barriers / 阅读 / 详情

java 排列组合的01转换法的原理是啥啊

2023-08-24 12:34:23
共1条回复
可可

这个是个递归算法

公式是C(n, m) = C(n - 1, m) + C(n - 1, m - 1)

长为n,其中m个为1的序列,执行完毕共C(n, m)步

  1. 从开始执行直到第n位为1为止,这之前相当于把n-1的序列中移动m位,即C(n-1,m)

  2. 当第n位为1了,然后前面(n-1)位中包括m-1个1,把这m-1个数字从最左边移动到和第n位邻接。这个子问题是C(n-1,m-1)

这2步之后的状态就是将m个1移动到长n的序列的右端的状态。

即C(n, m) = C(n - 1, m) + C(n-1, m-1).这个就是组合数的地推公式

相关推荐

排列组合原理是什么?

公式:C(n,m)=A(n,m)/A(n,n)从上面的公式解释消序原理∵A(n,m)是从m元素中取n个元素的排列,相同元素由于顺序不同排列也不同。C(n,m)是从m元素中取n个元素的组合,由于不考虑顺序,相同元素只能组成一个组合。每个组合都对应A(n,n)种排列,∴C(n,m)=A(n,m)/A(n,n)(消序)。系数性质:⑴和首末两端等距离的系数相等;⑵当二项式指数n是奇数时,中间两项最大且相等;⑶当二项式指数n是偶数时,中间一项最大;⑷二项式展开式中奇数项和偶数项总和相同,都是2^(n-1);⑸二项式展开式中所有系数总和是2^n以上内容参考:百度百科-排列组合
2023-08-17 18:00:201

排列组合原理

1排列组合是什么? 我的理解: 排列和组合,这是两个东西 排列:有顺序一个的集合; 组合:没有顺序的一个集合。资料说,排列数和组合数是排列组合的基础。 求排列数有一个公式,求组合数也有一个公式。 排列: 排列就是有顺序的一队元素 排列数,就是从n个不同元素中取m个元素的所有排列的个数(m小于等于n),用p(n,m)表示; p(n,m)=n(n-1)(n-2)...(n-m+1)=n!/(n-m)!(规定0!=1) p代表排列,英文单词Permutation 我们只需要记住: n个元素取m个元素的排列数 直接套用公式即可: n的阶乘除以(n-m)的阶乘组合: 组合就是一堆没有顺序的元素。 组合数就是从n个元素中取m个元素的所有组合的个数,用C(n,m)表示 组合数的公式为:n阶乘除(n-m)的阶乘×m的阶乘: n!/(n-m)!*m! 另外也可以使用:p(n,m)/m! 排列n,m/m! 同时,组合数有个性质: c(n,m)=c(n,n-m)2它什么样?排列组合什么样? 有两大样: 1排列 有序,不同的元素合起来叫做排列 2组合 无序,不同的元素合起来叫做组合他们分别有一个基本概念: 排列数:n个元素中取m个元素的所有排列个数 公式为:p(n,m)=n!/(n-m)!组合数:n个元素中取m个元素的所有组合个数 公式:c(n,m)=n!/(n-m)!*m! 或 c(n,m)=p(n,m)/m!另外,组合有个性质: c(n,m)=c(n,n-m)3它有什么用? 用来算排列数、组合数啊。4我如何利用它? 再现实一点的用处,我具体想不出来,哦! 据算彩票中奖率 比如七星彩10个数字,7位数,排列 10的7次方=一千万分之一。下面是一点疑问: 为什么没有用上公式呢。 每次都有10个数字可以选择,不会因为上次你选了它,下次就不能选它。 7次,每次10种可能,相互乘积。 如何套用公式呢?N个元素取m个,的排列数 10个元素,取7个的排列数 604800 为什么不是一千万呢?
2023-08-17 18:00:301

排列组合原理

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化.由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论.然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。
2023-08-17 18:00:511

排列组合公式与原理

就相当于是数字相互组合,位置与数值的对应关系。排列组合问题就是选与放的关系而且与放的顺序有关
2023-08-17 18:01:152

排列组合公式的不同及其原理

相信你知道了乘法原理了吧?排列p(n,m)表示的是从n个值里取出m个值进行排列。1.组合:取法当然是分m步走了,第一步:从n个里去1个,有n种取法;第二次从剩下的n-1个里取1个,也就是n-1取法。……………………因此有n*(n-1)(n-2)……(n-m+1)中取法,这就是组合的计算公式。接下来对取得的m个值进行排列,这又是一个乘法原理的体现。将m个值取出1个排在第一位,显然有m种取法。在剩余的m-1个值里再取1个,则有m-1个取法,排在第二位……………………因此有m(m-1)(m-2)……1种排列方式。排列公式就是1*2*3*……n=n!组合公式显然就是n!/m!从而得出结论:c(n,m)=p(n,m)/m!********************************************************************************************以上是我自己组织语言表达的,如果仍然不懂的话,请参考百科知识:
2023-08-17 18:01:251

排列组合跟屁虫原理

加法原理和乘法原理,是排列组合中的二个基本原理,在解决计数问题中经常运用。把握这两个原理,并能正确区分这两个原理,至关重要。(一)加法原理如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。(二)乘法原理如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。
2023-08-17 18:01:471

求排列组合的展开公式的原理

1、排列的时候举个例子A(下角标为n,上角标为r)。意思是n个元素中取出r个进行全排列。可以这样理解 有r个空穴需要放着r个元素 有多少种方法。第一个空穴有n个选择, 第二个空穴有n-1个选择,所以有n!/(n-r)!。2、组合的时候举个例子C(下角标为n,上角标为r)。意思可以是有n个元素从中取出r个,注意这里不用进行排列,取出即达到目的。可以这样理解: //////按照前面的空穴解法: 排列有n!/(n-r)!但是进行了排序比如6个元素里面选了3个 排列有120种但是组合就不是了 取出一种组合 1 2 3 排列的方法有3!=6种所以组合有120/6=20//////////所以组合有n!/[(n-r)!*r!]
2023-08-17 18:02:201

请问排列组合A21和C21有什么区别?从原理上说?谢谢。

结果都是2,但原理不同,A21考虑了内部顺序,而C21指随机选出1个,因为选的是1个,1个东西内部是没有顺序的,所以结果相同。这样说听不懂的话,举例A52和C52,A52=20,C52=10,A52表示5个里选俩,但是谁是1号谁是2号是有区别的,而C52也表示5个里选俩,但排序是AB还是BA是无所谓的,把选出的AB当成一个整体,这就叫不考虑这个整体的内部顺序
2023-08-17 18:02:312

排列组合原理思维方法

排列组合原理思维方法如下:与同学合作学习,探究学习,自己自主学习。1、听老师的话,紧跟老师的步伐,高质量完成老师布置的任务。千万不要厌恶老师,和老师对着干。要学会包容老师,就是老师出点错也很正常。不要全盘否定。2、买个笔记本,专门收集错题。并坚持一个月回顾一遍错题。3、不要扣的太细,以题目会做为度。高考不是科研,以题目答案衡量你的成绩。你要体现自己的科研,到大学再去体现吧。4、以题目带知识点,这是一条捷径。5、要有好的精神状态,上课不能迷糊,一定要跟住老师的思路。6、不要总做难题,容易失去信心,不要盲目,要有学习计划,要有自己的目标,理科多做题。7、文科要多背背,课本不能丢,可以多与同学们交流,不要给自己太大的压力,顺其自然,适当的放松自己,听听音乐什么的。系数性质:⑴和首末两端等距离的系数相等;⑵当二项式指数n是奇数时,中间两项最大且相等;⑶当二项式指数n是偶数时,中间一项最大;⑷二项式展开式中奇数项和偶数项总和相同,都是2^(n-1);⑸二项式展开式中所有系数总和是2^n。
2023-08-17 18:02:551

如何学好排列组合?

