透析平衡是指渗透过程中半透膜两侧的溶质浓度相同 这时两边不会透析达到一个平衡状态
2023-08-14 01:15:153

office toolkit2.6怎么用

1、office toolkit怎么用_百度经验:网页链接2、利用Microsoft Toolkit激活office2016_百度经验:网页链接
2023-08-14 01:15:146

东方神起Survior中文歌词

SURVIVOR歌词(PV )Everytime Everyday 现在谁都是 SurvivorLooking for Everywhere 这样的事态 Don"t give up来这里寻找散发的光芒一起来改变CHANCE吧 Let"s tryOh baby let"s try!在心中One Smile仍寻找着 ,Shine on meTwo Smile再来一次 ,Shine on me直到这个世界闪出光芒 Smile Smile活出 Survivor如果有你,来来去去也 Not so bad差点要遗忘的珍贵要 Remember即使是无法独自完成的事情当心能聚在一起的时候 We canOh baby we can无论何地 One Dream 无论何时 Still onTwo Dream 开始异动的 Brand new world就像是爱上了谁 Dream Dream紧紧拥抱在心里 One Love 明日 So easyTwo Love一直这样的话 Be happy相信自己 Love Love活出 Survivor全部都是Survivor一起成为 SurvivorEverybody Everybody night在心中One Smile仍寻找 着,Shine on meTwo Smile再来一次 ,Shine on me直到这个世界闪出光芒 Smile Smile守护你抱住你一起活下去在心里 One Love 明日 So easyTwo Love一直这样的话 Be happy相信自己 Love Love活出 Survivor
2023-08-14 01:15:133

