barriers / 阅读 / 详情

光的折射原理是什么?

2023-08-23 01:35:24
共2条回复
康康map

一、 光的折射 光的折射定律是高中物理教学中的内容。光从一种介质中进入到另一种介质中,改变原来的传播方向,这种现象是光的折射现象,它们之间的规律称为光的折射定律:入射光线、法线、折射光线在同一个平面,入射光线、折射光线分居在法线的两侧,入射角的正弦跟折射角的正弦之比是一个常量。 二、光子与光线 说到光子,知道的人很多,这是爱因斯坦提出来,很好地解释了光电效应,从而获得了物理界的最高奖------诺贝尔奖。在本篇文章的光子,是全频率的光子,非可见光有非可见光的光子,而光子的运动集合构成了光线,也就是人们通常所说的光,光的入射、反射、折射都是大量光子运动的集体表现。 光子一词中有一个“子”,说明体现了粒子性,在爱因斯坦的思想中,光子没有静止质量,但是有运动质量,由于人们找到一个基本粒子后,又会有另一个质量比原来更小的粒子存在,于是,用没有静止质量的光子充当物质的基本粒子,但是存在一个问题,光子本身没有静止质量,由光子构成的物质本身也没有静止质量,而事实却不是这样,自然界的物质都是有静止质量,改变理念,物质的静止质量并不是物质本身固有的,而是物质不断与环境相互作用光子体现的质量。由于这个原因,所有物质只要存在,就要不断与环境相互作用光子,物质停止与环境作用光子,物质将会进入到另一个时空,从这个角度来分析,质量都是物质与环境作用光子体现的,光子是不断被吸收与发射的结果。物质环境中有的地方存在光子的可能性大,有的地方存在光子的可能性小,才出现光的波动性这一说,才有人们所说的光子波粒二像性。 由于光、光线是光子群体运动的结果,哪么,入射光、反射光、折射光都是光子,发射、吸收的最大可能性。由于在均匀介质中,物质发射光子的可能性是处处相等的,才有光是直线传播的特性。同样,在非均匀介质中,由于吸收、发出光子的可能性不相同,光子在非均匀介质中,光线发生弯曲的结果。 三、光的折射原理 物理学中说明,由于光速在不同介质中的速度不同,才有光走过不同的路线,才有光在介面上发生折射的现象,这是完全正确的。我们先说第一个问题,(1)、光在不同介质中速度不同;(2)、论述光的折射原理。 1、为什么光在不同的介质中光速不同 由于光子是物质的基本粒子,所有粒子只有不断与环境相互作用光子,才能体现自己的质量,自己的存在才能有意义,而光线是光子集体、运动的结果,说到运动一定要说速度,我们知道光在真空中的速度是C,是最大的,在其它介质中速度都比在真空中的速度要小,特别是在真空中,光子的运动不需要介质,是依靠自身传播,这是光波区别机械波的本质原因,事实上。从光子是物质的基本粒子来看,光子也是其它光子信息吸收光子,发出光子的结果,就是说在真空中没有分子、原子的存在,一定有光子的组合,这个组合有意义,可以吸收光子,发出光子,这些光子组合是光子存在、运动的介质。 说到光速,一定要说到时间,速度是路程与时间的比值,在真空中,存在光子组合吸收光子,再发出光子的结果,在真空中,光子集合------光的速度是C,单个光子的运动速度,就会大于C,因为吸收光子、发出光子需要时间,会使光速度减慢,这里分析说明一定存在的光子单个的速度,它要一定大于光子群的速度C,但是单个光子超光速没有意义,因为一个光子不表达任何信息,只有光子组合才能表达信息。 当光子进入到真空以外的其它介质中的时候,由于存在分子、原子、电子等实物粒子,这些粒子在单位时间内吸收光子、发出光子的次数增加了,是相对真空中单位时间吸收、发出光子的次数增加了,才使光子在单位时间内,向前运动的路程减少,速度减慢,换一句话说,光子进入到介质中,单位时间内,与介质粒子作用的次数越多,光速越慢。 通过这个分析可知,不同的介质对不同的频率的光子的速度不同,通常情况下,频率越高,波长越短,光子在相同的路程内与介质中的粒子作用光子次数越多,光速越慢,在可见光范围内,红光在介质中的光速,在通常情况下,比紫色光的光速要大。但是如果这种介质只发出红光,也就是单位时间内与红光频率相对应的光子作用的机会要多,会出现相反的例子,在这种介质中,红光的光速会比其它频率的光速度要慢。同样如果介质的粒子分布不是均匀的,就是会存在光速的方向性,也就是在某一个方向上速度要大一些,在另一个方向上速度要小一些,这些都是单位时间内与介质作用光子次数不同的结果。 2、光的折射原理 有人会说高中物理中,已经学习了光的折射定律了,说明人们对光的折射现象研究的很清楚了,为什么还要再谈光的折射原理,这是因为高中的光的折射原理是通过光的波动性研究的,得出结论是光的入射角的正弦与光的折射角的正弦之比,等于光在两种介质中的光速之比, ,本篇内容是从光的粒子性研究光的折射原理,说明光子的吸收与发出遵守粒子的几率,光的运动路线,也就是光子吸收、发出的最大几率的地方。 由于光的运动路线是光子被吸收,发出的最大几率的地方,那么光线的方向,就会向着吸收、发出光的可能性多的前进,也就是那个方向吸收这种光子的可能性大,就向这个方向偏折,我们假设光子在真空中,单位时间内被吸收、发出了N次,而在介质中,在相同的时间内被吸收、发出了M次,光子本身的速度不变,并且比光速C要大,由于被吸收发出,运动路程减少,速度减小,那么,则 ,当光线以 角入射到界面上的时候,由于光子的法线方向吸收光子、发出光子的可能性大,光线应该向着法线方向偏折。 在介质均匀分布的区域内,光子被吸收、发出的可能性是一样的,光线是直线传播,但是界面上不同,光子在真空中,与介质中被吸收、发出的可能性不同,也就是在光子组合数分布不同的地方,光子集合的运动路线会向着吸收、发出光子的可能性大的地方运动。也就是在光子信息分布不均匀的地方,光线会发生弯曲。通常在界面的一个波长内,在几千个分子距离内,发生弯曲,进入介质以后,光子就认为是均匀介质了,这样分析是说明,发生光的折射,在界面上画成折线,只是一种近似,如是严格地要求画出光的折射光路,在折射的界面上应该画成圆弧线。

皮皮

光的折射原理:光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折。

光的折射定律

1、折射光线和入射光线分居法线两侧(法线居中,与界面垂直)。

2、折射光线、入射光线、法线在同一平面内。(三线两点一面)。

3、当光线从空气斜射入其它介质时,角的性质:折射角(折射率大的一方)小于入射角(折射率小的一方)(不能反着说);(在真空中的角总是大的,其次是空气,注:不能在考试填空题中使用)入射角 反射角 折射角的表示。

4、当光线从其他介质斜射入空气时,折射角大于入射角。(以上两条总结为:谁快谁大。即为光线在哪种物质中传播的速度快,那么不管那是折射角还是入射角都是较大的角,在真空中的角度总是最大的)。

5、在相同的条件下,折射角随入射角的增大(减小)而增大(减小)。

扩展资料

特殊情况

光由光密(即光在此介质中的折射率大的)媒质射到光疏(即光在此介质中折射率小的)媒质的界面时,全部被反射回原媒质内的现象。光由光密媒质进入光疏媒质时,要离开法线折射,如图所示。

当入射角θ增加到某种情形(图中的e射线)时,折射线延表面进行,即折射角为90°,该入射角C称为临界角。若入射角大于临界角,则无折射,全部光线均反回光密媒质(如图f、g射线),此现象称为全反射。

参考资料来源:百度百科-光的折射

相关推荐

光折射的原理

光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生变化,这种现象叫光的折射。理解:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光则进入到另一种介质中,由于光在在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。
2023-08-15 00:40:062

光的折射原理是什么?

当光从一种介质斜射入另一种介质时一般会发生偏折,这种现象叫做光的折射. 定理: 1.折射光线,入射光线,法线在同一平面内! 2.折射光线入射光线分居法线两侧 3.当光从空气斜射入其他介质时入射角大于折射角,当从其他介质斜射入空气中时,折射角大于入射角 .简称:空大 4.当入射角为0度时,折射角也为0度.(折射光线,法线和入射光线在同一条直线上) 5.光从空气中斜射入水中或者其他介质中,折射光线向法线偏离. 6.在折射现象中,光路是可逆的.
2023-08-15 00:40:151

光的折射原理

光的折射原理是光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折。光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光线则进入到另一种介质中。在折射现象中,光路是可逆的。一般来讲,在两种介质的分界处,不仅会发生折射,也发生反射。例如在水中,部分光线会反射回去,部分光线会进入水中。反射光线光速与入射光线相同,折射光线光速与入射光线不相同。光从空气斜射入水中或其他介质时(真空除外,因为在真空中光不能发生偏折),折射光线向法线方向偏折,折射角小于入射角。
2023-08-15 00:40:251

光的折射原理是什么?

光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折。特性:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光线则进入到另一种介质中。由于光在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。在折射现象中,光路是可逆的。注意:在两种介质的分界处,不仅会发生折射,也发生反射,例如在水中,部分光线会反射回去,部分光线会进入水中。反射光线光速与入射光线相同 ,折射光线光速与入射光线不相同。当光线逆着原来的反射光线(或折射光线)的方向射到媒质界面时,必会逆着原来的入射方向反射(或折射)出去,这种性质叫光路可逆性。在凹透镜成像中,若入射光平行于凹透镜发散,入射光的反向延长线必然交于焦点F。光的可逆性也可以理解为是光线顺着反方向延长与原来路径一样。验证光路可逆的实验1.晚上,在暗处A点,用一个"手电筒"照射"平面镜"(斜射),光被反射,在B处有一个亮斑。然后,平面镜不动,在暗处B点,用一个"手电筒"照射"平面镜"(斜射),光被反射,在A处有一个亮斑。2.在桌上铺上一张白纸,在白纸上竖直立一块平面镜,用激光手电沿桌面向平面镜射出一束光,在白纸上沿激光的路线用笔画出光的路线,并标出方向,然后沿相反的方向逆向射向平面镜,会发现与原来的光线的路线相同,只是方向相反,由此可证明光路是可逆的
2023-08-15 00:40:361

折射的原理是什么

当光从一种介质斜射入另一种介质时,一般会发生偏折,这种现象叫做光的折射。传播介质的改变是导致光波发生折射的重要原因。在两种介质的交界处,既发生折射,同时也发生反射。反射光光速与入射光相同,折射光光速与入射光不同。 折射定律 光的折射定律:光从空气斜射入水或其他介质中时,折射光线与入射光线、法线在同一平面上,折射光和入射光分居法线两侧;折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不变,在折射中光路可逆。当光从水或其他介质中斜射入空气时,折射角大于入射角。 折射相关应用 人们利用折射原理发明了透镜透镜有凸透镜和凹透镜,细分又有双凸、平凸、凹凸、双凹、平凹、凸凹六种。 中央部分比边缘部分厚的叫凸透镜,中央部分比边缘部分薄的叫凹透镜,凸透镜具有会聚光线的作用,所以也叫“会聚透镜”、“正透镜”(可用于近视与老花镜),凹透镜具有发散光线的作用,所以也叫“发散透镜”、“负透镜”(可用于近视眼镜)。 透镜是组成显微镜光学系统的最基本的光学元件,物镜、目镜及聚光镜等部件均由单个和多个透镜组成。
2023-08-15 00:40:541

