barriers / 阅读 / 详情

九章算术的数学成就

2023-08-22 22:11:37
共1条回复
小教板

《九章算术》中的数学成就是多方面的:
(1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”的算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的。
《九章算术》中有比较完整的分数计算方法,包括四则运算,通分、约分、化带分数为假分数(我国古代称为通分内子,“内”读为纳)等等。其步骤与方法大体与现代的雷同。
分数加减运算,《九章算术》已明确提出先通分,使两分数的分母相同,然后进行加减。加法的步骤是“母互乘子,并以为实,母相乘为法,实如法而一”这里“实”是分子。“法”是分母,“实如法而一”也就是用法去除实,进行除法运算,《九章算术》还注意到两点:其一是运算结果如出现“不满法者,以法命之”。就是分子小于分母时便以分数形式保留。其二是“其母同者,直相从之”,就是分母相同的分数进行加减,运算时不必通分,使分子直接加减即可。
《九章算术》中还有求最大公约数和约分的方法。求最大公约数的方法称为“更相减损”法,其具体步骤是“可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也。以等数约之。”这里所说的“等数”就是我们现在的最大公约数。可半者是指分子分母都是偶数,可以折半的先把它们折半,即可先约去2。不都是偶数了,则另外摆(即副置)分子分母算筹进行计算,从大数中减去小数,辗转相减,减到余数和减数相等,即得等数。
在《九章算术》的第二、三、六等章内,广泛地使用了各种比例解应用问题。粟米章的开始就列举了各种粮食间互换的比率如下:“粟米之法:粟率五十,粝米三十,粺米二十七,糳米二十四,……”这是说:谷子五斗去皮可得糙米三斗,又可舂得九折米二斗七升,或八拆米二斗四升,……。例如,粟米章第一题:“今有粟米一斗,欲为粝米,问得几何”。它的解法是:“以所有数乘所求率为实,以所有率为法,实如法而一”。
《九章算术》第七章“盈不足”专讲盈亏问题及其解法其中第一题:“今有(人)共买物,(每)人出八(钱),盈(余)三钱;人出七(钱),不足四(钱),问人数、物价各几何”,“答曰:七人,物价53(钱)。”“盈不足术曰:置所出率,盈、不足各居其下。令维乘(即交错相乘)所出率,并以为实,并盈,不足为法,实如法而一……置所出率,以少减多,余,以约法、实。实为物价,法为人数”。盈不足术是中国数学史上解应用问题的一种别开生面的创造,它在我国古代算法中占有相当重要的地位。盈不足术还经过丝绸之路西传中亚阿拉伯国家,受到特别重视,被称为“契丹算法”,后来又传入欧洲,中世纪时期“双设法”曾长期统治了他们的数学王国。
(2)、《九章算术》总结了生产、生活实践中大量的几何知识,在方田、商功和勾股章中提出了很多面积、体积的计算公式和勾股定理的应用。
《九章算术》方田章主要论述平面图形直线形和圆的面积计算方法。《九章算术》方田章第一题“今有田广十五步,从(音纵zong)十六步。问为田几何。”“答曰:一亩”。这里“广”就是宽,“从”即纵,指其长度,“方田术曰:广从步数相乘得积步,(得积步就是得到乘积的平方步数)以亩法二百四十步(实质应为积步)除之,即亩数。百亩为一顷。”当时称长方形为方田或直田。称三角形为圭田,面积公式为“术曰:半广以乘正从”。这里广是指三角形的底边,正从是指底边上的高,刘徽在注文中对这一计算公式实质上作了证明:“半广者,以盈补虚,为直田也。”“亦可以半正从以乘广”(图1-30)。盈是多余,虚乃不足。“以盈补虚”就是以多余部分填补不足的部分,这就是我国古代数学推导平面图形面积公式所用的传统的“出入相补”的方法,由上图“以盈补虚”变圭田为与之等积的直田,于是得到了圭田的面积计算公式。  方田章第二十七、二十八题把直角梯形称为“邪田”(即斜田)它的面积公式是:“术曰:并两邪(即两斜,应理解为梯形两底)而半之,以乘正从……,又可半正从……以乘并。”刘徽在注中说明他的证法仍是“出入相补”法。在方田章第二十九、三十题把一般梯形称为“箕田”,上、下底分别称为“舌”、“踵”,面积公式是:“术曰:并踵舌而半之,以乘正从”。
至于圆面积,在《九章算术》方田章第三十一、三十二题中,它的面积计算公式为:“半周半径相乘得积步”。这里“周”是圆周长,“径”是指直径。这个圆面积计算公式是正确的。只是当时取径一周三(即π≈3)。于是由此计算所得的圆面积就不够精密。
《九章算术》商功章收集的都是一些有关体积计算的问题。但是商功章并没有论述长方体或正方体的体积算法。看来《九章算术》是在长方体或正方体体积计算公式:V=abc的基础上来计算其他立体图形体积的。
《九章算术》商功章提到城、垣、堤、沟、堑、渠,因其功用不同因而名称各异,其实质都是正截面为等腰梯形的直棱柱,他们的体积计算方法:“术曰:并上、下广而半之,以高若深乘之,又以袤乘之,即积尺”。这里上、下广指横截面的上、下底(a,b)高或深(h),袤是指城垣……的长(l)。因此城、垣…的体积计算术公式V=1/2(a+b)h.
刘徽在注释中把对于平面图形的出入相补原理推广应用到空间图形,成为“损广补狭”以证明几何体体积公式。
刘徽还用棋验法来推导比较复杂的几何体体积计算公式。所谓棋验法,“棋”是指某些几何体模型即用几何体模型验证的方法,例如长方体本身就是“棋”[图1-32(1)]斜解一个长方体,得两个两底面为直角三角形的直三棱柱,我国古代称为“堑堵”(如图),所以堑堵的体积是长方体体积的二分之一。
《九章算术》商功章还有圆锥、圆台(古代称“圆亭”)的体积计算公式。甚至对三个侧面是等腰梯形,其他两面为勾股形的五面体[图1-33(1)],上、下底为矩形的拟
柱体(古代称“刍童”)以及上底为一线段,下底为一矩形的拟柱体(古代称“刍甍”)(“甍”音“梦”)等都可以计算其体积。
(3)、《九章算术》中的代数内容同样很丰富,具有当时世界的先进水平。
1.开平方和开立方
《九章算术》中讲了开平方、开立方的方法,而且计算步骤基本一样。所不同的是古代用筹算进行演算,现以少广章第12题为例,说明古代开平方演算的步骤,“今有积五万五千二百二十五步。问为方几何”。“答曰:二百三十五步”。这里所说的步是我国古代的长度单位。
“开方(是指开平方,由正方形面积求其一边之长。)术曰:置积为实(即指筹算中把被开方数放置于第二行,称为实)借一算(指借用一算筹放置于最后一行,如图1-25(1)所示用以定位)。步之(指所借的算筹一步一步移动)超一等(指所借的算筹由个位越过十位移至百位或由百位越过千位移至万位等等,这与现代笔算开平方中分节相当如图1-25(2)所示)。议所得(指议得初商,由于实的万位数字是5,而且22<5<32,议得初商为2,而借算在万位,因此应在第一行置初商2于百位,如图1-25(3)所示)。以一乘所借一算为法(指以初商2乘所借算一次为20000,置于“实”下为“法”,如图1-25(4)所示)而以除(指以初商2乘“法”20000得40000,由“实”减去得:55225-40000=15225,如图1-25(5)所示)除已,倍法为定法,其复除,折法而下(指将“法”加倍,向右移一位,得4000为“定法”因为要求平方根的十位数字,需要把“借算”移至百位,如图1-25(6)所示)。复置借算步之如初,以复议一乘之,所得副,以加定法,以除(这一段是指:要求平方根的十位数字,需置借算于百位。因“实”的千位数字为15,且4×3<15<4×4,于是再议得次商为3。置3于商的十位。以次商3乘借算得3×100=300,与定法相加为4000+300=4300。再乘以次商,则得:3×4300=12900,由“实”减去得:15225-12900=2325。如图1-25(7)所示,以所得副从定法,复除折下如前(这一段是指演算如前,即再以300×1+4300=4600向右移一位,得460,是第三位方根的定法,再把借算移到个位,如图1-25(8)所示;又议得三商应为5,再置5于商的个位如图1-25(9)所示,以5+460=465,再乘以三商5,得465×5=2325经计算恰尽如图1-25(10)所示,因此得平方根为235。)
上述由图1-25(1)—(10)是按算筹进行演算的,看起来似乎很繁琐,实际上步骤十分清楚,易于操作。它的开平方原理与现代开平方原理相同。其中“借算”的右移、左移在现代的观点下可以理解为一次变换和代换。《九章算术》时代并没有理解到变换和代换,但是这对以后宋、元时期高次方程的解法是有深远影响的。
《九章算术》方程章中的“方程”是专指多元一次方程组而言,与“方程”的含义并不相同。《九章算术》中多元一次方程组的解法,是将它们的系数和常数项用算筹摆成“方阵”(所以称之谓“方程”)。消元的过程相当于现代大学课程高等代数中的线性变换。
由于《九章算术》在用直除法解一次方程组过程中,不可避免地要出现正负数的问题,于是在方程章第三题中明确提出了正负术。刘徽在该术的注文里实质上给出了正、负数的定义:“两算得失相反,要令‘正"、‘负"以名之”。并在计算工具即算筹上加以区别“正算赤,负算黑,否则以邪正为异”。这就是规定正数用红色算筹,负数用黑色算筹。如果只有同色算筹的话,则遇到正数将筹正放,负数时邪(同斜)放。宋代以后出现笔算也相应地用红、黑色数码字以区别正、负数,或在个位数上记斜划以表示负数,如(即—1824),后来这种包括负数写法在内的中国数码字还传到日本。
关于正、负数的加减运算法则,“正负术曰:同名相益,异名相除,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之”。这里所说的“同名”、“异名”分别相当于所说的同号、异号。“相益”、“相除”是指二数相加、相减。术文前四句是减法运算法则:
(1)如果被减数绝对值大于减数绝对值,即a>b≥0,
则同名相益:(±a)-(±b)=±(a-b),
异名相除:(±a)-(b)=±(a+b)。
(2)如果被减数绝对值小于减数绝对值,即b>a≥0。
①如果两数皆正
则a-b=a-[a+(b-a)]=-(b-a)。
中间一式的a和a对消,而(b-a)无可对消,则改“正”为“负”,即“正无入负之”。“无入”就是无对,也就是无可对消(或不够减或对方为零)。
②如果两数皆负
则(-a)-(-b)=-a-[(-a)-(b-a)]=+(b-a)。在中间的式子里(-a)和(-a)对消,而-(b-a)无可对消,则改“负”为“正”所以说“负无入正之”。
③如果两数一正一负。则仍同(1)的异名相益。
术文的后四句是指正负数加法运算法则。
(1)同号两数相加,即同名相益,其和的绝对值等于两数绝对值和。
如果a>0,b>0,
则a+b=a+b,(-a)+(-b)=-(a+b)
(2)异号两数相加,实为相减,即异名相除。如果正数的绝对值较大,其和为正,即“正无入正之”。如果负数的绝对值较大,其和为负,即“负无入负之”。用符号表示为
①如果a>b≥0,
则 a+(-b)=[b+(a-b)]+(-b)=a-b,
或 (-a)+b=[(-b)-(a-b)]+b=-(a-b)。
②如果b>a≥0,
则 a+(-b)=a+[(-a)-(b-a)]=-(b-a),
或 (-a)+b=(-a)+[a+(b-a)]=b-a。
关于正负数的乘除法则,在《九章算术》时代或许会遇到有关正负数的乘除运算。可惜书中并未论及,直到元代朱世杰于《算学启蒙》(1299年)中才有明确的记载:“同名相乘为正,异名相乘为负”,“同名相除所得为正,异名相除所得为负”,因此至迟于13世纪末我国对有理数四则运算法则已经全面作了总结。至于正负数概念的引入,正负数加减运算法则的形成的历史记录,我国更是遥遥领先。国外首先承认负数的是七世纪印度数学家婆罗门岌多(约598-?)欧洲到16世纪才承认负数。

出入相补原理

相关推荐

出入相补原理的举例

试以求55225的平方根为例。这相当于已知正方形ABCD的面积就是55225,求边AB的长,。按我国记数用十进位位值制。因AB显然是一个百位数,所以求AB的方法就是依次求出百位数字、十位数字和个位数字。先估计(《九章》中用“议”字)百位数字是2,因而在AB上截取AE=200,并且作正方形AEFG,它的边EF的两倍称为“定法”。把AEFG从ABCD中除去,所余曲尺形EBCDGF的面积是55225-40000=15225。其次估计十位数字是3,在EB上截取EH=30,并且补成正方形AHIJ。从AEFG所增加的曲尺形EHIJGF可以分解成三部分: FH, FJ, FI,面积依次是30×EF,30×FG,302,其中EF=FG=200,所以从ABCD中除去AHIJ,所余曲尺形HBCDJI的面积是15225-(2×30×200+302)=2325。现在再估计个位数字是5,在HB上截取HK=5,并补作正方形AKLM,从ABCD中除去AKLM后所余曲尺形面积和前同法应该是2325-(2×5×230+52)=0。由此知K和B的平方根恰好是235。求立方根的方法步骤和这相似,但是要把一立方体逐步进行分解,比平方根求法稍复杂,所依据的仍是出入相补原理,这在《九章》中也有详细叙述。
2023-08-14 15:51:291

七巧板中有多少块正方形板,它的每个角都是什么角?

七巧板中有(1)块正方形板,它的每个角都是(直)角。
2023-08-14 15:51:492

出入相补原理的发展

我国开平立方法来源很古,它的几何本质十分清晰,而且方法上可以看出我国独有而世界古代其他民族所无的位值制记数法的高度优越性。不仅这样,至迟到11世纪中叶,我国就已经把开平立方法推广到开任何高次幂,就是所谓“增乘开方法”,并且出现了有关的二项式定理系数表,就是所谓“开方作法本源图”。从这一方法的几何渊源看来,如果说当时我国数学家已经有高维方体和高维几何的稚影,似乎不是全无根据的。下面的例取自《九章》,ABCD是一方城,出北门北行若干步到G有木,出南门南行若干步到F再西行若干步到H,恰可望见木G,问题是求方城每边的长。据《刘注》的方法是依山入相补原理得ET=2 EG=2 KG=2×北步×西步” 为实,以“南步十北步”为从法,开平方除之,得EI,也就是方城边长。不仅应用开平方法可得问题(A)的数值解,而且应用出入相补原理,还可以求得解答的精确表达式。如果以长方形的阔作为勾,长作为股,那么问题(A)相当于:(C)已知勾股积、勾股差,求勾、股。大小两正方形的边长各是勾股和、勾股差,所以得勾股和2=4×勾股积+勾股差2。由此得勾股和,因而得勾和股。同样也可从勾股和、勾股积求得勾和股,这一方法可以参阅《勾股说》的末一命题。
2023-08-14 15:52:071

出入相补原理的根据

这一几何体系的全貌还有待于发掘清理,本文仅就出入相补原理这一局部方面,就所知提出几点,主要根据是流传至今的以下各经典著作:《周髀算经》(简称《周髀》),《九章算术》(简称《九章》),刘徽《九章算术注》(简称《刘注》),《海岛算经》(简称《海岛》),赵爽《日高图说》和《勾股圆方图说》(简称《日高说》和《勾股说》)。
2023-08-14 15:52:251

出入相补原理的国外情况

在其他各国,公元九世纪的时候,阿拉伯数学家花刺子模(约780~约850)的代数学名著中列举了各种类型二次方程的精确解法,它的方法是几何的,它的精神实质和出入相补原理颇相类似。公元16世纪,意大利数学家关于三次方程的解法,也完全是几何的。如果规定长方形的面积是长阔的积,那么依据出入相补原理,容易得到:由此可以完全奠定平面多角形的面积理论。但是在空间情形,如果规定长方体的体积是长、广、深的积,是否依据出入相补原理,可以推得由此以建立多面体的体积理论,就不是那么明显而极其困难的问题。欧洲直到19世纪末,才把它作为一个难题明确地提了出来。公元1900年德国数学家希耳伯特(1862~1943)在国际数学会上所作著名讲演中,把体积理论列为23个问题之一。这一问题立即为德恩(1878~1852)所解决,答案是否定的:两个多面体要分割成彼此重合的若干多面体,必须满足某些条件,通称德恩条件。自此以后直到1965年,一位瑞士数学家西德勒才证明了德恩条件也是充分的。但是问题决不能认为已经彻底解决。从希耳伯特直到晚近,多面体体积理论仍不断成为一些知名数学家研讨的课题。德恩条件叙述复杂,也难认为是合宜的最后形式。
2023-08-14 15:52:421

九章算术...