移民洛杉矶真的好吗

  很多人士会选择移民美国,那么移民美国洛杉矶好不好呢?这是很多出国人士比较感兴趣的问题,和出国移民网一起来看看吧!下面是我整理的相关资讯,欢迎阅读。   移民洛杉矶真的好吗   一. 庞大的城市地带   洛杉矶是美国第二大城市,以洛杉矶为核心的南加州城市群同样为美国第二大都市圈,是一座名副其实的巨型城市。   都会区人口 13,131,431人   相比北加州旧金山湾区的7,092,596人,洛杉矶城市圈有几乎翻倍的人口。同时人口亦多于英国大伦敦的8,416,535人、及法国法兰西岛的12,005,077人。   都会区面积 12,562 平方千米   相比之下,台湾岛的面积为36,193平方千米,直辖市上海的辖区面积为6,340.5平方千米。洛杉矶都会圈面积约等于三分之一座台湾岛,或上海市的两倍。   生产总值 8604亿美元(Brookings Institution 2014年数据)   低于东京(16160亿美元)及纽约(14030亿美元),名列世界第三,高于首尔(8459亿美元)、伦敦(8356亿美元)及巴黎(7150亿美元)。接近荷兰一国的GDP(8663.54亿美元)。   二. 阳光夺目的大橙子   南加州盛产橙子,又对应纽约的Big Apple,洛杉矶有了Big Orange的昵称。气候类型上,洛杉矶为亚热带地中海气候(柯本分类法),特征夏天干燥高温,冬天温暖湿润。   美国西南阳光强度之高全球首屈一指。接近青藏高原的强度,而与阳光柔和的中国东部形成鲜明对比。   另外值得一提的是,由于洛杉矶地区水资源缺乏,需要人工灌溉绿化带,因此往往一座城市的绿化面貌即可看出其富裕程度。   美国移民身份后的福利   新出生的小孩   任何在美出生的孩子被视为美国公民,持有美国护照,不限制在美国境外的居留时间,终身自由进出美国。18岁公民宣誓后即从法律上享有美国公民的一切权益,包括立即为配偶、子女、父母办理美国移民。   学生学费   在18岁上大学之前美国全部中小学实行义务教育,即零学费(私立学校除外)。上大学(含研究生丶博士生)只交本地人学费。以加州为例,水平中等的加州公立大学,外籍学生一年交一万二美金以上学费,而本地人在加州州立大学一年只交纳二千多美金的学费。   奖学金   对于有意申请美国大学奖学金的普通中国人来说,只能和来自全世界的优秀人士竞争数量极为有限的对外籍人士开放的奖学金。但对于有绿卡的人,能享有奖学金的范围,远远超过一个外国人所能申请的。因为美国很多发放奖学金的机构限定奖学金只适用于美国人(含有美国永久居留权的人)。因此,移民美国之后,小孩申请奖学金的机会远远大于海外留学生。   学生贷款   18岁以上的绿卡持有者可以在拿到绿卡的当年申请各种类型的学生贷款,如上美国优秀私立大学,一年的学费多达三万美金左右,当绿卡人士想读一个两年硕士时,六七万美金可申请一笔贷款。毕业后找不到工作可不还贷款,找到工作后分年还清。   退休福利   累计十年交税记录后(底线为每月$50左右的实交税金即可),便可在退休后(通常为65岁)终身领取美国联邦政府发的退休金(每月$1000~$1200)。对很多移民来讲,领取退休金的年数比交税工作的年数要多。   失业救济   申请人及配偶甚至孩子在转绿卡后没有工作时,政府免费给你找工作。具有六个月的交税记录后,到美国当地有关部门报失业就可以领取政府救济金(额度从每月$400~$1200不等)。   中国移民在洛杉矶的生活情况   初到美国的第一年,我和太太不停地在美国溜达。凭着以前还有点家底,我们一是想给自己放个假,二是想好好的了解美国,以决定我们在哪个城市定居。从东到西由南到北,我们走过了不少的城市。   一.观光地点   我这一路看下来,就观光来说,我不太推荐东海岸的纽约和西海岸的洛杉矶。   很多同学踏上美国首先就是到的这两个大城市,并且在这两个大城市体会到了美国人的善良和热情。但是我想说的是,这两个城市都是移民城市,地道的老美其实并不多。   当你去到辽阔的美国中部,你才能感受到地道老美的美式淳朴。我和太太曾经在科罗拉多州的一个小镇上雨天漫步。   小镇加上雨天,更显人烟稀少。可是每经过我们的车,都会善意地停下来,然后善意地问你怎么了,需要搭车吗?不需要?那需要雨伞吗,搞得我们疲于招架。   他们也许不知道,脱离了酸雨侵袭的我们,只是想好好地享受下清新的小雨。   观光而言,我更推荐春天和秋天的西雅图和新泽西,以及夏天的犹它州和冬天的科罗拉多州。   这些地方充分地展现了美国多样的地貌和辽阔,以及沉醉的美景。不得不说的是美国的国家公园。有心的同学可以自己搜索下,我相信你会被震撼的。   二.居住地点   虽然说观光我并不推荐洛杉矶和纽约,就移民和具体生活而言,你不得不在这两个城市之中选择。   原因大家都知道,华人多,语言沟通方便,买东西方便,你不可能说为了个回锅肉的原料而奔波上百里。   我们当初认真地考虑了美国的三大华人城市:纽约,洛杉矶和拉斯维加斯。下面说说我们的选择,希望对准备移民的朋友有个参考。   纽约,洛杉矶,拉斯维加斯,三大城市,坦率地说,我最喜欢纽约。   优点是福利优厚,三个城市里面最优厚的。空气最好,纽约的春天和秋天非常漂亮。但是缺点是四季过于分明。夏天有桑拿天,冬天雪大,出门不方便,不适合小孩子。而准备生孩子的我们,孩子的环境又是重点。   拉斯维加斯,三个城市里面我最不喜欢的。   福利在三个城市里面最差,空气干燥,每次去拉斯维加斯都干燥地我头巨疼。温差极大。也许是赌城的关系,人也比较浮躁,感觉这个城市里面每一个人的眼神里面都燃烧着物欲。虽然说我们的亲属在拉斯维加斯,但是这个城市被我们放弃了。   洛杉矶,这个被我们选定落脚的地方,有着他的缺点。   洛杉矶水质和空气在全美是出名的差,据调查说是拜中国所赐。靠着太平洋的环流,来自中国的空气和海水污染源源不断地来到了太平洋彼岸的洛杉矶。   但是优点是无法取代的。