barriers / 阅读 / 详情

滑行艇的空气动力学原理

2023-08-23 10:41:40
共1条回复
S笔记

船身是流线型,减小空气阻力。空气动力学是滑行艇的制作原理,表现在船身是流线型,减小空气阻力。滑行艇是一种水面型的船舶,利用空气动力学原理在高速时艇体上抬以减少艇体浸湿面积从而达到减阻的目的。

相关推荐

飞盘的空气动力学原理是什么?

由于空气有粘滞性,飞碟运动时会把靠近飞碟表面的一层空气带动使之跟随飞碟运动。但由于几何形状的不对称,内外两侧空气被带动的情况不一样,内侧(凹进一面)的空气比外侧更容易被带动,使内侧空气的绝对速度大,相对于飞碟的速度小,外侧的绝对速度小,相对速度大。根据流体力学的伯努利定律,流体流动快的地方压力小,慢的地方压力大。因而飞碟底部两侧所受的压力不一样,外侧小,内侧大,这就是升力的来源。无论层楼或湍流,流体都有贴壁流动的趋势。流体沿着倾斜的飞盘倾斜向下流动,自身有了动量变化(倾斜向下)。而由于系统动量守恒,飞盘也同时获得了一个向上的动量。答案里上下层流速不同导致升力的.....麻烦稍微做下仿真验证一下。空气动力学是流体力学的一个分支,是研究空气或其他气体的运动规律,空气或其他气体与飞行器或其他物体发生相对运动时的相互作用和伴随发生的物理化学变化的学科。它是在流体力学基础上随航空航天技术的发展而形成的一门学科。空气动力学的研究内容根据空气与物体的相对速度是否小于约100米/秒(即时速360公里/小时,注,也有根据时速400公里为界来划分的),可分为低速空气动力学和高速空气动力学,前者主要研究不可压缩流动,后者研究可压缩流动。此外,根据是否忽略粘性,还可分为理想空气动力学和粘性空气动力学。空气是动力,也是动力的媒介,更是动力的阻碍,分析研究和开发这三者之间的矛盾和统一。使人类在气动力领域有更广阔的前景,这就是空气动力学的根本。
2023-08-15 14:29:353

空气动力学基础的第2章 空气动力学:一些基本原理和基本方程

2.1 引言和路线图2.2 矢量关系回顾2.2.1 矢量代数简述2.2.2 典型正交坐标系2.2.3 标(数)量场和矢量场2.2.4.数量积和矢量积2.2.5 数量场的梯度2.2.6 矢量场的散度2.2.7 矢量场的旋度2.2.8 线积分2.2.9 面积分2.2.10 体积分2.2.11 线积分、面积分和体积分之间的关系2.2.12 小结2.3 流体模型:控制体和流体微元2.3.1 有限控制体模型2.3.2 无限小流体微元模型2.3.3 分子模型2.3.4 速度散度的物理意义2.3.5 流场描述2.4 连续方程2.5 动量方程2.6 动量方程的一个应用:二维物体的阻力2.6.1 评注2.7 能量方程2.8 小结2.9 实质导数(随体导数)2.10 用实质导数表示的基本方程2.11 流动的迹线、流线和染色线2.12 角速度、涡量和应变率2.13 环量2.14 流函数2.15 速度势2.16 流函数和速度势之间的关系2.17 我们怎样解这些方程2.17.1 理论(解析)解2.17.2 数值求解一计算流体力学(CFD)2.17.3 空气动力学“全景2.18 总结2.19 作业题第2部分 无黏不可压缩流动
2023-08-15 14:30:101