成书于公元前一世纪的《九章算术》是我国最重要的数学经典,它集先秦到西汉数学知识之大成,集中体现了当时中国数学领域的最高发展水平。全书以计算为中心,基本上采取算法统率应用问题的形式。它的许多成就居世界领先地位,对中国后世的数学发展和数学教育产生了深远的影响,奠定了此后中国数学居世界前列千余年的基础。《九章算术》成书后,注家峰起,并有诸多创造。魏晋时期数学泰斗刘徽的《九章算术》注贡献最大,影响深远。《九章》及其历代注释者在数学教育领域,内有许多值得我们学习的重要内容和见解。一般地说,《九章》并非当时的一本数学启蒙教育著作,其内容远远超过了今天小学六年的教学要求,但随着社会的长足进步和数学科学的迅速发展,前期的高深内容,到后期也许会成为大众化的基本内容。《九章》中的一些算术内容,对照今天小学数学的教学大纲,就已经成为小学高年级教学的重要内容。《九章》中所体现一些数学思想和方法对小学生也具有重要启迪和借鉴作用。现对此进行归纳,以便于教师在教学中认识和理解: 1.十进位置值制记数法 我国是世界上最早产生并确立完善的十进位置值记数法的国家。早在四五千年前就有了数目字,商朝已掌握了3万以内十进数目,以位置制记录,这种记数法比古巴比伦的60进制、玛雅人的20 进制、罗马人的5 - 10进制以及古埃及和希腊的十进非位置制优越得多。中国的十进位置制记数法被马克思誉为人类文明进程中 "最美妙的发明之一"。刘徽在此基础上创造了十进小数,外国直到14、15 世纪才出现十进小数,小数点直至17世纪才开始使用。 2.计算工具的发明 算筹是中国古代数学的一种独特的计算工具,"算术" 的意义即是运用算筹的技术,这恰当概括了中国古代数学使用算器、以算为主的特点。《九章》是以算筹为算具的数学教科书,算筹作为当时世界最灵巧的计算工具,使用起来既方便又准确,成为在中国历史上延续了1500年以上的科学传统。元朝以后发展的珠算是筹算制的发展、改革和继续。教师应认识筹算和珠算在世界数学发展史中的地位和作用,并具体在教学中发挥其独特的教育功能。中国的筹算在没有形成完备的口诀之前,主要是操作和摆数,筹算的这一特点,决定了其传授过程中最简便、最直接的方法就是 "做中学",这特别适合于儿童以演示、操作指导为主的教学方法,符合儿童动作思维的心理特点,加之中国的数学歌诀有着悠久的历史,利于兼用 "唱"、 "游" 式的教学方法。数学歌诀的流行和不断发展,对算法和算具的不断改进,不仅推动了小学数学教育的发展,而且也直接影响着珠算的产生和发展。作为中国文化宝库中 "货真价实" 的珍品 -- 珠算和算盘,既是一种优越的计算工具,又是一种好的教具和学具,相比于外国用计算板、计算块及小棒认识数和计算数,能够更好地起到从具体到抽象的中介作用,有助于学生形成数位须序及数位大小等清晰的表象,从而提高学生认识数的能力。正因为珠算的特殊价值和作用,在电子技术高度发达的现代商业圈中。在我国、日本及其他东南亚国家、珠算仍盛行不衰。此外,西方世界教育人士认为珠算在数学教育中有其不能偏废的特殊意义。 3.分数四则运算及其应用 《九章》中的分数知识 (包括约分、通分和加减乘除法则) 已是当时世界上最系统、最完备的分数理论。在方田章中已有明确的分数运算法则,其他各章还有很多分数应用题。 a)分数加减法 分数加法称为合分;分数减法称为减分。其法则为:以分数分子、分母交叉相乘,乘积相加减后的结果作为 " 实",以分母相乘作为 "法","实如法而一",用今天的符号表示就是 。 如方田章第8题 。这里用到了通分,但没有用到最小公分母,而是相加减后再约分,显得比较繁琐。少广章则进了一步,其程序可以求出较小的公倍数,有的甚至就是最小公倍数。 b)分数乘除法 分数乘法称为乘分,其法则是:以分母的乘积为分母,以分子的乘积为分子,同今天方法一样: 。分数除法称为经分,其法则是把实和法通分,然后让分子相除: ;后来刘徽又补充了一个更为简便的法则:将法的分母、分子颠倒,与实相乘: ,这就是今天小学数学教材中的颠倒相乘。 c)分数约分法则 先进行观察,若分子、分母都是偶数,则先除以2,否则将分子、分母 "以少减多,更相减损",最后得到 " 等数",此为原分子、分母的最大公约数。用等数约之,即把数化简了。这种求等数的方法与欧几里得求最大公约数的方法是一致的,现代算术教科书中的辗转相除法即由此而来。应该指出,古人的计算方式是筹算而不是上述的现代笔算,例如,方田章第6问约简 ,先用筹算求得 "等数" 7,以7除分子、分母,得最简分数 以上是世界上最早的分数运算法则。大约15世纪欧洲才通行分数算法,印度到七世纪才有与中国相同的分数四则运算法则。了解我国古代的分数理论及其成就,教师可以从中吸取营养,来丰富自己的教学是很有益的,特别是分数乘法和除法法则的理由对今天小学教学仍有重要的指导意义。历史上的分数概念及其运算的产生都先于小数,中外一理。而在教学顺序上则小数先于分数,这是由于小数运算接近整数,较分数方便。安排教学程序则以可接受性优先,教师应心中有数。 4.各种比例算法 《九章》粟米中的今有术,是完整的比例算法:已知所有数、所有率和所求率,则 所求数 = 所有数×所求率÷所有率这个方法传到印度和西方,叫做 "三率法" (rule of three)。在《九章》中,今有术所属例题都是粟米互换问题。比如,己知粟率50,糠米率30,"今有粟一斗,欲为糠米,问得几何?" 这里1斗是所有数, 50和30分别是所有率和所求率,按今有术,得糠米:10升×30÷50 = 6升。这个问题就是现在小学课本中的比例问题,按现在的解法是: 设所求的米为x升, 则有比例式 50:10 = 30:x 所以x = 即x = 6 此外,《九章》中还有一些复杂的比例问题,如复比例问题、连锁比例问题等等,但现在的小学数学课本中均已不再出现。对于各种比例问题,刘徽注以率为纲,结合齐同原理系统阐述,这些概念如果适当渗透到有关教材中去,将有利于教学。例如,刘徽提出 " 凡数相与者谓之率","相与" 即 "相关" 之意,成率关系的数量同时扩大或缩小同样的倍数,其率关系不变。若有甲、乙、丙三物之关系:甲:乙 = a:b1; ,乙:丙 = b2 :c,已知甲为A,问丙几何?《九章》两次应用今有术甲A化为乙B = ,乙B化为丙C = 叫重今有术。刘徽认为可先把两个率关系中乙率变成相同的值b1b2,为保持率关系不变,则甲的率须变成ab2,丙的率须变为cb1,称为与乙相齐,即甲:乙:丙 = ab2 : b1b2 : cb1,对甲、丙直接应用今有术:C = 。刘徽将此变换称为齐同原理。它源于分数通分, 与 通分必须使分母相同:bd,然后使分子与分母相齐,即分别变为ad、 bc,两分数变为 , 。这叫 "齐其子,同其母"。 5.几何初步知识 a)长方形面积概念:在《九章》方田章及其刘徽注中讲得很生动。"方田术曰,广从步数相乘得积步"。"方田" 即长方的田,"广" 指长方形的底,"从" (即纵) 指长形的高,"步" 是长度的单位,所以长方形的面积等于底乘高。教师可以参照现行教材,古今对比,借以进一步领会其所以然。 b)三角形面积计算:"圭田术曰,半广以乘正从"。三角形的田,古称 "圭田","正从" 是指垂直于底的那个高,所以三角形的面积等于底乘高的一半。 c)梯形面积的计算:梯形的田称 "箕田",同样给出其面积等于上、下底相加与高相乘的一半。 《九章》及其刘注中关于三角形、梯形面积公式借助于传统的出入相补原理作出的。所谓出入相补,刘徽称之为以盈补虚,按现代的说法,即:一个平面图形移动前后,面积不变;一个平面图形割成若干块,各块面积之和等于原图形面积 (立体也同样)。三角形和梯形面积的公式都可根据长方形面积公式,利用出入相补原理而得到如 三角形面积 = ×底×高 梯形面积 = ×(上底 +下底)×高 = 中广×高 出入相补原理是中国古代用于处理面积、体积问题以及可以化为面积和体积问题的一种传统方法,应用十分广泛,方法直观、巧妙,相当于给出证明,适应小学生的接受能力和心理特点,这对小学教学很有指导意义。 九章为算经之首,盖犹儒者之六经,医家之难素,兵法 之孙子欤。后事学者,有倚其门墙,瞻其步趋,或得一 二者,以能自成一家之书。 《九章算术》是中国的基本数学书,其中含有优秀的数 学方法。如与希腊数学比较,在几何学及数论方面,稍 见逊色,但在算术及代数方面,我确信凌驾于希腊数学之上的。 《九章算术》全书共有246道题,分别纳入方田、粟米、衰分、少广、商功、均输、盈不足、方程及勾股等九章。本质上,它是一本分门别类的官僚数学公式手册,史家认为「九章算术成于长安之官府,乃以秦汉之计籍为底稿,并非课吏之讲义。」应该是恰当的论断。至于其数学知识的背景,则可追溯到周秦和西汉时代;它的编纂过程与体例的形成,一方面配合了当时社会的需要,另一方面也反映了特定学术思想的旨趣。根据史学家的研究,孔门是继承周代城邦家臣传统而来。其「世传六艺之教:礼、乐、射、御、书、数,恐怕是结集历史经验的结果,也应乎当时需要。习礼乐以为相,练射御以治军,操书数便去当家臣。」因此,从封建时代的家臣到秦汉大一统以后的官吏,学习数学不过是他们干禄的途径之一吧!《颜氏家训》说得好:「算术亦见六艺要事,自古儒士论天道、定律历者皆通学之,然可以兼明,不可以专业。」  尽管士人难得将数学视为安身立命之道,但《九章算术》毕竟是周秦西汉数学知识的总结,自有其可观的成绩。大致说来。在初等数学的范畴内,它所给出的方法都具备了现代意义,这也就是说,只须换个形式,它的内容就可立刻纳入现代数学的一部份了。在算术方面,《九章算术》已经确立分数四则运算,并指出约分、通分法则。此外,它也处理了各式各样的比例问题,并且正确地指出一次代数方程的算术解法一一「盈不足术」。在几何方面,《九章算术》列出很多与土地丈量有关的面积公式,以及和土木建筑有关的体积公式,除极少数给出不太精密的近似值外,其余完全正确。另外,也包括了利用勾股定理解决的应用问题(包括测量问题)。至于在代数方面,《九章算术》已有明确的「开平方法」及「开立方法」,并有由「开平方法」所自然延拓的「开带从平方」(相当于二次方程的数值解法),以及多元一次方程组解法(「方程术」)和正负数加减法则(「正负术 」)。  由上简述可知,在《九章算术》的成书过程中,从实用问题解法深入分析、具体总结的倾向是很浓厚的,不过,这并不太能突出它的发生、发展背景,如众所周知,古埃及、巴比伦的数学成就地无非如此形成的。要想知道中国古代学者如何通过《九章算术》知识去实践他们的数学主张:也就是说,他们首先提出了什么问题?为何提出的?按着他们又是为何解决的?以及最终他们为何看待自己的数学成就?那就不能把数学局限在本身来看了,臂如,如果切断了欧几里得 (Euclid)与柏拉图(Plato)、亚里斯多德的思想联系,那么「几何原本」就真地成为少数数学家的禁脔了,因此,在一定的学术思想背景中,深入探索《九章算术》知识的形成,不但可以帮助我们确认数学在人类文明进展中所扮演的重要角色,同时也可以提示我们:大约两千多年前的中国人是为何从事数学思考的? 2007-01-17 21:54:05 补充: 第一章,「方田」: 平面图形面积的量法及算法,如矩形、三角形、圆、弧形、环形等的田地的求积公式,及分数算法,包括加减乘除法、约分﹝将分母,分子用辗转相除法求出它的最大公约数再作约分﹞、分数大小的比较及求几个分数的算术平均数等。第二章,「粟米」: 各种粮食交换之间的计算,讨论比例算法。 第三章,「衰分」: 比例分配问题。 2007-01-17 21:54:20 补充: 第四章,「少广」: 多位数开平方,开立方的法则。 第五章,「商功」: 立体形体积的计算。 第六章,「均输」: 处理行程和合理解决征税的问题,尤其是与人民从本地运送谷物到京城交税所需的时间有关的问题,还有一些与按人口征税有关的问题,其中还夹杂着衰分、比例及各种杂题。 2007-01-17 21:54:28 补充: 第七章,「盈不足」: 算术中的盈亏问题的算法,实际上就是现在的线性插值法,它还有许多名称,如试位法、夹叉求零点、双假设法等。第八章,「方程」: 有关一次方程组的内容,最后还有不定方程。将方程组的系数和常数项用算筹摆成「方程」,这是《九章算术》中解多一次方程组的方法,而整个消元过程则相当于代数中的线性变换。在方程章里提出了正负数的不同表示法和正负数的加减法则。第九章,「勾股」: 专门讨论用勾股定理解决应用问题的方法。 参考: .knowledge.yahoo/question/?qid=7006042500859
2023-08-14 15:53:011

用出入相补法证明勾股定理

我们先画一个直角三角形,然后在最短的直角边旁向三角形那一边加上一个正方形,为了清楚起见,以红色表示。又在另一条直角边下面加上另一个正方形,以蓝色表示。接著,以斜边的长度画一个正方形,如图五(b)。我们打算证明红色和蓝色两个正方形面积之和,刚好等於以斜边画出来的正方形面积。留意在图五(b)中,当加入斜边的正方形后,红色和蓝色有部分的地方超出了斜边正方形的范围。现在我将超出范围的部分分别以黄色、紫色和绿色表示出来。同时,在斜边正方形内,却有一些部分未曾填上颜色。现在依照图五(c)的方法,将超出范围的三角形,移入未有填色的地方。我们发现,超出范围的部分刚好填满未曾填色的地方!由此我们发现,图五(a)中,红色和蓝色两部分面积之和,必定等於图五(c)中斜边正方形的面积。由此,我们就证实了勾股定理。
2023-08-14 15:53:091

七巧板是由几种图形组成的?其中三角形有几个?

七巧板由正方形分割成七小块(其中:五块等腰直角三角形,一块正方形和一块平行四边形组成.依此即可作答.解答: 解:由七巧板的组成可知,七巧板由3种图形组成,分别是正方形,三角形和平行四边形;所以七巧板中有6个三角形;它们都是等腰三角形.
2023-08-14 15:53:303

关于中国的成就历史。

港珠澳大桥开通时间
2023-08-14 15:54:515

勾股定理用出入相补法证明

很神奇的东西...理解不了
2023-08-14 15:55:407

对于 九章算术 中的九章:方田 栗米 衰分 少广 商功 均输 盈不足 方程 勾股 你了解多少。

《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、 《九章算术》  生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示。原作有插图,今传本已只剩下正文了。 《九章算术》共收有246个数学问题,分为九章、它们的主要内容分别是: 第一章“方田”:田亩面积计算;提出了各种多边形、圆、弓形等的面积公式;分数的通分、约分和加减乘除四则运算的完整法则。后者比欧洲早1400多年。 第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术; 第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致。这是世界上最早的多位数和分数开方法则。它奠定了中国在高次方程数值解法方面长期领先世界的基础。 第四章“少广”:已知面积、体积,反求其一边长和径长等; 第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法; 第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。 第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。 第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组, 勾股定理求解  相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7世纪印度的婆罗摩及多才认识负数。 第九章“勾股”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n。在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。勾股章还有些内容,在西方却还是近代的事。例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出。  主要特点  《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。其影响之深,以致以后中国数学着作大体采取两种形式:或为之作注,或仿其体例着书;甚至西算传入中国之后,人们着书立说时还常常把包括西算在内 《九章算术》  的数学知识纳入九章的框架。 然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。魏景元四年(263年),刘徽给《九章算术》作注,才大大弥补了这个缺陷。 刘徽是中国数学家之一。他的生平现在知之甚少。据考证,他是山东邹平人。刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然。 刘徽对数学概念的定义抽象而严谨。他揭示了概念的本质,基本符合现代逻辑学和数学对概念定义的要求。而且他使用概念时亦保持了其同一性。如他提出凡数相与者谓之率,把率定义为数量的相互关系。又如他把正负数定义为今两算得失相反,要令正负以名之,摆脱了正为余,负为欠的原始观念,从本质上揭示了正负数得失相反的相对关系。 《九章算术》的算法尽管抽象,但相互关系不明显,显得零乱。刘徽大大发展深化了中算中久已使用的率概念和齐同原理,把它们看作运算的纲纪。许多问题,只要找出其中的各种率关系,通过乘以散之,约以聚之,齐同以通之,都可以归结为今有术求解。 一平面(或立体)图形经过平移或旋转,其面积(或体积)不变。把一个平面(或立体)图形分解成若干部分,各部分面积(或体积)之和与原图形面积(或体积)相等。基于这两条不言自明的前提的出入相补原理,是中国古代数学进行几何推演和证明时最常用的原理。刘徽发展了出入相补原理,成功地证明了许多面积、体积以及可以化为面积、体积问题的勾股、开方的公式和算法的正确性。  数学成就  《九章算术》中的数学成就是多方面的: (1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的. (2)、在几何方面,主要是面积、体积计算。 (3)、在代数方面,主要有一次方程组解法、平方、立方、一般二次方程解法等。“方程”一章还在世界数学史上首次引入了负数及其加减法运算法则.作为一部世界科学名著,《九章算术》在隋唐时期就已传入朝鲜、日本。现在它已被译成日、俄、德、英、法等多种文字。 《九章算术方程》章共18问,全都是一次方程组问题,未知数最多时可达五个。其解法,首先以竖行用算筹列出各方程的系数,如“方程”章第一题,它相当于求解: 《九章算术》  3x+2+=39,(1) 2x+3+=34,(2) x+2+3=26。(3) 列出的筹式如 123 232 311 263439 [3][2][1], 竖行[1]、[2]、[3],即相当于上面的式(1)、(2)、(3)。其消元方法就是令左右行连续相减(如以3乘[2]再连续减[1]即可消去x项系数)。“程”是指“计算”、“方”是指这样列出的筹式是方形的,这才是“方程”这一数学术语的原意。《九章算术》中的这项成果,比世界其它国家和地区的同类成果要早很多年。“方程”章还在世界数学史上首次引入了负数及其加减法运算法则。 在《九章算术》中,开平方和开立方时所列筹式以及演算过程,其意义和求解x=、x=的数值解法是相同的。这样,在开平方的过程中便可很自然地引出一般二次方程的解法。由此出发,更开宋元时期高次方程数值解法的先声。  历史考证  现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详。很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶。由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释。 关于对《九章算术》所做的校注主要有:西汉张苍增订、删补,三国时曹魏刘徽注,唐李淳风注,南宋杨辉著《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?~1811年)所著《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作。现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释。80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版。  后世影响  《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。 《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。 所以,《九章算术》是中国为数学发展做出的一杰出贡献。  历史影响  现传本《九章算术》成书于何时, 目前众说纷纭,多数 祖冲之  认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详。很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶。由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释。 关于对《九章算术》所做的注住要有:三国时曹魏刘徽注,唐朝李淳风注,南宋杨辉着《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?~1811年)所着《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作。现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释。80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版。 《九章算术》是世界上最早系统叙述了分数运算的着作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显着特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。 《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。可以说,《九章算术》是中国为数学发展做出的又一杰出贡献。
2023-08-14 15:56:362

