barriers / 阅读 / 详情

涡扇发动机原理是什么

2023-08-24 19:10:39
共3条回复
小教板

  扇发动机是喷气发动机的一个分支,从血缘关系上来说涡扇发动机应该算得上是涡喷发动机的小弟弟.从结构上看,涡扇发动机只不过是在涡喷发动机之前(之后)加装了风扇而已.然而正是这区区的几页风扇把涡喷发动机与涡扇发动机严格的区分开来.涡扇发动机这个"小弟弟"仗着自已身上的几页风扇也青出于蓝.

  现代的军用战斗机要求越来越高的机动性能,较高的推重比能赋予战斗机很高的垂直机动能力和优异的水平加速性能.而且在战时,如果本方机场遭到了对方破坏,战斗机还可以利用大推力来减少飞机的起飞着陆距离.比如装备了f-100-pw-100的f-15a当已方机机的跑道遭到部分破坏时,f-15可以开全加力以不到300米的起飞滑跑距离起飞.在降落时可以用60度的迎角作低速平飞,在不用减速伞和反推力的情况下,只要500米的跑道就可以安全降落.

  更高的推重比是每一个战斗机飞行员所梦寐以求的.但战斗机的推重比在很大和度上是受发动机所限--如果飞机发动机的推重比小于6一级的话,其飞机的空战推重比就很难达到1,如果强行提高飞机的推重比的话所设计的飞机将在航程、武器挂载、机体强度上付出相当大的代价.比如前苏联设计的苏-11战斗机使用了推重比为4.085的ал-7ф-1-100涡喷发动机.为了使飞机的推重比达到1,苏-11的动力装置重量占了飞机起飞重量的26.1%.相应的代价是飞机的作战半径只有300公里左右.

  而在民用客机、运输机和军用的轰炸机、运输机方面.随着新材料的运用飞机的机身结构作的越来越大,起飞重量也就越来越大,对发动机的推力要求也越来越高.在高函道比大推力的涡扇发动机出现之前,人们只能采用让大型飞机挂更多的发动机的方法来解决发动机的推力不足问题.比如b-52g轰炸机的翼下就挂了八台j-57-p-43w涡喷发动机.该发动机的单台最大起飞推力仅为6237公斤(喷水).如果b-52晚几年出生的话它完全可以不挂那么多的发动机.在现在如果不考虑动力系统的可靠性,像b-52之类的飞机只装一台发动机也未尝不可.

  而涡扇发动机的诞生就是为了顺应人们对航空发动机越来越高的推力要求而诞生的.因为提高喷气发动机的推力最简单的办法就是提高发动机的空气流量.

  一、历史

  在五十年代未、六十年代初,作为航空动力的涡喷发动机以经相当的成熟.当时的涡喷发动机的压气机总增压比以经可以达到14左右,而涡轮前的最高温度也以经达到了1000度的水平.在这样的条件下,涡喷发动机进行部分的能量输出以经有了可能.而当时对发动机的推力要求又是那样的迫切,人们很自然的想到了通过给涡喷发动机加装风扇以提高迎风面积增大空气流量进而提高发动机的推力.

  当时人们通过计算发现,以当时的涡喷发动的技术水平,在涡喷发动机加装了风扇变成了涡扇发动机之后,其技术性能将有很大的提高.当涡扇发动机的风扇空飞流量与核心发动机的空气流量大至相当时(函道比1:1),发动机的地面起飞推力增大了面分之四十左右,而高空巡航时的耗油量却下降了百分之十五,发动机的效率得到了极大的提高.

  这样的一种有着涡喷发动机无法比及的优点的新型航空动力理所当然的得到了西方各强国的极大重视.各国都投入了极大的人力、物力和热情来研究试制涡扇发动机,在涡扇发动机最初研制的道路上英国人走在了美国人之前.英国的罗尔斯·罗伊斯公司从一九四八年就开始就投入了相当的精力来研制他们的"康维"涡扇发动机.在一九五三年的时候"康维"进行了第一次的地面试车.又经过了六年的精雕细刻,一九五九年九月"康维mk-508"才最终定型.这个经过十一年孕妇的难产儿有着当时涡喷发动机难以望其项背的综合性能."康维"采用了双转子前风扇的总体结构,函道比为0.3推重比为3.83地面台架最大推力为7945公斤,高空巡航推力为2905公斤,最大推力时的耗油量为0.735千克/小时/千克,压气机总增压比为14,风扇总增压比为1.90,而且英国人还在"康维"上首次采用了气冷的涡轮叶片.当康维最终定型了之后,英国人迫不及待的把他装在了vc-10上!