飞行原理及空气动力学知识

飞行原理及空气动力学知识   飞机的空气动力性能是决定飞机飞行性能的一个重要因素。飞行员既要熟悉飞机空气动力的产生和变化,同时也要清楚飞机空气动力性能的基本数据。下面是我为大家带来的飞行原理及空气动力学知识,欢迎大家阅读浏览。   一. 滑行   飞机不超过规定的速度,在地面所作的直线或曲线运动叫滑行。   对滑行的基本要求是:飞机平稳地开始滑行,滑行中保持好速度和方向,并使飞机能停止在预定的位置。飞机从静止开始移动,拉力或推力必须大于最大静摩擦力, 故飞机开始滑行时应适 当加大油门。飞机开始移动后,摩擦力减小,则应酌量减小油门,以防加速太快,保持起滑平稳。滑行中,如果要增大滑行速度,应柔和加大油门,使拉力或推力大 于摩擦力,产生加速度,使速度增大,要减小滑行速度,则应收小油门,必要时,可使用刹车。   二. 起飞   飞机从开始滑跑到离开地面,并升到一定高度的运动过程,叫做起飞。   飞机起飞的操纵原理   飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结果。而只有当飞机速度增大到一定时,才可能产生足以支持飞机重力的升力。可见飞机的 起飞 是一个速度不断增加的加速过程。 ;剩余拉力较小的活塞式螺旋桨飞机的起飞过程,一般可分为起飞滑跑、离地、小 角度上升(或一段平飞)、上升四个阶段。对有足够剩余拉力的螺旋桨飞机,或有足够剩余推力的喷气式飞机,因可使飞机加 速并上升,故起飞一般只分三个阶段,即起滑跑、离地和上升。   (一)起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。起飞中,为尽快地增速,应把油门推到最大位置。   1.抬前轮或抬尾轮   前三点飞机为什么要抬前轮?   前三点飞机的停机角比较小,如果在整个起飞滑跑阶段都保持三点姿态滑跑,则迎角和升力系数较小,必然要将速度增大到很大才能产生足够的升力使飞机离地,这 样,滑咆距离势必很长。因此,为了减小离地速度,缩短滑跑距离,当速度增大到一定程度时就需要抬起前轮作两点姿态滑跑,以增大迎角和升力系数。   抬前轮的时机和高度   抬前轮的时机不宜过早或过晚。抬前轮过早,速度还小,升力和阻力都小,形成的上仰力矩也小。要拾起前轮,必须使水平尾翼产生较大的上仰力矩,但在小速度情 况下,水平尾翼产生的附加空气动力也小,要产主足够的上仰力矩就需要多拉杆。结果,随着滑跑速度增大,上仰力矩又将迅速增大,飞行员要保持抬前伦的平衡状 态,势必又要用较大的操纵量进行往复修正,给操纵带来困难。同时,抬前轮过旱,使飞机阻力增大而增长起飞距离。如果抬前轮过晚,不仅使滑跑距离增长,而且 还由于拉杆抬前轮到离地的时间很短,飞行员不易修正前轮抬起的高度而保持适当的离地迎角。甚至容易使升力突增很多 而造成飞机猛然离地。各型飞机抬前轮的速度均有其具体规定。前轮抬起高度应正好保持飞机离地所需的迎角,前轮抬起过低,势必使迎角和升力系数过小,离地速 度增大,滑跑距离增长,前轮抬起过高,滑跑距离虽可缩短,但因飞机阻力大,起飞距离将增长,而且迎角和升力系数过大,又势必造成大迎角小速度离地,离地 后,飞机的安定住差操纵性也不好。仰角过大,还可能造成机尾擦地。从既要保证安全又要缩短滑跑距离的要求出发,各型飞机前轮抬起高度都有其具体规定。飞行 员可从飞机上的俯仰指示器或从机头与天地线的关系位置来判断前轮抬起的高度是否适当。   后三点飞机为什么要抬尾轮   后三点飞机与前三点飞机相比,停机角比较大,因此三点滑跑中迎角较大,接近其临界迎角,如果整个滑跑阶段都保持三点滑跑,升力系数比较大,飞机在较小的速 度下 即能产生足够的升力使飞机离地。此时滑跑距离虽然很短,但大迎角小速度离地后,飞机安定性操纵性都差,甚至可能失速。因此后三点飞机,当滑跑速度增大到一 定时,飞行员应前推驾驶杆,抬起机尾作两点滑跑,以减小迎角。与前三点飞机抬前轮一样,为了既保证安全,又缩短滑跑距离,必须适时正确地抬机尾。抬机尾过 早或过晚,过高或过低,不仅会增长滑跑距离,起飞距离,而且会危及 飞行安全。各型飞机抬机尾的速度和高度也都有其具体规定。   2. 保持滑跑方向   对螺旋桨飞机而言,起飞滑跑中引起飞机偏转的主要原因是螺旋桨的副作用。起飞滑跑中,螺旋桨的反作用力矩力图使飞机向螺旋桨旋转的反方向倾斜,造成两主轮 对地面的作用力不等,从而使两主轮的摩擦力不等,两主轮摩擦力之差对重心形成偏转力矩。螺旋桨滑流作用在垂直尾翼上也产主偏转力矩。前三点飞机抬前轮时和 后三点飞机抬尾轮时,螺旋桨的进动作用也会使飞机产生偏转。加减油门和推拉笃驶杆的动作愈粗猛,螺旋桨副作用影响愈大。为减轻螺旋桨副作用的影响,加油门 和推拉驾驶杆的动作应柔和适当。滑跑前段,因舵的效用差,一般可用偏转前轮和刹车的方法来保持滑跑方向。滑跑后段应用舵来保持滑跑方向。随着滑跑速度的不 断增大,方向舵的效用不断提高,就应当回舵,以保持滑跑方向。   喷气飞机起飞滑跑方向容易保持,其原因是;一是喷气飞机都是前三点飞机, 而前三点飞机在滑跑中具有较好的方向安定住,二是没有螺旋桨副作用的影响,所以在加油门和抬前轮时,飞机不会产主偏转。   (二) 当速度增大到一定,升力稍大于重力,飞机即可离地。离地时作用于飞机的力。此时升力大于重力,拉力或推力 大于阻力。   离地时的操纵动作,前三点飞机和后三点是不同的。前三点飞机是因飞行员拉杆产生上仰操纵力矩,而使飞机作两点滑跑的。随着滑跑速度的增大、上仰力矩增大, 迎角将会增大。虽然飞行员不断向前推杆以保持两点滑跑姿态,但 原来的俯仰力矩平衡总是随速度的增大而不断被破坏,在到达离地速度时,迎角仍会有自动增大的`趋势。所以,前三点飞机一般都是等其自动离地。后三点飞机则不 然,飞机到达离地速度时,一般都需带杆增大迎角而后离地。这是因为后三点飞机在两点滑跑中,飞行员是前推杆,下偏升降舵来保持的,随着速度增大,下俯操纵 力矩增大,将使迎角减小,飞行员虽不断带杆以保持两点滑跑,但在到达离地速度时,迎角仍会有减小的趋势。所以,必须向后带杆增大迎角飞机才能离地。后三点 飞机,正确掌握离地时机是很重要的。离地过早或过晚,都将给飞行带来不利。 机轮离地后,机轮摩擦力消失,飞机有上仰趋势,应向前迎杆制止。对螺旋浆飞机,机轮摩擦力矩也消失,飞机有向螺旋桨旋转方向偏转的趋势,应用舵制止。   (三)一段平飞或小角度上升 对剩余拉力比较小的活塞式螺旋浆飞机,飞机离地还尚未达到所需的上升速度,故需作一段平飞或小角度上升来积累速度。飞机离地后在12米高度向前迎杆,减小 迎角,使飞机平飞加速或作小角度上升加速。飞机刚离地时,不宜用较大的上升角上升。 上升角过大,这会影响飞机增速,甚至危及安全。为了减小阻力,便于增速,飞机高地后,一般不低于5米高度收起落架。收起落架时机不可过早或过晚。过早,飞 机离地大近,如果飞机有下俯,就可能重新接地,危及安全;过晚,速度大大,起落架产生的阻力很大,不易增速,还可能造成起落架收下好。在一段平飞或小角度 上升中,特别要防止出现坡度,因为这时飞行高度低,飞机如有坡度,就会向下侧滑而可能使飞机撞地。因此发现飞机有坡度应及时纠正。   (四)当速度增加到规定时,应柔和带杆使飞机转入稳定上升,上升到规定高度起飞阶段结束。   影响起飞滑跑距离的因素影响起飞滑跑距离的困素有油门位置、离地迎角、襟翼反置、起飞重量、机场标高与气温、跑道表面质量、风向风速、跑道坡度等。这些因素一般都是通过影响离地速度 或起飞滑跑的平均加速度来影响起飞滑跑距离的。   油门位置 油门越大,螺旋桨拉力或喷气推力越大,飞机增速快,起飞滑跑距离就短。所以,一般应用最大功率或最大油门状态起飞。   离地迎角离地迎角的大小决定于抬前轮或抬机尾的高度。离地迎角大,离地速度小,起飞滑跑距离短。但离地迎角又不可过大,离地迎角过大,下仅会因飞机阻力大 而使飞机增速慢延长滑跑距离,而且会直接危及飞行安全因此从既要保证飞行安全又要使滑跑距离短出发,各型飞机一般都规定有最有利的离地迎角值。   襟翼位置 放下襟翼,可增大升力系数,减小离地速度,因而能缩短起飞滑跑距离。   起飞重量 起飞重量增大,不仅使飞机离地速度增大,而且会引起机轮摩擦力增加,使飞机不易加速。因此,起飞重量增大,起飞滑跑距离增长。   机场标高与气温 机场标高或气温升高都会引起空气密度减小,一放面使拉力或推力减小,飞机加速慢;另一方面,离地速度增大,因此起飞滑跑距离必然增长。所以在炎热的高原机场起飞,滑跑距离显著增长。   跑道表面质量 不同跑道表面质量的摩擦系数,滑跑距离也就不同。跑道表面如果光滑平坦而坚实,则摩擦系数小,摩擦力小,飞机增速快,起飞滑跑距离短。反之跑道表面粗糙不平或松软,起飞滑跑距离就长。   风向风速 起飞滑跑时,为了产生足够的升力使飞机离地,不论有风或无风,离地空速是一定的。但滑跑距离只与地速有关,逆风滑跑时,离地地速小,所以起飞滑跑距离比无风时短。反之则长。   滑跑坡度 跑道有坡度,会使飞机加速力增大或减小。   三. 着陆   飞机从一定高度下滑,井降落地面滑跑直至完全停止运动的整个过程,叫着陆。   飞机着陆的操纵原理   与起飞相反,着陆是飞机高度下断降低、速度不断减小的运动过程。飞机从一定高度作着陆下降时,发动机处于慢车工作状态,即一般采用带小油门下滑的方法下 降。飞行高度降低到接近地面时,必须在一定高度上开始后拉驾驶杆,使飞机由下滑转入平飘这就是所谓“拉平”。机拉平后,飞机速度仍然较大,不能立即接地. 需要在离地0.5~1米高度上继续减小速度,这个拉平后继续减小速度的过程,就是平飘。在这个过程中,随着飞行速度的不断减小,飞行员不断后拉驾驶杆以保 持升力等于重力。在离地0.15~0.25米时,将飞机拉成接地所需的迎角,升力稍小于重力,飞机轻柔飘落接地飞机接地后,还需要滑跑减速直至停止,这个 滑跑减速过程就是着陆滑跑。  由上可见,飞机着陆过程一般可分为五个阶段:下滑段、拉平段、平飘段、接地和着陆滑跑段。   (一)拉平   拉平是飞机由下滑转入平飘的曲线运动过程,即飞机由下滑状态转入近似平飞状态的过程。为完成这个过程,飞行员应拉杆增加迎角:使升力大于重力第一分力,此 两力之差为向心力,促进飞机向上作曲线运动,减小下滑角。对某些飞机,因放襟翼后,上仰力矩较大,下滑中通常是向下顶杆以保持飞机的平衡,所以开始拉平时 只需松杆,后再逐渐转为拉杆。拉杆或松杆增大迎角,阻力也同时增大,且因下滑角不断减小,重力也跟着减小,所以阻力大于重力飞行速度不断减小。可见飞机在 拉平阶段中,下滑角和下滑速度都逐渐减小,同时高度不断降低。飞行员应根据飞机的离地和下沉接近地面的情况,掌握好拉杆的分量和快慢,使之符合客观实际, 才能做到正确的拉平。如高度高、下沉慢、俯角小,拉杆的动作应适当慢一些;反之,高度低、下沉快、俯角大,拉杆的动作应适当快一些。   (二)平飘   飞机转入平飘后,在阻力的作用下,速度逐渐减小,升力不断降低。为了使飞机升力与飞机重力近似相等,让飞机缓慢下沉接近地面,飞行员应相应不断地拉杆增大 迎角,以提高升力。在离地约0.15--0.25米的高度上将飞机拉成接地迎角姿态,同时速度减至接地速度,是飞机轻轻接地。   在平飘过程中,飞行员应根据飞机下沉和减速的情况相应地向后拉杆。一般来说:在平飘前段,需要的拉杆量较少。因为此时飞机的速度较大,在速度减小,升力减小时,只需稍稍拉杆增加少量的迎角,就能保持平飘所需的升力。如拉杆量过多,会使升力突增,飞机将会飘起。   在平飘后段,需要的拉杆量较多。因为此时飞机的速度较小,如拉杆量与前段相同,增加同样多迎角,升力增加小,飞机将迅速下沉;此外随着迎角的增大,阻力增大,飞机减速快,也将使飞机迅速下沉,因此只有多拉杆,迎角增加多一些,才能得到所需的升力,使飞机下沉缓慢。   总之,在平飘中,拉杆的时机、分量、和快慢,由飞机的速度和下沉情况来决定。飞机速度大,下沉慢,拉杆的动作应慢些;反之,速度小,下沉快拉杆的动作应适当加快。   此外,为了使飞机平稳地按预定方向接地,在平飘过程中,还须注意用舵保持好方向。如有倾斜,应立即以杆舵一致的动作修正。因此时迎角大速度小,副翼效用差,姑应利用方向舵支援副翼,即向倾斜的反方向蹬舵,帮助副翼修正飞机的倾斜。   (三)接地   飞机在接地前会出现机头自动下俯的现象。这是因为飞机在下沉过程中,迎角要增大,迎角安定力矩使机头下俯,另外由于飞机接近地面,地面的影响增强,下洗速 度减小,水平有效迎角增大,产生向上的附加升力,对重心形成的力矩使机头下俯。故在接地前,还要继续向后带杆,飞机才能保持好所需的接地姿态。   为减小接地速度和增大滑跑中阻力,以缩短着陆滑跑距离,接地时应有较大的迎角,故前三点飞机以两主轮接地,而后三点飞机以通常以三轮同时接地。   (四)着陆滑跑   着陆滑跑的中心问题是如何减速和保持滑跑方向。   飞机接地后,为尽快减速,缩短着陆滑跑距离,必须在滑跑中增大飞机阻力。滑跑中飞机阻力有气动阻力、机轮摩擦力、以及喷气反推力和螺旋桨负拉力等。滑跑中,增大飞机迎角,放减速板(或减速率),以及使用反推、螺旋桨负拉力、刹车等都能增大飞机阻力。   简单空气力学简介   要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。   一、飞行的主要组成部分及功用   到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成 :   1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。   2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。   3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。   4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。   5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式 发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。   飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。   二、飞机的升力和阻力   飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认 识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理   流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。   连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。   伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。   飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股 气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用, 流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这 样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。   机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。   飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。   1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻 力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越 大。   2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。   3.诱导阻力——升力产生的同时还对飞机附加了一种阻力。这种因产生升力而诱导出来的阻力称为诱导阻力,是飞机为产生升力而付出的一种“代价”。其产生的过程较复杂这里就不在详诉。   4.干扰阻力——它是飞机各部分之间因气流相互干扰而产生的一种额外阻力。这种阻力容易产生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。   以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会产生波阻等其他阻力。   三、影响升力和阻力的因素   升力和阻力是飞机在空气之间的相对运动中(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。   1.迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界 迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超过临界迎角,阻力急剧 增大。   2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大 到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的两倍,升力和 阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。   3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大 影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结冰都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力 也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大。   飞机能自由地飞行在空中,靠的是飞行员对飞机正确的操控。飞行员操作飞机,就是运用油门、杆、舵改变飞机的空气动力和力矩,从而改变飞行状态。为了解飞机 的操作原理我们就需要知道飞机的平衡、安定性和操作性等相关知识。下面从这三方面开始简要讲解飞机的飞行操作原理。   为了让大家理解其中的术语,我们先介绍一些基础知识:飞机的重心和飞机的坐标轴。   飞机的重心:飞机的各部件燃料、乘员、货物等重力之和是飞机的重力,飞机重力的着力点叫做飞机重心。   飞机的坐标轴也叫机体轴是以机体为基准,通过飞机重心的三条相互垂直的坐标轴。   ;
2023-08-15 14:30:251

空气动力学是什么?

然而我们的汽车每时每刻都要面对另一堵“墙”,那就是阻碍汽车高速行驶的空气墙。我们通常认为空气或风不能算作墙。在低速行驶或者无风的情况下,汽车与空气间的相互作用力通常可以忽略不计。但在高速行驶或遇到大风天时,空气阻力将对车辆的加速性能、操控性能和燃油效能产生巨大影响。空气动力学的作用就在于此。空气动力学主要研究物体在空气中穿行时产生的各种力。[引用:NASA(美国国家航空航天局)]。几十年以来,空气动力学一直是车辆设计的重要参考。为了帮助汽车穿越气流之墙,制造商也提出了各种方案,以减少空气阻力对车辆行驶的影响。最重要的是,根据空气动力原理设计的汽车能够获得更好的加速性能和燃油效能,因为引擎不需要产生太多能量帮助车辆穿越气墙。工程师们已经设计出数种方法。比如说,更为圆滑的车身外观设计,使得空气从车辆四周平缓流过,将阻力减至最小。一些高性能的车辆甚至连底盘设计也考虑到了空气动力学的问题。许多车配有阻流板,也称尾翼,以防止空气抬升车轮,提高车辆高速行驶时的稳定性。 不过正如您将在后文中阅读到的那样,阻流板的装饰作用可能还大过实际意义。在本文中您将浏览到空气动力学和空气阻力的物理学原理,以及它们在汽车设计中的发展沿革,我们还将为您介绍在环保汽车的风潮中,空气动力学为何体现出前所未有的重要性。
2023-08-15 14:30:381

汽车的问题,高手进

楼上的真厉害啊 ——————
2023-08-15 14:31:157

帆船能在水中逆风航行,这是为什么?存在什么科学原理?