七巧板能拼出多少种图形

七巧板是中国十分知名的益智游戏。在19世纪初,来广州从事贸易的欧美商人将一些精美的象牙七巧板带回国。很快,像近代的魔方一样,七巧板就此风靡世界,成为19世纪世界最流行的智力谜题之一。七巧板的玩法有多少种?用它能拼出多少种图形?七巧板拼图图案原图-京东玩具乐器,宝宝真的很喜欢!广告方法1/5七巧板的构造一目了然——是由一个正方形切割成的七块几何平板。包括两个大三角、一个中三角、两个小三角、一个正方形和一片平行四边形。制作七巧板的材料各异,有木质、象牙、金属及其它材质。七巧游戏由一套七巧板和一些仅有轮廓的图形组成。玩法亦极易理解:将其拼凑成各种事物图形,如人物、动植物、房亭楼阁、车轿船桥等,可一人玩,也可多人进行比赛。七巧板拼图图案原图-[京东]玩具乐器,陪伴宝贝成长!广告请点击输入图片描述2/5据清代陆以湉《冷庐杂识》记载,七巧板是由唐宋时期的宴几演变而来的,原为文人的一种室内游戏,后在民间演变为拼图板玩具:宋朝有个叫黄伯思的人,对几何图形很有研究,他热情好客,发明了一种用6张小桌子组成的“宴几”——请客吃饭的小桌子。经改进,6张桌子变成7张桌子,可以根据吃饭人数的不同,把桌子拼成不同的形状,比如3人拼成三角形,4人拼成四方形,6人拼成六方形……这样用餐时人人方便,气氛更好。后来,有人把宴几缩小改变到只有七块板,用它拼图,演变成一种玩具。因为它十分巧妙好玩,所以人们叫它“七巧板”。请点击输入图片描述3/5到了明末清初,皇宫中的人经常用它来庆贺节日和娱乐,拼成各种吉祥图案和文字,故宫博物院至今仍保存着清代的七巧板,北京颐和园和苏州留园中还各珍藏了一张晚清时期运用七巧板原理制作成的七巧桌。虽然七巧板的构造和玩法非常简单,不过其中蕴含的变化与原理可十分精妙——据不完全统计,七巧板能拼出1600种以上不同图案,从人物到动物、建筑物乃至中英文字母等。利用七巧板可以阐明若干重要几何关系,其原理便是古算术中的“出入相补原理”。出入相补原理最早由三国时代魏国数学家刘徽创建,是古中国数学中一条用于推证几何图形的面积或体积的基本原理。其内容有如下4个:1. 一个几何图形,可以切割成任意多块任何形状的小图形,总面积或体积维持不变,等于所有小图形面积或体积之和;2. 一个几何图形,可以任意旋转,倒置、移动、复制,面积或体积不变;3. 多个几何图形,可以任意拼合,总面积或总体积不变;4. 几何图形与其复制图形拼合,总面积或总体加倍。买七巧板上万能的淘宝!优享品质,惊喜价格!_七巧板拼图图案大全广告请点击输入图片描述4/5用现代语言来概括的说,出入相补原理阐述了这样一个事实:一个平面图形从一处移置他处,面积不变。又若把图形分割成若干块,那么各部分面积之和等于原来图形的面积,因而图形移置前后,诸面积间的和、差有简单的相等关系。立体的情形也是这样。再用浅显易懂的现代数学原理来剖析一下:把七巧板中的小正方形边长定为1,则各块所有边长只有4个数值:1,√2,2,2√2,构成一个等比数列。所有的角只有3个值:45°,90°,135°,构成一个等差数列;而且其中任何两个角的和、差,如果不计180°平角,大于180°的角减去180°,则仍是这三个角之一。正是这些特点,使得简单的七个图形可以拼成多达1600种以上的形状。日本数学家大约在上世纪20年代提出一个问题:七巧板可以拼成多少个凸多边形?不久之后,浙江大学的两位数学教师在《美国数学月刊》上发表了论文,结论指出:能拼成的凸多边形只有13个。他们的成果得到数学界的赞扬。七巧板可以拼成多少个五边形?这个问题由美国学者解决,结论是18个。5/5七巧板的变化多端,但排列规则却很简单:1. 在排列七巧板的时候,所有的组件都必须使用到,而且只限使用这七个组件排列;2. 七个组件之间可以“角边相接”,或“边边相接”,但绝对不能重叠,因此,不论排成哪种图形,其总面积一定相等;我们知道了七巧板排列的简单规则,再来探索一下它的玩法,七巧板的玩法有四种:1. 依图成形,即是根据已知的图形来排列出答案;2. 见影排形,从已知的图形找出一种或一种以上的排法;3. 自创图形,你可以自己创造新的玩法及排法;4. 数学研究,也就是利用七巧板来求解或证明数学问题。请点击输入图片描述
2023-08-14 15:56:451

求关于一元二次方程组的应用 的题(必须有答案)

例1.某人用1000元人民币购买一年期的甲种债券,到期后兑换人民币并将所得利息购买一年期的乙种债券,若乙种债券的年利率比甲种债券低2个百分点,到期后某人的乙种债券可兑换人民币108元,求甲种债券的年利率。  分析:利息=本金×利率×存期  本息=本金+利息  甲种债券利息×(1+乙种债券利率)×存期=108  解:设甲种债券的年利率为x,依题意,甲种债券的利息为1000x元,乙种债券的年利率为x-0.02,则  1000x(1+x-0.02)=108  整理得:250x2+245x-27=0  (10x-1)(25x+27)=0  x1=0.1   x2=-   ∵x2=-不合题意,舍去  ∴x=0.1=10%  答:甲种债券的年利率为10%。  例2.某电厂规定该厂家属区的每户居民如果一个月的用电量不超过A度,那么这个月这户只需交10元用电费,如果超过A度,则这个月除了仍要交10元用电费外,超过部分还要按每度元交费。  (1)该厂某户居民2月份用电90度,超过了规定的A度,则超过部分应该交电费多少元(用A表示)  (2)下表是这户居民3月、4月的用电情况和交费情况:月份 用电量(度) 交电费总数(元)3月 80 25 4月 45 10   根据上表的数据,求电厂规定A度为多少?  分析:本题是原于现实生活中的经济问题,情景熟悉,但问题有障碍,不能直接看出问题的答案,必须认真阅读和思考 问题(1)较简单,超过部分应交电费(90-A)元,问题(2),从表中看到,45<A<80,根据3月份用电80度,交电费25元,可列出方程:  10+(80-A)=25  整理得,A2-80A+1500=0  解得:A1=50  A2=30  但A2=30<45,不合题意舍去  ∴A=5  解略。  例3.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。  若商场平均每天要盈利1200元,每件衬衫应降价多少元?  解:设每件衬衫应降价x元,  由题意可得:  (40-x)(20+2x)=1200  整理,得x2-30x+200=0  x1=10  x2=20  根据题意x=10不合题意,舍去      所以x=20 答:每件衬衫应降价20元。  说明:此题是一元二次方程在市场经济中的应用,利用已知条件,列方程,解方程都比较简单,但得出方程的根后,考查它们是否符合题意是个难点,已知中有“尽快减少库存”的要求,而每降低1元,则平均每天可售出2件,所以x=10,不合题意舍去。  例4.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队共5500元。  (1)求甲、乙、丙各队单独完成全部工程各需多少天?  (2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由。  分析:此题是用数学知识解决简单的生产问题,这也是初中数学的教学目的。  第一问是工程问题,工程问题中有三个量:工作总量,工作效率,工作时间,这三个量之间的关系是:工作总量=工作效率×工作时间。  第二问只要求出每天应各付甲、乙、丙各队多少 钱,并由第一问求出甲、乙、丙各队单独完成这项工作所需的天数,即可求出在规定时间内单独完成此项工程哪个队花钱最少。  解:(1)设甲队单独做x天完成,乙队单独做y天完成,丙队单独做z天完成  由题意可得:    解这个方程组得:  经检验此解是所列方程组的解  答:甲队单独做10天完成,乙队单独做15天完成,丙队单独做30天完成。  (2)设付给甲队一天a元,付给乙队一天b元,付给丙队一天c元    解这个方程组得        又∵规定时间要求不超过15天    ∴不能用丙队,               ∵10a=8000(元)   15b=9750(元)  答:由甲队单独完成此工程花钱最少。  说明:数学教学新大纲中要求“能够运用所学知识解决简单的实际问题”。能够解决实际问题是指:能够解决带有实际意义和相关学科中的数学问题,以及解决生产和日常生活中的实际问题;能够使用数学语言表达问题,展开交流,形成用数学解决实际问题的意识,以上四题就反映了新大纲要求,这种形式的问题频繁出现在近两年的中考试卷中,这应引起我们的重视。  例5.A、B两地间的路程为15千米,早晨6时整,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地,如果乙骑车比甲步行每小时多走10千米,问几点钟甲,乙两人同时到达B地?  分析:此题是行程问题,行程问题中有三个基本量:速度、时间、路程,并且路程=速度×时间。此题若间接设元,设甲步行每小时走x千米,乙骑自行车每小时走(x+10)千米,又已知AB两地路程为15千米,则可利用甲乙所用的时间找等量关系。  解:设甲步行每小时走x千米,  则乙骑车每小时走(x+10)千米  由题意得:+1=   整理得:x2+25x-150=0  解这个方程得:x1=5,x2=-30  经检验:x1=5,x2=-30都是所列方程的根,  但x=-30不合题意舍去  ∴x=5  这时 15÷5=3(小时)  答:上午9点整,甲、乙两人同时到达B地。  例6.甲、乙两车同时从A地出发,经过C地去B地,已知C、B相距180千米,出发时,甲每小时比乙多行5千米,因此,乙经过C地比甲晚半小时,为赶上甲,乙从C地将车速每小时增加10千米,结果两车同时到达B,求两车出发时速度?  分析:解决此题的关键是:从C地到B地,甲比乙多走半小时。  解:设乙速为x千米/时。  则甲速为(x+5)千米/时   - =  整理得:x2+15x-1750=0  解这个方程:x1=35, x2=-50  经检验:x1=35,x2=-50都是所列方程的根  但x=-50不合题意,舍去  ∴x=35  ∴x+5=35+5=40  答:甲出发时速度为40千米/时,乙出发时速度为35千米/时。  例7.甲乙两人分别从A、B两地同时同向出发,甲经过B地后,再经过3小时12分在C地追上乙,这时两人所走的路程和为36千米,而A、C两地的距离等于乙走5小时的路程,求A、B两地的距离?  分析:此题间接设元比较方便,如可设甲、乙两人速度分别为x千米/时,y千米/时,可以利用“两人所走的路程和为36千米”及“甲从A到C所用的时间与乙从B到C所用的时间相等”这两个等量关系建立方程组。  解:设甲速为x千米/时,乙速为y千米/时   则AC长5y千米,BC长为 x千米(3小时12分=小时)  AB长(5y-x)千米  由题意可得   解这个方程组得:   经检验它们都是所列方程组的解   又∵  不合题意舍去  ∴    ∴ 5y-x=5×4- =4   答:A、B两地长4千米。测试  A组选择题(每小题20分)  1.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,问二月、三月平均每月的增长率是多少?设平均每月增长的百分率为x,根据题意得方程为  (A)50(1+x)2=175          (B)50+50(1+x)2=175  (C)50(1+x)+50(1+x)2=175      (D)50+50(1+x)+50(1+x)2=175   2.甲、乙两队学生绿化校园,两队合作6天可以完成,若单独工作,甲队比乙队少用五天,两队单独工作,各需要多少天完成?  若设甲队单独工作需要x天完成,则根据题意得到的方程是(   ).  (A) =6      (B)=6  (C)6( )=1    (D)=1   B组选择题(每小题30分)  1.某村有若干人准备用平均集资的方法筹集数万元开发小区,消息传出后,又有3位村民认为开发项目对头,申请参加,于是每人可少集资3000元;最后收款时,又增加1人,再次使每人的平均集资数减少600元,问该村开始时有多少人集资?共集资多少元?  解如下:设最初集资人数为x,每人平均集资y元,依题意,列出方程组:  解法一:    解法二:由隐含着的“出入相补”原理,得方程组:    解法三:由隐含着的“出入相补”原理,得方程组:    以上有三种解法,其中错误的是:  (A)解法一   (B)解法二    (C)解法三   (D)都正确。  2.甲、乙两列车,分别从相距300千米的A、B两车站同时相向出发,相遇后,甲车再经过4小时到B站,乙车再经过9小时到A站,求甲、乙各车的速度。  解法一:设甲车的速度为x千米/小时,乙车的速度为y千米/小时,根据题意,得:    解法二:设甲车的速度为x千米/小时,乙车的速度为y千米/小时,  根据甲乙两车相遇时间相等,而相遇后至停止相差9-4=5小时,亦为全程时间差为5小时,据此得方程:    解法三:间接设未知数,设相遇时,甲、乙各行了x小时。  根据题设得方程:×4+ ×9=300  即 +=1,  得x2=36, x=±6 (-6不合题意,舍去。)  所以v甲==30(千米/小时),  v乙==20(千米/小时),  以上解法正确的有:  (A)一种  (B)两种  (C)三种  (D)没有正确解法。答案与解析   A组答案:1、D    2、C    B组答案:1、C    2、C  B组解析:  1、解题策略:一是按有关的几个基本量列表,未知数用相应的字母代替,可有助于理清题意,如:   集资人数   平均集资数   总额   开始时   x   y   z   第一次增人后   x+3   y-3000   z   第二次增人后   x+4   y-3000-600   z   二是根据出入相补原理:原来集资每人减少总额(出),由新增集资人承担(入)。   解法一:设最初集资人数为x,每人平均集资y元,依题意,列出方程组:    解之得:  所以 z=xy=54000(元)。  答:原来有6人集资,出集资5.4万元。   解法二:由隐含着的“出入相补”原理,得方程组:    第三种解法错误,注意题中“再次使每人的平均集资数减少600元”是指在减少3000元的基础上再减少600元,实为减少3600元,不能理解为2400元。   2.解题策略:画出分析图,是解行程问题的有效办法。      利用不同线条区分不同速度的运动体是个好办法,便于弄清题目的条件。  解法一:设甲车的速度为x千米/小时,乙车的速度为y千米/小时,根据题意,得:    由(2)得 9y2=4x2,  3y=2x  (因x,y 都是正的,故舍去负的)。  解得:  经检验,这个解满足题设要求。  答:甲车速度为30千米/小时,乙车速度为20千米/小时。   解法二:如上所述,根据甲乙两车相遇时间相等,而相遇后至停止相差9-4=5小时,亦为全程时间差为5小时,据此得方程:    (以下略)。   解法三:间接设未知数,设相遇时,甲、乙各行了x小时。  根据题设得方程:×4+ ×9=300  即 +=1,  得x2=36, x=±6 (-6不合题意,舍去。)  所以v甲==30(千米/小时),  v乙==20(千米/小时)。  以上三种解法都正确。 列方程解应用题  考点  1.会列出方程或方程组解应用题。  2.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。  考题评析    1.(广州市)某商场销售商品收入款,3月份为25万元,5月份为36万元,该商场这两个月销售商品收入款平均每月增长的百分率是多少?  考点:一元二次方程的应用  评析:首先用3月份收入款及增长率(x)表示5月份的收入款根据5月份的实际额列方程25(1+x)2=36。  答案:20%  注:(1)解一元二次方程要求出两解,根据实际再取舍。   (2)结果要化成百分数的形式。  2.(成都市)某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签订的合同上约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元,若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数。  考点:一元二次方程的应用。  评析:两年后的产值是列方程的难点,也是此题的难点,即两年后的产值为本息和加盈利[200(1+8%)+72],由题意不难列出方程200(1+x)2=72+200(1+8%),(x为所求百分数)。  解:设这个百分数为x。  依题意,列出方程为  200(1+x)2=72+200(1+8%)。  化简,得200(1+x)2=288,  即(1+x)2=1.44。  解得x1=0.2=20%,x2=-2.2(不合题意,舍去)。  答:该公司资金增长的百分数为20%。   3.(昆明)某厂工业废气年排放量为450万立方米,为改善昆明市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同。  (1)求每期减少的百分率是多少?  (2)预计第一期治理中每减少1万立方米废气需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元,问两期治理完成后共需投入多少万元?  解:(1)设每期减少的百分率为x.      1分  据题意,得:450(1-x)2=288      3  (1-x)2=0.64  解得:x=1±0.8  ∴ x1=0.2, x2=1.8(不合题意,舍去)      5分  ∴每期减少的百分率为20%。  (2)∵ 450·(1-20%)=360  ∴第一期减少的废气450-360=90(万立方米)      6分  又∵第二期减少的废气360-288=72(万立方米)      7分  则共需投入3×90+4.5×72=594(万元)      8分  答:(1)每期减少的百分率为20%,(2)两期治理完成后共需投入594万元      9分  4.(辽宁省)列方程解应用题:  某顾客第一次在商店买若干件小商品花去5元,第二次再去买该小商品时,发现每一打(12件)降价0.8元,他比第一次多买了10件,这样,第二次共花去2元,且第二次买的小商品恰好成打,问他第一次买的小商品是多少件?  考点:列分式方程解应用题  评析:思路:设第一次买的小商品为x件,则第二次为(x+10)件分别表示出每件的价格,两次的价格差即为每件小商品所降的价格,列出分式方程,可解决此题。  说明:求出未知数的值,必须检验,不但使方程成立,还必须符合实际。  解:设他第一次买的小商品为x件.  根据题意,得    去分母,整理得x2-35x-750=0.  解得x1=50,x2=-15.  经检验x1=50,x2=-15都是原方程的根.  但x=-15不合题意,舍去,所以只取x=50.  答:他第一次买小商品50件.   5.(北京市海淀区)列方程或方程组解应用题:  为了响应节水号召,小红家要使200m3的水比过去多用5个月,计划每月比过去少用水2m3,问小红家计划每月用多少水?  考点:列方程(组)解应用题。  评析:列方程(或组)解应用题的关系是通过审题,找到等量关系,设未知数列方程(组)就容易了,(其中x为原来每天的用水量)x=10m3,所以计划每月的用水量为8m3。  6.(山西省)列方程解应用题:  A、B两地相距80千米,一辆公共汽车从A地出发,开往B地,2小时后,又从A地同方向开出一辆小汽车,小汽车的速度是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两种车的速度。  解: 设公共汽车的速度为x千米/时,则小汽车速度为3x千米/时  依题意,得.    解之,得x=20  经检验:x=20是所列方程的解, ∴3x=60  答:公共汽车速度为20千米/时,小汽车速度为60千米/时。
2023-08-14 15:57:431