光的折射定律

折射角大小和入射角大小的关系是:sin(r1)*(n1)=sin(r2)*(n2)此公式中(r1)和(r2)分别代表入射角和折射角的角度,sin(r1)和sin(r2)就是入射角和折射角的正弦;(n1)和(n2)分别是第一种媒质和第二种媒质的折射率。由此可见,如果增大入射角,那么折射角也会随之增大;反之亦然。折射定律由荷兰数学家斯涅尔发现,是在光的折射现象中,确定折射光线方向的定律。 (1)折射光线位于入射光线和界面法线所决定的平面内; (2)折射线和入射线分别在法线的两侧; (3)入射角i的正弦和折射角i′的正弦的比值,对折射率一定的两种媒质来说是一个常数。 光从光速大的介质进入光速小的介质中时,折射角小于入射角;从光速小的介质进入光速大的介质中时,折射角大于入射角。原理概念折射定律由荷兰数学家斯涅尔发现,是在光的折射现象中,确定折射光线方向的定律。当光由第一媒质(折射率为n1)射入第二媒质(折射率n2)时,在平滑界面上,部分光由第一媒质进入第二媒质后即发生折射。
2023-08-15 00:41:031

物理中光的折射是什么原理?光路可逆是怎么回事

光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折。特性:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光线则进入到另一种介质中。由于光在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。在折射现象中,光路是可逆的。注意:在两种介质的分界处,不仅会发生折射,也发生反射,例如在水中,部分光线会反射回去,部分光线会进入水中。反射光线光速与入射光线相同,折射光线光速与入射光线不相同。当光线逆着原来的反射光线(或折射光线)的方向射到媒质界面时,必会逆着原来的入射方向反射(或折射)出去,这种性质叫光路可逆性。在凹透镜成像中,若入射光平行于凹透镜发散,入射光的反向延长线必然交于焦点F。光的可逆性也可以理解为是光线顺着反方向延长与原来路径一样。验证光路可逆的实验1.晚上,在暗处A点,用一个"手电筒"照射"平面镜"(斜射),光被反射,在B处有一个亮斑。然后,平面镜不动,在暗处B点,用一个"手电筒"照射"平面镜"(斜射),光被反射,在A处有一个亮斑。2.在桌上铺上一张白纸,在白纸上竖直立一块平面镜,用激光手电沿桌面向平面镜射出一束光,在白纸上沿激光的路线用笔画出光的路线,并标出方向,然后沿相反的方向逆向射向平面镜,会发现与原来的光线的路线相同,只是方向相反,由此可证明光路是可逆的
2023-08-15 00:41:241

光的折射是什么原因造成的?

光由光密(即光在此介质中的折射率大的)媒质射到光疏(即光在此介质中折射率小的)媒质的界面时,全部被反射回原媒质内的现象。光由光密媒质进入光疏媒质时,要离开法线折射,如图所示。当入射角θ增加到某种情形(图中的e射线)时,折射线延表面进行,即折射角为90°,该入射角C称为临界角。若入射角大于临界角,则无折射,全部光线均反回光密媒质(如图f、g射线),此现象称为全反射。这就是光纤通信的原理。只有在光线从光密介质射入光疏介质时才会产生。光从介质射入空气(真空)时,发生全反射的临界角C与介质的折射率n的定量关系是:sinC=1/n从这个关系式可以看出,介质的折射率越大,发生全反射的临界角越小。水的临界角为48.8°,各种玻璃的临界角为32°~42°,金刚石的临界角为24.4°。全反射是自然界里常见的现象。例如,水中或玻璃中的气泡,看起来特别明亮,就是因为光从水或玻璃射向气泡时,一部分光在界面上发生了全反射的缘故。
2023-08-15 00:41:452

光的折射是什么?

什么是光的折射 光由一种介质斜射入另一种介质或在同一种不均匀介质中传播时,方向发生偏折的现象叫做光的折射。例子如:池水变浅.钢笔错位.插鱼以及铅笔经过水供而断........ 光的折射原理是什么? 一、 光的折射光的折射定律是高中物理教学中的内容。光从一种介质中进入到另一种介质中,改变原来的传播方向,这种现象是光的折射现象,它们之间的规律称为光的折射定律:入射光线、法线、折射光线在同一个平面,入射光线、折射光线分居在法线的两侧,入射角的正弦跟折射角的正弦之比是一个常量。二、光子与光线说到光子,知道的人很多,这是爱因斯坦提出来,很好地解释了光电效应,从而获得了物理界的最高奖------诺贝尔奖。在本篇文章的光子,是全频率的光子,非可见光有非可见光的光子,而光子的运动 *** 构成了光线,也就是人们通常所说的光,光的入射、反射、折射都是大量光子运动的集体表现。光子一词中有一个“子”,说明体现了粒子性,在爱因斯坦的思想中,光子没有静止质量,但是有运动质量,由于人们找到一个基本粒子后,又会有另一个质量比原来更小的粒子存在,于是,用没有静止质量的光子充当物质的基本粒子,但是存在一个问题,光子本身没有静止质量,由光子构成的物质本身也没有静止质量,而事实却不是这样,自然界的物质都是有静止质量,改变理念,物质的静止质量并不是物质本身固有的,而是物质不断与环境相互作用光子体现的质量。由于这个原因,所有物质只要存在,就要不断与环境相互作用光子,物质停止与环境作用光子,物质将会进入到另一个时空,从这个角度来分析,质量都是物质与环境作用光子体现的,光子是不断被吸收与发射的结果。物质环境中有的地方存在光子的可能性大,有的地方存在光子的可能性小,才出现光的波动性这一说,才有人们所说的光子波粒二像性。由于光、光线是光子群体运动的结果,哪么,入射光、反射光、折射光都是光子,发射、吸收的最大可能性。由于在均匀介质中,物质发射光子的可能性是处处相等的,才有光是直线传播的特性。同样,在非均匀介质中,由于吸收、发出光子的可能性不相同,光子在非均匀介质中,光线发生弯曲的结果。三、光的折射原理物理学中说明,由于光速在不同介质中的速度不同,才有光走过不同的路线,才有光在介面上发生折射的现象,这是完全正确的。我们先说第一个问题,(1)、光在不同介质中速度不同;(2)、论述光的折射原理。1、为什么光在不同的介质中光速不同 由于光子是物质的基本粒子,所有粒子只有不断与环境相互作用光子,才能体现自己的质量,自己的存在才能有意义,而光线是光子集体、运动的结果,说到运动一定要说速度,我们知道光在真空中的速度是C,是最大的,在其它介质中速度都比在真空中的速度要小,特别是在真空中,光子的运动不需要介质,是依靠自身传播,这是光波区别机械波的本质原因,事实上。从光子是物质的基本粒子来看,光子也是其它光子信息吸收光子,发出光子的结果,就是说在真空中没有分子、原子的存在,一定有光子的组合,这个组合有意义,可以吸收光子,发出光子,这些光子组合是光子存在、运动的介质。说到光速,一定要说到时间,速度是路程与时间的比值,在真空中,存在光子组合吸收光子,再发出光子的结果,在真空中,光子 *** ------光的速度是C,单个光子的运动速度,就会大于C,因为吸收光子、发出光子需要时间,会使光速度减慢,这里分析说明一定存在的光子单个的速度,它要一定大于光子群的速度C,但是单个光子超光速没有意义,因为一个光子不表达任何信息,只有光子组合才能表达信息。当光子进入到真空以外的其它介质中的时候,由于存在分子、原子、电子等实物粒子,这些粒子在单位时间内吸收光子、发出光子的次数增加了,是相对真空中单位时间吸收、发出光子的次数增加了,才使光子在单位时间内,向前运动的路程减少,速度减慢,换一句话说,光子进入到介质中,单位时间内,...... 光的折射成什么像,虚像还是实像 看水下物体是光的折射现象,成的是虚像; 而凸透镜成像,倒立的都是实像,正立的是虚像;凹透镜成像,都是正立缩小的虚像,成像原理也是光的折射。 不明追问。
2023-08-15 00:42:051

光的折射液面变化时的折射现象的原理根据是什么?

折射定理·定理的发现最早定量研究折射现象的是公元2世纪希腊人C.托勒密,他测定了光从空气向水中折射时入射角与折射角的对应关系,虽然实验结果并不精确,但他是第一个通过实验定量研究折射规律的人。1621年,荷兰数学家W.斯涅耳通过实验精确确定了入射角与折射角的余割之比为一常数的规律,即cscθi/cscθt=常数故折射定律又称斯涅耳定律。1637年,法国人R.笛卡儿在《折光学》一书中首次公布了具有现代形式正弦之比的规律。与光的反射定律一样,最初由实验确定的折射定律可根据费马原理、惠更斯原理或光的电磁理论证明之。上述光的折射定律只适用于由各向同性介质构成的静止界面。由荷兰数学家斯涅尔发现,是在光的折射现象中,确定折射光线方向的定律。当光由第一媒质(折射率n1)射入第二媒质(折射率n2)时,在平滑界面上,部分光由第一媒质进入第二媒质后即发生折射。·定理内容(1)折射光线位于入射光线和界面法线所决定的平面内;(2)折射线和入射线分别在法线的两侧;(3)入射角i的正弦和折射角i′的正弦的比值,对折射率一定的两种媒质来说是一个常数.光由光速大的介质中进入光速小的介质中时,折射角小于入射角;从光速小的介质进入光速大的介质中时,折射角大于入射角。此定律是几何光学的基本实验定律。
2023-08-15 00:42:341

光折射的微观原理

首先,只有在非金属的界面上才会有明显的折射现象发生,电磁波是很难进入金属内部的。进入金属的电磁波会迅速衰减,消失,金属表面可以反射绝大多数的电磁波。 在非金属界面上,可以利用电磁场的连续性条件,既电场在切向上连续,磁场在法向上连续来列方程严格求解电磁波的折射、反射情况。 究其原因是在非金属内部没有自由电荷存在,使得电磁波可以进入它的内部,从而出现折射现象,而金属内部有自由的电子,它们和电磁波的相互作用阻止了电磁波进入金属内部
2023-08-15 00:42:441

“光的折射原理论文” 请说明光的折射原理,并举例。有好的追加分

光折射 在我们的生活中,光是很常见的。光在空气中是以直射的方式传播的。光在其他介质中又是以什么方式传播呢? 光在水中和冰中都是以一种方式传播的,那就是——光折射。 有经验的渔夫知道,捕鱼时,要往鱼的下方插;当我们把一根筷子插入装有水的碗里,筷子像被折断了;一个清澈见底的水池,脚踩下去才发现水很深……这些现象,都是光折射造成的。 光从一种介质斜射入另一种介质时,传播方向发生偏折,这种现象叫做光折射。 为什么会出现光折射呢?那是因为光在不同介质中,传播的速度不同,所以会出现光折射。
2023-08-15 00:43:181