因为逆风行驶的时候,帆船两边的压强是不一样的,静压力越小,帆船行驶的速度越快。
2023-08-15 14:31:345

什么叫做空气动力学?

就是对汽车风阻的测试
2023-08-15 14:33:085

鸟儿会飞的原理

鸟类的翅膀是它们拥有飞行绝技的首要条件。在同样拥有翅膀的条件下,有的鸟能飞得很高,很快,很远;有的鸟却只能作盘旋,滑翔,甚至根本不能飞。由此可见,仅仅是翅膀,学问就不少。 鸟类翅膀结构的复杂性,决不亚于鸟类本身的复杂性。如果鸟翅的羽毛构造,能巧妙地运用空气动力学原理,当它们作上下扇动或上下举压时,能推动空气,利用反作用原理向前飞行;羽毛构造合理,能有效的减少飞行时遇到的空气阻力,有的还能起到除震颤消噪音的作用。各种不同种类的鸟在各自翅膀上有较大的区别,这样一来,仅仅是翅膀的差异,就造就了许多优秀与一般的“飞行员”。 国家的一些二级保护动物,雄性体重超过14千克,身长达120厘米,翼展长度达240厘米。 再比如说,翼展为2.3米的军舰鸟,通常在海岸160公里的海上飞行,是我国一级保护动物。 看了前面的内容,也许有人会问,仅仅是翅膀就可以飞行了吗?不,把鸟类送上蓝天的还有它们特殊的骨骼。鸟骨是优良的“轻质材料”,中空,质轻。据分析,鸟骨只占鸟体重的5%~6%;而人类骨头占体重的18%。由于骨头轻,翅膀极容易带动起来,加上鸟体内还有很多气囊与肺相连,这对减轻体重,增加浮力非常有利。 这些优越的条件毫无疑问让鸟类拥有飞行绝技,使它们在另一个生存空间施展本领。但是,我认为,鸟类能飞上蓝天,可能还有别的原因,只是人类到现在还没有发现。 从对鸟类能力的认识中,我们可以看到,探索鸟类的能力,将会有助于人类拓开更新的领域。
2023-08-15 14:33:284

空气动力学基础的介绍

《空气动力学基础》共分为四个部分,分别涵盖了流体力学基本原理、无黏不可压缩流动、无黏可压缩流动和黏性流动,以及与实际应用或设计相关的内容。第1部分(第1、第2章)介绍空气动力学的研究意义、应用范围,基本数学知识,流动的描述方法及流体力学基本方程。第2部分(第3~第6章)介绍伯努利方程,不可压缩无旋流控制方程,流动叠加原理和基本流动,有限展长机翼的升力线理论,一般三维流动特征等。第3部分(第7~第14章)介绍高速流动的热力学理论,能量方程,正激波及斜激波理论,普朗特-迈耶膨胀波理论,激波-膨胀波理论的应用,准一维等熵管流理论,速度势方程及其线性化理论,压缩性修正理论,临界马赫数、阻力发散马赫数概念及定义,超声速流动线性化理论及其应用。非线性超声速流的数值解,高超声速流动基础理论,牛顿理论等。第4部分(第15~第20章)介绍黏性流动的基本理论及控制方程,库埃特流动和泊肃叶流动,边界层特性,层流边界层和湍流边界层流动,湍流模型等。
2023-08-15 14:34:041

空气动力学原理是什么?

空气动力学原理是空气是动力,也是动力的媒介,更是动力的阻碍。是力学的一个分支,研究飞行器或其他物体在同空气或其他气体作相对运动情况下的受力特性、气体的流动规律和伴随发生的物理化学变化。在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。通常所说的空气动力学研究内容是飞机,导弹等飞行器在各种飞行条件下流场中气体的速度和密度等参量的变化规律,飞行器所受的升力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。空气动力学的分类有:1、根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学,在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动,大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化。2、是根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学和粘性空气动力学。
2023-08-15 14:35:111

空气动力学原理

空气动力学原理为:空气是动力,也是动力的媒介,更是动力的阻碍。空气动力学是力学的一个分支,研究飞行器或其他物体在同空气或其他气体作相对运动情况下的受力特性、气体的流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。基本概念空气动力学原理是研究物体在空气中运动时所受到的空气力学效应的学科。它主要涉及流体力学、热力学、数学和物理等学科的知识。空气动力学原理的研究对象包括飞机、火箭、汽车、船舶等物体。基本原理空气动力学原理的基本原理是伯努利定理和牛顿定律。伯努利定理是指在稳定的流体中,流速越快的地方压力越低,流速越慢的地方压力越高。牛顿定律是指物体所受到的合力等于物体的质量乘以加速度。在空气中,物体所受到的合力包括重力和空气阻力。空气动力学原理的应用空气动力学原理的应用非常广泛,其中最重要的应用之一是飞行器的设计和制造。飞机的翼面形状和机身设计都是基于空气动力学原理来进行的。此外,汽车、火箭、船舶等物体的设计和制造也需要考虑空气动力学效应。知识扩展空气动力学原理的研究不仅仅局限于地球大气层内的物体,还包括太空中的物体。太空中的物体在运动时,也会受到空气动力学效应的影响。此外,空气动力学原理的研究还可以应用于气象学领域,例如预测风速和风向等气象现象。总之,空气动力学原理是研究物体在空气中运动时所受到的空气力学效应的学科,它的基本原理是伯努利定理和牛顿定律。空气动力学原理的应用非常广泛,其中最重要的应用之一是飞行器的设计和制造。此外,空气动力学原理的研究还可以应用于气象学领域。
2023-08-15 14:35:351

空气动力学的原理

空气动力学的原理:运动学遵循质量守恒定律和遵循牛顿第二定律,能量的转换和传递遵循能量守恒定律,热力学遵循热力学第一和第二定律。 空气动力学是力学的一个分支,是研究飞行器或其他物体在空气或其他气体作相对运动情况下的受力特性、气体的流动规律和伴随发生的物理化学变化,空气动力学是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的学科。 从这个意义上讲,空气动力学有两种分类,一种是根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学,在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动,大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化,对应于高速空气动力学的流动称为可压缩流动,另一种是根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学和粘性空气动力学。
2023-08-15 14:36:021

空气动力学原理是什么?

空气动力学原理是:空气是动力,也是动力的媒介,更是动力的阻碍。空气动力学是力学的一个分支,研究飞行器或其他物体在同空气或其他气体作相对运动情况下的受力特性、气体的流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。空气动力学的应用有:1、在低速空气动力学中,介质密度变化很小,可视为常数,使用的基本理论是无粘二维和三维的位势流、翼型理论、升力线理论、升力面理论和低速边界层理论等;对于亚声速流动,无粘位势流动服从非线性椭圆型偏微分方程。2、在超声速流动中,基本的研究内容是压缩波、膨胀波、激波、普朗特-迈耶尔流动、锥型流,等等。主要的理论处理方法有超声速小扰动理论、特征线法和高速边界层理论等。3、高超声速流动的主要特点是高马赫数和大能量,这些特点是流动具有一般超音速流动所没有的流体动力特征和物理化学变化。
2023-08-15 14:36:111

空气动力学的原理?

空气动力学的原理是:空气是动力,也是动力的媒介,更是动力的阻碍。空气动力学是力学的一个分支,研究飞行器或其他物体在同空气或其他气体作相对运动情况下的受力特性、气体的流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。通常所说的空气动力学研究内容是飞机,导弹等飞行器在各种飞行条件下流场中气体的速度和密度等参量的变化规律,飞行器所受的升力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。
2023-08-15 14:36:271

空气动力学的原理是什么?

对空气 动力学 的研究,可以追溯到人类早期对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测。. 17世纪后期,荷兰物理学家 惠更斯 (Huygens)首先估算出 物体 在空气中运动的 阻力 ;1726年, 牛顿 (Newton)应用力学原理和演绎方法得出:在空气中运动的物体所受的力,正比于物体 运动速度 的平方和物体的特征面积以及空气的密度。. 这一工作可以看作是空气动力学经典理论的开始。. 1755年,数学家 欧拉 (Euler)得出了描述无粘性 流体 运动的 微分方程 ,即欧拉运动微分方程。. 这些 微分形式 的动力学方程在特定条件下可以积分,得出很有实用价值的结果,如伯努利方程。.
2023-08-15 14:36:383

空气动力学是运用了什么原理?这和飞行器又有什么关系?

空气动力学是流体力学的一个分支,是研究空气或其他气体的运动规律,空气或其他气体与飞行器或其他物体发生相对运动时的相互作用和伴随发生的物理化学变化的学科。它是在流体力学基础上随航空航天技术的发展而形成的一门学科。空气动力学的研究内容根据空气与物体的相对速度是否小于约100米/秒(即时速360公里/小时,注,也有根据时速400公里为界来划分的),可分为低速空气动力学和高速空气动力学,前者主要研究不可压缩流动,后者研究可压缩流动。此外,根据是否忽略粘性,还可分为理想空气动力学和粘性空气动力学。空气是动力,也是动力的媒介,更是动力的阻碍,分析研究和开发这三者之间的矛盾和统一。使人类在气动力领域有更广阔的前景,这就是空气动力学的根本。从一只风筝到洲际导弹,从电风扇到龙卷风,更别说飞机了。空气动力学就是研究空气与动力之间关系的一门专业学科。
2023-08-15 14:36:552

空气动力学是运用了什么原理?这和飞行器又有什么关系?

空气动力学是流体力学的一个分支,是研究空气或其他气体的运动规律,空气或其他气体与飞行器或其他物体发生相对运动时的相互作用和伴随发生的物理化学变化的学科。它是在流体力学基础上随航空航天技术的发展而形成的一门学科。空气动力学的研究内容根据空气与物体的相对速度是否小于约100米/秒(即时速360公里/小时,注,也有根据时速400公里为界来划分的),可分为低速空气动力学和高速空气动力学,前者主要研究不可压缩流动,后者研究可压缩流动。此外,根据是否忽略粘性,还可分为理想空气动力学和粘性空气动力学。空气是动力,也是动力的媒介,更是动力的阻碍,分析研究和开发这三者之间的矛盾和统一。使人类在气动力领域有更广阔的前景,这就是空气动力学的根本。从一只风筝到洲际导弹,从电风扇到龙卷风,更别说飞机了。空气动力学就是研究空气与动力之间关系的一门专业学科。
2023-08-15 14:37:211

什么是气流动力原理?