中国的科技成就有哪些?

  先给你一些关于古代的科技成就的吧!  一、天文学  1、中国古代的天象记录  2、中国古代在天体测量方面的成就  3、浑仪和简仪——中国古代测天仪器的成就  4、中国古代的历法成就  5、中国古代的宇宙理论  二、数学  1、十进位值制、筹算和珠算  2、出入相补原理  3、割圆术和圆周率  4、刘徽割圆术  5、中国剩余定理  6、高次方程数值解法和天元术  7、内插法和垛积术  8、中国古代的无穷小分割思想  三、物理学  1、中国古代的力学知识  2、中国古代的声学知识  3、指南针和中国古代的磁学知识  4、中国古代光学成就  5、四化学和化工  6、造纸术的发明和发展  7、火药和火药武器  8、驰名世界的中国瓷器  9、中国古代的油漆技术和漆器  10、古代炼丹术中的化学成就  五、地理学  1、中国古代对天气现象的观测和理论  2、中国古代的物候历和物候知识  3、中国古代的旅行考察事业  4、中国古代的水利工程和水文知识  5、马王堆出土的地图和裴秀制图六体  6、中国古代的矿物学和采矿技术  7、中国古代对海陆变迁的认识  8、中国古代的地震测报和防震抗震  六、生物学  1、中国现存的几部古代动植物志  2、中国古代的动植物分类  3、中国古代关于遗传育种的研究  4、中国古代认识和利用微生物的成就  七、农学  1、中国古代几部重要农书  2、精耕细作是中国农业技术的优良传统  3、历史悠久的中国园艺技术  4、茶  5、中国古代养蚕科学技术的发展和传播  6、中国古代畜牧兽医方面的成就  八、医药学  1、从两部古典的中医名著看中国医学的早期成就  2、中药学的突出成就  3、中国医学独特的针灸疗法  4、中国古代医学的突出成就之一——脉诊  5、中国古代的外科学成就  6、免疫法的先驱  7、世界第一部法医学专著  九、印刷术  印刷术的发明发展和外传  十、纺织  1、中国古代的纺车和织机  2、中国古代的丝绸和丝织技术  3、中国古代的葛、麻纺织  4、中国古代的染色技术  十一、冶金铸造  1、中国古代冶金技术的成就  2、炼钢技术  3、湿法冶金的起源——胆铜法  4、中国古代三大铸造技术  十二、机械  1、中国古代的农业机械  2、中国古代原动力的利用——人力的进一步发挥和自然力的有效利用  3、中国古代各种车辆、指南车和记里鼓车  4、水运仪象台  十三、建筑  1、雄伟的万里长城  2、中国古桥成就  3、世界历史名城——唐代的长安城  4、辉煌灿烂的故宫建筑  5、颐和园——中国古典园林建筑的珍贵遗产  6、中国古代高层砖石建筑——嵩岳寺塔和其他  7、世界上现存最高的古代木构建筑——山西应县木塔  十四、造船和航海  1、中国古代造船工程技术成就  2、中国古代航海技术上的成就  十五、军事技术  1、中国古代的兵器成就  2、中国古代战车、战船和城防技术成就  、  十六、少数民族的科技成就  1、蒙古族在我国古代科学上的贡献  2、藏族医学的成就  3、新疆古代少数民族在农业科学技术上的贡献  4、美丽精致的壮布和壮锦  5、彝族的火器——“葫芦飞雷”  这有新中国的:  1.形成了比较完整的科学研究与技术开发体系,整体科技发展水平位居发展中国家前列。2000年国内科学研究与试验发展(R&D)经费总支出为896亿元,占当年国内生产总值(GDP)的比重为1.0%,跃居发展中国家前列。在R&D经费总支出中,基础研究占5.2%;应用研究占17.0%;试验发展占77.8%。其中各类企业支出占国内 R&D经费总支出的60.3%,已经接近发达国家的水平,表明企业逐步成为我国R&D活动的主体。  目前,已建成国家级重点实验室217个(其中包括国防科技重点实验室60个)、国家工程中心 188个,认定国家级企业技术中心294个;国际权威检索机构收录的我国科技论文数44536篇,本国居民的专利授权量92101件,其中发明专利 3097件。2000年,高新技术产品出口额247亿美元;53个国家级高新技术开发区的技工贸总收入6774.8亿元,工业增加值1476.2亿元。  2.科技体制改革取得了突破性进展,国家确定的科技体制改革阶段性目标基本实现。科技工作的战略重点正在转向国民经济建设主战场,企业科技力量得到进一步加强,242个国家级技术开发类研究院所已基本完成转制工作,多数科研机构的运作直接面向市场需求,知识创新工程试点取得初步成效,高校管理体制改革基本完成,科技资源得到了优化配置;民营科技企业迅速崛起,技术市场发展迅猛;宏观科技管理体制逐步完善,适应社会主义市场经济的新型科技体制初步形成,国家创新体系的建设正在逐步展开。  3.基础科学研究领域取得成果。人类基因测序、纳米碳管和纳米新材料、寒武纪生命大爆发研究、微机电系统研究、南海大洋钻探等方面取得了重大成果。表面科学非线性科学、认知科学以及地球系统科学等新兴交叉学科得到迅速发展。中国大陆科学钻探工程、大天区面积多目标光纤光谱天文望远镜等八项国家重大科学工程的建设,为我国的基础科学研究创造了良好条件。  4.高技术研究及产业化方面有所突破。载人航天技术、运载火箭及卫星技术等航天高技术取得了重大突破。两系法杂交水稻、基因工程药物、转基因动植物、重大疾病的相关基因测序和诊断治疗等技术的突破,使我国生物技术总体水平接近发达国家。高清晰度电视、"神威"计算机、大尺寸单晶硅材料、皮肤干细胞再生技术等重大成就的取得,使我国在相应领域跃入世界先进行列。国防科技的发展为增强国防实力奠定了坚实基础,促进了国防工业的技术进步。  5.工农业科技获得进展。农业科技方面,仅"九五"期间共培育出600多个新品种,单产增产10%左右。推广水稻旱育稀植和节水技术、ABT植物调节剂和小麦旱地全生育期地膜覆盖栽培等重大技术,有力地保障了我国粮食增产目标的实现。  工业科技取得了若干重大技术突破,提升了重点产业技术水平。数字程控交换机、氧煤强化炼铁技术、镍氢电池、非晶材料等的产业化方面获得一系列重大成果。结合三峡工程、国民经济信息化、集成电路、泰山核电站二期等一系列国家重大建设工程,通过引进、消化吸收与创新,攻克了一批关键技术,掌握了若干重大成套技术装备的设计和制造技术。计算机辅助设计(CAD)、计算机集成制造系统(CIMS)等一批重大共性技术的推广应用,大幅度提高了企业技术创新能力。创新药物、水资源利用和保护、小康住宅、夏商周断代工程等一批重大项目的实施,中国科技馆二期工程及一批科普设施的建设,为社会事业的发展做出了贡献。  我国科技发展的重大成就  (一) 背景材料  1.人类基因研究成就巨大  (1) 1999年12月1日,由英、美、日等国科学家组成的研究小组宣布已被译出首对人体染色体遗传密码,这是人类科学领域的又一重大突破。人类基因组计划是人类历史上与曼哈顿原子弹工程及阿波罗登月计划齐名的人类三大科学工程之一,但其价值和对人类社会的影响将远远超过前两个计划。  (2) 2000年6月26日,人类有史以来第一个基因组草图终于绘制完成,我国科学家参与并高质量地完成了人类基因组工作草图绘制百分之一的测序任务表明中国科学家有能力起跻身国际科学前沿,并做出重要贡献。  (3) 2000年2月12日,参与人类基因组计划的六国科学家联合公布了人类基因组图谱及其分析结果,人类基因组的完成图将于今年绘制出。绘制出完整的人类基因组图谱,破译出人类全部遗传信息。这一计划的实施将为人类自身疾病的诊断和防治提供依旧,给医药产业带来不可估量的变化,将促进生命科学、信息科学及一批高新技术产业的发展。  2.航空航天技术发展迅速  (1) 2000年12月21日,我国自行研制的第二颗“北斗导航试验卫星”发射成功,它与2000年10月31日发射的第一颗“北斗导航试验卫星”一起构成了“北斗导航系统”。这标志着我国将拥有自主研制的第一代卫星导航定位系统,这个系统建成后,主要为公路交通、铁路运输、 海上作业等领域提供导航服务,对我国国民经济建设将起到积极的作用。  (2) 2001年1月10日,我国自行研制的“神舟二号”在中国酒泉卫星发射中心升空,并成功进入预定轨道。1月16日,“神舟二号”无人飞船准确返回并成功着陆。这是中国航天在新世纪的首次发射,也是我国载人航天工程的第二次飞行试验,它标志着我国向实现载人飞行迈出了重要的一步。  3.在纳米技术领域屡创佳绩  我国科学家在纳米科技研究方面,居于国际科技前沿。最近的一次,我国科学家在世界上首次直接发现纳米金属的“奇异”性能—超塑延展性,纳米铜在室温下竟可延伸50多倍而不折不绕,被誉为“本领域的一次突破,它第一次向人们展示了无空隙纳米材料是如何变形的”。从总体看,目前我国有关纳米论文总数排行世界第四,在纳米材料研究方面已在国际上占一席之地。  4.超级计算机智能化  2000年11月29日,我国独立研制的第一台具有人类外观特征、可以模拟人行走与基本操作功能的类人型机器人,在长沙国防科技大学首次亮相。类人型机器人的问世,标志着我国机器人技术已跻身国际先进行列。  5.国家“863“计划15周年成就展览举行  2001年3月,国家在北京展览馆举办了“863”计划15周年成就展。“863”计划自1986年3月实施以来,共获国内外专利2000多项,发表论文47000多篇,累计创造新增产值560多亿元,产生间接经济效益2000多亿元。863计划重点支持的高技术领域的研究开发水平与世界先进水平的整体距离明显缩小,开始在世界高技术领域占有一席之地,60%以上的技术从无到有,如今已进入或接近国际先进水平,另有25%仍然落后于国际先进水平,但在原来的基础上也有很大进步。  (二) 与教材结合点分析  1. 从经济常识看:  (1) 科学技术是第一生产力。当今生产力的发展,科学技术起着决定性的作用;当今世界的竞争,说到底是科技与人才的竞争。  (2) 财政的巨大作用。经济发展靠科学,科学进步靠人才,人才培养靠教育。而这些事业单位的发展必须依靠财政的大力支持,背景材料中所列举的大量科技成果与财政的支持是分不开的。  (3) 当今国际经济的国际化,科技开发与应用的国际化是其中重要的表现。人类基因组草图从一开始就是个国际合作计划,由美国启动,英、日、法、德、中科学家先后加盟。  2. 从哲学常识看:  (1) 客观规律和人的主观能动性的关系。一系列科技成果的取得,一方面是由于科学家尊重了客观规律,另一方面是他们顽强拼搏、锐意进取、充分发挥主观能动性的结果。  (2) 事物都是一分为二的,我们应坚持两点论和两分法。如人类基因研究取得了突破性进展,这必将促进生命科学、信息科学及一批高新技术产业的发展,同时人们又面临着基因垄断、基因成果被过分用于追求商业利益等新问题。  (3) 认识深化发展的观点。人们应当在实践基础上不断深化、扩展认识,把认识向前推移。人类基因技术的研究过程和我国航天技术发展情况等事实,都是认识深化发展的必然结果。  3. 从政治常识看:  (1) 国际竞争的实质。当今世界竞争的实质是以经济和科技实力为基础的综合国力的较量。能否在科技发展上取得优势,增强以经济和科技为基础的综合国力,最终将决定本国在国际上的地位。  (2国家领导和组织社会主义现代化建设的职能和组织社会主义精神文明  建设的职能。国家大力发展高新技术并运用到经济建设中去,促进经  济的发展。赞同199| 评论
2023-08-14 15:57:541

用七巧板通过平移或旋转拼成下面图形,说说你是怎样拼的(用五年级下册旋转知识解决问题解决)

“1,2,4,6”不动“3”上移6格右移2格“3”上移6格右移2格“5”以直角为中心旋转180度,上移6格“7”以直角为中心顺时针旋转45度,上移6格
2023-08-14 15:58:042

请求翻译下列古文

〔二一〕又有田广五分步之四,从九分步之五,问为田几何?  荅曰:九分步之四。  乘分术曰:母相乘为法,子相乘为实,实如法而一。  〔二二〕今有田广三步、三分步之一,从五步、五分步之二。问为田几何?  荅曰:十八步。  〔二三〕又有田广七步、四分步之三,从十五步、九分步之五。问为田几何?  荅曰:一百二十步、九分步之五。  〔二四〕又有田广十八步、七分步之五,从二十三步、十一分步之六。问为田几何?  荅曰:一亩二百步、十一分步之七。  大广田术曰:分母各乘其全,分子从之,相乘为实。分母相乘为法。实如法而一。  〔二五〕今有圭田广十二步,正从二十一步。问为田几何?  荅曰:一百二十六步。  〔二六〕又有圭田广五步、二分步之一,从八步、三分步之二。问为田几何?  荅曰:二十三步、六分步之五。  术曰:半广以乘正从。  〔二七〕今有邪田,一头广三十步,一头广四十二步,正从六十四步。问为田几何?  荅曰:九亩一百四十四步。  〔二八〕又有邪田,正广六十五步,一畔从一百步,一畔从七十二步。问为田几何?  荅曰:二十三亩七十步。  术曰:并两邪而半之,以乘正从若广。又可半正从若广,以乘并,亩法而一。  〔二九〕今有箕田,舌广二十步,踵广五步,正从三十步。问为田几何?  荅曰:一亩一百三十五步。  〔三0〕又有箕田,舌广一百一十七步,踵广五十步,正从一百三十五步。问为田几何?  荅曰:四十六亩二百三十二步半。  术曰:并踵舌而半之,以乘正从。亩法而一。  〔三一〕今有圆田,周三十步,径十步。问为田几何?  荅曰:七十五步。  〔三二〕又有圆田,周一百八十一步,径六十步、三分步之一。问为田几何?  荅曰:十一亩九十步、十二分步之一。  术曰:半周半径相乘得积步。  又术曰:周径相乘,四而一。  又术曰:径自相乘,三之,四而一。  又术曰:周自相乘,十二而一。  〔三三〕今有宛田,下周三十步,径十六步。问为田几何?  荅曰:一百二十步。  〔三四〕又有宛田,下周九十九步,径五十一步。问为田几何?  荅曰:五亩六十二步、四分步之一。  术曰:以径乘周,四而一。  〔三五〕今有弧田,弦三十步,矢十五步。问为田几何?  荅曰:一亩九十七步半。  〔三六〕又有弧田,弦七十八步、二分步之一,矢十三步、九分步之七。问为田几何?  荅曰:二亩一百五十五步、八十一分步之五十六。  术曰:以弦乘矢,矢又自乘,并之,二而一。  〔三七〕今有环田,中周九十二步,外周一百二十二步,径五步。问为田几何?  荅曰:二亩五十五步。  〔三八〕又有环田,中周六十二步、四分步之三,外周一百一十三步、二分步之一,径十二步、三分步之二。问为田几何?  荅曰:四亩一百五十六步、四分步之一。  术曰:并中外周而半之,以径乘之为积步。  密率术曰:置中外周步数,分母、子各居其下。母互乘子,通全步,内分子。以中周减外周,馀半之,以益中周。径亦通分内子,以乘周为实。分母相乘为法,除之为积步,馀积步之分。以亩法除之,即亩数也。问题补充: 这样吧,能翻译几句是几句,翻译的多且好得再加10分 最后一段一定要翻译哦~~~~~~~~
2023-08-14 15:58:254

刘徽在数学方面有哪些突出成就?