物理中光的折射是什么原理?光路可逆是怎么回事

光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折。当光线逆着原来的反射光线(或折射光线)的方向射到介质界面时,必会逆着原来的入射方向反射(或折射)出去,这种性质叫光路可逆
2023-08-15 00:43:282

光的折射原理是什么?(详细点)

光由一种介质斜射入另一种介质或在同一种不均匀介质中传播时,方向发生偏折的现象叫做光的折射。例子如:池水变浅.钢笔错位.插鱼以及铅笔经过水面而断........1、折射光线和入射光线分居法线两侧(法线居中)2、折射光线、入射光线、法线在同一平面内。(三线一面)3、当光线从空气斜射入其它介质时,角的性质:折射角小于入射角;(在空气中的角总是大的,注:不能在考试填空题中使用)4、当光线从其他介质射入空气时,折射角大于入射角。(以上两条总结为:谁快谁大。即为光线在哪种物质中传播的速度快,那么不管那是折射角还是入射角都是较大的角)5、在相同的条件下,入射角越大(越小),折射角越大(越小)。6、折射光线与法线的夹角,叫折射角。P.S.:1、光线垂直入射时,折射光线、法线和入射光线在同一直线上。传播方向不变,但光的传播的速度改变。2、在光的折射中,光路是可逆性的。3、不同介质对光的折射本领是不同的。空气>水>玻璃(折射角度){介质密度密的角度小于介质密度稀的角度}4、光从一种透明均匀物质斜射到另一种透明物质中时,折射的程度与后者分析的折射率有关。5、光从空气斜射入水中或其他介质时,折射光线向法线方向偏折。6、光垂直射向介质表面时,传播方向不变。http://baike.baidu.com/view/56139.htm全面的信息
2023-08-15 00:43:481

光的折射定律的内容和口诀都是什么

三线共面,法线居中,速大角大,光路可逆。光的折射定律:折射光线与入射光线、法线处在同一平面内;折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比。 光的折射定律的原理 折射定律由荷兰数学家斯涅尔发现,是在光的折射现象中,确定折射光线方向的定律。当光由第一媒质(折射率为n1)射入第二媒质(折射率n2)时,在平滑界面上,部分光由第一媒质进入第二媒质后即发生折射。 实验指出: (1)折射光线位于入射光线和界面法线所决定的平面内; (2)折射线和入射线分别在法线的两侧; (3)入射角i的正弦和折射角i′的正弦的比值,对折射率一定的两种媒质来说是一个常数。 浅显的说,就是光从光速大的介质进入光速小的介质中时,折射角小于入射角;从光速小的介质进入光速大的介质中时,折射角大于入射角。 光的折射定律口诀 1、折射光线和入射光线分居法线两侧(法线居中,与界面垂直) 2、折射光线、入射光线、法线在同一平面内。(三线两点一面) 3、折射角的正弦与入射角的正弦之比为常数(折射定律)。 当光线从空气斜射入其它介质时,折射角小于入射角。 4、当光线从其他介质斜射入空气时,折射角大于入射角。(以上两条总结为:谁快谁大。即为光线在哪种物质中传播的速度快,那么不管那是折射角还是入射角都是较大的角,在真空中的角度总是最大的) 5、在相同的条件下,折射角随入射角的增大(减小)而增大(减小) 6、折射光线与法线的夹角,叫折射角。 7、光从空气斜射入水中或其他介质时(真空除外,因为在真空中光不能发生偏折),折射光线向法线方向偏折,折射角小于入射角。 8、光从空气垂直射入水中或其他介质时,传播方向不变。
2023-08-15 00:44:091

光的折射原理

光从一种介质斜射入另一种介质,由于介质密度不同使光的传播速度发生了改变,传播方向也发生了偏折
2023-08-15 00:44:205

光的折射与反射

一、光的折射与反射当光波从一种介质传播到另一种介质时,在两种介质的分界面上将发生反射及折射等现象,反射光按反射定律返回介质,折射光按折射定律进入另一介质中(图1-3-8)。二、折射定律及折射率如图1-3-9所示,设想一束平行光线倾斜射向两种介质的界面,R1、R2为该光束中两条代表光线。设i代表入射光与法线的夹角(入射角),γ代表折射光与法线的夹角(折射角)。设vi代表光波在入射介质(1)中的传播速度,以vγ代表光波在折射介质(2)中的传播速度。设在t1瞬间,入射光束的波前到达OG 面。根据惠更斯原理,波前OG 面上的每一点均可视为发射子波的新波源。当光线R1从O 点进入折射介质(2)时,光线R2仍在入射介质(1)中传播,在t2瞬间,R2到达界面M 点,R1已在折射介质(2)中传播了OS距离。 ,即R1从O点发出的子波已在折射介质中形成以OS为半径的一个半圆波面。从M 点向此半圆波面作一切线与波面相切于S点。MS为t2瞬间折射光束的波前,OS为折射光束的传播方向。图1-3-8 光的反射与折射图1-3-9 光的折射定律图1-3-9中,系统宝石学(第2版)以(2)式除(1)式系统宝石学(第2版)因MG=vi(t2-t1),OS=vγ(t2-t)1,代入(3)式得:系统宝石学(第2版)即系统宝石学(第2版)(4)式为折射定律,两种介质一定时,n为一个常数,称为第二介质(折射介质)相对第一介质(入射介质)的相对折射率;如果入射介质为真空(或空气),n值则为折射介质的绝对折射率。一般我们所指物质的折射率都是相对于真空(或空气)而言的,即其绝对折射率。从上式可知,光波在介质中的传播速度愈大,该介质的折射率愈小;反之,光波在介质中的传播速度愈小,该介质的折射率愈大。即介质的折射率值与光波在该介质中的传播速度成反比(vi/vγ=nγ/ni)介质的折射率值与其组成成分、结构有关。在宝石学中,宝石折射率是反映宝石成分、晶体结构的非常重要的常数之一,是宝石种属鉴别的可靠依据。三、光的全反射和漫反射1.光的全反射及全反射临界角根据折射定律,当光波由折射率较小的介质(光疏介质)射入折射率较大的介质(光密介质)时,其折射光线偏向法线,即vγ<vi,相对折射率n> 1,sini/sinγ>1,i>γ。反之,当光波由折射率较大的介质射入折射率较小的介质时,其折射光线偏离法线,即vγ>vi,相对折射率n< 1,sin i/sinγ< 1,i<γ(图1-3-10)。图1-3-10 光的全内反射在图1-3-10中,S面为光密介质与光疏介质的分界面,O为总光源。从光源O发出OA、OB、OC、OD、OE一系列光波向S面入射。其中OA光垂直界面,i=0°,故γ=0°,不发生折射,AA′光沿OA原方向射入光疏介质中。随着光波入射角的加大,折射角势必不断增大,折射光线愈来愈偏离法线。当光线的入射角加大到一定程度时(如图中的OD光线),γ=90°,相应的折射线DD ′将沿界面进行传播。如果光波的入射角继续增大(如图中的OE光线),γ>90°,入射光不再发生折射,而是全部反射回入射介质中,且遵循反射定律,反射角=入射角(i=γ),这一现象称为光的全反射,与γ=90°相应的入射角称为全反射临界角。设图1-3-10中光疏介质的折射率为n1,光密介质的折射率为n2(n2> n1),全反射临界角为φ,将得出下式:系统宝石学(第2版)根据上式,如果光密介质的折射率值n2已知,便可根据全反射临界角计算出光疏介质的折射率值n1值。宝石用折射率仪就是根据全反射原理设计制成的。反之,当n2和n1值已知时,根据上式可以计算出全反射临界角的值。在宝石加工中,为了使刻面达到对光的全反射效果,可根据加工宝石的折射率值,通过上述关系式,计算出最佳的刻面角度。2.光的漫反射当一束平行光线照到理想抛光平面或镜面时,入射光的绝大部分,依反射定律沿同一方向被反射,且入射角与反射角相等,这种反射称为镜面反射。当一束光线照到物体凹凸不平的表面时,光沿着不同的方向发生反射,称为光的漫反射。这时每一个凹面或凸面都相对入射光构成了局部范围内的反射界面。无排列规律的众多反射界面使原本沿同一方向入射的光分解成无数个细小光束以不同反射角反射。当物体对入射光进行漫反射时,各反射方向的反射光亮度相当的点能连成一个正圆时,则该物体称为完全漫反射体。而一般情况下大多数物体在对入射光进行反射时既有镜面反射又有漫反射,而且镜面反射光强度大于漫反射光强度。
2023-08-15 00:44:391

凸透镜,凹透镜都是依靠光的折射原理吗

是的。你的理解是正确的。
2023-08-15 00:44:492

光线折射的原理是什么?

光与介质
2023-08-15 00:45:0112

光的折射定律是什么?

简单分析一下,答案如图所示
2023-08-15 00:45:321

光的折射10个例子分别是什么,说明原理?

光的折射10个例子分别是如下:1、水池中的水看起来比实际浅了。解释:水池底部(以S点为例)反射的光从水中射入到空气中时发生折射,折射光远离法线(折射角大于入射角),人逆着进入眼睛的折射光的方向看过去,就会看到水池底部的虚像S",虚像的位置是升高的,所以看上去整个水池的水变浅了。2、插入水中的筷子,筷子在水下的部分看上去向上弯折了。解释:筷子底端反射的光从水中射入到空气中时发生折射,折射光远离法线(折射角大于入射角),人逆着进入眼睛的折射光的方向看过去,就会看到筷子底端的虚像,通过作图可看出虚像的位置升高了,所以看上去水面下的筷子向上弯折了。3、把一块厚玻璃砖放在铅笔的前面,铅笔看起来好像“错位”了。解释:玻璃砖下方那段铅笔反射的光由玻璃射向空气中时发生折射,折射光远离法线(折射角大于入射角),折射光进入人眼后,人逆着折射光的方向看,看到的是那段铅笔的虚像,虚像的位置比原来的位置升高了,所以,看上去这段铅笔错位了。4、在岸上看水下的物体,看到物体的位置比实际位置高。例如:鱼儿在清澈的水里面游动,可以看得很清楚。然而,沿着你看见鱼的方向去叉它,却叉不到。有经验的渔民都知道,只有瞄准鱼的下方才能把鱼叉到。这是因为:水中鱼反射出的光由水中进入空气中时,在水面处发生了折射,折射角大于入射角,人认为光是沿直线传播的,所以逆着折射光线看上去,看到的是变浅的鱼的虚像。所以有经验的渔民应该用鱼叉瞄准看到鱼的下方位置,才能将鱼叉到。5、在水下看空中的物体,看到物体的位置比实际位置高。解释:空中物体反射的光由空气中进入水中时,在水面处发生折射,折射角小于入射角,折射光进入眼睛后,眼睛逆着折射光的方向看,看到的就是变高的物体的虚像。
2023-08-15 00:46:211