  力学的一个分支,专门是研究气流状物所产生的动力问题,在某一程度上可以称之为“空气动力学”。  空气动力学是在流体力学上新起的一个学科,主要是研究气体运动规律以及物体在与气体相对运动下的受力特性和随之伴随的物理变化,最广泛的就是力的变化。  现在主要运用在航天航空事业、运动物体的外表轮廓线条设计行业等。  举个例子:在小汽车燃料危机又暂时找不到加油站的情况下,小汽车驾驶员就可以利用空气动力学,合适的近距离尾随大型汽车(最好是集装箱车以及大型巴士),通过大体积物体运动时候带来的气流动力可以减轻小汽车的扭力功耗。
2023-08-15 14:37:312

空气动力学与飞行原理

空气动力学与飞行原理如下:空气动力学是流体力学的一个分支,是研究空气或其他气体的运动规律,空气或其他气体与飞行器或其他物体发生相对运动时的相互作用和伴随发生的物理化学变化的学科。具体的折法如下:1. 将纸张对折到中心线上。2. 再将对折线的一侧对折到中心线上。3. 将左右两个角分别向中心点对折,并打开角部。4. 将中部对折至角部。5. 然后将中心线位置、前侧以及后侧都对折至中心线上。6. 将两侧的前端拉出,两个且面基本上对称,将其约两厘米向上对折。7. 再将它一侧的后端对折向上。8. 将其用左侧镊子夹住,然后将右侧部分绕左侧部分缠绕。9. 最后,将右侧部分的后端又向上对折。完成以上步骤后,你将会创造一个超级复杂、稳定飞行的纸飞机。首先,适当的重心是实现纸飞机飞行的关键。在折纸时,需要考虑重量是否均匀分布,特别是在前部。飞行时,纸飞机要平稳地飞行,这就需要重心正确地平衡。其次,空气动力学,也是纸飞机飞行的一个重要原理。纸飞机的扇形侧截面会导致空气流动,以及扭曲和翘起。扭曲和翘起增加了空气对纸飞机的升力,以及稳定性,使它可以保持在飞行中的姿势。此外,由速度引起的气流也会协助飞行,产生升力,使纸飞机飞得更远。同样重要的是气动稳定性。纸飞机在飞行时,如果不稳定,很可能会失去平衡,摇晃或直接崩溃而坠落。因此,稳定性是确保纸飞机顺利飞行的关键。纸飞机可以通过改变扇形侧截面、调节重心和主翼的内曲线等方式调整气动性能,初学者可以从简单的直线起飞开始,逐渐掌握这些飞行原理。
2023-08-15 14:37:461

详细介绍下空气动力学

空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。通常所说的空气动力学研究内容是飞机,导弹等飞行器在各种飞行条件下流场中气体的速度、压力和密度等参量的变化规律,飞行器所受的举力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。从这个意义上讲,空气动力学可有两种分类法:  首先,根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学。通常大致以400千米/小时这一速度作为划分的界线。在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动。大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化。这种对应于高速空气动力学的流动称为可压缩流动。  其次,根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学(或理想气体动力学)和粘性空气动力学。空气动力学的研究,分理论和实验两个方面。理论和实验研究两者彼此密切结合,相辅相成。理论研究所依据的一般原理有:运动学方面,遵循质量守恒定律;动力学方面,遵循牛顿第二定律;能量转换和传递方面,遵循能量守恒定律;热力学方面,遵循热力学第一和第二定律;介质属性方面,遵循相应的气体状态方程和粘性、导热性的变化规律,等等。
2023-08-15 14:38:071

空气动力学基础知识什么是空气动力学

  空气动力学是力学的一个分支,研究飞行器或其他物体在同空气或其他气体作相对运动情况下的受力特性、气体的流动规律和伴随发生的物理化学变化。以下是由我整理关于空气动力学基础知识的内容,希望大家喜欢!   空气动力学的分类   通常所说的空气动力学研究内容是飞机,导弹等飞行器在各种飞行条件下流场中气体的速度、温度、压力和密度等参量的变化规律,飞行器所受的升力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。从这个意义上讲,空气动力学可有两种分类法:   1)根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学。通常大致以400千米/小时(这一数值接近于地面1atm,288.15K下0.3Ma的值)这一速度作为划分的界线。在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动。大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化。这种对应于高速空气动力学的流动称为可压缩流动。   2)根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学(或理想气体动力学)和粘性空气动力学。   除了上述分类以外,空气动力学中还有一些边缘性的分支学科。例如稀薄气体动力学、高温气体动力学等。   空气动力学的研究内容   在低速空气动力学中,介质密度变化很小,可视为常数,使用的基本理论是无粘二维和三维的位势流、翼型理论、升力线理论、升力面理论和低速边界层理论等;对于亚声速流动,无粘位势流动服从非线性椭圆型偏微分方程,研究这类流动的主要理论和近似 方法 有小扰动线化方法,普朗特-格劳厄脱法则、卡门-钱学森公式和速度图法,在粘性流动方面有可压缩边界层理论;对于超声速流动,无粘流动所服从的方程是非线性双曲型偏微分方程。   在超声速流动中,基本的研究内容是压缩波、膨胀波、激波、普朗特-迈耶尔流动(压缩波与膨胀波的基本关系模型及其函数模型)、锥型流,等等。主要的理论处理方法有超声速小扰动理论、特征线法和高速边界层理论等。跨声速无粘流动可分外流和内流两大部分,流动变化复杂,流动的控制方程为非线性混合型偏微分方程,从理论上求解困难较大。   高超声速流动的主要特点是高马赫数和大能量,这些特点是流动具有一般超音速流动所没有的流体动力特征和物理化学变化。在高超声速流动中,真实气体效应和激波与边界层相互干扰问题变得比较重要。高超声速流动分无粘流动和高超声速粘性流两大方面。   工业空气动力学主要研究在大气边界层中,风同各种结构物和人类活动间的相互作用,以及大气边界层内风的特性、风对建筑物的作用、风引起的质量迁移、风对运输车辆的作用和风能利用,以及低层大气的流动特性和各种颗粒物在大气中的扩散规律,特别是湍流扩散的规律,等等。   空气动力学的研究方法   空气动力学的研究,分理论和实验两个方面。理论和实验研究两者彼此密切结合,相辅相成。理论研究所依据的一般原理有:运动学方面,遵循质量守恒定律;动力学方面,遵循牛顿第二定律;能量转换和传递方面,遵循能量守恒定律;热力学方面,遵循热力学第一和第二定律;介质属性方面,遵循相应的气体状态方程和粘性、导热性的变化规律等等。   它力学分支学科   静力学、动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、结构力学、弹性力学、塑性力学、爆炸力学、磁流体力学、空气动力学、理性力学、物理力学、天体力学、生物力学、计算力学
2023-08-15 14:38:161

喷砂设备空气动力学原理

吸入式干喷砂机是以压缩空气为动力,通过气流的高速运动在喷枪内形成的负压,将磨料通过分体式喷砂机输砂管。吸入喷枪并经喷嘴射出,喷射到被加工表面,达到预期的加工目的。在吸入式干喷砂机中,压缩空气既是供。压入式干喷砂机,一般组成 一个完整的压入式干喷砂机工作单元一般由四个系统组成,即压力罐、介质动力系统、管路系统、控制系统。压入式干喷砂机工作原理。压入式干喷砂机是以压缩空气为动力,通过压缩空气在压力罐内建立的工作压力,将磨料通过出砂阀。压入输砂管并经喷嘴射出,喷射到被加工表面达到预期的加工目。在压入式干喷砂机中,压缩空气既是供。详细见百度百科“喷砂设备”
2023-08-15 14:38:381

什么是空气动力学

反反复复
2023-08-15 14:38:493

空气动力学在生活中的应用

楼上正解~
2023-08-15 14:39:003

空气动力学的发展简史

空气动力学的发展简史 最早对空气动力学的研究,可以追溯到人类对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测。17世纪后期,荷兰物理学家惠更斯首先估算出物体在空气中运动的阻力;1726年,牛顿应用力学原理和演绎方法得出:在空气中运动的物体所受的力,正比于物体运动速度的平方和物体的特征面积以及空气的密度。这一工作可以看作是空气动力学经典理论的开始。 1755年,数学家欧拉得出了描述无粘性流体运动的微分方程,即欧拉方程。这些微分形式的动力学方程在特定条件下可以积分,得出很有实用价值的结果。19世纪上半叶,法国的纳维和英国的斯托克斯提出了描述粘性不可压缩流体动量守恒的运动方程,后称为纳维-斯托克斯方程。 到19世纪末,经典流体力学的基础已经形成。20世纪以来,随着航空事业的迅速发展,空气动力学便从流体力学中发展出来并形成力学的一个新的分支。 航空要解决的首要问题是如何获得飞行器所需要的举力、减小飞行器的阻力和提高它的飞行速度。这就要从理论和实践上研究飞行器与空气相对运动时作用力的产生及其规律。1894年,英国的兰彻斯特首先提出无限翼展机翼或翼型产生举力的环量理论,和有限翼展机翼产生举力的涡旋理论等。但兰彻斯特的想法在当时并未得到广泛重视。 约在1901~1910年间,库塔和儒科夫斯基分别独立地提出了翼型的环量和举力理论,并给出举力理论的数学形式,建立了二维机翼理论。1904年,德国的普朗特发表了著名的低速流动的边界层理论。该理论指出在不同的流动区域中控制方程可有不同的简化形式。 边界层理论极大地推进了空气动力学的发展。普朗特还把有限翼展的三维机翼理论系统化,给出它的数学结果,从而创立了有限翼展机翼的举力线理论。但它不能适用于失速、后掠和小展弦比的情况。1946年美国的琼期提出了小展弦比机翼理论,利用这一理论和边界层理论,可以足够精确地求出机翼上的压力分布和表面摩擦阻力。 近代航空和喷气技术的迅速发展使飞行速度迅猛提高。在高速运动的情况下,必须把流体力学和热力学这两门学科结合起来,才能正确认识和解决高速空气动力学中的问题。1887~1896年间,奥地利科学家马赫在研究弹丸运动扰动的传播时指出:在小于或大于声速的不同流动中,弹丸引起的扰动传播特征是根本不同的。 在高速流动中,流动速度与当地声速之比是一个重要的无量纲参数。1929年,德国空气动力学家阿克莱特首先把这个无量纲参数与马赫的名字联系起来,十年后,马赫数这个特征参数在气体动力学中广泛引用。 小扰动在超声速流中传播会叠加起来形成有限量的突跃——激波。在许多实际超声速流动中也存在着激波。气流通过激波流场,参量发生突跃,熵增加而总能量保持不变。 英国科学家兰金在1870年、法国科学家许贡纽在1887年分别独立地建立了气流通过激波所应满足的关系式,为超声速流场的数学处理提供了正确的边界条件。对于薄冀小扰动问题,阿克莱特在1925年提出了二维线化机冀理论,以后又相应地出现了三维机翼的线化理论。这些超声速流的线化理论圆满地解决了流动中小扰动的影响问题。 在飞行速度或流动速度接近声速时,飞行器的气动性能发生急剧变化,阻力突增,升力骤降。飞行器的操纵性和稳定性极度恶化,这就是航空史上著名的声障。大推力发动机的出现冲过了声障,但并没有很好地解决复杂的跨声速流动问题。直至20世纪60年代以后,由于跨声速巡航飞行、机动飞行,以及发展高效率喷气发动机的要求,跨声速流动的研究更加受到重视,并有很大的发展。 远程导弹和人造卫星的研制推动了高超声速空气动力学的发展。在50年代到60年代初,确立了高超声速无粘流理论和气动力的工程计算方法。60年代初,高超声速流动数值计算也有了迅速的发展。通过研究这些现象和规律,发展了高温气体动力学、高速边界层理论和非平衡流动理论等。 由于在高温条件下会引起飞行器表面材料的烧蚀和质量的引射,需要研究高温气体的多相流。空气动力学的发展出现了与多种学科相结合的特点。 空气动力学发展的另一个重要方面是实验研究,包括风洞等各种实验设备的发展和实验理论、实验方法、测试技术的发展。世界上第一个风洞是英国的韦纳姆在1871年建成的。到今天适用于各种模拟条件、目的、用途和各种测量方式的风洞已有数十种之多,风洞实验的内容极为广泛。 20世纪70年代以来,激光技术、电子技术和电子计算机的迅速发展,极大地提高了空气动力学的实验水平和计算水平,促进了对高度非线性问题和复杂结构的流动的研究。 除了上述由航空航天事业的发展推进空气动力学的发展之外,60年代以来,由于交通、运输、建筑、气象、环境保护和能源利用等多方面的发展,出现了工业空气动力学等分支学科。 参考资料: http://baike.baidu.com/view/78138.htm?fr=ala0#1
2023-08-15 14:39:101

如何利用空气动力学加快物体运动速度

给需要加速的物体装上一个大型喷气式发动机。
2023-08-15 14:39:212

根据空气动力学原理哪种形状的物体受到的空气阻力最大,为什么?