刘徽(生于公元250年左右),东汉三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一。其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。刘徽的主要著作有:《九章算术注》10卷;《重差术》1卷,至唐代易名为《海岛算经》;《九章重差图》1卷,可惜后两种都在宋代失传。刘徽的数学成就大致为两方面:一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:在数系理论方面:用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。在筹式演算理论方面:先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。在勾股理论方面:逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。在面积与体积理论方面:用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:割圆术与圆周率:刘徽在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3?14,又算到3072边形的面积,得到π=3927/1250=3?1416,称为“徽率”。刘徽原理:在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。“牟合方盖”说:在《九章算术?开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。方程新术:在《九章算术?方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。重差术:在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。刘徽的《九章算术》是我国流传至今最古老的数学专著之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。现今流传的定本的内容在东汉之前已经形成。《九章算术》是中国最重要的一部经典数学著作,它的完成奠定了中国古代数学发展的基础,在中国数学史上占有极为重要的地位。现传本《九章算术》共收集了246个应用问题和各种问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。《九章算术》的产生是社会发展和数学知识长期积累的结果,它汇集了不同时期数学家的劳动成果。刘徽认为:“周公制礼有九数,九数之流,则《九章》是矣。……汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论多近语也。”根据刘徽的考证结果,《九章算术》源于周公时代的“九数”,而他所见到的《九章算术》是西汉时的张苍、耿寿昌在先秦遗文的基础上删补而成的,其中包括了大量西汉时补充的内容。根据历史文献和出土文物资料来分析,刘徽所言是可信的。《九章算术》所包含的各种算法是汉朝数学家们在秦以前流传下来的数学基础上,适应当时的需要补充修订而成的。按照刘徽的考证,张苍和耿寿昌都是参加过修订工作的主要数学家。《史记?张丞相列传》记载,张苍(约前250~前152)经历了秦、汉两个朝代,他在高帝六年(前201)以攻藏茶有功封为北平侯。“自秦时为柱下史,明天下图书计籍。又善用算律历。”他还“著书18篇,言阴阳律历事。”耿寿昌的生年年代不详,汉宣帝时官至大司农中丞,“以善为算,能商功利”得宠于皇帝。他于天文学主张浑天说,甘露二年(前52)奏“以圆仪度日月行,考验天运状”。张苍和耿寿昌都是数学名家,又身居高位,由他们主持修订先秦流传下来的《算术》是很自然的事情。根据刘徽的记载,他所注释的《九章算术》最后是由耿寿昌删定的。我们认为耿寿昌删补《九章算术》的年代可以定为这部书完成的年代。《九章算术》是由国家组织力量编纂的一部官方性数学教科书,对两汉时期数学的发展产生了很大的影响。《广韵》卷四有“九章术,汉许商、杜志、吴陈炽、王粲并善之”,《后汉书?马援传》有马续(约70~141)“博观群籍,善九章算术”的记载。此外,史书中还有郑玄(127~200)、刘洪等人“通九章算术”的记述。可知该书是当时学习数学的重要教材,在东汉光和二年(179)一块铜版上的铭文规定:“大司农以戊寅(138?)诏书,……特更为诸州作铜斗、斜、称。依黄钟律历,《九章算术》以均长短、轻重、大小,以齐七政,令海内都同。”这说明该书在东汉时期不仅广为流传,而且度量衡研制涉及的数学问题也要以书中的算法为依据。许商、杜志可能是《九章算书》成书后最早研究过该书的数学家。许商、杜志都是西汉后期的数学家。《汉书?艺文志》著录有《许商算术》26卷、《杜志算术》16卷。这两部书都是汉成帝三年(前26)尹咸校对数术著作之前撰写的。许商、杜志的著作完成年代与耿寿昌删补《九章算术》的年代相去不远,他们的数学著作应当是在研究了《九章算术》的基础上完成的。《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。刘徽的《九章》注不仅在整理古代数学体系和完善古算理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。
2023-08-14 15:58:321

三国时期 魏国数学家刘徽为古籍《九章算数》作注释提出“出入相补法”验证勾股定理,如图请加以说明·

a方+b方=c方数学书上有
2023-08-14 15:58:414

九章算术

《九章算术》的编著者是刘徽,他是中国汉族学者在古代第一部数学专著,是“算经十书”中最重要的一种,成于公元一世纪左右。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。要注意的是《九章算术》没有作者,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。《九章算术》中的数学成就是多方面的:(1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”的算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的.《九章算术》中有比较完整的分数计算方法,包括四则运算,通分、约分、化带分数为假分数(我国古代称为通分内子,“内”读为纳)等等。其步骤与方法大体与现代的雷同。分数加减运算,《九章算术》已明确提出先通分,使两分数的分母相同,然后进行加减。加法的步骤是“母互乘子,并以为实,母相乘为法,实如法而一”这里“实”是分子。“法”是分母,“实如法而一”也就是用法去除实,进行除法运算,《九章算术》还注意到两点:其一是运算结果如出现“不满法者,以法命之”。就是分子小于分母时便以分数形式保留。其二是“其母同者,直相从之”,就是分母相同的分数进行加减,运算时不必通分,使分子直接加减即可。《九章算术》中还有求最大公约数和约分的方法。求最大公约数的方法称为“更相减损”法,其具体步骤是“可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也。以等数约之。”这里所说的“等数”就是我们现在的最大公约数。可半者是指分子分母都是偶数,可以折半的先把它们折半,即可先约去2。不都是偶数了,则另外摆(即副置)分子分母算筹进行计算,从大数中减去小数,辗转相减,减到余数和减数相等,即得等数。在《九章算术》的第二、三、六等章内,广泛地使用了各种比例解应用问题。粟米章的开始就列举了各种粮食间互换的比率如下:“粟米之法:粟率五十,粝米三十,粺米二十七,糳米二十四,……”(图1-23)这是说:谷子五斗去皮可得糙米三斗,又可舂得九折米二斗七升,或八拆米二斗四升,……。例如,粟米章第一题:“今有粟米一斗,欲为粝米,问得几何”。它的解法是:“以所有数乘所求率为实,以所有率为法,实如法而一”。《九章算术》第七章“盈不足”专讲盈亏问题及其解法其中第一题:“今有(人)共买物,(每)人出八(钱),盈(余)三钱;人出七(钱),不足四(钱),问人数、物价各几何”,“答曰:七人,物价53(钱)。”“盈不足术曰:置所出率,盈、不足各居其下。令维乘(即交错相乘)所出率,并以为实,并盈,不足为法,实如法而一……置所出率,以少减多,余,以约法、实。实为物价,法为人数”。盈不足术是中国数学史上解应用问题的一种别开生面的创造,它在我国古代算法中占有相当重要的地位。盈不足术还经过丝绸之路西传中亚阿拉伯国家,受到特别重视,被称为“契丹算法”,后来又传入欧洲,中世纪时期“双设法”曾长期统治了他们的数学王国。(2)、《九章算术》总结了生产、生活实践中大量的几何知识,在方田、商功和勾股章中提出了很多面积、体积的计算公式和勾股定理的应用。《九章算术》方田章主要论述平面图形直线形和圆的面积计算方法。《九章算术》方田章第一题“今有田广十五步,从(音纵zong)十六步。问为田几何。”“答曰:一亩”。这里“广”就是宽,“从”即纵,指其长度,“方田术曰:广从步数相乘得积步,(得积步就是得到乘积的平方步数)以亩法二百四十步(实质应为积步)除之,即亩数。百亩为一顷。”当时称长方形为方田或直田。称三角形为圭田,面积公式为“术曰:半广以乘正从”。这里广是指三角形的底边,正从是指底边上的高,刘徽在注文中对这一计算公式实质上作了证明:“半广者,以盈补虚,为直田也。”“亦可以半正从以乘广”(图1-30)。盈是多余,虚乃不足。“以盈补虚”就是以多余部分填补不足的部分,这就是我国古代数学推导平面图形面积公式所用的传统的“出入相补”的方法,由上图“以盈补虚”变圭田为与之等积的直田,于是得到了圭田的面积计算公式。  方田章第二十七、二十八题把直角梯形称为“邪田”(即斜田)它的面积公式是:“术曰:并两邪(即两斜,应理解为梯形两底)而半之,以乘正从……,又可半正从……以乘并。”刘徽在注中说明他的证法仍是“出入相补”法。在方田章第二十九、三十题把一般梯形称为“箕田”,上、下底分别称为“舌”、“踵”,面积公式是:“术曰:并踵舌而半之,以乘正从”。至于圆面积,在《九章算术》方田章第三十一、三十二题中,它的面积计算公式为:“半周半径相乘得积步”。这里“周”是圆周长,“径”是指直径。这个圆面积计算公式是正确的。只是当时取径一周三(即π≈3)。于是由此计算所得的圆面积就不够精密。《九章算术》商功章收集的都是一些有关体积计算的问题。但是商功章并没有论述长方体或正方体的体积算法。看来《九章算术》是在长方体或正方体体积计算公式:V=abc的基础上来计算其他立体图形体积的。《九章算术》商功章提到城、垣、堤、沟、堑、渠,因其功用不同因而名称各异,其实质都是正截面为等腰梯形的直棱柱,他们的体积计算方法:“术曰:并上、下广而半之,以高若深乘之,又以袤乘之,即积尺”。这里上、下广指横截面的上、下底(a,b)高或深(h),袤是指城垣……的长(l)。因此城、垣…的体积计算术公式V=1/2(a+b)h.刘徽在注释中把对于平面图形的出入相补原理推广应用到空间图形,成为“损广补狭”以证明几何体体堑堵积公式。刘徽还用棋验法来推导比较复杂的几何体体积计算公式。所谓棋验法,“棋”是指某些几何体模型即用几何体模型验证的方法,例如长方体本身就是“棋”[图1-32(1)]斜解一个长方体,得两个两底面为直角三角形的直三棱柱,我国古代称为“堑堵”(如图),所以堑堵的体积是长方体体积的二分之一。《九章算术》商功章还有圆锥、圆台(古代称“圆亭”)的体积计算公式。甚至对三个侧面是等腰梯形,其他两面为勾股形的五面体[图1-33(1)],上、下底为矩形的拟柱体(古代称“刍童”)以及上底为一线段,下底为一矩形的拟柱体(古代称“刍甍”)(“甍”音“梦”)等都可以计算其体积。(3)、《九章算术》中的代数内容同样很丰富,具有当时世界的先进水平。1.开平方和开立方《九章算术》中讲了开平方、开立方的方法,而且计算步骤基本一样。所不同的是古代用筹算进行演算,现以少广章第12题为例,说明古代开平方演算的步骤,“今有积五万五千二百二十五步。问为方几何”。“答曰:二百三十五步”。这里所说的步是我国古代的长度单位。“开方(是指开平方,由正方形面积求其一边之长。)术曰:置积为实(即指筹算中把被开方数放置于第二行,称为实)借一算(指借用一算筹放置于最后一行,如图1-25(1)所示用以定位)。步之(指所借的算筹一步一步移动)超一等(指所借的算筹由个位越过十位移至百位或由百位越过千位移至万位等等,这与现代笔算开平方中分节相当如图1-25(2)所示)。议所得(指议得初商,由于实的万位数字是5,而且22<5<32,议得初商为2,而借算在万位,因此应在第一行置初商2于百位,如图1-25(3)所示)。以一乘所借一算为法(指以初商2乘所借算一次为20000,置于“实”下为“法”,如图1-25(4)所示)而以除(指以初商2乘“法”20000得40000,由“实”减去得:55225-40000=15225,如图1-25(5)所示)除已,倍法为定法,其复除,折法而下(指将“法”加倍,向右移一位,得4000为“定法”因为要求平方根的十位数字,需要把“借算”移至百位,如图1-25(6)所示)。复置借算步之如初,以复议一乘之,所得副,以加定法,以除(这一段是指:要求平方根的十位数字,需置借算于百位。因“实”的千位数字为15,且4×3<15<4×4,于是再议得次商为3。置3于商的十位。以次商3乘借算得3×100=300,与定法相加为4000+300=4300。再乘以次商,则得:3×4300=12900,由“实”减去得:15225-12900=2325。如图1-25(7)所示,以所得副从定法,复除折下如前(这一段是指演算如前,即再以300×1+4300=4600向右移一位,得460,是第三位方根的定法,再把借算移到个位,如图1-25(8)所示;又议得三商应为5,再置5于商的个位如图1-25(9)所示,以5+460=465,再乘以三商5,得465×5=2325经计算恰尽如图1-25(10)所示,因此得平方根为235。)上述由图1-25(1)~(10)是按算筹进行演算的,看起来似乎很繁琐,实际上步骤十分清楚,易于操作。它的开平方原理与现代开平方原理相同。其中“借算”的右移、左移在现代的观点下可以理解为一次变换和代换。《九章算术》时代并没有理解到变换和代换,但是这对以后宋、元时期高次方程的解法是有深远影响的。《九章算术》方程章中的“方程”是专指多元一次方程组而言,与“方程”的含义并不相同。《九章算术》中多元一次方程组的解法,是将它们的系数和常数项用算筹摆成“方阵”(所以称之谓“方程”)。消元的过程相当于现代大学课程高等代数中的线性变换。由于《九章算术》在用直除法解一次方程组过程中,不可避免地要出现正负数的问题,于是在方程章第三题中明确提出了正负术。刘徽在该术的注文里实质上给出了正、负数的定义:“两算得失相反,要令‘正"、‘负"以名之”。并在计算工具即算筹上加以区别“正算赤,负算黑,否则以邪正为异”。这就是规定正数用红色算筹,负数用黑色算筹。如果只有同色算筹的话,则遇到正数将筹正放,负数时邪(同斜)放。宋代以后出现笔算也相应地用红、黑色数码字以区别正、负数,或在个位数上记斜划以表示负数,如(即—1824),后来这种包括负数写法在内的中国数码字还传到日本。关于正、负数的加减运算法则,“正负术曰:同名相益,异名相除,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之”。这里所说的“同名”、“异名”分别相当于所说的同号、异号。“相益”、“相除”是指二数相加、相减。术文前四句是减法运算法则:(1)如果被减数绝对值大于减数绝对值,即a>b≥0,则同名相益:(±a)-(±b)=±(a-b),异名相除:(±a)-(b)=±(a+b)。(2)如果被减数绝对值小于减数绝对值,即b>a≥0。①如果两数皆正则a-b=a-[a+(b-a)]=-(b-a)。中间一式的a和a对消,而(b-a)无可对消,则改“正”为“负”,即“正无入负之”。“无入”就是无对,也就是无可对消(或不够减或对方为零)。②如果两数皆负则(-a)-(-b)=-a-[(-a)-(b-a)]=+(b-a)。在中间的式子里(-a)和(-a)对消,而-(b-a)无可对消,则改“负”为“正”所以说“负无入正之”。③如果两数一正一负。则仍同(1)的异名相益。术文的后四句是指正负数加法运算法则。(1)同号两数相加,即同名相益,其和的绝对值等于两数绝对值和。如果a>0,b>0,则a+b=a+b,(-a)+(-b)=-(a+b)(2)异号两数相加,实为相减,即异名相除。如果正数的绝对值较大,其和为正,即“正无入正之”。如果负数的绝对值较大,其和为负,即“负无入负之”。用符号表示为①如果a>b≥0,则 a+(-b)=[b+(a-b)]+(-b)=a-b,或 (-a)+b=[(-b)-(a-b)]+b=-(a-b)。②如果b>a≥0,则 a+(-b)=a+[(-a)-(b-a)]=-(b-a),或 (-a)+b=(-a)+[a+(b-a)]=b-a。关于正负数的乘除法则,在《九章算术》时代或许会遇到有关正负数的乘除运算。可惜书中并未论及,直到元代朱世杰于《算学启蒙》(1299年)中才有明确的记载:“同名相乘为正,异名相乘为负”,“同名相除所得为正,异名相除所得为负”,因此至迟于13世纪末我国对有理数四则运算法则已经全面作了总结。至于正负数概念的引入,正负数加减运算法则的形成的历史记录,我国更是遥遥领先。国外首先承认负数的是七世纪印度数学家婆罗门岌多(约598-?)欧洲到16世纪才承认负数。
2023-08-14 15:58:561

用两块三角板能拼出几个直角,几个钝角?