  美国人在涡扇发动机的研发上比英国人慢了一拍,但是其技术起点非常的高.美国人并没有走英国人从头研制的老路,美国的普·惠公司利用自已在涡喷发动机上的丰富的技术储备,采用了以经非常成熟的j-57作为新涡扇发动的内函核心发动机.j-57是美国人从1947年就开始设计的一种涡喷发动机,1949年完成设计,1953年正式投产.j57在投产阶段共生产了21226台是世界上产量最大的三种涡喷发动机之一,先后装备了f-100、f-101、f-102、b-52等机种.j-57在技术上也有所突破,他是世界上第一台采用双转子结构的喷气发动机,由单转子到双转子是喷气发动机技术上的一大进步.不光是核心发动机,就连风扇普惠公司也都是采用的以经相当成熟的部件,以被撤消了型号的j91核动力喷气发动机的长叶片被普惠公司拿来当作新涡扇的风扇.一九六零年七月,普惠公司的jt3d涡扇发动机诞生了.jt3d的最终定型时间比罗罗的康维只晚了几个月,可是在性能上却是大大的提高.jt3d也是采用了双轴前风扇的设计,地面台架最大推力8165公斤,高空巡航推力2038公斤,最大推力耗油0.535千克/小时/千克,推重比4.22,函道比1.37,压气机总增压比13.55,风扇总增压比1.74(以上数据为jt3d-3b型发动机的数据).jt3d的用处很广,波音707、dc-8用的都是jt3d.不光在民用,在军用方面jt3d也大显身手,b-52h、c-141a、e-3a用的都是jt-3d的军用型tf-33.

  现今世界的三大航空动力巨子中的罗·罗、普·惠,都以先后推出了自已的第一代涡扇作品.而几乎是在同一时刻,三巨头中的令一个也推出了自已的第一代涡扇发动机.在罗·罗推出"康维"之后第八个月、普·惠推出jt-3d的前一个月.通用动力公司也定型了自已的第一代涡扇发动机cj805-23.cl805-23的地面台架最大推力为7169公斤,推重比为4.15,函道比为1.5,压气机增压比为13,风扇增压比为1.6,最大推力耗油0.558千克/小时/千克.与普·惠一样,通用动力公司也是在现有的涡喷发动机的基础之上研发自已的涡扇发动机,被用作新涡扇的内函核心发动机的是j79.j-79与1952年开始设计,与1956年投产,共生产了16500多台,他与j-57一样也是有史以来产量最高的三种涡喷发动机之一.与j57的双转子结构不不同,j79是单转子结构.在j-79上首次采用了压气机可调整流叶片和加力全程可调喷管,j-79也是首次可用于两倍音速飞行的航空发动机.

  通用动力公司的cj805-23涡扇发动机是涡扇发动机的中一个决对另类的产品,让cj805-23如此与众不同的地方就在于他的风扇位置.他是唯一采用后风扇设计的涡扇发动机.

  在五六十年代,人们在设计第一代涡扇发动机的时候遇到了很大的困难.首先是由于大直径的风扇与相对小直径的低压压气机联动以后风扇叶片的翼尖部分的线速度超过了音速,这个问题在当时很难解决,因为没有可利用的公式来进行运算人们只能用一次又一次的试验来发现、解决问题.第二是由于在压气机之前多了风扇使得压气机的工作被风扇所干拢.第三是细长的风扇叶片高速转动所引起的振动.

  而通用动力公司的后风扇设计一下子完全避开了这三个最主要的困难.cj805-23的后风扇实际上是一个双节的叶片,叶片的下半部分是涡轮叶片,上半部分是风扇叶片.这样的一个叶片就像涡轴发动的自由涡轮一样被放在内函核心发动机的尾部.叶片与核心发动机的转子没有丝毫的机械联系,这样人们就可以随心所欲的来设计风扇的转速,而且叶片的后置也不会对压气机产生不良影响.但在回避困难的同时也引发了新的问题.