高中的排列组合主要是选修2-3课本上的第一章 计数原理,其中第一节第二节是涉及高考中的排列组合问题,且主要以5分题的形式出现。对于怎么样去掌握排列组合问题,我的意见是 “掌握原理,运用思路,分析模型”。其中原理就是指分类加法技术原理与分步乘法技术原理,而需要同学们去积累的则是排列组合实际问题的模型。对于原理,很多同学都会轻视,认为这和排列组合有什么关系啊。其实并不是这样,其实解决排列组合的题目就是要把原理往实际问题中去套,当对很多问题没有思路的时候其实仔细考虑应用原理就可以突破题目。一、原理首先是课本的定义分类加法技数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。区别两种计数原理的方式就是看能否单独完成这个事件,二者均可就是加法原理,二者都要就是乘法原理二、思路1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事件的对立面,再用全部可能的总数减去对立面的个数即可。正难则反的道理就是这样。3、先取再排(先分组再排列):如果所排列的数并非所有的元素,就要讲过程拆分为两个阶段,可先将所需元素取出,然后再进行排列。先更到这里,然后再把插空捆绑分组涂色和错位排列都具体讲。三、原理1、捆绑法(整体法):当题目中有相邻元素时,可将相邻元素视为一个整体与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。例题 5个人排队,其中甲乙相邻,共有多少种不同的排法由于甲乙相邻讲甲乙视为整体 四个元素的全排列乘甲乙之间全排列。2、插空法:当题目中有不相邻元素时,则可考虑用剩余元素搭台,不相邻元素进行插空,再进行各自的排序注:(1)要注意插空的过程是否可以插在两边(2)要从题目中判断是否需要各自排序例题 6个人排队,其中甲乙不相邻,则共有多少种不同的排法3.错位排列排列好的n个元素,经过一次再排序后,每个元素都不在原来的位置上,则称为这n个元素的一个错位排列通俗的解释就是比如四个不同的茶杯,取下他们的杯盖再盖上,而每个杯盖都不对应于自己的杯子是错别排列一般老师会让同学们记住 3个元素的错位排列是2,4个元素的错位排列是9,5个元素的错位排列是44 这些都可以用穷举的办法数出来,但是我的同桌研究出了错位排列的递推公式。
2023-08-17 18:03:181

数学的排列组合中的缩倍法的原理是什么?

1231341241344343
2023-08-17 18:03:402

中学数学中的排列组合怎么算

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法. 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个 这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的. 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。 (二)每一步是向上还是向右,决定了不同的走法。 (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数, ∴ 本题答案为:=56。 2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合 例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换 ,共12种。 例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。 (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。 (一)从6双中选出一双同色的手套,有6种方法; (二)从剩下的十只手套中任选一只,有10种方法。 (三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法; (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。 例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。 分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有=90种。 例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法? 分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。 以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。 第一类:这两个人都去当钳工,有种; 第二类:这两人有一个去当钳工,有种; 第三类:这两人都不去当钳工,有种。 因而共有185种。 例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数? 分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。 抽出的三数含0,含9,有种方法; 抽出的三数含0不含9,有种方法; 抽出的三数含9不含0,有种方法; 抽出的三数不含9也不含0,有种方法。 又因为数字9可以当6用,因此共有2×(+)++=144种方法。 例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种。 分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有种停车方法。 3.特殊元素,优先处理;特殊位置,优先考虑 例9.六人站成一排,求 (1)甲不在排头,乙不在排尾的排列数 (2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数 分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。 第一类:乙在排头,有种站法。 第二类:乙不在排头,当然他也不能在排尾,有种站法, 共+种站法。 (2)第一类:甲在排尾,乙在排头,有种方法。 第二类:甲在排尾,乙不在排头,有种方法。 第三类:乙在排头,甲不在排头,有种方法。 第四类:甲不在排尾,乙不在排头,有种方法。 共+2+=312种。 例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能? 分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。 第一步:第五次测试的有种可能; 第二步:前四次有一件正品有中可能。 第三步:前四次有种可能。 ∴ 共有种可能。 4.捆绑与插空 例11. 8人排成一队 (1)甲乙必须相邻 (2)甲乙不相邻 (3)甲乙必须相邻且与丙不相邻 (4)甲乙必须相邻,丙丁必须相邻 (5)甲乙不相邻,丙丁不相邻 分析:(1)有种方法。 (2)有种方法。 (3)有种方法。 (4)有种方法。 (5)本题不能用插空法,不能连续进行插空。 用间接解法:全排列-甲乙相邻-丙丁相邻+甲乙相邻且丙丁相邻,共--+=23040种方法。 例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况? 分析:∵ 连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即。 例13. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种? 分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。 ∴ 共=20种方法。 4.间接计数法.(1)排除法 例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形? 分析:有些问题正面求解有一定困难,可以采用间接法。 所求问题的方法数=任意三个点的组合数-共线三点的方法数, ∴ 共种。 例15.正方体8个顶点中取出4个,可组成多少个四面体? 分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数, ∴ 共-12=70-12=58个。 例16. l,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数? 分析:由于底数不能为1。 (1)当1选上时,1必为真数,∴ 有一种情况。 (2)当不选1时,从2--9中任取两个分别作为底数,真数,共,其中log24=log39,log42=log93, log23=log49, log32=log94. 因而一共有53个。 (3)补上一个阶段,转化为熟悉的问题 例17. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢? 分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。因而有=360种。 (二)先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种, ∴ 共=120种。 例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法? 分析:首先不考虑男生的站位要求,共种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。因而有=9×8×7×6=3024种。 若男生从右至左按从高到矮的顺序,只有一种站法, 同理也有3024种,综上,有6048种。 例19. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法? 分析:先认为三个红球互不相同,共种方法。而由于三个红球所占位置相同的情况下,共有变化,因而共=20种。 5.挡板的使用 例20.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法? 分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式。因而共36种。 6.注意排列组合的区别与联系:所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题。 例21. 从0,l,2,……,9中取出2个偶数数字,3个奇数数字,可组成多少个无重复数字的五位数? 分析:先选后排。另外还要考虑特殊元素0的选取。 (一)两个选出的偶数含0,则有种。 (二)两个选出的偶数字不含0,则有种。 例22. 电梯有7位乘客,在10层楼房的每一层停留,如果三位乘客从同一层出去,另外两位在同一层出去,最后两人各从不同的楼层出去,有多少种不同的下楼方法? 分析:(一)先把7位乘客分成3人,2人,一人,一人四组,有种。 (二)选择10层中的四层下楼有种。 ∴ 共有种。 例23. 用数字0,1,2,3,4,5组成没有重复数字的四位数, (1)可组成多少个不同的四位数? (2)可组成多少个不同的四位偶数? (3)可组成多少个能被3整除的四位数? (4)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么? 分析:(1)有个。 (2)分为两类:0在末位,则有种:0不在末位,则有种。 ∴ 共+种。 (3)先把四个相加能被3整除的四个数从小到大列举出来,即先选 0,1,2,3 0,1,3,5 0,2,3,4 0,3,4,5 1,2,4,5 它们排列出来的数一定可以被3整除,再排列,有:4×()+=96种。 (4)首位为1的有=60个。 前两位为20的有=12个。 前两位为21的有=12个。 因而第85项是前两位为23的最小数,即为2301。 7.分组问题 例24. 6本不同的书 (1) 分给甲乙丙三人,每人两本,有多少种不同的分法? (2) 分成三堆,每堆两本,有多少种不同的分法? (3) 分成三堆,一堆一本,一堆两本,一堆三本,有多少种不同的分法? (4) 甲一本,乙两本,丙三本,有多少种不同的分法? (5) 分给甲乙丙三人,其中一人一本,一人两本,第三人三本,有多少种不同的分法? 分析:(1)有中。 (2)即在(1)的基础上除去顺序,有种。 (3)有种。由于这是不平均分组,因而不包含顺序。 (4)有种。同(3),原因是甲,乙,丙持有量确定。 (5)有种。 例25. 6人分乘两辆不同的车,每车最多乘4人,则不同的乘车方法为_______。 分析:(一)考虑先把6人分成2人和4人,3人和3人各两组。 第一类:平均分成3人一组,有种方法。 第二类:分成2人,4人各一组,有种方法。 (二)再考虑分别上两辆不同的车。 综合(一)(二),有种。 例26. 5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有________种. 分析:(一)先把5个学生分成二人,一人,一人,一人各一组。 其中涉及到平均分成四组,有=种分组方法。 (二)再考虑分配到四个不同的科技小组,有种, 由(一)(二)可知,共=240种。
2023-08-17 18:03:581