用一付三角板中的这两块三角板,能拼出3个直角,它们分别是:90度,30度+60度=90度,45度+45度=90度。用一付三角板中的这两块三角板,能拼出3个钝角,它们分别是:45度+60度=105度,30度+90度=120度,60度+90度=150度。
2023-08-14 15:59:171

正方形内三条线段垂直,分别为 9 厘米、5 厘米和 3 厘米,求正方形的面积

a的平方+a的平方=13××13a的平方(正方形面积)=169÷2=84.5平方厘米
2023-08-14 16:00:061

勾股定理

勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。
2023-08-14 16:00:551

青朱出入图的来历

青朱出入图是由我国古代数学家发明,用来证明勾股定理的一种工具。这个证明是由三国时代魏国的数学家刘徽所提出的。在魏景元四年(即公元 263 年),刘徽为古籍《九章算术》作注释。在注释中,他画了一幅图的图形来证明勾股定理。由於他在图中以「青出」、「朱出」表示黄、紫、绿三个部分,又以「青入」、「朱入」解释如何将斜边正方形的空白部分填满,所以后世数学家都称这图为「青朱入出图」。亦有人用「出入相补」这一词来表示这个证明的原理。 在历史上,以「出入相补」的原理证明勾股定理的,不只刘徽一人,例如在印度、在阿拉伯世界、甚至乎在欧洲,都有出现过类似的证明,只不过他们所绘的图,在外表上,或许会和刘徽的图有些少分别。
2023-08-14 16:01:051

介绍下刘微?

不认识
2023-08-14 16:01:132

勾股定理现有多少种证明方法?

大概400多种
2023-08-14 16:01:371

什么是割圆术

“圜,一中同长也”。意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在所熟悉的这个公式。为了证明这个公式,我国魏晋时期数学家刘徽于公元263年撰写《九章算术注》,在这一公式后面写了一篇1800余字的注记,这篇注记就是数学史上著名的“割圆术”。根据刘徽的记载,在刘徽之前,人们求证圆面积公式时,是用圆内接正十二边形的面积来代替圆面积。应用出入相补原理,将圆内接正十二边形拼补成一个长方形,借用长方形的面积公式来论证《九章算术》的圆面积公式。刘徽指出,这个长方形是以圆内接正六边形周长的一半作为长,以圆半径作为高的长方形,它的面积是圆内接正十二边形的面积。这种论证“合径率一而弧周率三也”,即后来常说的“周三径一”,当然不严密。他认为,圆内接正多边形的面积与圆面积都有一个差,用有限次数的分割、拼补,是无法证明《九章算术》的圆面积公式的。因此刘徽大胆地将极限思想和无穷小分割引入了数学证明。他从圆内接正六边形开始割圆,“割之弥细,所失弥少,割之又割,以至不可割,则与圆周合体,而无所失矣。”也就是说将圆内接正多边形的边数不断加倍,则它们与圆面积的差就越来越小,而当边数不能再加的时候,圆内接正多边形的面积的极限就是圆面积。刘徽考察了内接多边形的面积,也就是它的“幂”,同时提出了“差幂”的概念。“差幂”是后一次与前一次割圆的差值,可以用图中阴影部分三角形的面积来表示。同时,它与两个小黄三角形的面积和相等。刘徽指出,在用圆内接正多边形逼近圆面积的过程中,圆半径在正多边形与圆之间有一段余径。以余径乘正多边形的边长,即2倍的“差幂”,加到这个正多边形上,其面积则大于圆面积。这是圆面积的一个上界序列。刘徽认为,当圆内接正多边形与圆是合体的极限状态时,“则表无余径。表无余径,则幂不外出矣。”就是说,余径消失了,余径的长方形也就不存在了。因而,圆面积的这个上界序列的极限也是圆面积。于是内外两侧序列都趋向于同一数值,即,圆面积。
2023-08-14 16:01:451

出入相补原理是什么啊?

出入相补原理是一个几何图形(平面的或立体的)被分割成若干部分后,面积或体积的总和保持不变。出入相补原理最早由三国时代魏国数学家刘徽创建。勾股各自乘,并,而开方之,即弦。勾自乘为朱方,股自乘为青方,另出入相补,各从其类,因就其余不移动也,合成弦方之幂,开方除之,即弦也。出入相补的作用田亩丈量和天文观测是我国几何学的主要起源,这和外国没有什么不同,二者导出面积问题和勾股测量问题。稍后的计算容积、土建工程又导出体积问题。我国古代几何学的特色之一是,依据这些方面的经验成果,总结提高成一个简单明白、看起来似乎极不足道的一般原理出入相补原理,并且把它应用到形形色色多种多样的不同问题上去。所谓出入相补原理,用现代语言来说,就是指这样的明显事实:一个平面图形从一处移置他处,面积不变。又若把图形分割成若干块,那么各部分面积的和等于原来图形的面积,因而图形移置前后诸面积间的和、差有简单的相等关系。立体的情形也是这样。
2023-08-14 16:02:061

出入相补原理是什么?

出入相补原理是一个几何图形(平面的或立体的)被分割成若干部分后,面积或体积的总和保持不变。出入相补原理最早由三国时代魏国数学家刘徽创建。勾股各自乘,并,而开方之,即弦。勾自乘为朱方,股自乘为青方,另出入相补,各从其类,因就其余不移动也,合成弦方之幂,开方除之,即弦也。出入相补原理的应用田亩丈量和天文观测是我国几何学的主要起源,这和外国没有什么不同,二者导出面积问题和勾股测量问题。稍后的计算容积、土建工程又导出体积问题。我国古代几何学的特色之一是,依据这些方面的经验成果,总结提高成一个简单明白、看起来似乎极不足道的一般原理——出入相补原理,并且把它应用到形形色色多种多样的不同问题上去。所谓出入相补原理,用现代语言来说,就是指这样的明显事实:一个平面图形从一处移置他处,面积不变。又若把图形分割成若干块,那么各部分面积的和等于原来图形的面积,因而图形移置前后诸面积间的和、差有简单的相等关系。立体的情形也是这样。
2023-08-14 16:02:191

我发现将一个图形分割移补后图形的面积没有改变这就是数学上的什么原理

这就是数学上的出入相补(又称以盈补虚)原理。出入相补(又称以盈补虚)原理:一个几何图形(平面的或立体的)被分割成若干部分后,面积或体积的总和保持不变。出入相补原理最早由三国时代魏国数学家刘徽创建。“勾股各自乘,并,而开方之,即弦。勾自乘为朱方,股自乘为青方,另出入相补,各从其类,因就其余不移动也,合成弦方之幂,开方除之,即弦也。”主要起源田亩丈量和天文观测是我国几何学的主要起源,这和外国没有什么不同,二者导出面积问题和勾股测量问题。稍后的计算容积、土建工程又导出体积问题。我国古代几何学的特色之一是,依据这些方面的经验成果,总结提高成一个简单明白、看起来似乎极不足道的一般原理——出入相补原理,并且把它应用到形形色色多种多样的不同问题上去。
2023-08-14 16:02:321

七巧板运用的原理是古算中的

七巧板运用的原理是古算中的“出入相补原理”。七巧板是一种中国传统的智力游戏,是我国古代的一种拼板玩具。它是由宋代的宴几演变而来的,原为文人的一种室内游戏,后在民间演变为拼图板玩具。利用七巧板可以阐明若干重要几何关系,其原理便是古算术中的“出入相补原理”。出入相补(又称以盈补虚)积是古中国数学中一条用于推证几何图形的面积或体积的基本原理。出入相补原理经常被运用到小学整数运算和平面几何的面积运算中。出入相补原理的含义:一个平面图形从一处移置他处,面积不变。又若把图形分割成若干块,那么各部分面积的和等于原来图形的面积,因而图形移置前后诸面积间的和、差有简单的相等关系。立体的情形也是这样。七巧板的相关运用七巧板是由七块板组成的。而这七这块板可拼成许多图形(千种以上),无论在现代或古代,七巧板都是用以启发幼儿智力的良好伙伴。能够把幼儿对实物与形态之间的桥梁连接起来,培养幼儿的观察力、想象力、形状分析及创意逻辑上都有巨大的发展空间。在现实生活中,利用七巧板来求解或证明数学问题。七巧板按不同的方法拼摆、组合可以拼排成各种各样的几何图形和形象,如桥梁、船只、房屋、手枪或是跑步、跌倒、玩耍、跳舞、站立的人物以及戏水的鱼、猫、狗等。操作七巧板是一种发散思维活动,有利于培养人们的观察力、注意力、想像力和创造力,因此,不仅具有娱乐的价值,还具有一定的教育价值,被人们运用到了教学当中。
2023-08-14 16:02:491

出入相补原理的含义

所谓出入相补原理,用现代语言来说,就是指这样的明显事实:一个平面图形从一处移置他处,面积不变。又若把图形分割成若干块,那么各部分面积的和等于原来图形的面积,因而图形移置前后诸面积间的和、差有简单的相等关系。立体的情形也是这样。
2023-08-14 16:02:591

制作青朱出入图的具体步骤,以及如何证勾股定理(详细,最好配图)

编辑词条青朱出入图 刘徽在证明勾股定理时,也是用的以形证数的方法,只是具体的分合移补略有不同.刘徽的证明原也有一幅图,可惜图已失传,只留下一段文字:“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”后人根据这段文字补了一张图. 以勾为边的的正方形为朱方,以股为边的正方形为青方.以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c2 ).由此便可证得a2+b2=c2 这个证明是由三国时代魏国的数学家刘徽所提出的.在魏景元四年(即公元 263 年),刘徽为古籍《九章算术》作注释.在注释中,他画了一幅像图五(b)中的图形来证明勾股定理.由於他在图中以「青出」、「朱出」表示黄、紫、绿三个部分,又以「青入」、「朱入」解释如何将斜边正方形的空白部分填满,所以后世数学家都称这图为「青朱入出图」.亦有人用「出入相补」这一词来表示这个证明的原理. 青朱出入图需要用三角形全等的知识进行证明.
2023-08-14 16:03:141

勾股定理的证明图

http://zhidao.baidu.com/question/12363169.html
2023-08-14 16:03:243

怎样用5块七巧板拼出一个三角形来?

分析如下:1,首先将菱形放置最右侧。2,在菱形的上方放置一块中等大小的三角形,作为顶。3,在中等三角形的左下角出放置一块正方形,与三角形的左下角对其。4,在中间的空白处,用等腰小三角形填入。5,在剩余空白处,用等腰小三角形填入。下图红色部分即为用五块七巧板拼成的三角形:扩展资料:七巧板又称七巧图、智慧板,是中国民间流传的智力玩具。它是由宋代的宴几演变而来的,原为文人的一种室内游戏,后在民间演变为拼图板玩具。据清代陆以湉《冷庐杂识》说::宋黄伯思宴几图,以方几七,长段相参,衍为二十五体,变为六十八名。明严瀓蝶几图,则又变通其制,以勾股之形,作三角相错形,如蝶翅。其式三,其制六,其数十有三,其变化之式,凡一百有余。近又有七巧图,其式五,其数七,其变化之式多至千余。体物肖 形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之。”现七巧板系由一块正方形切割为五个小勾股形,将其拼凑成各种事物图形,如人物、动植物、房亭楼阁、车轿船桥等,可一人玩,也可多人进行比赛。利用七巧板可以阐明若干重要几何关系,其原理便是古算术中的“出入相补原理”。参考资料来源:百度百科:七巧板
2023-08-14 16:03:311

怎样用5块七巧板拼三角形

把七巧板中最大的两个三角形去掉剩下五块就是三角形。分两行排列:第一行依次是平行四边形、小三角、正方形、小三角,下面一行是中三角形。
2023-08-14 16:04:335

从政治、经济、军事等方面对中国古代历史的成就进行介绍

政治上:维持了国家的统一、主权的独立、疆域的完整,为后代子孙留下了尚足以大发展的空间和物质资源。为中华民族的发展赢得了和谐友好的外部环境、聚合了静谧优化的内部环境。促进了以汉族为主体的民族交往、交流,为民族大融合、为勤劳勇敢中华民族的形成提供了良好基础。维持了汉民族高度文明的优秀道德伦理文化传统,为世界人民、为人类持续、生存、进步做出了卓越贡献。经济上:改良了东亚季风区自然环境-包括土壤、水文、气候、人居环境、地理地形等,使之成为中华民族的舒适家园,实现了中国人人口规模的大趋势性持续扩大,成为中华民族腾飞的可靠大本营。实现了璀璨的科技进步,天文历法、数学哲学、农业畜牧、四大发明,为世界人民提供了向宇宙自然进军的犀利武器,也为中华民族赢得了世界人民的尊重和承认。开辟了中华民族对外交往的通道,经济的繁荣同时维护了国家和民族尊严,汉唐盛世上国之民成为世界人民钦慕的对象。军事上:锻炼了中华民族健康敏捷的体格,铸就了中华民族灵巧智能博大精深的灵魂胆魄。巩固的国防、统一的疆域、稳定的社情,为中华民族各项事业的发展赢得了和平安全的外部环境、聚合了伟大团结的内部环境。
2023-08-14 16:07:177

刘徽的数学成就是什么?

刘徽(生于公元250年左右),东汉三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一。其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。刘徽的主要著作有:《九章算术注》10卷;《重差术》1卷,至唐代易名为《海岛算经》;《九章重差图》1卷,可惜后两种都在宋代失传。刘徽的数学成就大致为两方面:一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:在数系理论方面:用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。在筹式演算理论方面:先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。在勾股理论方面:逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。在面积与体积理论方面:用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:割圆术与圆周率:刘徽在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3?14,又算到3072边形的面积,得到π=3927/1250=3?1416,称为“徽率”。刘徽原理:在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。“牟合方盖”说:在《九章算术?开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。方程新术:在《九章算术?方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。重差术:在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。刘徽的《九章算术》是我国流传至今最古老的数学专著之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。现今流传的定本的内容在东汉之前已经形成。《九章算术》是中国最重要的一部经典数学著作,它的完成奠定了中国古代数学发展的基础,在中国数学史上占有极为重要的地位。现传本《九章算术》共收集了246个应用问题和各种问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。《九章算术》的产生是社会发展和数学知识长期积累的结果,它汇集了不同时期数学家的劳动成果。刘徽认为:“周公制礼有九数,九数之流,则《九章》是矣。……汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论多近语也。”根据刘徽的考证结果,《九章算术》源于周公时代的“九数”,而他所见到的《九章算术》是西汉时的张苍、耿寿昌在先秦遗文的基础上删补而成的,其中包括了大量西汉时补充的内容。根据历史文献和出土文物资料来分析,刘徽所言是可信的。《九章算术》所包含的各种算法是汉朝数学家们在秦以前流传下来的数学基础上,适应当时的需要补充修订而成的。按照刘徽的考证,张苍和耿寿昌都是参加过修订工作的主要数学家。《史记?张丞相列传》记载,张苍(约前250~前152)经历了秦、汉两个朝代,他在高帝六年(前201)以攻藏茶有功封为北平侯。“自秦时为柱下史,明天下图书计籍。又善用算律历。”他还“著书18篇,言阴阳律历事。”耿寿昌的生年年代不详,汉宣帝时官至大司农中丞,“以善为算,能商功利”得宠于皇帝。他于天文学主张浑天说,甘露二年(前52)奏“以圆仪度日月行,考验天运状”。张苍和耿寿昌都是数学名家,又身居高位,由他们主持修订先秦流传下来的《算术》是很自然的事情。根据刘徽的记载,他所注释的《九章算术》最后是由耿寿昌删定的。我们认为耿寿昌删补《九章算术》的年代可以定为这部书完成的年代。《九章算术》是由国家组织力量编纂的一部官方性数学教科书,对两汉时期数学的发展产生了很大的影响。《广韵》卷四有“九章术,汉许商、杜志、吴陈炽、王粲并善之”,《后汉书?马援传》有马续(约70~141)“博观群籍,善九章算术”的记载。此外,史书中还有郑玄(127~200)、刘洪等人“通九章算术”的记述。可知该书是当时学习数学的重要教材,在东汉光和二年(179)一块铜版上的铭文规定:“大司农以戊寅(138?)诏书,……特更为诸州作铜斗、斜、称。依黄钟律历,《九章算术》以均长短、轻重、大小,以齐七政,令海内都同。”这说明该书在东汉时期不仅广为流传,而且度量衡研制涉及的数学问题也要以书中的算法为依据。许商、杜志可能是《九章算书》成书后最早研究过该书的数学家。许商、杜志都是西汉后期的数学家。《汉书?艺文志》著录有《许商算术》26卷、《杜志算术》16卷。这两部书都是汉成帝三年(前26)尹咸校对数术著作之前撰写的。许商、杜志的著作完成年代与耿寿昌删补《九章算术》的年代相去不远,他们的数学著作应当是在研究了《九章算术》的基础上完成的。《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。刘徽的《九章》注不仅在整理古代数学体系和完善古算理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。
2023-08-14 16:07:341

如何用七巧板拼出长方形?