圆的!
2023-08-15 14:39:348

汽车尾翼工作原理

汽车在高速行驶时,根据空气动力学原理,在行驶过程中会遇到空气阻力,围绕汽车重心同时产生纵向、侧向和垂直上升的三个方向的空气动力量,其中纵向为空气阻力。 为了有效地减少并克服汽车高速行驶时空气阻力的影响,人们设计使用了汽车尾翼,其作用就是使空气对汽车产生第四种作用力,即产生较大的对地面的附着力,它能抵消一部分升力,有效控制汽车上浮,使风阻系数相应减小,使汽车能紧贴在道路地面行驶,从而提高行驶的稳定性能。
2023-08-15 14:40:231

高中物理学空气动力学嘛?

空气动力学不是高中的课文内容,应该是大学专业课知识。空气动力学是属于大学流体力学中的一个内容
2023-08-15 14:40:3215

谁知道FI的空气动力学

F1空气动力学 了解飞机原理的人都知道,飞机能飞上天全都因为其在起飞加速过程中产生的升力,将其送上蓝天,这就是通常所研究的空气动力学。 而F1赛车与飞机不同,F1赛车对于空气动力学应用的追求是完全反向的,为了“防备”赛车在高速行驶中飞起来,需要通过一些空气动力学部件给赛车一定下压力,同时为赛车提供抓地力。 我想每个人都对空气有一些感性的认识。当你坐在疾驰的汽车中,将手伸出车外,试着将手与迎风方向的角度不断调整,你会感觉到空气的升力和下压力。还可以做这样一个实验,找一张A4尺寸(297X210毫米)的纸,用食指和拇指捏着两个长边,让短边贴着自己的嘴唇,此时纸是自然垂下去的,如果对着纸的上表面吹气,会发现纸飘起来了。很显然是空气在对抗重力。如果将这个原理反向应用于跑车和赛车,空气会将汽车紧紧压在地面上,给汽车足够的抓地力。 F1赛车风驰电掣的速度,能在5秒之内瞬间加速到200km/h以上,最大过弯侧向加速可达4个G,极速最高超过350km/h。怎么样,这种感觉,是不是就像要飞起来了?而这样高的速度与过弯能力,除了需要优异的悬吊设置来让轮带尽可能的保持与跑道路面接触之外,也需要足够的下压力来产生足够的摩擦力,否则空有强大的马力,在过弯时将无从发挥,因此空气动力学设计的优劣已成为今日F1决胜的关键之一。 空气动力学在F1赛车上的应用主要体现在两个方面:一是让定风翼产生的下压力为轮胎提供足够的抓地力,另一个则是尽量减少赛车行驶中的空气阻力。 在早年的F1比赛中,赛车与普通汽车看起来差别不大,但自从空气动力学引进后,F1赛车开始出现了显著变化,首先就是定风翼的产生。看见那巨大的定风翼,可千万别以为它只是用来做广告的,对于F1赛车,它可相当于飞机的翅膀。而赛车定风翼与飞机机翼的最大区别在于当飞机机翼因为飞机提速而产生足够升力时,赛车定风翼则将机翼的升力工作原理进行倒置。反向安装的前、后定风翼将会使空气产生下降的力量,也就是我们所称的“下压力”,以保证高速行进中的赛车“抓住”地面不会引起大幅摆动甚至是漂浮乃至侧翻。一辆F1赛车的定风翼能产生相当于赛车重量3.5倍的下压力。 从上世纪60年代起,定风翼开始应用于F1赛车上,导致F1赛车的速度普遍得到提高,但由于各个车队在定风翼的使用上缺乏足够的安全保障,随之而来的是事故的增加,于是1970年F1规则对于定风翼的尺寸和应用作出了限制,这种限制一直持续到现在。 赛车定风翼解决了下压力的问题,但是,何在产生下压力的同时又不增加空气阻力呢?这是动力学家在设计当今F1赛车的过程中面临的又一个基本的挑战。 赛车定风翼处于不同角度下产生的下压力是各不相同的,而前后翼的角度和赛道有直接的关系,因为空气的阻力和下压力是成反比例的,如果定风翼角度小,那么赛车的空气阻力就小,最高速度就大,但是赛车缺乏下压力和稳定性;相反,如果定风翼角度大,那么赛车的阻力就大,最高速度受影响,但是赛车在弯道的抓地力就强。所以,根据赛道的不同,定风翼设置的角度也不同。一般来说,如果赛道直道长,例如德国霍根海姆和意大利蒙扎,那么就调小角度;如果赛道弯道多,例如摩纳哥蒙特卡洛,则调大角度。 为了模拟赛车比赛时的空气动力学效果,几乎所有的F1车队都斥巨资修建风洞。在几乎24小时不停歇运转的风洞中,工程师们所研究的内容本身就是矛盾的,因为减少空气阻力必然影响下压力,他们所能做的只能是寻找一个美妙的平衡点。“空气动力学是赛车的最核心部分,而风洞是研发一辆性能优异赛车的最重要工具。”索伯车队老板皮特·索伯一语中的。F1车队每年都会花上300万美元到1500万美元不等的风洞操作经费来验证空气动力学组件的效率。虽然国际汽联出于减少车队成本考虑一直限制空气动力学的研究,但根本无法遏制车队间的军备竞赛。这或许就是为什么F1是世界上最豪华最昂贵的运动的原因之一吧。 说到空气动力学效率,就是下压力和空气拖放阻力的比例。目标就是要获得最大的抓地力,和最小的拖放阻力。下压力是空气动力学上垂直方向的向下压力总合,这些力量是由前鼻翼和后尾翼所产生,用来把赛车压在地面上,下压力越大,赛车在跑道上的抓地力就越大。 理论上,由前后翼产生的可怕力量,可以让一部F-1赛车抵抗地心引力,让600公斤重的F1赛车在隧道的天花板上倒吊著跑,因为赛车可以产生超过车身重量数倍的下压力。要让F1赛车那样高速的过弯,那么必须把车底、车顶以及车身周围的气流引导到完美的境界! F1赛车空气力学的最高境界就是“平衡”。F1赛车的抓地力约有1/3是由前轮负担,有超过2/3则是由后轮负担。在前轮采用低下压力的设置可以提高车速,但同时也会提高转向不足的趋势;转向不足就是车头会开始滑向弯外侧。相对的,如果车尾的下压力不足,那么会有转向过度的倾向,车尾就会开始打滑。 这就是空气动力学在F1领域的研究与应用,虽然还不够很深入,虽然还没有很完备,但空气动力学却F1的发展紧密联系着。等待着空气动力学在赛车运用方面的又一次新革命爆发,F1的发展必将取得新的历史性的突破。
2023-08-15 14:40:591

卡车前面罩侧导流板防飞溅的原理是什么

空气动力学。根据查询中华网显示,卡车前面罩侧导流板防飞溅原理是利用空气动力学的原理,通过改变车辆周围的气流流向和速度,来减少车辆的阻力和气动噪声,从而提高车辆的性能和舒适性。
2023-08-15 14:41:071

各种昆虫的飞行原理是什么?

对翅的就是上下振动,而双对翅的肯定会采取一种协调的振动方式
2023-08-15 14:42:485

防尘网能起到防尘作用吗?它的防尘原理是什么?

小编来告诉您防尘原理是怎样的吧首先呢,抑风挡尘墙采用主导风向抑风,非主导风向挡尘的抑挡结合模式,通过对扬尘污染产生的根源——大风进行控制,在主导风向设置抑风墙,当风通过抑风墙时,墙后面出现分离和附着两种现象,形成上、下干扰气流,降低来流风的风速,极大的损失来流风的动能;减少风的湍流度,消除来流风的涡流;降低煤堆表面的剪切应力和压力,从而减少料堆起尘率。其次,在非主导风向设置挡尘墙,通过挡尘墙内外压力差,对于由于装卸作业而形成的飘尘予以阻挡,抑尘率85%以上,达到理想的挡尘效果。这种抑风挡尘墙可以广泛应用于能源、产业、交通、建设领域的露天煤场、矿石堆场等散料堆场、沙石堆场、建筑工地等扬尘污染治理。再者言,我公司是专业从事防尘网、盖土网行业的领跑企业,产品规格多样化,全国客户案例超过1500家,销售电话13853350589;18560921008,欢迎合作。
2023-08-15 14:43:085

风机佳灵装置原理

风机佳灵装置原理基于风机的机械运转和空气动力学。下面是风机佳灵装置的工作原理:1、电机驱动:风机佳灵装置由一个电动机提供动力。电机通过传动装置将旋转运动转化为风机的旋转运动。2、叶轮结构:风机的核心部分是叶轮,它由一系列叶片组成。电机的旋转动力通过传动装置传递给叶轮,使其以高速旋转。叶轮的形状和角度设计得很精确,以提供最佳的气流效果。3、高速气流产生:当叶轮旋转时,它通过空气动力学原理产生气流。叶片的形状和角度使得气流在通过叶轮时产生压力差,从而引起气流加速。叶轮旋转时产生的离心力将空气推送到风机的出口。4、气流方向控制:风机佳灵装置配备了气流方向控制器,通过调整叶轮的角度或导流板的位置来控制气流的方向和强度。这可以用于调节通风量、调整空气流动方向或实现局部风扇效果。因此,风机佳灵装置利用电动机驱动叶轮旋转,通过空气动力学原理产生气流运动,并通过气流方向控制器调节气流的方向和强度,以实现通风、冷却或空气循环等功能。
2023-08-15 14:43:251