排列组合 分类计数原理 6个队伍每两队间赛两场,胜1一场3分,负-1分,平0分,有多少种得分情况?

6个队伍每两队间赛两场, 每个队伍要赛:2×5=10场 设其中胜了x场,负了y场,平了(10-x-y)场 那么得分P为:P=3x-y 当x=10,y=0时,P有最大值:P=3×10-0=30 当x=0,y=10时,P有最小值:P=3×0-10=-10 -10到30共有:30-(-10)+1=41个分值 其中只有29分、28分和25分不能得到 因此每个队伍有:41-3=38种得分情况 附,得分表: 30=3×10 29 28 27=3×9-0 26=3×9-1 25 24=3×8-0 23=3×8-1 22=3×8-2 21=3×7-0 20=3×7-1 19=3×7-2 18=3×6-0 17=3×6-1 16=3×6-2 15=3×5-0 14=3×5-1 13=3×5-2 12=3×4-0 11=3×4-1 10=3×4-2 9=3×3-0 8=3×3-1 7=3×3-2 6=3×2-0 5=3×2-1 4=3×2-2 3=3×1-0 2=3×1-1 1=3×1-2 0=3×0-0 -1=3×0-1 -2=3×0-2 -3=3×0-3 -4=3×0-4 -5=3×0-5 -6=3×0-6 -7=3×0-7 -8=3×0-8 -9=3×0-9 -10=3×0-10 一共有:30-(-10)+1=41种得分情况
2023-08-17 18:04:051

五个数共有多少种组合方式。

共有5种组合,用高中数学解是C[5,4]=5。用小学数学解是5个数分成2组,第一组有4个数,第二组有1个数,也就是说当第二组的1个数确定后,第一组数随着确定下来。由于第二组数共有5种组合,所以第一组数也有5种组合。扩展资料:排列组合的计算公式:排列组合常用的原理:加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。排列组合的难点1、从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;2、限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;3、计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;4、计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。参考资料来源:百度百科-排列组合
2023-08-17 18:04:121

什么时候用排列,什么时候用组合,请高人指教

无序排列,有序组合
2023-08-17 18:04:443

排列组合的基本计算方法有哪些?

cn2排列组合公式:C(n,2)=n!/(2!x(n-2)!)n!可以写成nx(n-1)x(n-2)!,所以上面的式子可以写成:(nx(n-1)x(n-2))/(2x(n-2)!)=n(n-1)/2cn2的意思是从n个中取2个无排列的个数,排列组合是组合学最基本的概念,排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。两个常用的排列基本计数原理及应用:1、加法原理和分类计数法:每一类中的每一种方法都可以独立地完成此任务,两类不同办法中的具体方法,互不相同(即分类不重),完成此任务的任何一种方法,都属于某一类(即分类不漏)。2、乘法原理和分步计数法:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务,各步计数相互独立。只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
2023-08-17 18:04:511

高中数学排列组合公式

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切。 排列组合定义 从n个不同元素中,任取m(m≤n,m与n均为自然数)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。 排列组合公式 A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)! C-Combination 组合数 A-Arrangement 排列数 n-元素的总个数 m-参与选择的元素个数 !-阶乘 排列组合基本计数原理 加法原理与分布计数法 1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。 2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。 3、分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。 乘法原理与分布计数法 1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。 2、合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
2023-08-17 18:05:591

c34怎么算,a34呢(排列组合)

C34=(4x3x2x1)/(3x2x1)=4A34=4x3x2x1=24Cmn指的是从n个不同元素中取出m个元素作为一组的组合种数,组合只关注取出的是什么,不考虑去除的顺序;Amn指的是从n个不同元素中取出m个元素按照一定顺序排成一列的排列种数;Amn=nx(n-1)x···x(n-m+1);Cmn=Amn/Amm=nx(n-1)x···x(n-m+1)/mx(m-1)x···x1。因此:C34=A34/A33=(4x3x2x1)/(3x2x1)=4;A34=4x3x2x1=24。扩展资料:排列组合基本计数原理1、加法原理:做一件事,完成它可以有n类办法,在组合恒等式(2张),第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,??,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+?+mn种不同方法;2、分类计数:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏);3、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×?×mn种不同的方法;4、分步计数:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
2023-08-17 18:06:161