洛杉矶的空气不好但是气候最佳,四季的加州阳光,可供户外活动时间极长,最适合小孩子生长。   福利待遇中等偏下,但是也可接受。生活也比较方便,华人区散落在好几个不同的地方可以辐射到很多地区,去华人区不太拥堵同时交通比较方便。   洛杉矶还有一个优点:没有蚊子,无论哪个季节。   选到最后,在美国溜达了近一年半之后,我们回到了洛杉矶,作为我们的落脚点。   三.了解美国   再来具体说说我们移民近三年来的生活。说到在美国的生活,那让我们先来充分地了解美国。   1.关于种族歧视   之所以我把这个问题放在首位,是因为我本身非常注重和敏感这个问题。坦率地说,3年来,就我本身而言,我没有遇到任何的歧视问题,就我的遭遇而言,我认为这个问题在美国是不存在的。   很多的中国人,到了美国之后,由于自身语言以及能力的原因,无法真正的了解美国的法律以及文化。同时加上自身比较敏感,遇到不愉快的问题,于是就归结于歧视。我想,这至少是不公平的。   大家都知道,要赢得对方的尊重,首先需要你充分地了解对方,同时自身有一定的素质。   你自己都不了解美国的文化以及法律,再加上自己的素质不够,又怎么能赢得对方的尊重呢。举个最简单的例子,美国人对烟味非常敏感。很多老中来到美国,喜欢三三两两成群结队地在商场或者餐厅门口吸烟。   在加州,这至少是违反了两条法律:商场或者餐厅门外的十尺之内吸烟是违法的。因为烟味会飘进室内或是经过的人受到影响。第二是成群结队吸烟的同时,阻挡(英文叫BLOCK)了人行道,这个也可能会吃到罚单。   你想想,就算你没吃到罚单,经过的人会怎么样打量你们呢,如果是带着厌恶地表情看着你们,你又会不会是觉得歧视呢。   其次,由于中国人本身语言的问题,这真的是个大麻烦。   如果你与他人发生争执,如果警察或者法官连你说什么都不明白,又或者是你贫乏的英语造成了对方的误会,你想想,他们又怎么会倾向于你呢。   我的一个朋友驾车在曼哈顿被临检,别人屁事没有,惟独他被摁倒在地。原因是警察叫他别动他却急着摸驾照给警察证明。结果他被摔得鼻青脸肿。   完了之后他在律师的怂恿下闹着要上法庭告歧视。真的是让人哭笑不得。   综合来说,三年来,无论我和移民局,和ZF机构,和交通局DMV,和福利机构工作人员打过很多交道,我没有遇到过任何歧视的问题。   请记住,无论你英文如何,请记得交流之前先给对方一个微笑。   2.关于选票   选票这东西,对于新移民来说,确实是一个很飘渺的东西。坦率地说,我3年 以来,也没有看到过选票长得是什么样子,候选人是谁,谁谁当选了,更不是我关心的内容。   但是,你就此而忽略了选票的意义,那确实是非常短视的行为。   我从不关心什么时候什么人参加了竞选,但是我知道,选票的存在对我来说,非常重要。   不管谁最后当选了,但是只要有选票的存在,权贵们就会唯唯诺诺,点头哈腰。只有选票,才能让那些权势们低下他们高贵的头颅。只有选票,才能让普天下芸芸大众的呼声,得到重视。   所以,你可以不投票,可以忽略,但是却不能否定选票所存在的重大意义。   3.关于法律   美国的情况和中国有很大的区别。美国每一个州的情况都不一样。这些不一样包括法律,交通规则,福利待遇等等。   比如,纽约红灯时不可右转但是加州可以,纽约的公园内可以吸烟但是加州不可以。还有很多之类的小事情,你都得注意。我的建议是你准备去到这个州的时候最好是先了解了解当地的法律。   曾经有同学发帖说加州 的油价很高由此得出结论美国的油价也不便宜,这是幼稚地。因为你却不知道就在加州的隔壁内华达州,油价要便宜加州一大截。   我的朋友邀请我定居佛罗里达州。 但是这个州有一条法律,那就是可以携带枪支出门,同时,如果在街上某人对你挥舞着拳头对你构成了威胁,你可以拔抢自卫甚至于击毙他。   再加上佛罗里达很容易 取得枪支的许可证。这样就变得 不是很好玩了。佛罗里达2005年通过了这个法律,至今2012年,有过统计说在这个法律框架之内的案件有140余起死掉了65个人。   换句话说,你在佛州 的街头或者酒吧最好是不要跟人发生争执甚至于动手,那样地话很可能对方可以合法地拔枪出来一枪撩倒你然后事后不会被拘捕。   了解到这个法律之后我们放弃了佛 罗里达,总觉得这个法律有点可怕。我无法想象街头擦肩而过的人个个都有枪的话,是个什么样的感受。所以我谢绝了朋友的邀请放弃了佛罗里达。   说到法律,不得不说到律师,顺便说句,新移民最好是自己能先了解了解美国,及你所在州的法律。   在美国不要太相信,特别特别,是不要太相信老中律师的怂恿,除非是这个人有着长期的口碑。在美国,老中律师总是利用新移民不了解美国的法律,然后怂恿着你告这告那。你只要一开始诉讼,然后就该没完没了地花钱给他们了。   所以,美国每一个州的都不太一样。当你去了一个州,你就认为你了解了全美国,这真的是错误的。   移民洛杉矶的福利待遇   有个移民前辈亲身经历了所谓的美国完善福利政策,听听她怎么说:   我上班时会遇到咱们的同胞,他们一般是在镇上的餐厅打工,或者帮人家照顾老人之类的,他们全部都加入了美国国籍,而且将家人也移民到了美国, 而且极力地劝我也这样,理由是美国的福利很好。因为先生收入高,我们几乎体会不到美国福利的好处---除了贷款利息退税外(美国虽然有种种福利,但是都是倾向于中低家庭的,高收入群体反倒要间接补助低收入群体),但是对于美国人和合法移民能享受到什么福利,福利好到哪个地步,我真是很好奇。   又有一天,我们镇上开中餐厅的那个女老板让我帮她翻译一个文件,那是州政府寄给她关于她的Medicaid(政府给低收入群体提供的医疗保险)的续期通知。我真是吃了一惊,她的包全是LV的,她和他先生在纽约和新泽西都买了房子,而她居然享受政府提供给低收入人群的医疗保险。   当然我也经常听说不少华人高收入的家庭通过种种“聪明”的手段让自己看上去“贫穷”,从而让自己或者家人享受国家补助, 这也不是咱们华人专有的, 美国人一样的。   