用七巧板拼出长方形:基本定义:七巧板又称七巧图、智慧板,是中国民间流传的智力玩具。它是由宋代的宴几演变而来的,原为文人的一种室内游戏,后在民间演变为拼图板玩具。据清代陆以湉《冷庐杂识》说::宋黄伯思宴几图,以方几七,长段相参,衍为二十五体,变为六十八名。明严瀓蝶几图,则又变通其制,以勾股之形,作三角相错形,如蝶翅。其式三,其制六,其数十有三,其变化之式,凡一百有余。近又有七巧图,其式五,其数七,其变化之式多至千余。体物肖 形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之。”现七巧板系由一块正方形切割为五个小勾股形,将其拼凑成各种事物图形,如人物、动植物、房亭楼阁、车轿船桥等,可一人玩,也可多人进行比赛。利用七巧板可以阐明若干重要几何关系,其原理便是古算术中的“出入相补原理”。具体结构:七巧板是由下面七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边形。
2023-08-14 16:08:012

用七巧板中的5个三角形怎样拼成一个大三角形

方法如下:1、给七巧板的七块板子编上号,分别为1-7。2、然后选取其中的3,4,5,6,7,5块板子,把3,4,5,6,放在一起拼成一个等腰梯形。最后把编号为7的板子放上去,就可以了。扩展资料七巧板来源它是由宋代的宴几演变而来的,原为文人的一种室内游戏,后在民间演变为拼图板玩具。据清代陆以湉《冷庐杂识》说::宋黄伯思宴几图,以方几七,长段相参,衍为二十五体,变为六十八名。明严瀓蝶几图,则又变通其制,以勾股之形,作三角相错形,如蝶翅。其式三,其制六,其数十有三,其变化之式,凡一百有余。近又有七巧图,其式五,其数七,其变化之式多至千余。体物肖 形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之。”现七巧板系由一块正方形切割为五个小勾股形,将其拼凑成各种事物图形,如人物、动植物、房亭楼阁、车轿船桥等,可一人玩,也可多人进行比赛。利用七巧板可以阐明若干重要几何关系,其原理便是古算术中的“出入相补原理”。
2023-08-14 16:08:282

中国古代教育经历了哪四次数学高峰

中国古代教育经历了哪四次数学高峰?唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进.从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期.这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等.宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰.其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法.贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”.(《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式.沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式.他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题.公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程.欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法.秦九韶还系统地研究了一次同余式理论.公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果.在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论.公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式.公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式.公元十四世纪我国人民已使用珠算盘.在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具.中国数学的特点与局限(1)以算法为中心,属于应用数学.中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的.(2)具有较强的社会性.中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起.同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质.(3)寓理于算,理论高度概括.由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树.其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等.中国数学对世界的影响数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统.在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展.中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方.而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展. 魏晋南北朝时期魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。
2023-08-14 16:08:532

勾股定理的解法

在直角三角形内,两条直角边的平方的和等于斜边的平方
2023-08-14 16:09:042

等腰三角形的所有性质与判定定理

等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等 直角边夹亦直角锐角45,斜边上中线角平分线垂线 三线合一,等腰直角三角形斜边上的高为外接圆的半径R,那么设内切圆的半径r为1,则外接圆的半径R就为(根号2加1),所以r:R=1:(根号2加1)。目录关系三角形中的线段性质生活中的三角形物品解三角形勾股定理勾股定理的多种证明方法证法1证法2证法3证法4证法5(欧几里得的证法)证法6(欧几里德(Euclid)射影定理证法)证法七(赵爽弦图)证法8(达芬奇的证法)定理:三角形相关定理重心定理外心定理垂心定理内心定理旁心定理中位线定理梅涅劳斯定理特殊的等腰直角三角形关系三角形中的线段性质生活中的三角形物品解三角形勾股定理勾股定理的多种证明方法 证法1 证法2 证法3 证法4 证法5(欧几里得的证法) 证法6(欧几里德(Euclid)射影定理证法) 证法七(赵爽弦图) 证法8(达芬奇的证法)定理:三角形相关定理 重心定理 外心定理 垂心定理 内心定理 旁心定理 中位线定理梅涅劳斯定理特殊的等腰直角三角形展开 编辑本段关系  等腰直角三角形的边角之间的关系 :   (1)三角形三内角和等于180°;   (2)三角形的一个外角等于和它不相邻的两个内角之和;   (3)三角形的一个外角大于任何一个和它不相邻的内角;   (4)三角形两边之和大于第三边,两边之差小于第三边;   (5)在同一个三角形内,大边对大角,大角对大边.   等腰直角三角形中的四条特殊的线段:角平分线,中线,高,中位线.   (1)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等.   (三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等).   (2)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。   (3)三角形的三条高的交点叫做三角形的垂心。   (4)三角形的中位线平行于第三边且等于第三边的二分之一。   注意!①三角形的内心、重心都在三角形的内部 .②钝角三角形垂心、外心在三角形外部。   ③直角三角形垂心、外心在三角形的边上。(直角三角形的垂心为直角顶点,外心为斜边   中点。)④锐角三角形垂心、外心在三角形内部。编辑本段三角形中的线段  中线:顶点与对边中点的连线,平分三角形。   高:顶点到对边垂足的连线。   角平分线;顶点到两边距离相等的点所构成的直线。   中位线:任意两边中点的连线。编辑本段性质  等边三角形的性质:(具有等腰三角形的所有性质,结合定义更特殊)   1)等边三角形的内角都相等,且为60度 。   2)等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一) 。   3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线 。   等边三角形的判定:(首先考虑判断三角形是等腰三角形)   (1)三边相等的三角形是等边三角形(定义)   (2)三个内角都相等的三角形是等边三角形   (3)有一个角是60度的等腰三角形是等边三角形   理解等边三角形的性质与判定。   首先明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。   其次明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。   推论1:三个角都相等的三角形是等边三角形   推论2:有一个角等于60°的等腰三角形是等边三角形   等边三角形重心、内心 、外心、垂心重合,称为等边三角形的中心。   等边三角形的中心、内心和垂心重合于一点。(三心合一)   等边三角形的每条边上的中线、高或对角平分线重合。(三线合一)   等边三角形的复数性质   A,B,C三点的复数构成正三角形   等价于 A+wB+wwC=0   其中   w=cos(2π/3)+isin(2π/3)   1+w+ww=0编辑本段生活中的三角形物品  雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。编辑本段解三角形  在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有   (1)正弦定理   a/SinA=b/SinB= c/SinC=2r (外接圆半径为r)   (2)余弦定理。   a^2=b^2+c^2-2bc*CosA cosA=c^2+b^2-a^2/2cb   b^2=a^2+c^2-2ac*CosB cosB=a^2+c^2-b^2/2ac   c^2=a^2+b^2-2ab*CosC cosC=a^2+b^2-c^2/2ab编辑本段勾股定理  如果直角三角形两直角边分别为A,B,斜边为C,那么 A^2+B^2=C^2;; 即直角三角形两直角边长的平方和等于斜边长的平方。如果三角形的三条边A,B,C满足A^2+B^2=C^2;,还有变形公式:AB=根号(AC^2+BC^2),如:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方那么这个三角形是直角三角形。(称勾股定理的逆定理)编辑本段勾股定理的多种证明方法证法1  作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过点C作AC的延长线交DF于点P.   ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,   ∴ ∠EGF = ∠BED,   ∵ ∠EGF + ∠GEF = 90°,   ∴ ∠BED + ∠GEF = 90°,   ∴ ∠BEG =180°―90°= 90°   又∵ AB = BE = EG = GA = c,   ∴ ABEG是一个边长为c的正方形.   ∴ ∠ABC + ∠CBE = 90°   ∵ RtΔABC ≌ RtΔEBD,   ∴ ∠ABC = ∠EBD.   ∴ ∠EBD + ∠CBE = 90°   即 ∠CBD= 90°   又∵ ∠BDE = 90°,∠BCP = 90°,   BC = BD = a.   ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形.   设多边形GHCBE的面积为S,则   a^2+b^2=c^2证法2  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.   过点Q作QP∥BC,交AC于点P.   过点B作BM⊥PQ,垂足为M;再过点   F作FN⊥PQ,垂足为N.   ∵ ∠BCA = 90°,QP∥BC,   ∴ ∠MPC = 90°,   ∵ BM⊥PQ,   ∴ ∠BMP = 90°,   ∴ BCPM是一个矩形,即∠MBC = 90°.   ∵ ∠QBM + ∠MBA = ∠QBA = 90°,   ∠ABC + ∠MBA = ∠MBC = 90°,   ∴ ∠QBM = ∠ABC,   又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,   ∴ RtΔBMQ ≌ RtΔBCA.   同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2证法3  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再作一个边长为c的正方形. 把它们拼成如图所示的多边形.   分别以CF,AE为边长做正方形FCJI和AEIG,   ∵EF=DF-DE=b-a,EI=b,   ∴FI=a,   ∴G,I,J在同一直线上,   ∵CJ=CF=a,CB=CD=c,   ∠CJB = ∠CFD = 90°,   ∴RtΔCJB ≌ RtΔCFD ,   同理,RtΔABG ≌ RtΔADE,   ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE   ∴∠ABG = ∠BCJ,   ∵∠BCJ +∠CBJ= 90°,   ∴∠ABG +∠CBJ= 90°,   ∵∠ABC= 90°,   ∴G,B,I,J在同一直线上,   a^2+b^2=c^2证法4  作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结   BF、CD. 过C作CL⊥DE,   交AB于点M,交DE于点L.   ∵ AF = AC,AB = AD,   ∠FAB = ∠GAD,   ∴ ΔFAB ≌ ΔGAD,   ∵ ΔFAB的面积等于,   ΔGAD的面积等于矩形ADLM   的面积的一半,   ∴ 矩形ADLM的面积 =.   同理可证,矩形MLEB的面积 =.   ∵ 正方形ADEB的面积   = 矩形ADLM的面积 + 矩形MLEB的面积   ∴ 即a^2+b^2=c^2证法5(欧几里得的证法)  《几何原本》中的证明   在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。   在正式的证明中,我们需要四个辅助定理如下:   如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。   其证明如下:   设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的证法6(欧几里德(Euclid)射影定理证法)  如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,通过证明三角形相似则有射影定理如下:   1)(BD)^2;=AD·DC, (2)(AB)^2;=AD·AC , (3)(BC)^2;=CD·AC 。   由公式(2)+(3)得:   (AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,   即 (AB)^2;+(BC)^2;=(AC)^2,这就是勾股定理的结论。 证法七(赵爽弦图)  在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:   4×(ab/2)+(b-a)2=c2   化简后便可得:   a2+b2=c2   亦即:   c=(a2+b2)(1/2)   勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。   我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在我国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。   在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。   在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”. 前任美国第二十届总统伽菲尔德证明了勾股定理(1876年4月1日)。   1 周髀算经, 文物出版社,1980年3月, 据宋代嘉定六年本影印,1-5页。   2. 陈良佐: 周髀算经勾股定理的证明与出入相补原理的关系. 刊於《汉学研究》, 1989年第7卷第1期, 255-281页。   3. 李国伟: 论「周髀算经」“商高曰数之法出于圆方”章. 刊於《第二届科学史研讨会汇刊》, 台湾, 1991年7月, 227-234页。   4. 李继闵: 商高定理辨证. 刊於《自然科学史研究》,1993年第12卷第1期,29-41页 。   5. 曲安京: 商高、赵爽与刘徽关於勾股定理的证明. 刊於《数学传播》20卷, 台湾, 1996年9月第3期, 20-27页证法8(达芬奇的证法)  达芬奇的证法   三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点。观察纸片一,因为要证的事勾股定理,那么容易知道EB⊥CF,又因为纸片的两边是对称的,所以能够知道四边形ABOF和CDEO都是正方形。然后需要知道的是角A"和角D"都是直角,原因嘛,可以看纸片一,连结AD,因为对称的缘故,所以∠BAD=∠FAD=∠CDA=∠EDA=45°,那么很明显,图三中角A"和角D"都是直角。证明:第一张纸片多边形ABCDEF的面积S1=S正方形ABOF+S正方形CDEO+2S△BCO=OF^2+OE^2+OF·OE 第三张纸片中多边形A"B"C"D"E"F"的面积S2=S正方形B"C"E"F"+2△C"D"E"=E"F"^2+C"D"·D"E"因为S1=S2 所以OF^2+OE^2+OF·OE=E"F"^2+C"D"·D"E"又因为C"D"=CD=OE,D"E"=AF=OF所以OF·OE=C"D"·D"E" 则OF^2+OE^2=E"F"^2因为E"F"=EF所以OF^2+OE^2=EF^2勾股定理得证 编辑本段定理:  如果直角三角形两直角边分别为a,b,斜边为c,那么 a^2+b^2=c^2; 即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是4,斜边就是3×3+4×4=X×X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)编辑本段三角形相关定理重心定理  三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.   上述交点叫做三角形的重心.外心定理  三角形的三边的垂直平分线交于一点.   这点叫做三角形的外心.垂心定理  三角形的三条高交于一点.   这点叫做三角形的垂心.内心定理  三角形的三内角平分线交于一点.   这点叫做三角形的内心.旁心定理  三角形一内角平分线和另外两顶点处的外角平分线交于一点.   这点叫做三角形的旁心.三角形有三个旁心.   三角形的重心、外心、垂心、内心、旁心称为三角形的五心.   它们都是三角形的重要相关点.中位线定理  三角形的中位线平行于第三边且等于第三边的一半.   三边关系定理   三角形任意两边之和大于第三边,任意两边之差小于第三边.   三角形面积计算公式   S(面积)=a(边长)h(高)/2---三角形面积等于一边与这边上的高的积的一半编辑本段梅涅劳斯定理  梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。   证明:   过点A作AG∥BC交DF的延长线于G,   则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。   三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1   它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。   另外,有很多人会觉得书写这个公式十分烦琐,不看书根本记不住,下面从别人转来一些方法帮助书写   为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。   我们不必考虑怎样走路程最短,只要求必须“游历”了所有的景点。只“路过”而不停留观赏的景点,不能算是“游历”。   例如直升机降落在A点,我们从A点出发,“游历”了其它五个字母所代表的景点后,最终还要回到出发点A。   另外还有一个要求,就是同一直线上的三个景点,必须连续游过之后,才能变更到其它直线上的景点。   从A点出发的旅游方案共有四种,下面逐一说明:   方案 ① ——从A经过B(不停留)到F(停留),再返回B(停留),再到D(停留),之后经过B(不停留)到C(停留),再到E(停留),最后从E经过C(不停留)回到出发点A。   按照这个方案,可以写出关系式:   (AF:FB)*(BD:DC)*(CE:EA)=1。   现在,您知道应该怎样写“梅涅劳斯定理”的公式了吧。   从A点出发的旅游方案还有:   方案 ② ——可以简记为:A→B→F→D→E→C→A,由此可写出以下公式:   (AB:BF)*(FD:DE)*(EC:CA)=1。从A出发还可以向“C”方向走,于是有:   方案 ③ —— A→C→E→D→F→B→A,由此可写出公式:   (AC:CE)*(ED:DF)*(FB:BA)=1。 从A出发还有最后一个方案:   方案 ④ —— A→E→C→D→B→F→A,由此写出公式:   (AE:EC)*(CD:DB)*(BF:FA)=1。   我们的直升机还可以选择在B、C、D、E、F任一点降落,因此就有了图中的另外一些公式。   值得注意的是,有些公式中包含了四项因式,而不是“梅涅劳斯定理”中的三项。当直升机降落在B点时,就会有四项因式。而在C点和F点,既会有三项的公式,也会有四项的公式。公式为四项时,有的景点会游览了两次。   不知道梅涅劳斯当年是否也是这样想的,只是列出了一两个典型的公式给我们看看。   现在是否可以说,我们对梅涅劳斯定理有了更深刻的了解呢。那些复杂的相除相乘的关系式,不会再写错或是记不住吧。编辑本段特殊的等腰直角三角形  证明在所有斜边相等的RT△中,面积和周长最大的都是等腰RT三角形   解:首先证明面积最大的是它   辅助线:将等腰RT△ACB,任意RT△AC"B都画出外接圆,AB为圆的直径.(其实这样做是为了满足斜边AB相等,且是RT△).再做CF⊥AB,C"F⊥AB.(蓝色辅助线)   ∵在半圆中,弧AB上取一点做AB垂线,可知垂线最长的就是CO(F),即圆的半径.   ∴S△=底×高÷2=CF×AB÷2.而CF所在△就是等腰RT△,所以在所有斜边相等的RT△中,面积最大的都是等腰RT三角形.   其次解:证明周长最大的还是它   辅助线:延长BC到E,使得CE=AC.延长BC"到D,使得C"D=C"A.连接DE,AD,AE.   ∵AC"⊥BDAC⊥BE.C"D=C"A,AC=CE.   ∴等腰RT△ACE,等腰RT△ADC".   ∴∠AEB=∠ADB=45°   又∵AE,BD为四边形ADEB的对角线.   ∴四边形ADEB可以内接在一个圆当中(这其实大家也可以用相似证明).   ∴∠EDB=∠EAB.   ∵AC垂直平分BE,且AC=CE=CB.   ∴等腰RT△AEB.EA⊥AB.   ∴∠EDB=∠EAB=90°   ∴RT△EDB.   ∵RT三角形当中斜边恒大于直角边.   ∴EB>BD.   又∵EB=AC+CB. BD=AC"+C"B.   ∴AC+CB>AC"+C"B.   因为RT△ACB周长=AB+(AC+CB).   RT△AC"B周长=AB+(AC"+C"B).   ∴等腰RT△ACB周长>任意RT△AC"B周长.(斜边相等)
2023-08-14 16:09:381