行测指导:数学运算中的排列组合问题

排列组合问题作为数学运算中相对独立的一块,在公务员考试中的出场率颇高,题量一般在一到两道,近年国考这部分题型的难度逐渐在加大,解题方法也越来越多样化,所以在掌握了基本方法原理的基础上,还要求我们熟悉主要解题思想。 「基本原理」 加法原理:完成一件事,有N种不同的途径,而每种途径又有多种可能方法。那么,完成这件事就需要把这些种可能的做法加起来; 乘法原理: 完成一件事需要n个步骤,每一步分别有m1,m2,…,mn种做法。那么完成这件事就需要::m1×m2×…×mn种不同方法。 「排列与组合」 排列:从n个不同元素中,任取m( )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列 组合:从n个不同元素种取出m( )个元素拼成一组,称为从n个不同元素取出m个元素的一个组合 「排列和组合的区别」 组合是从n个不同的元素种选出m个元素,有多少种不同的选法。只是把m个元素选出来,而不考虑选出来的这些元素的顺序;而排列不光要选出来,还要把选出来的元素按顺序排上,也就是要考虑选出元素的顺序。所以从这个角度上说,组合数一定不大于排列数。 「特殊解题方法」 解决排列组合问题有几种相对比较特殊的方法:插空法,插板法。以下逐个说明: (一)插空法 这类问题一般具有以下特点:题目中有相对位置不变的元素,不妨称之为固定元素,也有相对位置有变化的元素,称之为活动元素,而要求我们做的就是把这些活动元素插到固定元素形成的空中。举例说明: 例题1 :一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法? A.20 B.12 C.6 D.4 解法1:这里的“固定元素”有3个,“活动元素”有两个,但需要注意的是,活动元素本身的顺序问题,在此题中: 1)。当两个新节目挨着的时候:把这两个挨着的新节目看成一个(相当于把它们捆在一起,注意:捆在一起的这两个节目本身也有顺序)放到“固定元素”形成的空中,有:C41×2=8 种方法。 2)。当两个节目不挨着的时候:此时变成一个排列问题,即从四个空中任意选出两个按顺序放两个不同的节目,有:P42=12种方法。 综上所述,共有12+8=20种。 解法2:分部解决。1)可以先插入一个节目,有4种办法; 2)然后再插入另一个节目,这时第一次插入的节目也变成“固定元素”故共有5个空可供选择; 应用乘法原理:4×5=20种 例题2. 小明家住二层,他每次回家上楼梯时都是一步迈两级或三级台阶。已知相邻楼层之间有16级台阶,那么小明从一层到二层共有多少种不同的走法? A.54 B.64 C.57 D.37 解法一:列表解题,第四个数=第一个数+第二个数。 台阶 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 走法 0 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37 解法二:插空法解题:考虑走3级台阶的次数: 1)有0次走3级台阶(即全走2级),那么有1种走法; 2)有1次走三级台阶。(不可能完成任务); 3)有两次走3级台阶,则有5次走2级台阶: (a)两次三级台阶挨着时:相当于把这两个挨着的三级台阶放到5个两级台阶形成的空中,有C61=6种走法; (b)两次三级不挨着时:相当于把这两个不挨着的三级台阶放到5个两级台阶形成的空中,有C62=15种走法。 4)有3次(不可能) 5)有4次走3级台阶,则有2次走两级台阶,互换角色,想成把两个2级台阶放到3级台阶形成得空中,同(3)考虑挨着和不挨着两种情况有C51+C52=15种走法; 6)有5次(不可能) 故总共有:1+6+15+15=37种。 (二)。 插板法: 一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。 举例说明: 例题1. 把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法? 解析: 此题的想法即是插板思想:在20电脑内部所形成的19个空中任意插入17个板,这样即把其分成18份,那么共有: C1917=C192=171 种。 Eg2.有10片药,每天至少吃1粒,直到吃完,共有多少种不同吃法? 解法1:1天吃完:有C90=1种; 2天吃完:有C91=9种; 10天吃完:有C99=1种; 故共有:C90+C91+…+C99=(1+1)9=512种。 解法2:10台电脑内部9个空,每个孔都可以选择插板或者不插板,即每个孔有两种选择,共有9个空,共有29=512种。 这里只讨论了排列组合中相对比较特殊的两种方法,至于其它问题可参见中公网的其它书籍,这里不再赘述。 「排列组合在其他题型中的应用」 例题。学校准备了1152块正方形彩板,用它们拼成一个长方形,有多少种不同的拼法? A.52 B.36 C.28 D.12 解法一:本题实际上是想把1152分解成两个数的积,则1152=1×1152=2×576=3×384=4×288=6×192=8×144=9×128=12×96=16×72=18×64=24×48=32×36,故有12种不同的拼法。 解法二:(用排列组合知识求解) 由1152=27×32,那么现在我们要做的就是把这7个2和2个3分成两部分,当分配好时,那么长方形的长和宽也就固定了。 具体地: 1)当2个3在一起的时候,有8种分配方法(从后面有0个2一直到7个2); 2)当两个3不在一起时,有4种分配方法,分别是一个3后有0,1,2,3个2.故共有8+4=12种。 解法三:若1152=27×32,那么1152的所有乘积为1152因数的个数为(7+1)×(2+1)=24个,每两个一组,故共有24÷2=12组。
2023-08-17 18:06:271

基本计数原理与排列,组合有什么关系

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
2023-08-17 18:07:251

排列组合的乘法原理是怎么来的?(我知道乘法原理具体是什么,怎么用,但不知道为什么要乘起来 求解)

乘法原理是一个分步的过程
2023-08-17 18:07:351

计数原理与排列组合

1).五书选二分二人:C(2/5)C(1/2)=(5x4/2)2=5x4=20。2).五书选四为C(4/5),一人四书选二为C(2/4),剩下全归另一人,得C(4/5)C(2/4)=C(1/5)(4x3/2)=5x2x3=30。
2023-08-17 18:07:421

如何学好排列组合?

多练习
2023-08-17 18:07:535

排列组合中的消序原理是什么?

在使用分步计数原理时,我们的分不是有序的,所以再用排列就可能重复. 比如:从4男3女中选出3人,要求有男有女,不同的方法数. 错解:4男3女中各选一人,剩余的5人再选一人,得到4*3*5=60; 正解:分成两类:选2男1女和选2女一男,方法为:(C4 2)*3+(C3 2)*4=30 注意:分类准确可以避免. 在平均分组时,使用组合可能重复. 比如:把三支笔平均分成三组. 错解:(C3 1)*(C2 1)*(C1 1)=6 正解:(C3 1)*(C2 1)*(C1 1)/(A3 3)=1` 相信得1不会难理解.从中注意:平均分组,平均分n组就要除以(An n) 再例,4支笔平均分成两组方法数为:(C4 2)/(A2 2)=3
2023-08-17 18:08:284

排列组合的除序原理

消序法往往用于解决一些顺序固定了的排列组合问题。比如4个男生,3个女生站成一排。三个女生的顺序一定,共多少种排法?这个问题的答案是a7.7/a3.3用了消序法。再比如说这道题"5个人站一排,甲总站在乙的右侧,有多少种站法"..用消序法就是a5.5/a2.2...a2.2指的是不是甲乙两人自己的排序方法数。因为甲乙排序固定,固用来消序法。
2023-08-17 18:08:382

排列组合中的消序原理是什么?