汽车后和机翼后方为什么有涡流区,涡流区为什么压力小

简称空气动力学 引擎的推力作用下 再加上空气动作学原理
2023-08-15 14:44:083

油烟分离是什么意思

油烟分离板—油烟分离板的工作原理1、侧吸式烟机利用空气动力学原理,在油烟分离板周围产生巨大的负压区,正好把炊具包围其中,形成了“三维负压区”。2、再加上安装位置较低,烹饪时所产生的油烟在未扩散前,立即被负压区罩住,在涡流的作用下,油烟被吸进油烟分离板。3、当油烟分子高速的经过油烟分离板时,在板内的无数涡流作用下,在分离板内高速转折碰撞,油烟的流程和流向瞬间发生物理变化。4、由于油分子的密度大体积大,在这样的变化中被两次离心力分离,直接甩在分离板上,顺着分离板流入油槽。被分离后的干净烟气向上流动,绕过分离板直接流向烟道。
2023-08-15 14:44:191

烟筒有向上抽吸的作用,什么原理

烟囱本身是没有吸力的,烟会上升是因为热空气的作用加上烟囱的方向引导烟囱外的空气一般是流动着的,根据空气动力学的帕努利原理,流速较快的流体的压力较小。烟囱顶端开口处的空气流速较大,所以压力较小,可以将烟囱里的空气抽吸上去。
2023-08-15 14:44:391

科学家根据什么动物发明了什么东西

人类从动物上得到的启示 苍蝇—气味探测器 蜻蜓—飞机 青蛙—快速扫描系统 螳螂—镰刀 鸡蛋—建筑物 昆虫—液压装置 蛇—红外线鱼—潜水艇 蜘蛛—人造纤维 乌龟—装甲车 猫眼—夜视仪 野猪的鼻子—防毒面具 鹰—鹰眼导弹 蝴蝶—温度控制系统 大乌龟背小乌龟—转动炮塔的坦克
2023-08-15 14:44:4814

人类能依靠自身的力量飞上天吗?

不能
2023-08-15 14:45:196

空气动力学在平时生活上的实际意义

空气动力学 空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。 空气动力学的发展简史 最早对空气动力学的研究,可以追溯到人类对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测。17世纪后期,荷兰物理学家惠更斯首先估算出物体在空气中运动的阻力;1726年,牛顿应用力学原理和演绎方法得出:在空气中运动的物体所受的力,正比于物体运动速度的平方和物体的特征面积以及空气的密度。这一工作可以看作是空气动力学经典理论的开始。 1755年,数学家欧拉得出了描述无粘性流体运动的微分方程,即欧拉方程。这些微分形式的动力学方程在特定条件下可以积分,得出很有实用价值的结果。19世纪上半叶,法国的纳维和英国的斯托克斯提出了描述粘性不可压缩流体动量守恒的运动方程,后称为纳维-斯托克斯方程。 到19世纪末,经典流体力学的基础已经形成。20世纪以来,随着航空事业的迅速发展,空气动力学便从流体力学中发展出来并形成力学的一个新的分支。 航空要解决的首要问题是如何获得飞行器所需要的举力、减小飞行器的阻力和提高它的飞行速度。这就要从理论和实践上研究飞行器与空气相对运动时作用力的产生及其规律。1894年,英国的兰彻斯特首先提出无限翼展机翼或翼型产生举力的环量理论,和有限翼展机翼产生举力的涡旋理论等。但兰彻斯特的想法在当时并未得到广泛重视。 在1901~1910年间,库塔和儒科夫斯基分别独立地提出了翼型的环量和举力理论,并给出举力理论的数学形式,建立了二维机翼理论。1904年,德国的普朗特发表了著名的低速流动的边界层理论。该理论指出在不同的流动区域中控制方程可有不同的简化形式。 边界层理论极大地推进了空气动力学的发展。普朗特还把有限翼展的三维机翼理论系统化,给出它的数学结果,从而创立了有限翼展机翼的举力线理论。但它不能适用于失速、后掠和小展弦比的情况。1946年美国的琼期提出了小展弦比机翼理论,利用这一理论和边界层理论,可以足够精确地求出机冀上的压力分布和表面摩擦阻力。 近代航空和喷气技术的迅速发展使飞行速度迅猛提高。在高速运动的情况下,必须把流体力学和热力学这两门学科结合起来,才能正确认识和解决高速空气动力学中的问题。1887~1896年间,奥地利科学家马赫在研究弹丸运动扰动的传播时指出:在小于或大于声速的不同流动中,弹丸引起的扰动传播特征是根本不同的。 在高速流动中,流动速度与当地声速之比是一个重要的无量纲参数。1929年,德国空气动力学家阿克莱特首先把这个无量纲参数与马赫的名字联系起来,十年后,马赫数这个特征参数在气体动力学中广泛引用。 小扰动在超声速流中传播会叠加起来形成有限量的突跃——激波。在许多实际超声速流动中也存在着激波。气流通过激波流场,参量发生突跃,熵增加而总能量保持不变。 英国科学家兰金在1870年、法国科学家许贡纽在1887年分别独立地建立了气流通过激波所应满足的关系式,为超声速流场的数学处理提供了正确的边界条件。对于薄冀小扰动问题,阿克莱特在1925年提出了二维线化机冀理论,以后又相应地出现了三维机翼的线化理论。这些超声速流的线化理论圆满地解决了流动中小扰动的影响问题。 在飞行速度或流动速度接近声速时,飞行器的气动性能发生急剧变化,阻力突增,升力骤降。飞行器的操纵性和稳定性极度恶化,这就是航空史上著名的声障。大推力发动机的出现冲过了声障,但并没有很好地解决复杂的跨声速流动问题。直至20世纪60年代以后,由于跨声速巡航飞行、机动飞行,以及发展高效率喷气发动机的要求,跨声速流动的研究更加受到重视,并有很大的发展。 远程导弹和人造卫星的研制推动了高超声速空气动力学的发展。在50年代到60年代初,确立了高超声速无粘流理论和气动力的工程计算方法。60年代初,高超声速流动数值计算也有了迅速的发展。通过研究这些现象和规律,发展了高温气体动力学、高速边界层理论和非平衡流动理论等。 由于在高温条件下全引起飞行器表面材料的烧蚀和质量的引射,需要研究高温气体的多相流。空气动力学的发展出现了与多种学科相结合的特点。 空气动力学发展的另一个重要方面是实验研究,包括风洞等各种实验设备的发展和实验理论、实验方法、测试技术的发展。世界上第一个风洞是英国的韦纳姆在1871年建成的。到今天适用于各种模拟条件、目的、用途和各种测量方式的风洞已有数十种之多,风洞实验的内容极为广泛。 20世纪70年代以来,激光技术、电子技术和电子计算机的迅速发展,极大地提高了空气动力学的实验水平和计算水平,促进了对高度非线性问题和复杂结构的流动的研究。 除了上述由航空航天事业的发展推进空气动力学的发展之外,60年代以来,由于交通、运输、建筑、气象、环境保护和能源利用等多方面的发展,出现了工业空气动力学等分支学科。 空气动力学的研究内容 通常所说的空气动力学研究内容是飞机,导弹等飞行器在名种飞行条件下流场中气体的速度、压力和密度等参量的变化规律,飞行器所受的举力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。从这个意义上讲,空气动力学可有两种分类法: 首先,根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学。通常大致以400千米/小时这一速度作为划分的界线。在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动。大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化。这种对应于高速空气动力学的流动称为可压缩流动。 其次,根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学(或理想气体动力学)和粘性空气动力学。 除了上述分类以外,空气动力学中还有一些边缘性的分支学科。例如稀薄气体动力学、高温气体动力学等。 在低速空气动力学中,介质密度变化很小,可视为常数,使用的基本理论是无粘二维和三维的位势流、翼型理论、举力线理论、举力面理论和低速边界层理论等;对于亚声速流动,无粘位势流动服从非线性椭圆型偏微分方程,研究这类流动的主要理论和近似方法有小扰动线化方法,普朗特-格劳厄脱法则、卡门-钱学森公式和速度图法,在粘性流动方面有可压缩边界层理论;对于超声速流动,无粘流动所服从的方程是非线性双曲型偏微分方程。 在超声速流动中,基本的研究内容是压缩波、膨胀波、激波、普朗特-迈耶尔流动、锥型流,等等。主要的理论处理方法有超声速小扰动理论、特征线法和高速边界层理论等。跨声速无粘流动可分外流和内流两大部分,流动变化复杂,流动的控制方程为非线性混合型偏微分方程,从理论上求解困难较大。 高超声速流动的主要特点是高马赫数和大能量,在高超声速流动中,真实气体效应和激波与边界层相互干扰问题变得比较重要。高超声速流动分无粘流动和高超声速粘性流两大方面。 工业空气动力学主要研究在大气边界层中,风同各种结构物和人类活动间的相互作用,以及大气边界层内风的特性、风对建筑物的作用、风引起的质量迁移、风对运输车辆的作用和风能利用,以及低层大气的流动特性和各种颗粒物在大气中的扩散规律,特别是端流扩散的规律,等等。 空气动力学的研究方法 空气动力学的研究,分理论和实验两个方面。理论和实验研究两者彼此密切结合,相辅相成。理论研究所依据的一般原理有:运动学方面,遵循质量守恒定律;动力学方面,遵循牛顿第二定律;能量转换和传递方面,遵循能量守恒定律;热力学方面,遵循热力学第一和第二定律;介质属性方面,遵循相应的气体状态方程和粘性、导热性的变化规律,等等。 实验研究则是借助实验设备或装置,观察和记录各种流动现象,测量气流同物体的相互作用,发现新的物理特点并从中找出规律性的结果。由于近代高速电子计算机的迅速发展,数值计算在研究复杂流动和受力计算方面起着重要作用,高速电子计算机在实验研究中的作用也日益增大。因此,理论研究、实验研究、数值计算三方面的紧密结合是近代空气动力学研究的主要特征。 空气动力学研究的过程一般是:通过实验和观察,对流动现象和机理进行分析,提出合理的力学模型,根据上述几个方面的物理定律,提出描述流动的基本方程和定解条件;然后根据实验结果,再进一步检验理论分析或数值结果的正确性和适用范围,并提出进一步深入进行实验或理论研究的问题。如此不断反复、广泛而深入地揭示空气动力学问题的本质。 20世纪70年代以来,空气动力学发展较为活跃的领域是湍流、边界层过渡、激波与边界层相互干扰、跨声速流动、涡旋和分离流动、多相流、数值计算和实验测试技术等等。此外,工业空气动力学、环境空气动力学,以及考虑有物理化学变化的气体动力学也有很大的发展。
2023-08-15 14:45:362

气球升空和飞机升空的原理相同吗?试比较说明

不一样.气球升空是利用球内气体(如:氢气)密度小于空气密度,产生的浮力>自身重力而升空.而飞机是利用高速运动时作用在机体上下的压力差(这和浮力没关系,完全是运动产生的气流导致的)>重力飞起来的,这个可以用把纸条放在嘴边吹纸条会向上飘来大概做例子,具体的原理可以去看看流体力学相关书籍
2023-08-15 14:45:487

工业电风扇与普通电风扇的区别

工业电风扇,电机功率大送风量大。但是缺点很多:一是噪音太大:二费电多:三安全措施太差,特别家里有小孩子很危险,家用电风扇,防护措施比较好,省电,噪音小,实用性强综合还是家用电风扇强。以上针对家庭使用而言。
2023-08-15 14:46:084

为什么小鸟臂膀那么小,飞的却那么高?