我有个邻居,她先生得了癌症,她将他送到“nursing home”,费用也是全部国家出,因为她也申请了Medicaid(对此她很保密,我是偶然得知的),但是我真是不知道她怎么可以申请到---我们镇的居民家庭年均收入为13万美金,就是说除了住在政府补贴公寓的人以外,这个镇的居民至少都是美国20%的富裕群体(美国只有20%的家庭年收入上10万美金)。   于是上网去查看政府福利,还真是大吃了一惊,我估计这些福利有上百种吧,光是营养计划下面就有十多种福利计划,你不但不用找熟人走后门去申请(但是要符合身份要求: 申请者必须是美国人或者永久居民和合法移民),而且政府为了帮助特定的群体享受到这些福利还聘用了很多福利专员帮助人们了解和申请你符合条件的福利计划。我大致浏览了一下,因为品种太多,看得我眼花缭乱的,下面只介绍几个最常见,花政府经费最多的:   1.Social Security----社会安全金   类似国内的社保,但是和国内一人交费一人享受的原则不同的是,美国的社保金覆盖了配偶福利,前配偶福利,未成年子女福利,以及补充收入福利等。   前配偶福利:即离婚后的配偶也能享受到前夫的社保福利,条件是该女性和其前夫结婚满10年,而且没有再结婚(满62周岁);或是抚养和前夫所有的16岁以下的未成年子女(没有年龄限制); 或者是和前夫结婚满10年,后来再婚,但是婚姻因为种种原因终止;或者前夫去世,你在60岁再婚。   配偶福利:如果丧失配偶,可以在62岁领取对方的社保金;如果抚养未成年子女,可以在任何年龄领取该福利;如果自己也工作,可以在退休时比较自己和配偶的福利,然后选择领取较高的一方。   未成年子女福利:如果家庭中主要收入者去世,18岁以下的未成年未结婚的子女(如果残疾,年龄放宽到22岁)都可以领取去世的父亲或者母亲的社会安全金,而且这个福利和配偶福利是分开的,即在世的母亲或父亲领取去世配偶的福利,子女也能领取自己的,只要总额不超过去世者社会安全金的180%即可。未成年子女还包括领样子女,继子继女,以及孙儿孙女。   补充收入福利:这项福利只针对65岁以上的低收入人群和残疾群体。   残疾人福利:对成年残疾人,一般有工作年限要求,比如28岁的成年人要领取这项福利,必须要有一年半的工作年限,30岁的为2年,34岁的为3年等。如果未成年前残疾,又有另外的政策。   2.Medicaid   退休的中低收入人群以及其它低收入群体和残疾人的医疗险,该保险覆盖住院费用(包括手术及术后恢复),看门诊费用,药品费用,以及养护疗养院等费用。仅仅这项费用,就花掉政府开支的10%!   令人吃惊的是,该项福利只考虑本人的收入,而非其家人,比如即使子女是高收入,而其父母一方为低收入,如果父母中的一方生病,也能申请该福利。   我的一个印度同事对此就有深入的体会,她的家庭收入也是高收入群体,但是她母亲从来没有在美国工作过,除了领取政府福利外,没有任何收入。前些月,她母亲突然摔到,他们打了急救电话,医院人员很快赶到,将她母亲送到急救室,根本都没有问他们是否有保险,立即抢救,然后术后送到养护中心,所有费用全部由政府承担,因为她母亲属于低收入!   本来是为退休的中低收入人群以及其它低收入群体设计的福利,但是有太多的美国人想方设法地挤进去,因为该福利计划有太多地方可以被钻空子,例如保护配偶中未生病的一方的原则----该计划规定,如果一方生病,不能让另一方因此过上贫穷的生活,因此即使该夫妻有自己的房产等,未生病的一方不需出售房产来给生病的一方治病!很多人甚至聘请律师做财产规划,使自己看上去属于低收入群体,为此我们也常听见上面我提到的那个餐厅老板和我邻居享受这个保险的事例。   3.Food/Nutrition   食品和营养计划, 该福利的口号是“ No one should go hungry in America。”(在美国, 没有人应该挨饿),这项福利几乎惠及了25%的美国人和合法移民,该项计划下又有十多项具体的福利, 其针对的群体是低收入家庭的儿童、孕妇、低收入成年人、老年人,发放的方式为食物券、食物,给学校部分学生提供免费早餐、午餐、学生水果计划、牛奶计划等。   4.ChildCare/Child Support   这项福利主要针对的是孕妇、婴儿、3-5岁的儿童(也是低收入家庭)的营养,健康和学前教育等,也包括部分补偿父母请人看护孩子的费用。   5.TaxCredit/ Tax Rebate   退税。一方面,美国的税收涵盖一切收入,包括所有单位所有人的工资、奖金、加班费,甚至包括单位发放给部分员工杰出表现的奖励---即使该奖励只是一百美元的手表,卖房投资收益,美国税收管理非常成熟规范,没有公司会帮助员工偷税,因为公司要负责提供给员工其年收入情况表,员工以此报税,如果单位帮助员工偷税,单位被会被重处。任何单位,不论是政府部门还是私有公司,一律平等。   但是另外一方面美国又有很多可以退税的“理由”,比如医疗费用,子女大学费用, 捐助慈善团体的费用,首次买房退税(7500美元,后来提为8千美元,但有收入要求),房屋贷款利息退税和地产税退税,如果是自谋职业的人士,筹备生意的很多硬件都能退税,包括购买电脑等。低收入群体还能得到额外的退税。   小孩抚养费退税是很多低收入群体退税的主要来源之一,只要符合收入要求,这个照例又是照顾中低收入家庭,17岁以下的小孩,每个小孩可以从政府那里得到1千美元。我的同事,她很骄傲地告诉我由于她和她先生都是低收入,通过种种退税政策,福利计划,她们不但不交税,每年还能从政府那里拿到几千块!   美国还有数以百计的福利计划,比如帮助低收入群体租房买房福利,使用能源福利(比如免费天然气等),帮助精神病患者的福利,帮助换不上贷款的人群和银行减免本金和利息的计划等等。通过种种退税,美国有49%的家庭不交任何的联邦税。美国的福利计划也让政府的担子变得越来越沉重起来,而当美国人大声指责政府开支过于庞大时候,他们中的大部分人都忘了他们自己也留恋种种福利。
2023-08-14 01:15:101