公式:C(n,m)=A(n,m)/A(n,n) 从上面的公式解释消序原理 ∵A(n,m)是从m元素中取n个元素的排列,相同元素由于顺序不同排列也不同. C(n,m)是从m元素中取n个元素的组合,由于不考虑顺序,相同元素只能组成一个组合.每个组合都对应A(n,n)种排列,∴C(n,m)=A(n,m)/A(n,n)(消序)
2023-08-17 18:08:481

排列组合中的消序原理是什么?

公式:C(n,m)=A(n,m)/A(n,n)从上面的公式解释消序原理∵A(n,m)是从m元素中取n个元素的排列,相同元素由于顺序不同排列也不同。C(n,m)是从m元素中取n个元素的组合,由于不考虑顺序,相同元素只能组成一个组合。每个组合都对应A(n,n)种排列,∴C(n,m)=A(n,m)/A(n,n)(消序)
2023-08-17 18:08:581

排列组合最短路径问题的原理

变式。在数学计算当中,排列组合最短路径问题的原理,是可以以街道、胡同变式。排列,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列。
2023-08-17 18:09:061

排列组合的除序原理

* 回复内容中包含的链接未经审核,可能存在风险,暂不予完整展示! 排列组合http://baike.b***.com/view/738955.htm 排列与组合全集(精讲) http://baike.b***.com/view/2557836.htm 排列组合例题精选 http://wenku.b***.com/view/4b3dd7da50e2524de5187e26.ht
2023-08-17 18:09:292

排列组合怎么算

排列:A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合:C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!例如:A(4,2)=4!/2!=4*3=12C(4,2)=4!/(2!*2!)=4*3/(2*1)=6扩展资料:排列组合的基本计数原理:1、加法原理和分类计数法加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。2、乘法原理和分步计数法乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。与后来的离散型随机变量也有密切相关。
2023-08-17 18:09:391

数学的排列组合中的缩倍法的原理是什么?

排列与组合的区别是:组合只用选出来,不用排顺序,比如:从a,b,c,d四个字母中选三个的组合数是C4中取3个,有4种方法,而排列有A4中取3,有24种方法,这24种方法的由来就是:先4中取3个组合起来有C4中取3个,有4种方法,然后再将取出的3个全排列(每一种情况都要全排),有A3中取3等于6种,所以有4*6=24种方法,所以在有些题目中,某些元素的顺序是固定的时候(排列方法只有一种),本来不需要排序的而排了顺序,就必须除掉(乘法原理的反过程)。注意除的时候不是除以组数,而是除以取出的元素个数的全排列,比如:这里如果不需要排序,就要除以A3,3。你仔细思考一下,不懂再问吧!希望能帮到你
2023-08-17 18:09:551

排列组合

.....找书看看吧,
2023-08-17 18:10:064

数学如何做排列组合的题啊 ~~屡做屡错!!求解题思想!!!!!!!!!!!!!!!!!!!!!!!!!!!

排列组合要抓住两个思想:分类原理和分步原理。理解好何时分类何时分步就好办了。要求先后顺序的用排列,只需分组不许进行组内排队的就用组合。照这个想法多数题都灵的,不会的再发上来,我给你讲。
2023-08-17 18:11:571

5个人4个红球3个白球一共可以组合多少种排列组合。

假定白球和红球都是5个。每个人都有2种选择,有2^5=32种情形。5个都选择红球的情形有1种,需要减除;5个都选择白球的情形有1种,需要减除;4个选择白球的情形,等同于1个选择红球的情形,有5种,需要减除。因此,一共有 32-1-1-5 = 25种。~~~~~~~~~~~~~~~~~~~~~~~~具体可以编程或者人工枚举。结果如下:RRWWW;RWRWW;WRRWW;RRRWW;RWWRW;WRWRW;RRWRW;WWRRW;RWRRW;WRRRW;RRRRW;RWWWR;WRWWR;RRWWR;WWRWR;RWRWR;WRRWR;RRRWR;WWWRR;RWWRR;WRWRR;RRWRR;WWRRR;RWRRR;WRRRR。一共25个。
2023-08-17 18:12:052