数学是怎么产生的,它的发展历史是什么

数学是研究现实世界中数量关系和空间形式的科学.简单地说,就是研究数和形的科学. 由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数.在中国,最迟在商代,即已出现用十进制数字表示大数的方法;至秦汉之际,即已出现完满的十进位制.在 不晚于公元一世纪的《九章算术》中,已载了只有位值制才有可能进行的开平方、开立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念. 刘徽在他注解的《九章算术》中,还提出过用十进制小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪斯蒂文以后)十进制小数才获通用.在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率 的一般方法. 虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少.至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究. 早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断.古希腊发现了有非分数的数,即现称的无理数.16世纪以来,由于解高次方程又出现了复数.在近代,数的概念更进一步抽象化,并依据数的不同运算规律,对一般的数系统进行了独立的理论探讨,形成数学中的若干不同分支. 开平方和开立方是解最简单的高次方程所必须用到的运算.在《九章算术》中,已出现解某种特殊形式的二次方程.发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术.与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学. 在中国以外,九世纪阿拉伯的花拉米子的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格.中国古代数学致力于方程的具体求解,而源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质. 16世纪时,韦达以文字代替方程系数,引入了代数的符号演算.对代数方程解的性质进行探讨,是从线性方程组引出的行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗华理论与群论的创立.而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集合的理论研究. 形的研究属于几何学的范畴.古代民族都具有形的简单概念,并往往以图画来表示,而图形之所以成为数学对象是由于工具的制作与测量的要求所促成的.规矩以作圆方,中国古代夏禹泊水时即已有规、矩、准、绳等测量工具. 《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义.《周髀算经》与刘徽的《海岛算经》给出了用矩观测天地的一般方法与具体公式.在《九章算术》及刘徽注解的《九章算术》中,除勾股定理外,还提出了若干一般原理以解决多种问题.例如求任意多边形面积的出入相补原理;求多面体的体积的阳马鳖需的二比一原理(刘徽原理);5世纪祖(日恒)提出的用以求曲形体积特别是球的体积的“幂势既同则积不容异”的原理;还有以内接正多边形逼近圆周长的极限方法(割圆术).但自五代(约10世纪)以后,中国在几何学方面的建树不多. 中国几何学以测量和计算面积、体积的量度为中心任务,而古希腊的传统则是重视形的性质与各种性质间的相互关系.欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响遍及于整个数学的发展.特别是平行公理的研究,导致了19世纪非欧几何的产生. 欧洲自文艺复兴时期起通过对绘画的透视关系的研究,出现了射影几何.18世纪,蒙日应用分析方法对形进行研究,开微分几何学的先河.高斯的曲面论与黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;19世纪克莱因以群的观点对几何学进行统一处理.此外,如康托尔的点集理论,扩大了形的范围;庞加莱创立了拓扑学,使形的连续性成为几何研究的对象.这些都使几何学面目一新. 在现实世界中,数与形,如影之随形,难以分割.中国的古代数学反映了这一客观实际,数与形从来就是相辅相成,并行发展的.例如勾股测量提出了开平方的要求,而开平方、开立方的方法又奠基于几何图形的考虑.二次、三次方程的产生,也大都来自几何与实际问题.至宋元时代,由于天元概念与相当于多项式概念的引入,出现了几何代数化. 在天文与地理中的星表与地图的绘制,已用数来表示地点,不过并未发展到坐标几何的地步.在欧洲,十四世纪奥尔斯姆的著作中已有关于经纬度与函数图形表示的萌芽.十七世纪笛卡尔提出了系统的把几何事物用代数表示的方法及其应用.在其启迪之下,经莱布尼茨、牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源.这是数学史上的一件大事. 在十七世纪中,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换(如投影),还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代. 十八世纪以来,以解析几何与微积分这两个有力工具的创立为契机,数学以空前的规模迅猛发展,出现了无数分支.由于自然界的客观规律大多是以微分方程的形式表现的,所以微分方程的研究一开始就受到很大的重视. 微分几何基本上与微积分同时诞生,高斯与黎曼的工作又产生了现代的微分几何.19、20世纪之交,庞加莱创立了拓扑学,开辟了对连续现象进行定性与整体研究的途径.对客观世界中随机现象的分析,产生了概率论.第二次世界大战军事上的需要,以及大工业与管理的复杂化产生了运筹学、系统论、控制论、数理统计学等学科.实际问题要求具体的数值解答,产生了计算数学.选择最优途径的要求又产生了各种优化的理论、方法. 力学、物理学同数学的发展始终是互相影响互相促进的,特别是相对论与量子力学推动了微分几何与泛函分析的成长.此外在19世纪还只用到一次方程的化学和几乎与数学无缘的生物学,都已要用到最前沿的一些数学知识. 十九世纪后期,出现了集合论,还进入了一个批判性的时代,由此推动了数理逻辑的形成与发展,也产生了把数学看作是一个整体的各种思潮和数学基础学派.特别是1900年,德国数学家希尔伯特在第二届国际数学家大会上的关于当代数学重要问题的演讲,以及三十年代开拓的,以结构概念统观数学的法国布尔巴基学派的兴起,对二十世纪数学的发展产生了巨大、深远的影响,科学的数学化一语也开始为人们所乐道. 数学的外围向自然科学、工程技术甚至社会科学不断渗透扩大并从中吸取营养,出现了一些边缘数学.数学本身的内部需要也孽生了不少新的理论与分支.同时其核心部分也在不断巩固提高并有时作适当调整以适应外部需要.总之,数学这棵大树茁壮成长,既枝叶繁茂又根深蒂固. 在数学的蓬勃发展过程中,数与形的概念不断扩大且日趋抽象化,以至于不再有任何原始计数与简单图形的踪影.虽然如此,在新的数学分支中仍有着一些对象和运算关系借助于几何术语来表示.如把函数看成是某种空间的一个点之类.这种做法之所以行之有效,归根结底还是因为数学家们已经熟悉了那种简易的数学运算与图形关系,而后者又有着长期深厚的现实基础.而且,即使是最原始的数字如1、2、3、4,以及几何形象如点与直线,也已经是经过人们高度抽象化了的概念.因此如果把数与形作为广义的抽象概念来理解,则前面提到的把数学作为研究数与形的科学这一定义,对于现阶段的近代数学,也是适用的. 由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界的.生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键性的作用.理论上的丰富提高与应用的广泛深入在数学史上始终是相伴相生,相互促进的. 但由于各民族各地区的客观条件不同,数学的具体发展过程是有差异的.大体说来,古代中华民族以竹为筹,以筹运算,自然地导致十进位值制的产生.计算方法的优越有助于对实际问题的具体解决.由此发展起来的数学形成了一个以构造性、计算性、程序化与机械化为其特色,以从问题出发进而解决问题为主要目标的独特体系.而在古希腊则着重思维,追求对宇宙的了解.由此发展成以抽象了的数学概念与性质及其相互间的逻辑依存关系为研究对象的公理化演绎体系. 中国的数学体系在宋元时期达到高峰以后,陷于停顿且几至消失.而在欧洲,经过文艺复兴、宗教革命、资产阶级革命等一系列的变革,导致了工业革命与技术革命.机器的使用,不论中外都由来已久.但在中国,则由于明初被帝王斥为奇技淫巧而受阻抑. 在欧洲,则由于工商业的发展与航海的刺激而得到发展,机器使人们从繁重的体力劳动中解放出来,并引导到理论力学和一般的运动和变化的科学研究.当时的数学家都积极参与了这些变革以及相应数学问题的解决,产生了积极的效果.解析几何与微积分的诞生,成为数学发展的一个转折点.17世纪以来数学的飞跃,大体上可以看成是这些成果的延续与发展. 20世纪出现各种崭新的技术,产生了新的技术革命,特别是计算机的出现,使数学又面临一个新时代.这一时代的特点之一就是部分脑力劳动的逐步机械化.与17世纪以来数学之以围绕连续、极限等概念为主导思想与方法不同,由于计算机研制与应用的需要,离散数学与组和数学开始受到重视. 计算机对数学的作用已不限于数值计算,符号运算的重要性日趋明显(包括机器证明等数学研究).计算机还广泛应用于科学实验.为了与计算机更好地配合,数学对于构造性、计算性、程序化与机械化的要求也显得颇为突出.代数几何是一门高度抽象化的数学,最近出现的计算性代数几何与构造性代数几何的提法,即其端倪之一.总之,数学正随着新的技术革命而不断发展.
2023-08-14 16:09:481

古代数学7怎么写

2023-08-14 16:10:104

求一篇数学与中国农业的论文

  依托数学教育对我国农业科技的发展影响研究--评《农业科技的跨越式发展》  作者:邓大翠  摘要:我国作为一个农业大国历来重视农业的发展:随着我国工业化程度的不断发展和扩大,农业也面临着走科学化、规模化、产业化和现代化的道路.党的十八大以来,中央异常重视农业现代化的发展,在科学种植方面投入大量资金,引进技术和人才,取得一定成绩.十九大进一步提出乡村振兴战略.秉承"高产、质优、高效、低耗"的原则提高农业的总量供给.在农业部和财政部组织实施的农业科技跨越计划下,我国先后实施了数十个现代化种植项目,通过水稻和小麦的产业化生产,有效实现了农民增收、企业增效.  关键词:农业科技跨越计划 跨越式发展 数学教育 农业现代化 产业化生产 科学种植 种植项目 农民增收  年份:2019  (学术堂提供更多论文内容)
2023-08-14 16:10:182

数学家简介

那就列出中国的5位最为著名的数学家吧:1.华罗庚自学成材的天才数学家,中国近代数学的开创人。华罗庚通过自学而成为世界级的数学家,他是解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域的中都作出卓越贡献。在这些数学领域他或是创始人或是开拓者!2.陈省身现代微分几何的开拓者,曾获数学界终身成就奖----沃尔夫奖!他对整体微分几何的卓越贡献,影响着半个多世纪的数学发展。他创办主持的三大数学研究所,造就了一批承前启后的数学家。在微分几何领域有诸多贡献,如以他命名的"陈空间","陈示性类","陈纤维从"3.苏步青世界著名微分几何学家,射影微分几何学派的开拓者早年对对仿射微分几何学和射影微分几何学做出了贡献,四、五十年代开始研究一般空间微分几何学,60年代又研究高维空间共轭网理论4.陈景润华罗庚的学生!数论学家,歌德巴赫猜想专家!离解决歌德巴赫猜想即"1+1"问题,最近的人,证明了"1+2"陈是一生只做一件事的人,那就是歌德巴赫猜想,他也一直只专注于这个领域而取得了举世瞩目的成就!!5.丘成桐陈省身的学生,因解决微分几何的许多重大难题而获得数学界菲尔奖!丘成桐的第一项重要研究成果是解决了微分几何的著名难题—卡拉比猜想,从此名声鹊起。他把微分方程应用于复变函数、代数几何等领域取得了非凡成果,比如解决了高维闵考夫斯基问题,证明了塞凡利猜想等。这一系列的出色工作终于使他成为菲尔兹奖得主。
2023-08-14 16:10:302

著名的“勾股定律”,竟然是由西周数学家商高发明的?

黄帝二十五子之昆孙,周成王时封于商,以地得姓称商子。商子精数学《周髀》,衍其说为《算经》(见康熙《续修商志》卷八)。《国语》亦谓:商高司商。《周髀算经》为算经十书之一,是我国早期之天文历算著述,主要阐明盖天说和四分历法,首次提出在直角三角形中勾三股四弦五的关系,为世界最早使用勾股定理者。《周髀》有周公、商高问答;《晋书·天文志》亦有记载。 商高是西周时期著名数学家,在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五。早于毕达哥拉斯定理五百到六百年。 据《周髀算经》记载,主要有三方面:勾股定理、测量术和分数运算。《周髀算经》中记载了这样一件事——一次周公问商高:古时作天文测量和订立历法,天没有台阶可以攀登上去,地又不能用尺寸去测量,请问数是怎样得来的?商高回答说:数是根据圆和方的道理得来的,圆从方来,方又从矩来。矩是根据乘、除计算出来的。这里的矩原是指包含直角的作图工具。这说明了勾股测量术,即可用3∶4∶5的办法来构成直角三角形。《周髀算经》并有勾股各自乘,并而开方除之的记载,说明当时已普遍使用了勾股定理。勾股定理是中国数学家的独立发明,在中国早有记载。《周髀算经》还记载了矩的用途:周公曰:大哉言数!请问用矩之道。商高曰:平矩以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方。据此可知,当时善于用矩的商高已知道用相似关系的测量术。 勾股定理是初等几何中的一个基本定理。所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572年?~公元前497年?)于公元前550年首先发现的。但毕达哥拉斯对勾股定理的证明方法已经失传。著名的希腊数学家欧几里得(Euclid,公元前330年~公元前275年)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。 中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量, 那么怎样才能得到关于天地得到数据呢? 商高回答说:数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩"得到的一条直角边‘勾"等于3, 另一条直角边‘股"等于4的时候,那么它的斜边‘弦"就必定是5。这个原理是大禹在治水的时候就总结出来的呵。 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。 所以现在数学界把它称为勾股定理是非常恰当的。 在稍后一点的《九章算术》一书中(约在公元50至100年间),勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。。《九章算术》系统地总结了战国、秦、汉以来的数学成就,共收集了246个数学的应用问题和各个问题的解法,列为九章,可能是所有中国数学著作中影响最大的一部。 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅勾股圆方图,用形数结合得到方法,给出了勾股定理的详细证明 。在这幅勾股圆方图中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2 。于是便可得如下的式子: 4×(ab/2)+(b-a)2 =c 2 化简后便可得:a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 )(1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以后的数学家大多继承了这一风格并且有发展,只是具体图形的分合移补略有不同而已。例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了出入相补法即剪内贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域龋ㄈ耄,结果刚好填满,完全用图解法就解Q了问题。 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的形数统一的思想方法,更具有科学创新的重大意义。
2023-08-14 16:10:461

青朱出入图的历史

勾股定理(也称商高定理)是中国古代天文观测实践中立竿测影的重大发现,在中国古代数学、天文历法和工程运用极其广泛,影响深远。最早数学著作记述见于《周髀算经》中周公与商高的对话。对话中提及大禹治水时期,勾股定理就已经应用于治水工程中,还延伸至国家建章立制的政治高度—“故禹之所以治天下者,此数之所生也。”《周髀算经》中记载,周公后人陈子叙述的勾股定理公式为“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”,即。《史记·夏本纪》记载大禹治水:“陆行乘车,水行乘船,泥行乘橇,山行乘檋。左准绳,右规矩,载四时,以开九州,通九道,陂九泽,度九山。”其中的规和矩就是运用勾股定理的实用工具之一。刘徽在《九章算术注》序言中,言及周代运用勾股定理立杆测影:“以南戴日下及日去地为勾、股,为之求弦,即日去人也。以径寸之筒南望日,日满筒空,则定筒之长短以为股率,以筒径为勾率,日去人之数为大股,大股之勾即日径也。虽夫圆穹之象犹曰可度,又况泰山之高与江海之广哉。”。这段论述,是勾股定理在古代中国用于立杆测影的佐证之一。因此,历代中国数学家对勾股理论非常重视,倾注大量心血进行研究,成果斐然,以东汉末期赵爽勾股弦图(即:勾股圆方图)为代表。2002年第24届国际数学家大会(ICM)在北京召开。中国邮政发行一枚邮资明信片,邮资图就是这次大会的会标—中国古代证明勾股定理的赵爽弦图。在上述背景下,数学家刘徽(公元263年)作《九章算术注》时,依据其“割补术”为证勾股定理另辟蹊径而作“青朱出入图”。图虽失传,但据其“出入相补、以盈补虚”原理,参照书中类似方法,后人还原了此图。
2023-08-14 16:10:561

勾股定理的证明方法~~~急急急急急急!!!!!要有图哦~~~~谢谢啦·~~~

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 转引自:http://tw.ntu.edu.cn/education/yanjiu/中“数学的发现”栏目。图无法转贴,请查看原文。 魅力无比的定理证明 ——勾股定理的证明 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 转引自:http://tw.ntu.edu.cn/education/yanjiu/中“数学的发现”栏目。图无法转贴,请查看原文。 参考资料:http://zhidao.baidu.com/question/5159445.html 回答者: 鹿丸秋 - 魔法师 四级 1-31 21:48忘了!好像是手臂的关系。勾三股四玄五。 回答者: fengtoutan - 助理 三级 1-31 21:48http://www.mmit.stc.sh.cn/telecenter/CnHisScience/ggdl.htm 有图 我只粘过来文字。 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩"得到的一条直角边‘勾"等于3,另一条直角边‘股"等于4的时候,那么它的斜边‘弦"就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。如图所示,我们 pic1.gif (1230 bytes) 图1 直角三角形 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 亦即: c=(a2+b2)(1/2) 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子: 4×(ab/2)+(b-a)2=c2 化简后便可得: a2+b2=c2 亦即: c=(a2+b2)(1/2) pic2.gif (1586 bytes) 图2 勾股圆方图 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”
2023-08-14 16:11:111

求勾股定理的证法(必须在50种以上,反正越多越好!)

1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"C 。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。
2023-08-14 16:11:2013