折射现象的原理是什么

原理密度不同,光进行的速度发生改变
2023-08-15 00:47:041

光为什么会折射

光的折射 光的折射 1、光的折射:光从一种介质斜射入另一种介质时,传播方向一般会发生变化,这种现象叫光的折射 理解:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光则进入到另一种介质中,由于光在在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。 注意:在两种介质的交界处,既发生折射,同时也发生反射 2、光的折射规律:光从空气斜射入水或其他介抽中时,折射光线与入射光线、法线在同一平面上,折射光线和入射光线分居法线两侧;折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不变,在折射中光路可逆。 理解:折射规律分三点:(1)三线一面 (2)两线分居(3)两角关系分三种情况:①入射光线垂直界面入射时,折射角等于入射角等于0°;②光从空气斜射入水等介质中时,折射角小于入射角;③光从水等介质斜射入空气中时,折射角大于入射角 3、 在光的折射中光路是可逆的 4、 透镜及分类 透镜:透明物质制成(一般是玻璃),至少有一个表面是球面的一部分,且透镜厚度远比其球面半径小的多。 分类:凸透镜:边缘薄,中央厚 凹透镜:边缘厚,中央薄 5、 主光轴,光心、焦点、焦距 主光轴:通过两个球心的直线 光心:主光轴上有个特殊的点,通过它的光线传播方向不变。(透镜中心可认为是光心) 焦点:凸透镜能使跟主轴平行的光线会聚在主光轴上的一点,这点叫透镜的焦点,用“F”表示 虚焦点:跟主光轴平行的光线经凹透镜后变得发散,发散光线的反向延长线相交在主光轴上一点,这一点不是实际光线的会聚点,所以叫虚焦点。 焦距:焦点到光心的距离叫焦距,用“f”表示。 每个透镜都有两个焦点、焦距和一个光心。 6、 透镜对光的作用 凸透镜:对光起会聚作用(如图) 凹透镜:对光起发散作用(如图) 7、 凸透镜成像规律 物 距 成像大小 (u) 像的虚实 应 用 像物位置 像 距 ( v ) u > 2f 缩小 实像 透镜两侧 f < v <2f 照相机 u = 2f 等大 实像 透镜两侧 v = 2f f < u <2f 放大 实像 透镜两侧 v > 2f 幻灯机 u = f 不 成 像 u < f 放大 虚像 透镜同侧 v > u 放大镜 凸透镜成像规律:虚像物体同侧;实像物体异侧;物远实像小而近,物近实像大而远。 8、 为了使幕上的像“正立”(朝上),幻灯片要倒着插。 9、 照相机的镜头相当于一个凸透镜,暗箱中的胶片相当于光屏,我们调节调焦环,并非调焦距,而是调镜头到胶片的距离,物离镜头越远,胶片就应靠近镜头。
2023-08-15 00:47:4614

关於光的折射与反射的例子

折射:海市蜃楼,水中筷子从侧面看向上弯,太阳未超过地平线人却能看到它,从岸上看河水比实际浅,渔夫插鱼要插鱼的下方. 反射:水中的倒影(原理是光的反射),我们能看到本身不发光的物体,照镜子. 折射:光从一种(半)透明介质到另一种(半)透明介质,就会发生折射,如海市蜃楼.三棱镜等 反射:镜子(包括平面镜.凸.凹面镜)液体表面等 折射:海市蜃楼 水中筷子,水变浅. 反射:激光反射 照镜子 折射:海市蜃楼 水中筷子变弯 反射:激光反射
2023-08-15 00:48:151

光的折射原理是什么?和成像规律

光的折射原理是:光线从一种透明物体进入另一种透明物体时,传播方向会在交界面上发生弯折,这种现象叫光的折射。成像规律是光沿直线传播。
2023-08-15 00:48:282

如何理解光的折射现象的原理?

光的折射是光线从一种介质传播到另一种介质时发生的现象,由于介质的光密度差异,光线会改变传播方向。以下是几个光的折射现象的例子:1. 折光棱镜:当光线通过一个三棱镜时,由于光速在不同介质中的差异,光线会被折射,使得光线的传播方向发生变化。这个过程在光谱分析中被广泛应用。2. 空气中的热空气折射:在炎热的夏天,地面上的空气被加热,使得密度较低。当光线穿过这些密度较低的空气层时,会发生折射现象,导致出现光的折射现象,进而形成地平线以上的奇特景象,如光晕和蜃景。3. 水中的游泳池:当我们在游泳池里观察到物体的位置时,我们会发现物体看起来比实际位置要浅。这是因为光线从水中进入空气时发生折射,使得物体的视觉位置产生了偏移。4. 玻璃或水晶的折射:当光线射入玻璃或水晶等透明介质时,也会发生折射现象。这是制造透镜和光纤等光学器件的基础。5. 太阳光穿过大气层的折射:当太阳光射入大气层时,由于大气层中的空气密度变化,光线会发生折射。这导致我们看到日出和日落的时候太阳的位置似乎偏离了实际位置。这些是光的折射现象的一些例子,折射现象在日常生活和科学研究中都有重要的应用。
2023-08-15 00:48:361

光的折射原理

光的折射原理:光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折。光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光线则进入到另一种介质中。在折射现象中,光路是可逆的。 光的折射规律 1、折射光线和入射光线分居法线两侧(法线居中,与界面垂直) 2、折射光线、入射光线、法线在同一平面内。(三线两点一面) 3、折射角的正弦与入射角的正弦之比为常数(折射定律)。 当光线从空气斜射入其它介质时,折射角小于入射角。 4、当光线从其他介质斜射入空气时,折射角大于入射角。(以上两条总结为:谁快谁大。即为光线在哪种物质中传播的速度快,那么不管那是折射角还是入射角都是较大的角,在真空中的角度总是最大的) 5、在相同的条件下,折射角随入射角的增大(减小)而增大(减小) 6、折射光线与法线的夹角,叫折射角。 7、光从空气斜射入水中或其他介质时(真空除外,因为在真空中光不能发生偏折),折射光线向法线方向偏折,折射角小于入射角。 8、光从空气垂直射入水中或其他介质时,传播方向不变。
2023-08-15 00:49:041

光折射的原理

光折射的原理如下:光的折射原理:光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折。1、折射光线位于入射光线和界面法线所决定的平面内。2、折射线和入射线分别在法线的两侧。3、入射角i的正弦和折射角i′的正弦的比值,对折射率一定的两种媒质来说是一个常数。浅显的说,就是光从光速大的介质进入光速小的介质中时,折射角小于入射角;从光速小的介质进入光速大的介质中时,折射角大于入射角。此定律是几何光学的基本实验定律。它适用于均匀的各向同性的媒质。用来控制光路和用来成像的各种光学仪器,其光路结构原理主要是根据光的折射和反射定律。此定律也可根据光的波动概念导出,所以它也可应用于无线电波和声波等的折射现象。上述光的折射定律只适用于由各向同性介质构成的静止界面。光的折射规律1、折射光线和入射光线分居法线两侧(法线居中,与界面垂直)2、折射光线、入射光线、法线在同一平面内。(三线两点一面)3、折射角的正弦与入射角的正弦之比为常数(折射定律)。当光线从空气斜射入其它介质时,折射角小于入射角。4、当光线从其他介质斜射入空气时,折射角大于入射角。(以上两条总结为:谁快谁大。即为光线在哪种物质中传播的速度快,那么不管那是折射角还是入射角都是较大的"角,在真空中的角度总是最大的)5、在相同的条件下,折射角随入射角的增大(减小)而增大(减小)6、折射光线与法线的夹角,叫折射角。7、光从空气斜射入水中或其他介质时(真空除外,因为在真空中光不能发生偏折),折射光线向法线方向偏折,折射角小于入射角。8、光从空气垂直射入水中或其他介质时,传播方向不变。
2023-08-15 00:49:131

光的折射原理

光的折射原理:光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折。1、折射光线位于入射光线和界面法线所决定的平面内。2、折射线和入射线分别在法线的两侧。3、入射角i的正弦和折射角i′的正弦的比值,对折射率一定的两种媒质来说是一个常数。浅显的说,就是光从光速大的介质进入光速小的介质中时,折射角小于入射角;从光速小的介质进入光速大的介质中时,折射角大于入射角。适用范围此定律是几何光学的基本实验定律。它适用于均匀的各向同性的媒质。用来控制光路和用来成像的各种光学仪器,其光路结构原理主要是根据光的折射和反射定律。此定律也可根据光的波动概念导出,所以它也可应用于无线电波和声波等的折射现象。上述光的折射定律只适用于由各向同性介质构成的静止界面。
2023-08-15 00:49:371

光的折射原理

光的折射原理 物理学中说明,由于光速在不同介质中的速度不同,才有光走过不同的路线,才有光在介面上发生折射的现象,这是完全正确的。我们先说第一个问题,(1)、光在不同介质中速度不同;(2)、论述光的折射原理。 1、为什么光在不同的介质中光速不同 由于光子是物质的基本粒子,所有粒子只有不断与环境相互作用光子,才能体现自己的质量,自己的存在才能有意义,而光线是光子集体、运动的结果,说到运动一定要说速度,我们知道光在真空中的速度是C,是最大的,在其它介质中速度都比在真空中的速度要小,特别是在真空中,光子的运动不需要介质,是依靠自身传播,这是光波区别机械波的本质原因,事实上。从光子是物质的基本粒子来看,光子也是其它光子信息吸收光子,发出光子的结果,就是说在真空中没有分子、原子的存在,一定有光子的组合,这个组合有意义,可以吸收光子,发出光子,这些光子组合是光子存在、运动的介质。 说到光速,一定要说到时间,速度是路程与时间的比值,在真空中,存在光子组合吸收光子,再发出光子的结果,在真空中,光子集合---光的速度是C,单个光子的运动速度,就会大于C,因为吸收光子、发出光子需要时间,会使光速度减慢,这里分析说明一定存在的光子单个的速度,它要一定大于光子群的速度C,但是单个光子超光速没有意义,因为一个光子不表达任何信息,只有光子组合才能表达信息。 当光子进入到真空以外的其它介质中的时候,由于存在分子、原子、电子等实物粒子,这些粒子在单位时间内吸收光子、发出光子的次数增加了,是相对真空中单位时间吸收、发出光子的次数增加了,才使光子在单位时间内,向前运动的路程减少,速度减慢,换一句话说,光子进入到介质中,单位时间内,与介质粒子作用的次数越多,光速越慢。 通过这个分析可知,不同的介质对不同的频率的光子的速度不同,通常情况下,频率越高,波长越短,光子在相同的路程内与介质中的粒子作用光子次数越多,光速越慢,在可见光范围内,红光在介质中的光速,在通常情况下,比紫色光的光速要大。但是如果这种介质只发出红光,也就是单位时间内与红光频率相对应的光子作用的机会要多,会出现相反的例子,在这种介质中,红光的光速会比其它频率的光速度要慢。同样如果介质的粒子分布不是均匀的,就是会存在光速的方向性,也就是在某一个方向上速度要大一些,在另一个方向上速度要小一些,这些都是单位时间内与介质作用光子次数不同的结果。 2、光的折射原理 高中物理,已经学习了光的折射定律,说明人们对光的折射现象研究的很清楚了,为什么还要再谈光的折射原理,这是因为高中的光的折射原理是通过光的波动性研究的,得出结论是光的入射角的正弦与光的折射角的正弦之比,等于光在两种介质中的光速之比,,本篇内容是从光的粒子性研究光的折射原理,说明光子的吸收与发出遵守粒子的几率布,光的运动路线,也就是光子吸收、发出的最大几率的地方,当然物理学中也认可光是几率波。 由于光的运动路线是光子被吸收,发出的最大几率的地方,那么光线的方向,就会向着吸收、发出光的可能性多的前进,也就是那个方向吸收这种光子的可能性大,就向这个方向偏折,我们假设光子在真空中,单位时间内被吸收、发出了N次,而在介质中,在相同的时间内被吸收、发出了M次,光子本身的速度不变,并且比光速C要大,由于被吸收发出,运动路程减少,速度减小,那么,则,当光线以角入射到界面上的时候,由于光子的法线方向吸收光子、发出光子的可能性大,光线应该向着法线方向偏折。 在介质均匀分布的区域内,光子被吸收、发出的可能性是一样的,光线是直线传播,但是界面上不同,光子在真空中,与介质中被吸收、发出的可能性不同,也就是在光子组合数分布不同的地方,光子集合的运动路线会向着吸收、发出光子的可能性大的地方运动。也就是在光子信息分布不均匀的地方,光线会发生弯曲。通常在界面的一个波长内,在几千个分子距离内,发生弯曲,进入介质以后,光子就认为是均匀介质了,这样分析是说明,发生光的折射,在界面上画成折线,只是一种近似,如是严格地要求画出光的折射光路,在折射的界面上应该画成圆弧线。
2023-08-15 00:49:532