中学数学中的排列组合怎么算

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法. 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个 这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的. 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力. 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个. 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题. 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180. 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图.若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步. (二)每一步是向上还是向右,决定了不同的走法. (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右. 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数, ∴ 本题答案为:=56. 2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合 例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种. 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法. 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换 ,共12种. 例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________. (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决. (一)从6双中选出一双同色的手套,有6种方法; (二)从剩下的十只手套中任选一只,有10种方法. (三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法; (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种. 例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______. 分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有=90种. 例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工.现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法? 分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一. 以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准. 第一类:这两个人都去当钳工,有种; 第二类:这两人有一个去当钳工,有种; 第三类:这两人都不去当钳工,有种. 因而共有185种. 例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数? 分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类. 抽出的三数含0,含9,有种方法; 抽出的三数含0不含9,有种方法; 抽出的三数含9不含0,有种方法; 抽出的三数不含9也不含0,有种方法. 又因为数字9可以当6用,因此共有2×(+)++=144种方法. 例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种. 分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有种停车方法. 3.特殊元素,优先处理;特殊位置,优先考虑 例9.六人站成一排,求 (1)甲不在排头,乙不在排尾的排列数 (2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数 分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类. 第一类:乙在排头,有种站法. 第二类:乙不在排头,当然他也不能在排尾,有种站法, 共+种站法. (2)第一类:甲在排尾,乙在排头,有种方法. 第二类:甲在排尾,乙不在排头,有种方法. 第三类:乙在排头,甲不在排头,有种方法. 第四类:甲不在排尾,乙不在排头,有种方法. 共+2+=312种. 例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止.若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能? 分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成. 第一步:第五次测试的有种可能; 第二步:前四次有一件正品有中可能. 第三步:前四次有种可能. ∴ 共有种可能. 4.捆绑与插空 例11. 8人排成一队 (1)甲乙必须相邻 (2)甲乙不相邻 (3)甲乙必须相邻且与丙不相邻 (4)甲乙必须相邻,丙丁必须相邻 (5)甲乙不相邻,丙丁不相邻 分析:(1)有种方法. (2)有种方法. (3)有种方法. (4)有种方法. (5)本题不能用插空法,不能连续进行插空. 用间接解法:全排列-甲乙相邻-丙丁相邻+甲乙相邻且丙丁相邻,共--+=23040种方法. 例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况? 分析:∵ 连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题.另外没有命中的之间没有区别,不必计数.即在四发空枪之间形成的5个空中选出2个的排列,即. 例13. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种? 分析:即关掉的灯不能相邻,也不能在两端.又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯. ∴ 共=20种方法. 4.间接计数法.(1)排除法 例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形? 分析:有些问题正面求解有一定困难,可以采用间接法. 所求问题的方法数=任意三个点的组合数-共线三点的方法数, ∴ 共种. 例15.正方体8个顶点中取出4个,可组成多少个四面体? 分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数, ∴ 共-12=70-12=58个. 例16. l,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数? 分析:由于底数不能为1. (1)当1选上时,1必为真数,∴ 有一种情况. (2)当不选1时,从2--9中任取两个分别作为底数,真数,共,其中log24=log39,log42=log93, log23=log49, log32=log94. 因而一共有53个. (3)补上一个阶段,转化为熟悉的问题 例17. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢? 分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数.因而有=360种. (二)先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种, ∴ 共=120种. 例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法? 分析:首先不考虑男生的站位要求,共种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次.因而有=9×8×7×6=3024种. 若男生从右至左按从高到矮的顺序,只有一种站法, 同理也有3024种,综上,有6048种. 例19. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法? 分析:先认为三个红球互不相同,共种方法.而由于三个红球所占位置相同的情况下,共有变化,因而共=20种. 5.挡板的使用 例20.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法? 分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式.因而共36种. 6.注意排列组合的区别与联系:所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题. 例21. 从0,l,2,……,9中取出2个偶数数字,3个奇数数字,可组成多少个无重复数字的五位数? 分析:先选后排.另外还要考虑特殊元素0的选取. (一)两个选出的偶数含0,则有种. (二)两个选出的偶数字不含0,则有种. 例22. 电梯有7位乘客,在10层楼房的每一层停留,如果三位乘客从同一层出去,另外两位在同一层出去,最后两人各从不同的楼层出去,有多少种不同的下楼方法? 分析:(一)先把7位乘客分成3人,2人,一人,一人四组,有种. (二)选择10层中的四层下楼有种. ∴ 共有种. 例23. 用数字0,1,2,3,4,5组成没有重复数字的四位数, (1)可组成多少个不同的四位数? (2)可组成多少个不同的四位偶数? (3)可组成多少个能被3整除的四位数? (4)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么? 分析:(1)有个. (2)分为两类:0在末位,则有种:0不在末位,则有种. ∴ 共+种. (3)先把四个相加能被3整除的四个数从小到大列举出来,即先选 0,1,2,3 0,1,3,5 0,2,3,4 0,3,4,5 1,2,4,5 它们排列出来的数一定可以被3整除,再排列,有:4×()+=96种. (4)首位为1的有=60个. 前两位为20的有=12个. 前两位为21的有=12个. 因而第85项是前两位为23的最小数,即为2301. 7.分组问题 例24. 6本不同的书 (1) 分给甲乙丙三人,每人两本,有多少种不同的分法? (2) 分成三堆,每堆两本,有多少种不同的分法? (3) 分成三堆,一堆一本,一堆两本,一堆三本,有多少种不同的分法? (4) 甲一本,乙两本,丙三本,有多少种不同的分法? (5) 分给甲乙丙三人,其中一人一本,一人两本,第三人三本,有多少种不同的分法? 分析:(1)有中. (2)即在(1)的基础上除去顺序,有种. (3)有种.由于这是不平均分组,因而不包含顺序. (4)有种.同(3),原因是甲,乙,丙持有量确定. (5)有种. 例25. 6人分乘两辆不同的车,每车最多乘4人,则不同的乘车方法为_______. 分析:(一)考虑先把6人分成2人和4人,3人和3人各两组. 第一类:平均分成3人一组,有种方法. 第二类:分成2人,4人各一组,有种方法. (二)再考虑分别上两辆不同的车. 综合(一)(二),有种. 例26. 5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有________种. 分析:(一)先把5个学生分成二人,一人,一人,一人各一组. 其中涉及到平均分成四组,有=种分组方法. (二)再考虑分配到四个不同的科技小组,有种, 由(一)(二)可知,共=240种.
2023-08-17 18:12:221