苹果汁放久了会氧化的原理

由于苹果中有酚类物质,维持其呼吸作用的结果.当苹果削皮后,植物细胞中的酚类物质便在酚酶的作用下,与空气中的氧化合,产生大量的醌类物质.新生的醌类物质能使植物细胞迅速的变成褐色,这种变化称为食物的酶促褐变.所以苹果削皮放一会儿后会变色.不仅苹果梨子及有些蔬菜(如土豆、茄子等)也有这种情况.这中褐变影响了食物的外观,使外层的营养成分有所降低,但尚可食用.控制苹果变色的简便办法是,把去皮的苹果立即浸在冷开水、糖水或淡盐水中,使之与空气隔绝,以防止植物细胞中酚类物质的氧化.不过,从保存苹果中营养成分的角度来说,去皮苹果不宜浸泡过久.以上是本团队经过长期研究实验得出的成果,希望对你有较大的帮助.
2023-08-14 01:15:083

oracle中将几个字段拼接成超长字符串(超过4000字节)更新到lob字段中,怎么处理?

可以将拼接的内容使用to_clob(),例如:UPDATE test_table R SET R.NAME = to_clob("WITH T1 AS......(可以写很多)")||to_clob(" AND RNF.FORM_OF_WAY = 2")where r.name is null
2023-08-14 01:15:071