光线折射原理 光线折射的原理你知道吗?

1、光线折射原理:光的折射原理是通过光的波动性研究的,得出结论是光的入射角的正弦与光的折射角的正弦之比,等于光在两种介质中的光速之比。从光的粒子性研究光的折射原理,说明光子的吸收与发出遵守粒子的几率布,光的运动路线,也就是光子吸收、发出的最大几率的地方,当然物理学中也认可光是几率波。 由于光的运动路线是光子被吸收,发出的最大几率的地方,那么光线的方向,就会向着吸收、发出光的可能性多的前进,也就是那个方向吸收这种光子的可能性大,就向这个方向偏折,假设光子在真空中,单位时间内被吸收、发出了N次,而在介质中,在相同的时间内被吸收、发出了M次,光子本身的速度不变,并且比光速C要大,由于被吸收发出,运动路程减少,速度减小,那么,当光线以角入射到界面上的时候,由于光子的法线方向吸收光子、发出光子的可能性大,光线应该向着法线方向偏折。 在介质均匀分布的区域内,光子被吸收、发出的可能性是一样的,光线是直线传播,但是界面上不同,光子在真空中,与介质中被吸收、发出的可能性不同,也就是在光子组合数分布不同的地方,光子集合的运动路线会向着吸收、发出光子的可能性大的地方运动。也就是在光子信息分布不均匀的地方,光线会发生弯曲。 通常在界面的一个波长内,在几千个分子距离内,发生弯曲,进入介质以后,光子就认为是均匀介质了,这样分析是说明,发生光的折射,在界面上画成折线,只是一种近似,如是严格地要求画出光的折射光路,在折射的界面上应该画成圆弧线。 2、光的折射:光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折。
2023-08-15 00:50:111

光线折射原理 光线折射的原理你知道吗?

1、光线折射原理:光的折射原理是通过光的波动性研究的,得出结论是光的入射角的正弦与光的折射角的正弦之比,等于光在两种介质中的光速之比。从光的粒子性研究光的折射原理,说明光子的吸收与发出遵守粒子的几率布,光的运动路线,也就是光子吸收、发出的最大几率的地方,当然物理学中也认可光是几率波。 由于光的运动路线是光子被吸收,发出的最大几率的地方,那么光线的方向,就会向着吸收、发出光的可能性多的前进,也就是那个方向吸收这种光子的可能性大,就向这个方向偏折,假设光子在真空中,单位时间内被吸收、发出了N次,而在介质中,在相同的时间内被吸收、发出了M次,光子本身的速度不变,并且比光速C要大,由于被吸收发出,运动路程减少,速度减小,那么,当光线以角入射到界面上的时候,由于光子的法线方向吸收光子、发出光子的可能性大,光线应该向着法线方向偏折。 在介质均匀分布的区域内,光子被吸收、发出的可能性是一样的,光线是直线传播,但是界面上不同,光子在真空中,与介质中被吸收、发出的可能性不同,也就是在光子组合数分布不同的地方,光子集合的运动路线会向着吸收、发出光子的可能性大的地方运动。也就是在光子信息分布不均匀的地方,光线会发生弯曲。 通常在界面的一个波长内,在几千个分子距离内,发生弯曲,进入介质以后,光子就认为是均匀介质了,这样分析是说明,发生光的折射,在界面上画成折线,只是一种近似,如是严格地要求画出光的折射光路,在折射的界面上应该画成圆弧线。 2、光的折射:光从一种介质斜射入另一种介质时,传播方向发生改变,从而使光线在不同介质的交界处发生偏折。
2023-08-15 00:50:181

光的折射原理

光的折射是指光从一种介质斜射入另一种介质时传播方向发生改变,从而使光线在不同介质的交界处发生偏折(光在空气中偏折角度最大)。 特性:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光线则进入到另一种介质中。由于光在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。在折射现象中,光路是可逆的。 注意:在两种介质的分界处(不过有时没有),不仅会发生折射,也发生反射,例如在水中,部分光线会反射回去,部分光线会进入水中。反射光线光速与入射光线相同 ,折射光线光速与入射光线不相同。折射原理是由于光在同种均匀介质中的传播路径是直线,但光从一种介质斜射入另一种介质时,它的传播路径会发生偏折;2、光的折射定律是,折射光线与入射光线在同一平面内,折射光线与入射光线分居法线两侧,折射角随入射角的增大而增大,随入射角的减小而减小。
2023-08-15 00:50:281

请问光的折射原理是什么?

当光从一种介质斜射入另一种介质时一般会发生偏折,这种现象叫做光的折射. 定理: 1.折射光线,入射光线,法线在同一平面内! 2.折射光线入射光线分居法线两侧 3.当光从空气斜射入其他介质时入射角大于折射角,当从其他介质斜射入空气中时,折射角大于入射角 .简称:空大 4.当入射角为0度时,折射角也为0度.(折射光线,法线和入射光线在同一条直线上) 5.光从空气中斜射入水中或者其他介质中,折射光线向法线偏离. 6.在折射现象中,光路是可逆的.
2023-08-15 00:51:041

光的折射原理

1.折射光线,入射光线,法线在同一平面内!2.折射光线入射光线分居法线两侧3.当光从空气斜射入其他介质时入射角大于折射角,当从其他介质斜射入空气中时,折射角大于入射角。我们今天刚上完,这是我们老师总结的,另外,对于第3点,老师说——空气中的角永远大于其他介质中的角。希望能够帮助到你
2023-08-15 00:51:273

光的折射原理是什么?(详细点)

折射定律定义refraction,law of光线通过两介质的界面折射时,确定入射光线与折射光线传播方向间关系的定律,几何光学基本定律之一。入射光线与通过入射点的界面法线所构成的平面称为入射面,入射光线和折射光线与法线的夹角分别称为入射角和折射角,以θi和θt表示。折射定律为:①折射光线在入射面内。②入射角和折射角的正弦之比为一常数,用n21表示,即 式中n21称为第二介质对第一介质的相对折射率。 此定律是几何光学的基本实验定律。它适用于均匀的各向同性的媒质。用来控制光路和用来成象的各种光学仪器,其光路结构原理主要是根据光的折射和反射定律。此定律也可根据光的波动概念导出,所以它也可应用于无线电波和声波等的折射现象。下面我就来说说光为什么这样传播: 一束光线由空气中A点经过水面折射后到达水中B点,已知光在空气和水中传播的速度分别是v1和v2, 折射图光线在介质中总是沿着耗时最少的路径传播。试确定光线传播的路径。 设A点到达水面的垂直距离为AO=h1,B点到水面的垂直距离为BQ=h2,x轴沿水面过点O、Q,其中OQ的长度为l 由于光线总是沿着耗时最少的路径传播,因此光线在同一介质内必沿着直线传播。设光线的传播路径与x轴的交点为P, OP=x,则光线从A到B的传播路径必为折线APB,其所需要的传播时间为: T(x)=sqrt(h1^2+x^2)/v1 + sqrt[h2^2+(l-x)^2] /v2 , x∈[0,l]. 下面来确定x满足什么条件时,T(x)在[0,l]上取得最小值。 由于 T‘(x)=1/v1 * x/sqrt(h1^2+x^2) - 1/v2 * (l-x)/sqrt(h2^2+(l-x)^2), x∈[0,l] 注释:T"(x)为T(x)的一阶导数 T""(x)=1/v1 * h1^2/sqrt[(h1^2+x^2)^3] + 1/v2 * h2^2/sqrt[(h2^2+(l-x)^2)^3] > 0 , x∈[0,l] T""(x)为T(x)的二阶导数 T"(0)<0,T"(l)>0, 又T"(x)在[0,l]上连续,故T"(x)在(0,l)内存在唯一零点x0是T(x)在(0,l)内的唯一极小值点,从而也是T(x)在[0,l]上的最小值点。 设x0满足T"(x)=0,即 x0 / v1*sqrt(h1^2+x0^2) = (l-x) / v2*sqrt(h2^2+(l-x0)^2) 记 x0 / sqrt(h1^2+x0^2) =sinθ1 , (l-x0) /sqrt[h2^2+(l-x0)^2] =sinθ2 就得到 sinθ1/v1 =sinθ2/v2 这就是说,当P点满足以上条件时,APB就是光线的传播路径。上式就是光学中著名的折射定律,其中θ1,θ2分别是光线的入射角和折射角。
2023-08-15 00:51:384