排列组合常用方法总结

排列组合常用方法总结   总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可以使我们更有效率,让我们一起认真地写一份总结吧。总结怎么写才能发挥它的作用呢?以下是我精心整理的排列组合常用方法总结,欢迎阅读与收藏。    一、排列组合部分是中学数学中的难点之一,原因在于   (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;   (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;   (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;   (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。    二、两个基本计数原理及应用   (1)加法原理和分类计数法   1.加法原理   2.加法原理的集合形式   3.分类的要求   每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)   (2)乘法原理和分步计数法   1.乘法原理   2.合理分步的要求   任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同   [例题分析]排列组合思维方法选讲   1.首先明确任务的意义   例1。从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。   分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。   设a,b,c成等差,∴ 2b=a+c,可知b由a,c决定,   又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。   例2。某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?   分析:对实际背景的分析可以逐层深入   (一)从M到N必须向上走三步,向右走五步,共走八步。   (二)每一步是向上还是向右,决定了不同的走法。   (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。   从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,   ∴本题答案为:=56。   2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合   例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。   分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。   第一类:A在第一垄,B有3种选择;   第二类:A在第二垄,B有2种选择;   第三类:A在第三垄,B有一种选择,   同理A、B位置互换,共12种。   例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。   (A)240(B)180(C)120(D)60   分析:显然本题应分步解决。   (一)从6双中选出一双同色的手套,有种方法;   (二)从剩下的十只手套中任选一只,有种方法。   (三)从除前所涉及的两双手套之外的八只手套中任选一只,有种方法;   (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。   例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。   分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有=90种。   例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法?   分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。   以两个全能的工人为分类的"对象,考虑以他们当中有几个去当钳工为分类标准。   第一类:这两个人都去当钳工,有种;   第二类:这两人有一个去当钳工,有种;   第三类:这两人都不去当钳工,有种。   因而共有185种。   例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数?   分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。   抽出的三数含0,含9,有种方法;   抽出的三数含0不含9,有种方法;   抽出的三数含9不含0,有种方法;   抽出的三数不含9也不含0,有种方法。   又因为数字9可以当6用,因此共有2×(+)++=144种方法。   例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种。   分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有种停车方法。   3.特殊元素,优先处理;特殊位置,优先考虑   例9.六人站成一排,求   (1)甲不在排头,乙不在排尾的排列数   (2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数   分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。   第一类:乙在排头,有种站法。   第二类:乙不在排头,当然他也不能在排尾,有种站法,   共+种站法。   (2)第一类:甲在排尾,乙在排头,有种方法。   第二类:甲在排尾,乙不在排头,有种方法。   第三类:乙在排头,甲不在排头,有种方法。   第四类:甲不在排尾,乙不在排头,有种方法。   共+2+=312种。   例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能?   分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。   第一步:第五次测试的有种可能;   第二步:前四次有一件正品有中可能。   第三步:前四次有种可能。   ∴共有种可能。   4.捆绑与插空   例11。 8人排成一队   (1)甲乙必须相邻(2)甲乙不相邻   (3)甲乙必须相邻且与丙不相邻(4)甲乙必须相邻,丙丁必须相邻   (5)甲乙不相邻,丙丁不相邻   分析:(1)有种方法。   (2)有种方法。   (3)有种方法。   (4)有种方法。   (5)本题不能用插空法,不能连续进行插空。   用间接解法:全排列—甲乙相邻—丙丁相邻+甲乙相邻且丙丁相邻,共——+=23040种方法。   例12。某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?   分析:∵连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即。   例13。马路上有编号为l,2,3,……,10十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?   分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。   ∴共=20种方法。   4.间接计数法。(1)排除法   例14。三行三列共九个点,以这些点为顶点可组成多少个三角形?   分析:有些问题正面求解有一定困难,可以采用间接法。   所求问题的方法数=任意三个点的组合数—共线三点的方法数,   ∴共种。   例15.正方体8个顶点中取出4个,可组成多少个四面体?   分析:所求问题的方法数=任意选四点的组合数—共面四点的方法数,   ∴共—12=70—12=58个。   例16。 l,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数?   分析:由于底数不能为1。   (1)当1选上时,1必为真数,∴有一种情况。   (2)当不选1时,从2——9中任取两个分别作为底数,真数,共,其中log24=log39,log42=log93,log23=log49,log32=log94。   因而一共有53个。   (3)补上一个阶段,转化为熟悉的问题   例17。六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法?如果要求甲乙丙按从左到右依次排列呢?   分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。因而有=360种。   (二)先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种,∴共=120种。   例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法?   分析:首先不考虑男生的站位要求,共种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。因而有=9×8×7×6=3024种。   若男生从右至左按从高到矮的顺序,只有一种站法,同理也有3024种,综上,有6048种。   例19。三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法?   分析:先认为三个红球互不相同,共种方法。而由于三个红球所占位置相同的情况下,共有变化,因而共=20种。   5.挡板的使用   例20.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?   分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式。因而共36种。   6.注意排列组合的区别与联系:所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题。   例21。从0,l,2,……,9中取出2个偶数数字,3个奇数数字,可组成多少个无重复数字的五位数?   分析:先选后排。另外还要考虑特殊元素0的选取。   (一)两个选出的偶数含0,则有种。   (二)两个选出的偶数字不含0,则有种。   例22。电梯有7位乘客,在10层楼房的每一层停留,如果三位乘客从同一层出去,另外两位在同一层出去,最后两人各从不同的楼层出去,有多少种不同的下楼方法?   分析:(一)先把7位乘客分成3人,2人,一人,一人四组,有种。   (二)选择10层中的四层下楼有种。   ∴共有种。   例23。用数字0,1,2,3,4,5组成没有重复数字的四位数,   (1)可组成多少个不同的四位数?   (2)可组成多少个不同的四位偶数?   (3)可组成多少个能被3整除的四位数?   (4)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么?   分析:(1)有个。   (2)分为两类:0在末位,则有种:0不在末位,则有种。   ∴共+种。   (3)先把四个相加能被3整除的四个数从小到大列举出来,即先选   0,1,2,3   0,1,3,5   0,2,3,4   0,3,4,5   1,2,4,5   它们排列出来的数一定可以被3整除,再排列,有:4×()+=96种。   (4)首位为1的有=60个。   前两位为20的有=12个。   前两位为21的有=12个。   因而第85项是前两位为23的最小数,即为2301。   7.分组问题   例24。 6本不同的书   (1)分给甲乙丙三人,每人两本,有多少种不同的分法?   (2)分成三堆,每堆两本,有多少种不同的分法?   (3)分成三堆,一堆一本,一堆两本,一堆三本,有多少种不同的分法?   (4)甲一本,乙两本,丙三本,有多少种不同的分法?   (5)分给甲乙丙三人,其中一人一本,一人两本,第三人三本,有多少种不同的分法?   分析:(1)有中。   (2)即在(1)的基础上除去顺序,有种。   (3)有种。由于这是不平均分组,因而不包含顺序。   (4)有种。同(3),原因是甲,乙,丙持有量确定。   (5)有种。   例25。 6人分乘两辆不同的车,每车最多乘4人,则不同的乘车方法为_______。   分析:(一)考虑先把6人分成2人和4人,3人和3人各两组。   第一类:平均分成3人一组,有种方法。   第二类:分成2人,4人各一组,有种方法。   (二)再考虑分别上两辆不同的车。   综合(一)(二),有种。   例26。 5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有________种。   分析:(一)先把5个学生分成二人,一人,一人,一人各一组。   其中涉及到平均分成四组,有=种分组方法。   (二)再考虑分配到四个不同的科技小组,有种,   由(一)(二)可知,共=240种。 ;
2023-08-17 18:12:301

排列组合怎么计数?

排列:A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合:C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!例如:A(4,2)=4!/2!=4*3=12C(4,2)=4!/(2!*2!)=4*3/(2*1)=6扩展资料:排列组合的基本计数原理:1、加法原理和分类计数法加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。2、乘法原理和分步计数法乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。与后来的离散型随机变量也有密切相关。
2023-08-17 18:12:581

排列组合中的“元素” 相同和不同的问题如何处理

 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.   (一)两个基本原理是排列和组合的基础   (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.   (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.   这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.   这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.   (二)排列和排列数   (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.   从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.   (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列   当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!   (三)组合和组合数   (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合.   从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.   (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个   这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.
2023-08-17 18:13:141

5个数,4个数为一组,共有多少种组合

共有5种组合,用高中数学解是C[5,4]用小学数学解是5个数分成2组,第一组有4个数,第二组有1个数也就是说当第二组的1个数确定后,第一组数随着确定下来。由于第二组数共有5种组合,所以第一组数也有5种组合
2023-08-17 18:13:313

c43排列组合公式是什么?

C(4, 3)表示从4个元素中选3个元素进行组合的方式的数量。计算C(4, 3)可以使用组合公式:C(n, k) = n! / (k!(n-k)!)将n = 4,k = 3代入公式,计算得到:C(4, 3) = 4! / (3!(4-3)!) = 4! / (3! × 1!) = (4 × 3 × 2!) / (1 × 2!) = 4因此,C(4, 3)等于4。换句话说,从4个元素中选取3个元素进行组合的方式有4种。
2023-08-17 18:13:474

高二数学排列组合我学不会

其实排列组合在高中知识中是非常简单的,所以你不用害怕。  排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.   (一)两个基本原理是排列和组合的基础   (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.   (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.   这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.   这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.   (二)排列和排列数   (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.   从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.   (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列   当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n!   (三)组合和组合数   (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合.   从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.   (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个   这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.  二、两个基本计数原理及应用   (1)加法原理和分类计数法   1.加法原理   2.加法原理的集合形式   3.分类的要求   每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)   (2)乘法原理和分步计数法   1.乘法原理   2.合理分步的要求   任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 以上是排列组合的基本概念,你先看明白,不要怕多,其实很简单,下面是我给你找到几道题,你可以尝试着做一下,不懂可以问我。1.首先明确任务的意义   例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。   分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。   设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定,   又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。   例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?   分析:对实际背景的分析可以逐层深入   (一)从M到N必须向上走三步,向右走五步,共走八步。   (二)每一步是向上还是向右,决定了不同的走法。   (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。   从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,   ∴ 本题答案为:=56。   2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合   例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。   分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。   第一类:A在第一垄,B有3种选择;   第二类:A在第二垄,B有2种选择;   第三类:A在第三垄,B有一种选择,   同理A、B位置互换 ,共12种。 试一试吧,加油!
2023-08-17 18:14:211

高中数学有排列组合吗 什么是排列组合

有排列是要顺序的,组合就是随机组合。比如说,7人排队,随即人数,就要用组合,按高低排,随机人数,就要用排列。建议你去网上下点课件来看一下。
2023-08-17 18:14:312

省考行测:数量关系排列组合问题?