翅膀小体重也相应的小,大自然造就的生灵自然生存。
2023-08-15 14:46:195

雾化风扇的原理是什么?有哪些牌子的雾化风扇可推荐?

原理:一般的是水经过加压,从一个很小的孔中喷出,形成很细小的雾状水滴,从风扇前部喷出,风扇吹出来的风使这些雾状水滴蒸发,由于水蒸发会吸收热量,所以会使吹出来的风变得更加凉爽。 至于有什么牌子的话,去京东或是天猫找找看吧
2023-08-15 14:30:042

项目管理历史

简述项目管理的发展历史 从古代到近代无数项目的成功建设说明项目管理实践历史悠久。 --1910年代,Henry Gantt发明了甘特图。 --1940年代,曼哈顿工程将项目管理侧重于计划和协调。 --1950年代,美国企业和军方相继开发出CPM、PERT、GERT等技术。 --1960年代前期,NASA在阿波罗计划中开发了“矩阵管理技术”。 WBS、EVM、PPBS以及绩效管理等相继出现。 --1965年,国际项目管理协会IPMA在欧洲瑞士成立。 --1969年,美国项目管理协会PMI 在美国宾州成立。 --1984年,PMI推出严格的、以考试为依据的专家资质认证制度PMP。 --1987年,PMI公布PMBOK研究报告(并于1996、2000、2004年分别修订)。 --1997年,ISO以PMBOK为框架颁布为ISO 10006 项目管理质量标准。 --1998年,IPMA推出ICB。 --1999年,PMP成为全球第一个获得ISO 9001认证的认证考试。 ( PMP如今已经被全球130多个国家引进和认可) --2000年,国家外国专家局引进PMBOK,成为PMI在华唯一一家负责PMP资格认证考试的组织机构和教育培训机构。 ---------------------------------------------------------------------- 一、 国际上项目管理的发展历程 现在通行的看法认为,项目管理是二战后的产物,主要是战后重建和冷战阶段为国防建设项目而创建的一种管理方法。 项目管理的发展基本上可以划分为两个阶段:80年代之前被称为传统的项目管理阶段,80年代之后被称为现代项目管理阶段。 1. 传统项目管理发展阶段 从四十年代中期到六十年代,项目管理主要是应用于发达国家的国防工程建设和工业/民用工程建设方面。 此时采用的传统项目管理方法主要是致力于项目的预算、规划和为达到项目目标而借用的一些一般运营管理的方法,在相对较小的范围内所开展的一种管理活动。当时的项目经理仅仅被看作是一个具体执行者,他们只是被动地接受一项给定的任务或工作,然后不断接受上级的指令,并根据指令去完成自己负责的项目。 从60年代起,国际上许多人对于项目管理产生了浓厚的兴趣。随后建立的两大国际性项目管理协会,即:以欧洲国家为主的国际项目管理协会(International Project Management Association--IPMA)和以美洲国家为首的美国项目管理协会(Project Management Institute--PMI),以及各国相继成立的项目管理协会,为推动项目管理的发展发挥了积极的作用,做出了卓越的贡献。 但是在这一传统项目管理阶段中,发达国家的国防部门对于项目管理的研究与开发占据了主导地位,他们创造的许多项目管理方法和工具一直沿用至今。例如,由美国空军最早开发的项目计划评审方法(Project Evaluation and Review Technique---PERT)、由美国国防部提出并推广的项目工期与造价管理规范(Cost / Schedule Control Systems Criteria--C/SCSC)等一大批项目管理的方法和工具现在仍然在广泛地使用。 2. 现代项目管理阶段 80年代之后项目管理进入现代项目管理阶段,随着全球性竞争的日益加剧,项目活动的日益扩大和更为复杂,项目数量的急剧增加,项目团队规模的不断扩大,项目相关利益者的冲突不断增加,降低项目成本的压力不断上升等一系列情况的出现,迫使作为项目业主/客户的一些 *** 部门与企业以及作为项目实施者的 *** 机构和企业先后投入了大量的人力和物力去研究和认识项目管理的基本原理,开发和使用项目管理的具体方法。特别是进入90年代以后,随着信息系统工程、网络工程、软件工程、大型建设工程以及高科技项目的研究与开发项目管理新领域的出现,促使项目管理在理论和方法等方面不断地发展和现代化,使得现代项目管理在这一时期获得了快速的发展和长足的进步。 同时,项目管理的应用领域在这一时期也迅速扩展到了社会生产与生活的各个领域和各行各业,而且项目管理在企业的战略发展和例外管理(这些都属于企业高层管理者所做的管理工作)中的作用越来越重要。例如,欧洲的ABB公司作为一个处于领先地位的全球性工程公司,其绝大部分工作都要求开展项目管理;IBM公司是世界上最大的计算机制造商之一,它公开承认项目管理是对其未来发展起关键作用的因素;摩托罗拉公司是世界上最成功的通讯设备和服务供应商之一,它在九十年代中期启动了一个旨在改善其项目管理能力的计划,这一计划使公司获得了很大的发展。 今天,项目已经成为我们社会创造精神财富、物质财富和社会福利的主要生产方式(以前主要是运营和生产),所以现代项目管理也就成了发展最快和使用最为重要的管理领域之一。 现代项目管理在这一阶段的高速发展主要表现在两个方面。 其一是项目管理的职业化发展,其二是项目管理的学术性发展。在职业化发展方面,这一阶段的项目管理逐步分工细划,形成了一系列的项目管理的专门职业。 例如,专业项目经理、造价工程师、建立工程师、营造师等等。同时,在这一阶段还诞生了一系列的项目管理职业资格认证体系。 例如,美国项目管理协会(PMI)和国际项目管理协会(IPMA)主办的项目管理专业人员职业资格认证,美国造价工程师协会(Association of American Cost Engineers—AACE)主办的造价工程师资格认证,英国皇。 项目管理专业的发展历史情况怎么样 1、学位设立项目管理是二战后期兴起的重大管理技术。 项目管理涉及三个不同层级:项目(Project)、项目集(Programme)、项目组合(Portfolio)。为适应社会集约化发展的迫切需要,1996年全球第一个项目管理硕士培养方案在美国诞生。 2、华威特色 2005年华威大学依托WBS(商学院)商科的优势地位(全英排名第二)及WMG在全球工程领域的杰出成就,有机融合MBA、MEM和MPAcc三大专业精华,突出方法、工具、原理、哲学提升管理效能,设立项目管理专业硕士,开创全球领先的项目管理硕士培养范式。 项目管理的历史及发展是怎样的 1。 历史事件现代项目管理通常被认为开始于20世纪40年代,比较典型的案例是美国军方研制原子弹的曼哈顿计划。但直到80年代,项目管理主要还限于建筑、国防、航天等少数行业。 我国和世界其他各国历史上都有许多成功的项目管理范例。项目管理的实践可以追溯到古代的一些主要基础设施如埃及金字塔、运河、大桥、欧洲的古教堂、道路、城堡等的建设之中。 对于项目管理的出现,有说服力的其他一些特别事件有: ■ 1917年,亨利甘特发明了著名的甘特图,使项目经理按日历制作任务图表,用于日常工作安排。 ■ 1957年,杜邦公司将关键路径法(CPM)应用与设备维修,使维修停工时间由125小时锐减为7小时。 ■ 1958年,在北极星导弹设计中,应用计划评审技术(PERT),将项目任务之间的关系模型化,将设计完成时间缩短了2年。 60年代著名的阿波罗登月计划,采用了网络计划技术使此耗资300亿美圆、2万家企业参加、40万人参与、700万个零部件的项目顺利完成。 2。职业发展进入20世纪70年代,各类项目日益复杂、建设规模日趋庞大,项目外部环境变化频繁,项目管理的应用也从传统的军事、航天逐渐拓广到建筑、石化、电力、水利等各个行业,项目管理成为 *** 和大企业日常管理的重要工具。 同时,随着信息技术的飞速发展,现代项目管理的知识体系和职业逐渐成型。 ■ 项目管理是二次大战以后发展起来的综合性管理科学分支。 ■ 1965年第一个专业性国际项目管理组织IPMA(International Project Management Association)在瑞士洛桑成立。 ■ 1969年,美国成立项目管理学会PMI(Project Management Institute)。 ■ 1976年,PMI在蒙特利尔会议开始制定项目管理的标准,形成项目管理职业雏形。 ■ 1984年美国项目管理协会推出项目管理知识体系PMBOK(Project Management Body of Knowledge)和基于PMBOK的项目管理专业证书PMP(project management professional certification)两项创新。 项目管理因此作为一门学科和专业化管理职业在全球得到迅速的推广和普及。 项目管理的历史 项目管理是第二次世界大战后期发展起来的重大新管理技术之一,最早起源于美国。 有代表性的项目管理技术比如关键性途径方法(CPM)和计划评审技术(PERT),甘特图(Gantt chart)的提出,它们是两种分别独立发展起来的技术。甘特图(Gantt chart)又叫横道图、条状图(Bar chart)。 它是在第一次世界大战时期发明的,以亨利·L·甘特先生的名字命名,他制定了一个完整地用条形图表进度的标志系统。其中CPM是美国杜邦公司和兰德公司于1957年联合研究提出,它假设每项活动的作业时间是确定值,重点在于费用和成本的控制。 PERT出现是在1958年,由美国海军特种计划局和洛克希德航空公司在规划和研究在核潜艇上发射“北极星”导弹的计划中首先提出。与CPM不同的是,PERT中作业时间是不确定的,是用概率的方法进行估计的估算值,另外它也并不十分关心项目费用和成本,重点在于时间控制,被主要应用于含有大量不确定因素的大规模开发研究项目。 随后两者有发展一致的趋势,常常被结合使用,以求得时间和费用的最佳控制。20世纪60年代,项目管理的应用范围也还只是局限于建筑、国防和航天等少数领域,但因为项目管理在美国的阿波罗登月项目中取得巨大成功,由此风靡全球。 国际上许多人开始对项目管理产生了浓厚的兴趣,并逐渐形成了两大项目管理的研究体系,其一是以欧洲为首的体系——国际项目管理协会(IPMA);另外是以美国为首的体系——美国项目管理协会(PMI)。在过去的30多年中,他们的工作卓有成效,为推动国际项目管理现代化发挥了积极地作用。 项目管理发展史研究专家以20世纪80年代为界把项目管理划分为两个阶段。项目管理(Project Managementpm)是美国最早的曼哈顿计划开始的名称.。 后由华罗庚教授50年代引进中国(由于历史原因叫统筹法和优选法)。台湾省叫项目专案。 在冷战的史普托尼克危机(苏联发射第一颗人造卫星)之前,项目管理还没有用做一个独立的概念。在危机之后,美国国防部需要加速军事项目的进展以及发明完成这个目标的新的工具(模型)。 在1958年,美国发明了计划评估和审查技术(PERT),作为的北极星导弹潜艇项目。与此同时, 杜邦公司发明了一个类似的模型成为关键路径方法(CPM)。 PERT 后来被工作分解结构(WBS)所扩展。军事任务的这种过程流和结构很快传播到许多私人企业中。 随着时间的推移,更多的指导方法被发明出来,这些方法可以用于形式上精确地说明项目是如何被管理的。这些方法包括项目管理知识体系(PMBOK),个体软件过程(PSP),团队软件过程(TSP),IBM全球项目管理方法(WWPMM),PRINCE2. 这些技术试图把开发小组的活动标准化,使其更容易地预测,管理和跟踪。 项目管理的批判性研究发现:许多基于PERT的模型不适合今天的多项目的公司环境. 这些模型大多数适合于大规模,一次性,非常规的项目中. 而当代管理中所有的活动都用项目术语表达。所以,为那些持续几个星期的“项目”(更不如说是任务)使用复杂的模型在许多情形下会导致不必要的代价和低可操作性。 因此,项目识别不同的轻量级的模型,比如软件开发的极限编程和Scrum技术。为其他类型项目而进行的极限编程方法的一般化被称为极限项目管理。
2023-08-15 14:30:041