光的折射有什么规律吗

由折射定律可得n1/n2=sinβ/sinα
2023-08-15 00:51:595

光的折射定律的内容是什么

折射定律由荷兰数学家斯涅尔发现,是在光的折射现象中,确定折射光线方向的定律。 (1)折射光线位于入射光线和界面法线所决定的平面内; (2)折射线和入射线分别在法线的两侧; (3)入射角i的正弦和折射角i′的正弦的比值,对折射率一定的两种媒质来说是一个常数。 光从光速大的介质进入光速小的介质中时,折射角小于入射角;从光速小的介质进入光速大的介质中时,折射角大于入射角。折射定律由荷兰数学家斯涅尔发现,是在光的折射现象中,确定折射光线方向的定律。当光由第一媒质(折射率为n1)射入第二媒质(折射率n2)时,在平滑界面上,部分光由第一媒质进入第二媒质后即发生折射。实验指出:(1)折射光线位于入射光线和界面法线所决定的平面内;(2)折射线和入射线分别在法线的两侧;(3)入射角i的正弦和折射角i′的正弦的比值,对折射率一定的两种媒质来说是一个常数。浅显的说,就是光从光速大的介质进入光速小的介质中时,折射角小于入射角;从光速小的介质进入光速大的介质中时,折射角大于入射角。费马原理又称为“最短时间原理”[1]:光线传播的路径是需时最少的路径。费马原理更正确的版本应是“平稳时间原理”。对于某些状况,光线传播的路径所需的时间可能不是最小值,而是最大值,或甚至是拐值。例如,对于平面镜,任意两点的反射路径光程是最小值;对于半椭圆形镜子,其两个焦点的光线反射路径不是唯一的,光程都一样,是最大值,也是最小值;对于半圆形镜子,其两个端点Q、P的反射路径光程是最大值;又如最右图所示,对于由四分之一圆形镜与平面镜组合而成的镜子,同样这两个点Q、P的反射路径的光程是拐值。
2023-08-15 00:52:281

折射原理

关于折射原理如下:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光则进入到另一种介质中,由于光在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生变化,这种现象叫光的折射。理解:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光则进入到另一种介质中,由于光在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。注意:在两种介质的交界处,既发生折射,同时也发生反射。反射光光速与入射光相同 ,折射光光速与入射光不同。光从一种透明介质(如空气)斜射入另一种透明介质(如水)时,传播方向一般会发生变化,这种现象叫光的折射。又名屈折,是一个光学名词,指光从一种介质进入另一种介质,或者在同一种介质中折射率不同的部分运行时,由于波速的差异,使光的运行方向改变的现象。例如当一条木棒插在水里面时,单用肉眼看会以为木棒进入水中时折曲了,这是光进入水里面时,产生折射,才带来这种效果。
2023-08-15 00:52:361

光的折射原理是什么

一、 光的折射光的折射定律是高中物理教学中的内容。光从一种介质中进入到另一种介质中,改变原来的传播方向,这种现象是光的折射现象,它们之间的规律称为光的折射定律:入射光线、法线、折射光线在同一个平面,入射光线、折射光线分居在法线的两侧,入射角的正弦跟折射角的正弦之比是一个常量。如果再问一个问题,光线为什么会折射,很多老师回答不好,好一点的老师会这样回答你,由于光在两种介质中的速度不一样,光会找一条最好的路径,达到目的,所需要的时间最短,使自己的寿命最长,由于这样原因才有折射的。如果再问:为什么画成直线,在入射界面上真的是突然改变的吗,有没有可能是一个弧线?为什么从光速大的介质中,进入光速小的介质中,一定是入射角大于折射角,而不是反过来,能回答的人不多了。二、光子与光线说到光子,知道的人很多,这是爱因斯坦提出来,很好地解释了光电效应,从而获得了物理界的最高奖------诺贝尔奖。在本篇文章的光子,是全频率的光子,非可见光有非可见光的光子,而光子的运动集合构成了光线,也就是人们通常所说的光,光的入射、反射、折射都是大量光子运动的集体表现。光子一词中有一个“子”,说明体现了粒子性,在爱因斯坦的思想中,光子没有静止质量,但是有运动质量,由于人们找到一个基本粒子后,又会有另一个质量比原来更小的粒子存在,于是,用没有静止质量的光子充当物质的基本粒子,但是存在一个问题,光子本身没有静止质量,由光子构成的物质本身也没有静止质量,而事实却不是这样,自然界的物质都是有静止质量,改变理念,物质的静止质量并不是物质本身固有的,而是物质不断与环境相互作用光子体现的质量。由于这个原因,所有物质只要存在,就要不断与环境相互作用光子,物质停止与环境作用光子,物质将会进入到另一个时空,从这个角度来分析,质量都是物质与环境作用光子体现的,光子是不断被吸收与发射的结果。物质环境中有的地方存在光子的可能性大,有的地方存在光子的可能性小,才出现光的波动性这一说,才有人们所说的光子波粒二像性。由于光、光线是光子群体运动的结果,哪么,入射光、反射光、折射光都是光子,发射、吸收的最大可能性。由于在均匀介质中,物质发射光子的可能性是处处相等的,才有光是直线传播的特性。同样,在非均匀介质中,由于吸收、发出光子的可能性不相同,光子在非均匀介质中,光线发生弯曲的结果。三、光的折射原理物理学中说明,由于光速在不同介质中的速度不同,才有光走过不同的路线,才有光在介面上发生折射的现象,这是完全正确的。我们先说第一个问题,(1)、光在不同介质中速度不同;(2)、论述光的折射原理。1、为什么光在不同的介质中光速不同 由于光子是物质的基本粒子,所有粒子只有不断与环境相互作用光子,才能体现自己的质量,自己的存在才能有意义,而光线是光子集体、运动的结果,说到运动一定要说速度,我们知道光在真空中的速度是C,是最大的,在其它介质中速度都比在真空中的速度要小,特别是在真空中,光子的运动不需要介质,是依靠自身传播,这是光波区别机械波的本质原因,事实上。从光子是物质的基本粒子来看,光子也是其它光子信息吸收光子,发出光子的结果,就是说在真空中没有分子、原子的存在,一定有光子的组合,这个组合有意义,可以吸收光子,发出光子,这些光子组合是光子存在、运动的介质。说到光速,一定要说到时间,速度是路程与时间的比值,在真空中,存在光子组合吸收光子,再发出光子的结果,在真空中,光子集合------光的速度是C,单个光子的运动速度,就会大于C,因为吸收光子、发出光子需要时间,会使光速度减慢,这里分析说明一定存在的光子单个的速度,它要一定大于光子群的速度C,但是单个光子超光速没有意义,因为一个光子不表达任何信息,只有光子组合才能表达信息。当光子进入到真空以外的其它介质中的时候,由于存在分子、原子、电子等实物粒子,这些粒子在单位时间内吸收光子、发出光子的次数增加了,是相对真空中单位时间吸收、发出光子的次数增加了,才使光子在单位时间内,向前运动的路程减少,速度减慢,换一句话说,光子进入到介质中,单位时间内,与介质粒子作用的次数越多,光速越慢。通过这个分析可知,不同的介质对不同的频率的光子的速度不同,通常情况下,频率越高,波长越短,光子在相同的路程内与介质中的粒子作用光子次数越多,光速越慢,在可见光范围内,红光在介质中的光速,在通常情况下,比紫色光的光速要大。但是如果这种介质只发出红光,也就是单位时间内与红光频率相对应的光子作用的机会要多,会出现相反的例子,在这种介质中,红光的光速会比其它频率的光速度要慢。同样如果介质的粒子分布不是均匀的,就是会存在光速的方向性,也就是在某一个方向上速度要大一些,在另一个方向上速度要小一些,这些都是单位时间内与介质作用光子次数不同的结果。2、光的折射原理 有人会说高中物理中,已经学习了光的折射定律了,说明人们对光的折射现象研究的很清楚了,为什么还要再谈光的折射原理,这是因为高中的光的折射原理是通过光的波动性研究的,得出结论是光的入射角的正弦与光的折射角的正弦之比,等于光在两种介质中的光速之比, ,本篇内容是从光的粒子性研究光的折射原理,说明光子的吸收与发出遵守粒子的几率,光的运动路线,也就是光子吸收、发出的最大几率的地方。由于光的运动路线是光子被吸收,发出的最大几率的地方,那么光线的方向,就会向着吸收、发出光的可能性多的前进,也就是那个方向吸收这种光子的可能性大,就向这个方向偏折,我们假设光子在真空中,单位时间内被吸收、发出了N次,而在介质中,在相同的时间内被吸收、发出了M次,光子本身的速度不变,并且比光速C要大,由于被吸收发出,运动路程减少,速度减小,那么,则 ,当光线以 角入射到界面上的时候,由于光子的法线方向吸收光子、发出光子的可能性大,光线应该向着法线方向偏折。在介质均匀分布的区域内,光子被吸收、发出的可能性是一样的,光线是直线传播,但是界面上不同,光子在真空中,与介质中被吸收、发出的可能性不同,也就是在光子组合数分布不同的地方,光子集合的运动路线会向着吸收、发出光子的可能性大的地方运动。也就是在光子信息分布不均匀的地方,光线会发生弯曲。通常在界面的一个波长内,在几千个分子距离内,发生弯曲,进入介质以后,光子就认为是均匀介质了,这样分析是说明,发生光的折射,在界面上画成折线,只是一种近似,如是严格地要求画出光的折射光路,在折射的界面上应该画成圆弧线。
2023-08-15 00:52:591