2015年,国家公务员考试城市数量关系为10题,省级数量关系为15题
2023-08-17 18:14:401

第二章 排列组合

设集合S的 一个划分 即为S的子集的集合 ,使得S的每一个元素恰好是这些子集之一的元素: 子集 称为该划分的部分。 集合S的元素个数表示为 , 又称之为S的大小。 设集合S划分为部分 。则S的元素个数可以通过找出它的每一个划分的个数来确定,我们把这些数相加,得到: 如果集合 可以重叠,那么要使用一个更深刻的原理(容斥原理)来计数S中的元素个数。 用选择的术语叙述加法原理的形式为 : 如果有p种方法能够从一堆中选择一个物体,而有q种方法能从另一堆中选择一个物体,那么从这两堆中选择一个物体的方法共有p+q种。这种形式的加法原理可以很容易推广到多堆。 令S是元素的有序对(a, b)的集合,其中一个元素a来自大小为p的一个集合,而对a的每个选择,元素b存在着q种选择。于是,S的大小为p × q : 乘法原理的第二种形式: 如果一项任务有p项结果,而不论第一项任务的结果如何,第二项任务都有q个结果,那么,这两个任务连续执行就有p×q个结果。 注意这里两项任务的关系不能存在依赖的情况,如果出现,需要交换次序,优先选择约束性最强的选择。 令A是一个集合,而U是包含A的更大的集合。设 是A在U中的补。那么A中的元素个数|A|由下列法则给出: 在应用减法原理中,集合U通常是包括讨论中所有元素的某个自然的集合(即所谓的泛集)。使用减法原理只有当对U中的元素计数和对 中元素计数比对A中元素计数容易时才有意义。 令S是一个有限集,它以下述方式被划分成k部分,每一部分包含相同数目的元素。此时,划分中的部分的数目由下述公式给出: (在一个部分中的元素个数) 于是,如果我们知道S中元素个数以及各部分所含元素的相同的个数,则可以确定部分的数目。 多重集:集合有一条重要原则,即集合中的元素都是不可重复的,而多重集则没有这一限制 多数计数问题都可以分类为一下形式: 如果我们允许对象重复,可以变换一种思维方式,将集合扩展为可重集,这样从可重集中选择对象,选择出来的结果正好对应于集合中对象允许重复的排列组合。 令 是正整数。 我们把 个元素的集合 的一个 排列理解为:在n个元素中的取出r个元素的有序摆放的数目。 我们用 表示n个元素集合的r排列的数目。如果 。显然,对每一个正整数 。n元素集合S的一个n排列被更简单地称为S的一个排列或n个元素的一个排列。于是,集合S的一个排列就是以某种顺序列出S的所有元素。 定理1 : 对于正整数 定义n!(读作n的阶乘)为 。并约定 。于是我们可以写成: 对于 ,正好与r = 0时的公式一致。n个元素的排列数为 在上面的排列中我们是把对象排成一条线的,称之为线性排列,或线排列。如果我们更看重对象之间的相对位置而不是绝对位置时,就有了圆排列,或循环排列的概念。在两个圆排列中,通过旋转能够重合的,我们认为这是同一个排列。下面给出正式定义: 从集合 个不同元素中,取出r个元素按照某种次序(如逆时针)排成一个圆圈,称这样的排列为圆排列,或循环排列。 定理2 : n个元素的集合的循环r排列的个数由 给出。特别的,n个元素的循环排列的个数是 。 在圆排列中,还有一种项链排列,在圆排列中,经翻转能与原来重合的排列视为同一排列。项链排列在圆排列的基础上计算,为圆排列的一半。 例子 用20个不同颜色的念珠串成一条项链,能够做成多少不同的项链? 20个念珠共有20!种不同的排列。由于每条项链都可以旋转而不必改变念珠的排列,项链的数目最多为20!/20=19!。又由于项链不可以翻转过来而念珠的排放未改动,因此项链的总数是19!/2。 下面介绍几个排列中常用的恒等式:
2023-08-17 18:15:001

高中数学排列组合常用解题方法

  有以下的解题思路:   1、使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。   2、排列与组合定义相近,它们的区别在于是否与顺序有关。   3、复杂的排列问题常常通过试验、画 “树图 ”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。   4、按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。   5、处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。   6、在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。 总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。 其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。 一.特殊元素(位置)的“优先安排法”:对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。
2023-08-17 18:15:171

cmn排列组合是什么?

cmn公式是m>n,排列组合c的公式:C(n,m)=A(n,m)/m!=n!/m!(n-m)!与C(n,m)=C(n,n-m)。(n为下标,m为上标)。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。基本计数原理1、加法原理和分类计数法。2、乘法原理和分步计数法。两个常用的排列基本计数原理及应用:1、加法原理和分类计数法:每一类中的每一种方法都可以独立地完成此任务,两类不同办法中的具体方法,互不相同(即分类不重),完成此任务的任何一种方法,都属于某一类(即分类不漏)。2、乘法原理和分步计数法:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务,各步计数相互独立。只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
2023-08-17 18:15:331

问个关于排列组合的问题,为什么答案都要除以A22

12 34和34 12是同一种排法
2023-08-17 18:15:526

怎么计算排列组合C?

组合用符号C(n,m)表示,m_n。公式是:C(n,m)=A(n,m)/m! 或 C(n,m)=C(n,n-m)。例如:C(5,3)=A(5,3)/[3!x(5-3))!]=(1x2x3x4x5)/[2x(1x2x3)]=10.排列用符号A(n,m)表示,m_n。计算公式是:A(n,m)=n(n-1)(n-2)??(n-m+1)=n!/(n-m)!此外规定0!=1,n!表示n(n-1)(n-2)?1例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。扩展资料:排列组合中的基本计数原理:加法原理和分类计数法:(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,??,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+?+mn种不同方法。(2)第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,??,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U?UAn。(3)分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。参考资料来源:百度百科-排列组合
2023-08-17 18:16:221

排列组合与顺序有什么区别和联系?

a是讲究顺序的,例如在A中1,2和2,1是不一样的,而c是不讲究顺序的,1,2和2,1在C计算时是相同的。从选出的几个元素中,任取两个,交换顺序,若结果不同,是排列,否则是组合。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。难点(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力。(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解。(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大。(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
2023-08-17 18:16:351

排列组合问题怎么算?

组合用符号C(n,m)表示,m≦n。公式是:C(n,m)=A(n,m)/m! 或 C(n,m)=C(n,n-m)。例如:C(5,3)=A(5,3)/[3!x(5-3))!]=(1x2x3x4x5)/[2x(1x2x3)]=10.排列用符号A(n,m)表示,m≦n。计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!此外规定0!=1,n!表示n(n-1)(n-2)…1例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。扩展资料:排列组合中的基本计数原理:加法原理和分类计数法:(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。(2)第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。(3)分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。参考资料来源:百度百科-排列组合
2023-08-17 18:17:222