黑暗荣耀第一季哪里下载

《黑暗荣耀》该剧讲述了曾在高中时期惨遭霸凌而退学的文同珢,在多年后向加害者和旁观者进行彻底而凄惨报复的故事。点击下方链接观看黑暗荣耀一二季链接:https://pan.baidu.com/s/1vKdyaobnwhT3kCN7BOejmQ提取码:b8g4分集剧情如下:第1集在黑夜与清晨交界的时刻,伊甸公寓的房东太太摘了一朵名为“恶魔的号角”的花欢迎文同珢入住,文同珢站在公寓天台盯着对面的豪宅别墅,豪宅的女主人正是高中时代霸凌文同珢的恶女之首朴涎镇。十八年前,以朴涎镇为首的五人帮,用电棒卷发器作人肉试温,被霸凌罩唤的文同珢全身烧烫伤,只因为是社会弱势没有靠山,官官相护的班导、主任到校长一面倒。满身皱皮的文同珢,愈合中的伤口不时撕裂又发早悔痒,生不如死的她,决定好好活着,在十八年后向恶霸五人帮复仇。第2集在文同珢退学后的某一天,文同珢又出现在体育馆,找恶霸五人帮,问朴涎镇的梦想是否当贤妻良母。文同垠因梦想而重生,宛如片头的禅绕画曼陀罗图腾,象征着世界的中心、复仇的起源,由中心点慢慢地向外扩散。到了成年,恶霸五人帮各有发展,但彼此的角色与位阶从未改变,不管谁穿上名牌绿色高跟鞋,都被说“这是朴涎镇的鞋子”,没人能晋身上流,即使是上流,还能分出高低,以至于全宰寯成了朴涎镇用完即抛的性玩具,而全宰寯只好在看门狗陆闷正孙明悟面前撒泼
2023-08-15 14:30:062

取名公司名称关于家具用品的 朗朗上口的家具城名字

对于2022年家居用品的企业,我们应该知道一个好的名字,他应该是具有灵动性的,所以我们在起名的时候可以加入一些水元素,给名字增添一种比较灵动的感觉,但是就是在起名的时候可以给名字整体一种波动的感觉,这样的话,家居品牌家居用品的名字能够更符合消费者个性的追求,以及名字好听的追求,这样往往能够更快的赢得人们的好感。个性名字推荐罗万、贸霸、易飞、胜双、润振、啸基霆川、仕微、硕复、凌扬、营立、达顺健利、霸韦、富华、超来、倍健、星系柏鸿、松晋、扬宇、优贝、永格、诺览巨润、立顿、精洲、吉彩、用时、顺圣格森、汉京、士泰、网复、广立、宇凡辰良、美启、磊顺、迪同、语相、越火盈欣、微福、越真、生精、森先、铭斯顿凌、宇霸、巨佩、领财、奇系、码傲星明、霆高、创览、克贵、发纳、月倍览事、茂识、安双、艾风、阳江、伟集环盈、裕跃、富丝、金安、诗仕、全宝春磊、艾晖、火振、智中、洲恒、清仕洁晶、阳全、梦亚、蓝纳、旭西、洁爱家具店名要符合风格消费者所喜欢的风格都是不一致的,因此每个家具店的风格都是不一样的,有些是属于现代风格,有些是属于古典风格,有些属于欧美风等等,现代风的家具店起名可以简洁一些的名字,欧美风的家具店就适合洋气的名字,古典风格的家具店适合起古典一些的名字,例如槿漫轩,雅居宜这种类似的名字,通过经营者所经营的家具店风格进行起名,这样不仅能方便客户选择,还有利于客源引进。定制家具名字举例推荐【森灵感】“森灵”这个名字给人一种纯天然的感觉,仿佛整个森林的精灵都在欢呼雀跃一样,迎面而来一种森林的清新味道,大气又单纯。现在很多家庭装修都开始走自然和简洁风,用一个天然的名字很容易吸引顾客的注意,获得他们的好感。【维格家】罗马尼亚裔法国小提琴家、指挥家山多尔·维格,外文名直译为“维格”,他是一个充满艺术气息的人。用“维格家”来做家具店名有一种非常典雅的感觉,让人感觉这家家具店的产品非常浪漫,简洁特别又大气。【莱克家】取自英文谐音“like”,有喜欢森爱的意思,非常洋气有国际范儿。“莱克家居”用作家具店名给人简单又直接的感觉,寓意能够受到大家的喜爱,广受欢迎,非常吉祥大气的名字。您还可以点击底部客服官网给您的宝宝起名,赐子千金不如赐子好名,很多家长都关注了我们,我们会根据宝宝出生年月日,为宝宝起一个带着一生好运的好名字:http://www.adxqd.com/qiming/
2023-08-15 14:30:061

谈论某人,英语怎么说啊?

We are talking about Jack.
2023-08-15 14:29:586

我没结婚 可以带环吗??

可以啊,
2023-08-15 14:29:5611

泰勒制科学管理是什么?

泰勒科学管理理论的核心内容是尽人皆知的,主要要探讨的是泰勒先生所采用的研究方法对管理学的贡献和重要意义。在我看来,理论是次要的,而方法则是无比重要的,理论可以过时,也可以被新理论代替,而方法则具有更多的生命力,能够对后继理论和实践提供更多指引,因而具有更加深远和根本的意义。 泰勒的成就十分巨大,总结起来,至少在以下几个方面的影响延续至今,成为现代管理理论的智慧根基。 一, 首先采用实验方法研究管理问题,开创实证式管理研究先河 泰勒不是坐在学院里进行饶有兴趣的逻辑性推论,而走下工厂,深入车间,做了大量著名的实验,短则一周数天,长则竟可长达26年如其金属切削实验。这就如同培根和伽利略首先在科学、哲学上引进实验方法,使得近代科学、哲学真正成为一门可以进入真正的科学层面一样,使得管理学由杂谈变成了一门真正的严肃严谨的真科学。而其实证方法,则为管理学研究开辟了一片无限广阔的新天地。 二, 开创单个或局部工作流程的分析,是流程/过程管理学的鼻祖 泰勒的创造性贡献还在于他首先选取整个企业经营管理的现场作业管理中的某一个局部,从小到大地来研究管理。这样一种方法与实证方法相配合,是一种归纳研究方法,即由许多具体案例或实验结果,归纳提升成为整体性结论。对于象管理学等应用性或实践性科学来讲,归纳法比演绎法具有更加突出的重要性。而其对单一或局部工作流程的动作研究和时间研究,合起来即为流程效率研究,更为后世所效法,成为研究和改进管理工作的主要方法。现在热门的公司流程再造,只不过是承接了泰勒先生的流风余韵。 三, 率先提出经验管理法可以为科学管理法所代替,从而开拓了管理的视野 泰勒先生的管理理论之所以被尊称为科学管理理论,原因在于他首次突破了管理研究的经验途径这一局限性视野,首次提出要以效率、效益更高的科学性管理,来取代传统小作坊师傅个人经验传带或个人自己积累经验的经验型管理。这就告诉我们,经验对于管理虽然是重要的基础性的,但却远非决定性的和唯一性的,任何工作和业务流程,通过科学的 讨,更能够接近并在一定程度上达到完美。从此,人们认识到在管理上引进科学研究方法的重要性和必要性。 四, 率先提出工作标准化思想,是标准化或基准化管理的创始人 泰勒以作业管理为核心的管理理论,其目的是为了达到现实生产条件下最大生产效率,但其研究成果却是以标准化,各个环节和要素的标准化为表现形式。这是一个很重要的标准量化管理的研究成果,开启了标准化管理的先河。现在的许多标准如ISO、GMP等等大量标准化管理体系,其沿用的仍然是我们老先生泰勒的思想方法和工作方法。标准化管理已经成为现代管理不仅仅是生产管理的一个普遍性核心构成部分。 五, 首次将管理者和被管理者的工作区分开来,管理首次被审视为一门可研究的科学 泰勒在工作和研究中认识到,强调分工和专业化对于提高生产效率是重要的,因此,他首先提出了管理者和被管理者的工作其实是不一样的。简单的说,管理者主要在计划,而被管理者主要在执行,另外,管理者还要进行例外管理。泰勒先生甚至设计出了一种职能工长制管理模式,以实现其管理理论。这模式可能已经不适用了,但他的思想仍然是活着的。把管理从生产中分离出来,是管理专业化、职业化的重要标志,管理因此被公认为一门需要独立研究的科学。 六, 首次提出管理转变必须考虑人性 在我们今天看来,泰勒的科学管理哲学并不是什么惊天动地的事。但对于泰勒本人和当时时代来说则恰恰就是这么一回事。泰勒自己宣称,“科学管理在实质上要求任何一个具体机构或机构中的工人及管理人员进行一场全面的心理革命,没有这样的心理革命,科学管理就不存在。”他说的不存在的意思是----不可能被正确理解、接受和很好地顺利实施。原因在于人们如果不能把思想从小农生产转变到工业化大生产的认识上来,劳资合作以便提高生产效率、提升双方整体福利的新措施就不可能实施。因此,泰勒考虑到了管理转变关系到人性的许多层面,他虽然没有展开深入研究,但他建议企业要考虑到各个层面人们的感受,尤其是强调工人要能够愉快地胜任新方法下的工作并获得更高报酬,这说明了泰勒虽然较多关心提高社会生产总效率问题,但并不是对工人就很残酷。 他只是一个管理学者,不是时代的救世主,而是救世主在工厂管理上的一个仆人,他已尽己所能。人的确是有灵魂不死的,许许多多象泰勒这样的先辈,将一直活在人们心中。让我们珍惜他们已为我们准备好的成果,并且怀着崇敬之心和对人类普遍的仁爱之心,继续为把人类社会改善各更加美好而奋斗。
2023-08-15 14:29:541