光的折射的成因

光波的折射原因光,也是一种波,光波折射的原因可以用著名的唯象理论惠更斯原理解释。传播介质的改变是导致波发生折射的重要原因(具体原因详见词条最后“光波折射的机理”)。如右图,一列平行光波由介质1射向介质2,a,b是这列光波的两条波线(光线),由于未经过介质2前,a,b两波线波速、频率等完全一样,由于与临界面成一定角度,所以当波线a到达临界面上的A点时,波线b刚刚传到B点(图中虚线AB⊥波线b)。当然波线a传到临界面后不会停止传播,它会在A点形成一个子波源,分别向介质1和介质2以圆周式向四周发射波,其波速不变,依然和之前的波线a与波线b的波速等相等,只是以圆周形式向四周发射波。我们假设光波在介质1中的传播速度大于在介质2中的传播速度。若波线b由B点传播到临界面上的B"点所用时间为t,则在t时间内,由于同位于介质1,波速不变,子波源A向介质1中传播的波前与A的距离(即在介质1中的半圆A的半径)就是波线b由B点传到B"的距离(即BB"的长度),形成波的反射。而子波源A向介质2中传播的波前与A的距离(即在介质2中的半圆A的半径)却小于BB" ,因为波在介质2中的传播速度小于在介质1中的传播速度,相同时间t 内,速度v>v‘,所以路程S>S",形成波的折射。波线b到达临界面上的B"后,也将会以子波源的形式向四周发射波,所以B"传播的波前可以看作就是B"这个点。根据惠更斯原理,连接B"的波前(即点B")与A在介质1和介质2中传播的波前(即过B"分别作两个半圆的切线B"M和B"N,切点分别为M,N,图中所示绿色直线)则切线B"M和B"N就是波前的包络面(即折射和反射后所形成的新的波前),所形成两条的新的波线总是垂直于包络面,即AM⊥B"M,AN⊥B"N。则射线AN就是光线a的折射光线,射线AM就是光线a的反射光线。证明:入射角∠4>折射角∠3,即证明AN就是折射光线解:利用平面几何证明即可。在光的反射中已经证明∠BAB"=∠MB"A(由于AM=BB",所以Rt△BAB"=Rt△MB"A,HL),且∠4=∠BAB"。根据大边对大角,AM>AN,且AB"=AB",所以∠AB"N<∠MB"A,所以∠4=∠MB"A>∠3=∠AB"N。即入射角∠4>折射角∠3,AN就是折射光线,AM就是反射光线AM。证明:入射角的正弦值与折射角的正弦值的比等于光在两种介质中的速度比:sin∠4/sin∠3=v/v‘再看右图,入射角∠4=∠MB"A,∠3=∠AB"N。所以sin∠MB"A=AM/AB",sin∠AB"N=AN/AM,所以sin∠MB"A:sin∠AB"N=sin∠4/sin∠3=AM/AN=vt/(v‘t)=v/v"即sin∠4/sin∠3=v/v"因为同一种波进入不同介质,频率f不变,故根据v=λf,有v/v‘=λf/(λ"f)=λ/λ‘光折射的新理论光和物质间的相互作用力使光的运动方向发生改变即折射。近代物理学指出,我们平时所说的光是一种没有静质量、体积非常小、运动速度比较高的物质。光和其它物质有相同的性质。1. 光在宏观领域的折射:在宇宙中,光经过天体附近区域时,光和天体间的相互引力作用使光运动路线向天体方向较显著弯曲(折射)。2.光在微观领域的折射:如图一所示:该图是光折射实况缩小了约10倍图,光在介质内外各有一秒钟的行程,绿色长方体示绝对折射率n=1.5的透明介质,黑线L示法线,红线示光由A点以90度入射角射至点O,经O点折射至B,蓝线示光的余速度V余,黄线Vs示光在介质中平行于界面的速度,Vh示光垂直于界面的速度。光在O点附近和介质间有两种较明显的相互作用力效应。2.1.其中一种相互作用力是“动斥力”作用:无论光以何种角度射入介质都会和介质发生同样大小的“动斥力”相互作用(都须要做同样大小的入射功),光射入介质后速度都要降低。由图看出光进入介质后平行于界面的速度仅剩下V余=c/n。光进入介质与磁体进入闭合的电磁线圈的过程相似,它们都要和对方发生“动斥力”相互作用,都要做入射功,都要降低入射速度。2.2.光在O点和介质的另一种相互作用力是光和界面间的相互引力:如图二所示:该图是约放大10倍的示意图,OC线距离界面设为h=10m。光原来没有垂直于界面的运动速度,光在介质中垂直于界面的速度Vh是由它们间的相互引力作用产生的。3. 用“光和物质间相互作用力理论”计算光折射的方法比用“光折射定律”计算更快捷。以图三为例,图三是光折射实况缩小约10倍示意图,光在介质内外各有一秒钟的射程,设:光以入射角a=60°射入折射率n=1.5的介质,求光在介质中平行于界面和垂直于界面的速度各是多少?3.1设光在介质中平行于界面的速度为Vs,无须求折射角即可直接求出该值,因为Vs= V余sina=csina/n=sin601.333×10m/sVs =1.155×10m/s。3.2设光在介质中垂直于界面的速度为Vh:Vh=(V- Vs)=1.633×10m/s4. “用光和物质间相互作用力理论”计算光在介质中垂直于界面速度的另一种求法更精确:如图四所示,4.1.求V余垂直于界面的分矢量Vh1Vh1=V余cosa =0.66667×10m/s4.2.求引力作用产生的速度Vh2由引力公式得出光和介质间的平均引力加速度A,A=c(n-1)/2hn=1.111×10m/s由作用距离得平均引力加速度作用的时间T,设H=10mH= Vh1T+AT∫dT解得T=0.8696938455×10sVh2=AT=0.966326495×10m/s4.3.最后求出光垂直于界面的总速度Vh= Vh1+ Vh2=1.63299316167×10m/s通过以上运算我们看到:用“光和物质间相互作用力理论”,计算光折射的数据比用“光的折射定律”计算的更准确。不论在宏观领域观测或是在微观领域观察;不论是在光现象中或是理论计算,均可看出光和物质间的相互作用力是光折射的主要因素。然而,“光和物质间相互作用力理论”的提出要归功于近代物理学广义相对论的深入研究。
2023-08-15 00:53:101

光的折射原理是什么原理

由于光在在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射光波的折射原因光,也是一种波,光波折射的原因可以用惠更斯原理解释。光的折射原理传播介质的改变是导致波发生折射的重要原因。如右图,一列平行光波由介质1射向介质2,a,b是这列光波的三条波线(光线),由于未经过介质2前,a,b两波线波速、频率等完全一样,由于与临界面成一定角度,所以当波线a到达临界面上的A点时,波线b刚刚传到B点(图中虚线AB⊥波线b)。当然波线a传到临界面后不会停止传播,它会在A点形成一个子波源,分别向介质1和介质2以圆周式向四周发射波,其波速不变,依然和之前的波线a与波线b的波速等相等,只是以圆周形式向四周发射波。我们假设光波在介质1中的传播速度大于在介质2中的传播速度。若波线b由B点传播到临界面上的B"点所用时间为t,则在t时间内,由于同位于介质1,波速不变,子波源A向介质1中传播的波前与A的距离(即在介质1中的半圆A的半径)就是波线b由B点传到B"的距离(即BB"的长度),形成波的反射。而子波源A向介质2中传播的波前与A的距离(即在介质2中的半圆A的半径)却小于BB" ,因为波在介质2中的传播速度小于在介质1中的传播速度,相同时间t 内,速度v1>v2,所以路程S1>S2,形成波的折射。波线b到达临界面上的B"后,也将会以子波源的形式向四周发射波,所以B"传播的波前可以看作就是B"这个点。根据惠更斯原理,连接B"的波前(即点B")与A在介质1和介质2中传播的波前(即过B"分别作两个半圆的切线B"M和B"N,切点分别为M,N,图中所示绿色直线)则切线B"M和B"N就是波前的包络面(即折射和反射后所形成的新的波前),所形成两条的新的波线总是垂直于包络面,即AM⊥B"M,AN⊥B"N。则射线AN就是光线a的折射光线,射线AM就是光线a的反射光线。证明:入射角∠4>折射角∠3,即证明AN就是折射光线解:利用初中几何知识证明即可。在光的反射中已经证明∠BAB"=∠MB"A(由于AM=BB",所以直角△BAB"=直角△MB"A,HL),且∠4=∠BAB"。根据大边对大角,AM>AN,且AB"=AB",所以∠AB"N<∠MB"A,所以∠4=∠MB"A>∠3=∠AB"N。即入射角∠4>折射角∠3,AN就是折射光线,AM就是反射光线AM。证明:入射角的正弦值与折射角的正弦值的比等于光在两种介质中的速度比:sin∠4:sin∠3=v1:v2再看右图,入射角∠4=∠MB"A,∠3=∠AB"N。所以sin∠MB"A=AM:AB",sin∠AB"N=AN:AM,所以sin∠MB"A:sin∠AB"N=sin∠4:sin∠3=AM:AN=v1t:v2t=v1:v2即sin∠4:sin∠3=v1:v2因为同一种波进入不同介质,不变的是频率f,根据v=λf,所以v1:v2=λ1f:λ2f=λ1:λ2光折射的原理(光折射的新理论)光和物质间的相互作用力使光的运动方向发生改变即折射。我们平时所说的光是一种质量和体积非常小运动速度比较高的物质。光和其它物质有相同的性质。1. 光在宏观领域的折射:在宇宙中,光经过天体附近区域时,光和天体间的相互引力作用使光运动路线向天体方向较显著弯曲(折射)。2.光在微观领域的折射:如图一所示:该图是光折射实况缩小了约10倍图,光在介质内外各有一秒钟的行程,绿色长方体示绝对折射率n=1.5的透明介质,黑线L示法线,红线示光由A点以90度入射角射至点O,经O点折射至B,蓝线示光的余速度V余,黄线Vs示光在介质中平行于界面的速度,Vh示光垂直于界面的速度。光在O点附近和介质间有两种较明显的相互作用力效应。2.1.其中一种相互作用力是“动斥力”作用:无论光以何种角度射入介质都会和介质发生同样大小的“动斥力”相互作用(都须要做同样大小的入射功),光射入介质后速度都要降低。由图看出光进入介质后平行于界面的速度仅剩下V余=C/n。光进入介质与磁体进入闭合的电磁线圈的过程相似,它们都要和对方发生“动斥力”相互作用,都要做入射功,都要降低入射速度。2.2.光在O点和介质的另一种相互作用力是光和界面间的相互引力:如图二所示:该图是约放大10倍的示意图,OC线距离界面设为h=10米。光原来没有垂直于界面的运动速度,光在介质中垂直于界面的速度Vh是由它们间的相互引力作用产生的。3. 用“光和物质间相互作用力理论”计算光折射的方法比用“光折射定律”计算更快捷。以图三为例,图三是光折射实况缩小约10倍示意图,光在介质内外各有一秒钟的射程,设:光以入射角a=60射入折射率n=1.5的介质,求光在介质中平行于界面和垂直于界面的速度各是多少?3.1设光在介质中平行于界面的速度为Vs,无须求折射角即可直接求出该值,因为Vs=sina V余=sinaC/n=sin601.333X10米/秒Vs =1.155X10米/秒。3.2设光在介质中垂直于界面的速度为Vh:Vh=(V- Vs)=1.633X10米/秒4. “用光和物质间相互作用力理论”计算光在介质中垂直于界面速度的另一种求法更精确:如图四所示,4.1.求V余垂直于界面的分矢量Vh1Vh1=cosa V余=0.66667X10米/秒4.2.求引力作用产生的速度Vh2由引力公式得出光和介质间的平均引力加速度A,A=C(n-1)/2hn=1.111X10米/秒由作用距离得平均引力加速度作用的时间T,设H=10米H= Vh1T+AT∫dT解得T=0.8696938455X10秒Vh2=AT=0.966326495X10米/秒4.3.最后求出光垂直于界面的总速度VhVh= Vh1+ Vh2=1.63299316167X10米/秒通过以上运算我们看到:用“光和物质间相互作用力理论”,计算光折射的数据比用“光的折射定律”计算的更准确。不论在宏观领域观测或是在微观领域观察;不论是在光现象中或是理论计算,均可看出光和物质间的相互作用力是光折射的主要因素。
2023-08-15 00:53:251

光的折射原理?