  首先是叶片的受热不匀,cj805-23的后风扇叶片的涡轮部分在工作时的最高温度达到了560度,而风扇部分的最低温度只有38度.其次,由于后风扇不像前风扇那样工作在发动机的冷端,而是工作在发动机的热端,这样一来风扇的可靠性也随之下降,而飞机对其动力的要求最重要的一条就是万无一失.而且风扇后置的设计使得发动机的由于形状上的原因其飞行阻力也要大于风扇前置的发动机.

  当"康维"、jt-3d、cj805-23这些涡扇发动机纷纷定型下线的时候,人们也在不断的反思在涡扇发动机研制过程.人们发现,如果一台涡扇发动机如果真的像"康维"那样从一张白纸上开始试制则最少要用十年左右的时间新发动机才能定型投产.而如果像jt-3d或cj805-23那样利用以有的一台涡喷发动机作为内函发动机来研制涡扇发动机的话,因为发动机在技术上最难解决的部分都以得到了解决,所以无论从时间上还是金钱、人力、物力上都要节省很多.在这样的背景之下,为了缩短新涡扇的研制时间、减少开发费用.美国政府在还末对未来的航空动力有十分明确的要求的情况下,从一九五九年起开始执行"先进涡轮燃气发生器计划",这个计划的目地就是要利用最最新的科研成果来试制一种燃气核心机,并进行地面试车,以暴露解决各部分的问题.在这个燃气核心机的其础之上进行放大或缩小,再加装其它的部件,如压气机、风扇等等就可以组装成不同类型的航空涡轮发动机.如涡扇、涡喷、涡轴、涡桨等等."先进涡轮燃气发生器计划"实际上是一个有相当前瞻意味的预研工程.

  用今天的眼光来看,这个工程的指导方向无疑是正确的.美国的政府实际上是在激励本国的两大动力公司向航空动力系统中最难的部分开刀.因为在燃气涡轮发动机中最最严重的技术难点就产生在这个以燃气发生器和燃气涡轮为主体的燃气核心机上.在每一台以高温燃气来驱动燃气涡轮为动力的发动机上,由燃气发生器和燃气涡轮所组成的燃气核心机的工作地点将是这台发动的最高温度、最大压力的所在地.所以其承受的应力也就最大,工作条件也最为苛刻.但燃气核心机的困难不只是压力和温度,高转数所带来的巨大的离心力、飞机在加速时的巨大冲击,如果是战斗机还要考虑到当飞机进行机动时所产生的过载和因过载以引起的零部件变形.在为数众多的困难中单拿出无论哪一个都将是一个工程上的巨大难题.但如果这些问题不被解决掉那么更先进的喷气发动机也就无从谈起.

  在这个计划之下,普惠公司与通用动力公司都很快的推出了各自研发的燃气核心机.普惠公司的核心机被称作stf-200而通用动力公司的燃气核心机为ge-1.时至今日美国人在四十年前发起的这场预研还在发挥着他的作用,现如今普惠公司和通用动力公司出品的各式航空发动机如果真的都求其根源都话,它们却都是来自于stf-200与ge-1这两个老祖宗.

  二、单转子和多转子

  在研制一台新的涡扇发动机的时候,最先解决的问题是他的总体结构问题.总体结构的问题说明白一些就是发动机的转子数目多少.目前涡扇发动机所采用的总体结构无非是三种,一是单转子、二是双子、三是三转子.其中单转子的结构最为简单,整个发动机只有一根轴,风扇、压气机、涡轮全都在这一根轴上.结构简单的好处也不言自明--省钱!一方面的节省就总要在另一方而复出相应的代价.

  首先从理论上来说单转子结构的涡扇发动机的压气机可以作成任意多的级数以期达到一定的增压比.可是因为单转子的结构限制使其风扇、低压压气机、高压压气机、低压涡轮、高压涡轮必须都安装在同一根主轴之上,这样在工作时他们就必须要保持相同的转速.问题也就相对而出,当单转子的发动机在工作时其转数突然下降时(比如猛收小油门),压气机的高压部分就会因为得不到足够的转数而效率严重下降,在高压部分的效率下降的同时,压气机低压部分的载荷就会急剧上升,当低压压气机部分超载运行时就会引起发动机的振喘,而在正常的飞行当中,发动机的振喘是决对不被允许的,因为在正常的飞行中发动机一但发生振喘飞机十有八九就会掉下来.为了解决低压部分在工作中的过载只好在压气机前加装导流叶片和在压气机的中间级上进行放气,即空放掉一部分以经被增压的空气来减少压气机低压部分的载荷.但这样以来发动机的效率就会大打折扣,而且这种放掉增压气的作法在高增压比的压气机上的作用也不是十分的明显.更要命的问题发生在风扇上,由于风扇必须和压气机同步,受压气机的高转数所限单转子涡扇发动机只能选用比较小的函道比.比如在幻影-2000上用的m-53单转子涡扇发动机,其函道只有0.3.相应的发动机的推重比也比较小,只有5.8.