光从一种介质中进入到另一种介质中,改变原来的传播方向,这种现象是光的折射现象,它们之间的规律称为光的折射定律:入射光线、法线、折射光线在同一个平面,入射光线、折射光线分居在法线的两侧,入射角的正弦跟折射角的正弦之比是一个常量。如果再问一个问题,光线为什么会折射,很多老师回答不好,好一点的老师会这样回答你,由于光在两种介质中的速度不一样,光会找一条最好的路径,达到目的,所需要的时间最短,使自己的寿命最长,由于这样原因才有折射的。如果再问:为什么画成直线,在入射界面上真的是突然改变的吗,有没有可能是一个弧线?为什么从光速大的介质中,进入光速小的介质中,一定是入射角大于折射角,而不是反过来,能回答的人不多了。二、光子与光线说到光子,知道的人很多,这是爱因斯坦提出来,很好地解释了光电效应,从而获得了物理界的最高奖------诺贝尔奖。在本篇文章的光子,是全频率的光子,非可见光有非可见光的光子,而光子的运动集合构成了光线,也就是人们通常所说的光,光的入射、反射、折射都是大量光子运动的集体表现。光子一词中有一个“子”,说明体现了粒子性,在爱因斯坦的思想中,光子没有静止质量,但是有运动质量,由于人们找到一个基本粒子后,又会有另一个质量比原来更小的粒子存在,于是,用没有静止质量的光子充当物质的基本粒子,但是存在一个问题,光子本身没有静止质量,由光子构成的物质本身也没有静止质量,而事实却不是这样,自然界的物质都是有静止质量,改变理念,物质的静止质量并不是物质本身固有的,而是物质不断与环境相互作用光子体现的质量。由于这个原因,所有物质只要存在,就要不断与环境相互作用光子,物质停止与环境作用光子,物质将会进入到另一个时空,从这个角度来分析,质量都是物质与环境作用光子体现的,光子是不断被吸收与发射的结果。物质环境中有的地方存在光子的可能性大,有的地方存在光子的可能性小,才出现光的波动性这一说,才有人们所说的光子波粒二像性。由于光、光线是光子群体运动的结果,哪么,入射光、反射光、折射光都是光子,发射、吸收的最大可能性。由于在均匀介质中,物质发射光子的可能性是处处相等的,才有光是直线传播的特性。同样,在非均匀介质中,由于吸收、发出光子的可能性不相同,光子在非均匀介质中,光线发生弯曲的结果。三、光的折射原理物理学中说明,由于光速在不同介质中的速度不同,才有光走过不同的路线,才有光在介面上发生折射的现象,这是完全正确的。我们先说第一个问题,(1)、光在不同介质中速度不同;(2)、论述光的折射原理。1、为什么光在不同的介质中光速不同 由于光子是物质的基本粒子,所有粒子只有不断与环境相互作用光子,才能体现自己的质量,自己的存在才能有意义,而光线是光子集体、运动的结果,说到运动一定要说速度,我们知道光在真空中的速度是C,是最大的,在其它介质中速度都比在真空中的速度要小,特别是在真空中,光子的运动不需要介质,是依靠自身传播,这是光波区别机械波的本质原因,事实上。从光子是物质的基本粒子来看,光子也是其它光子信息吸收光子,发出光子的结果,就是说在真空中没有分子、原子的存在,一定有光子的组合,这个组合有意义,可以吸收光子,发出光子,这些光子组合是光子存在、运动的介质。说到光速,一定要说到时间,速度是路程与时间的比值,在真空中,存在光子组合吸收光子,再发出光子的结果,在真空中,光子集合------光的速度是C,单个光子的运动速度,就会大于C,因为吸收光子、发出光子需要时间,会使光速度减慢,这里分析说明一定存在的光子单个的速度,它要一定大于光子群的速度C,但是单个光子超光速没有意义,因为一个光子不表达任何信息,只有光子组合才能表达信息。当光子进入到真空以外的其它介质中的时候,由于存在分子、原子、电子等实物粒子,这些粒子在单位时间内吸收光子、发出光子的次数增加了,是相对真空中单位时间吸收、发出光子的次数增加了,才使光子在单位时间内,向前运动的路程减少,速度减慢,换一句话说,光子进入到介质中,单位时间内,与介质粒子作用的次数越多,光速越慢。
2023-08-15 00:53:482

光的折射原理

光的折射原理 物理学中说明,由于光速在不同介质中的速度不同,才有光走过不同的路线,才有光在介面上发生折射的现象,这是完全正确的。我们先说第一个问题,(1)、光在不同介质中速度不同;(2)、论述光的折射原理。 1、为什么光在不同的介质中光速不同 由于光子是物质的基本粒子,所有粒子只有不断与环境相互作用光子,才能体现自己的质量,自己的存在才能有意义,而光线是光子集体、运动的结果,说到运动一定要说速度,我们知道光在真空中的速度是C,是最大的,在其它介质中速度都比在真空中的速度要小,特别是在真空中,光子的运动不需要介质,是依靠自身传播,这是光波区别机械波的本质原因,事实上。从光子是物质的基本粒子来看,光子也是其它光子信息吸收光子,发出光子的结果,就是说在真空中没有分子、原子的存在,一定有光子的组合,这个组合有意义,可以吸收光子,发出光子,这些光子组合是光子存在、运动的介质。 说到光速,一定要说到时间,速度是路程与时间的比值,在真空中,存在光子组合吸收光子,再发出光子的结果,在真空中,光子集合---光的速度是C,单个光子的运动速度,就会大于C,因为吸收光子、发出光子需要时间,会使光速度减慢,这里分析说明一定存在的光子单个的速度,它要一定大于光子群的速度C,但是单个光子超光速没有意义,因为一个光子不表达任何信息,只有光子组合才能表达信息。 当光子进入到真空以外的其它介质中的时候,由于存在分子、原子、电子等实物粒子,这些粒子在单位时间内吸收光子、发出光子的次数增加了,是相对真空中单位时间吸收、发出光子的次数增加了,才使光子在单位时间内,向前运动的路程减少,速度减慢,换一句话说,光子进入到介质中,单位时间内,与介质粒子作用的次数越多,光速越慢。 通过这个分析可知,不同的介质对不同的频率的光子的速度不同,通常情况下,频率越高,波长越短,光子在相同的路程内与介质中的粒子作用光子次数越多,光速越慢,在可见光范围内,红光在介质中的光速,在通常情况下,比紫色光的光速要大。但是如果这种介质只发出红光,也就是单位时间内与红光频率相对应的光子作用的机会要多,会出现相反的例子,在这种介质中,红光的光速会比其它频率的光速度要慢。同样如果介质的粒子分布不是均匀的,就是会存在光速的方向性,也就是在某一个方向上速度要大一些,在另一个方向上速度要小一些,这些都是单位时间内与介质作用光子次数不同的结果。 2、光的折射原理 高中物理,已经学习了光的折射定律,说明人们对光的折射现象研究的很清楚了,为什么还要再谈光的折射原理,这是因为高中的光的折射原理是通过光的波动性研究的,得出结论是光的入射角的正弦与光的折射角的正弦之比,等于光在两种介质中的光速之比,,本篇内容是从光的粒子性研究光的折射原理,说明光子的吸收与发出遵守粒子的几率布,光的运动路线,也就是光子吸收、发出的最大几率的地方,当然物理学中也认可光是几率波。 由于光的运动路线是光子被吸收,发出的最大几率的地方,那么光线的方向,就会向着吸收、发出光的可能性多的前进,也就是那个方向吸收这种光子的可能性大,就向这个方向偏折,我们假设光子在真空中,单位时间内被吸收、发出了N次,而在介质中,在相同的时间内被吸收、发出了M次,光子本身的速度不变,并且比光速C要大,由于被吸收发出,运动路程减少,速度减小,那么,则,当光线以角入射到界面上的时候,由于光子的法线方向吸收光子、发出光子的可能性大,光线应该向着法线方向偏折。 在介质均匀分布的区域内,光子被吸收、发出的可能性是一样的,光线是直线传播,但是界面上不同,光子在真空中,与介质中被吸收、发出的可能性不同,也就是在光子组合数分布不同的地方,光子集合的运动路线会向着吸收、发出光子的可能性大的地方运动。也就是在光子信息分布不均匀的地方,光线会发生弯曲。通常在界面的一个波长内,在几千个分子距离内,发生弯曲,进入介质以后,光子就认为是均匀介质了,这样分析是说明,发生光的折射,在界面上画成折线,只是一种近似,如是严格地要求画出光的折射光路,在折射的界面上应该画成圆弧线。
2023-08-15 00:53:581

光的折射定律

问光..,这是自然的公理没办法
2023-08-15 00:54:088

折射定律的原理简介

折射定律由荷兰数学家斯涅尔发现,是在光的折射现象中,确定折射光线方向的定律。当光由第一媒质(折射率为n1)射入第二媒质(折射率n2)时,在平滑界面上,部分光由第一媒质进入第二媒质后即发生折射。实验指出:(1)折射光线位于入射光线和界面法线所决定的平面内;(2)折射线和入射线分别在法线的两侧;(3)入射角i的正弦和折射角i′的正弦的比值,对折射率一定的两种媒质来说是一个常数。浅显的说,就是光从光速大的介质进入光速小的介质中时,折射角小于入射角;从光速小的介质进入光速大的介质中时,折射角大于入射角。
2023-08-15 00:54:311

光的折射现象

入射角=反射角 法线垂直于镜面 (物理书上有)
2023-08-15 00:54:477

什么是光折射的原理

由于光的运动路线是光子被吸收,发出的最大几率的地方,那么光线的方向,就会向着吸收、发出光的可能性多的前进,也就是那个方向吸收这种光子的可能性大,就向这个方向偏折,我们假设光子在真空中,单位时间内被吸收、发出了N次,而在介质中,在相同的时间内被吸收、发出了M次,光子本身的速度不变,并且比光速C要大,由于被吸收发出,运动路程减少,速度减小,那么,则,当光线以角入射到界面上的时候,由于光子的法线方向吸收光子、发出光子的可能性大,光线应该向着法线方向偏折。在介质均匀分布的区域内,光子被吸收、发出的可能性是一样的,光线是直线传播,但是界面上不同,光子在真空中,与介质中被吸收、发出的可能性不同,也就是在光子组合数分布不同的地方,光子集合的运动路线会向着吸收、发出光子的可能性大的地方运动。也就是在光子信息分布不均匀的地方,光线会发生弯曲。通常在界面的一个波长内,在几千个分子距离内,发生弯曲,进入介质以后,光子就认为是均匀介质了,这样分析是说明,发生光的折射,在界面上画成折线,只是一种近似,如是严格地要求画出光的折射光路,在折射的界面上应该画成圆弧线。
2023-08-15 00:55:041

折射现象的原理是什么

折射现象是指当光由一种介质(比如水)射入第二介质(比如空气)时,在界面上部分光发生偏离原来路线而与原来路线产生夹角的现象。定理内容  (1)折射光线位于入射光线和界面法线所决定的平面内;  (2)折射线和入射线分别在法线的两侧;  (3)入射角i的正弦和折射角i′的正弦的比值,对折射率一定的两种媒质来说是一个常数.  光由光速大的介质中进入光速小的介质中时,折射角小于入射角;从光速小的介质进入光速大的介质中时,折射角大于入射角。此定律是几何光学的基本实验定律。意义  它适用于均匀的各向同性的媒质。用来控制光路和用来成象的各种光学仪器,其光路结构原理主要是根据光的折射和反射定律。此定律也可根据光的波动概念导出,所以它也可应用于无线电波和声波等的折射现象。折射定律(lawofrefraction)或斯涅尔定律(Snell"sLaw)光线通过两介质的界面折射时,确定入射光线与折射光线传播方向间关系的定律,几何光学基本定律之一
2023-08-15 00:55:141

光线的直射与折射原理

先说直射.光线之所以能直射,是因为光在不受外力的情况下的确是直线的.但现实中,光多不是直线进行的.最明显的是天体"黑洞".光是经过它会形成狐线,最终被其吸引.光的折射,光在不同的介质或同介质但不同密度中会折射.比如光射到玻璃.关于为什么,这就是高等光学知识了.估计你看不懂,这里就不写了.如果你想知道请补充.
2023-08-15 00:56:171