  为了提高压气机的工作效率和减少发动机在工作中的振喘,人们想到了用双转子来解决问题,即让发动机的低压压气机和高压压气机工作在不同的转速之下.这样低压压气机与低压涡轮联动形成了低压转子,高压压气机与高压涡轮联动形成了高压转子.低压转子的转速可以相对低一些.因为压缩作用在压气机内的空气温度升高,而音速是随着空气温度的升高而升高的,所以而高压转子的转速可以设计的相对高一些.即然转速提高了,高压转子的直径就可以作的小一些,这样在双转子的喷气发动机上就形成了一个"蜂腰",而发动机的一些附属设备比如燃油调节器、起动装置等等就可以很便的装在这个"蜂腰"的位置上,以减少发动机的迎风面积降低飞行阻力.双转子发动机的好处不光这些,由于一般来说双转子发动机的的高压转子的重量比较轻,起动惯性小,所以人们在设计双转子发动机的时候都只把高压转子设计成用启动机来驱动,这样和单转子发动机相比双转子的启动也比较容易,启动的能量也要求较小,启动设备的重量也就相对降低.

  然而双转子结构的涡扇发动机也并不是完美的.在双转子结构的涡扇发动机上,由于风扇要和低压压气机联动,风扇和低压压气机就必须要互相将就一下对方.风扇为将就压气机而必需提高转数,这样直径相对比较大的风扇所承受的离心力和叶尖速度也就要大,巨大的离心力就要求风扇的重量不能太大,在风扇的重量不能太大的情况下风扇的叶片长度也就不能太长,风扇的直径小下来了,函道比自然也上不去,而实践证明函道比越高的发动机推力也就越大,而且也相对省油.而低压压气机为了将就风扇也不得不降低转数,降低了压气机的转数压气机的工作效率自然也就上不去,单级增压比降低的后果是不得不增加压气机风扇的级数来保持一定的总增压比.这样压气机的重量就很难得以下降.

  为了解压气机和风扇转数上的矛盾.人们很自然的想到了三转子结构,所谓三转子就是在二转子发动机上又了多了一级风扇转子.这样风扇、高压压气机和低压压气机都自成一个转子,各自都有各自的转速.三个转子之间没有相对固定的机械联接.如此一来,风扇和低压转子就不用相互的将就行事,而是可以各自在最为合试的转速上运转.设计师们就可以相对自由的来设计发动机风扇转速、风扇直径以及函道比.而低压压气机的转速也可以不受风扇的肘制,低压压气机的转速提高之后压气的的效率提高、级数减少、重量减轻,发动机的长度又可以进一步缩小.

  但和双转子发动机相比,三转子结构的发动机的结构进一步变的复杂.三转子发动机有三个相互套在一起的共轴转子,因而所需要的轴承支点几乎比双转子结构的发动机多了一倍,而且支撑结构也更加的复杂,轴承的润滑和压气机之间的密闭也更困难.三转子发动机比双转子发动机多了很多工程上的难题,可是英国的罗·罗公司还是对他情有独钟,因为在表面的困难背后还有着巨大的好处,罗罗公司的rb-211上用的就是三转子结构.转子数量上的增加换来了风扇、压气机、涡轮的简化.

  三转子rb-211与同一技术时期推力同级的双转子的jt-9d相比:jt-9d的风扇页片有46片,而rb-211只有33片;压气机、涡轮的总级数jt-9d有22级,而rb-211只有19级;压气机叶片jt-9d有1486片,rb-211只有826片;涡轮转子叶片rb211也要比jt9d少,前者是522片,而后者多达708片;但从支撑轴承上看,rb-211有八个轴承支撑点,而jt9d只有四个.

  三、风扇

  涡扇发动机的外函推力完全来自于风扇所产生的推力,风扇的的好坏直接的影响到发动机的性能,这一点在高函道比的涡扇发动机上由是.涡扇发动机的风扇发展也经历了几个过程.在涡扇发动机之初,由于受内函核心机功率和风扇材料的机械强度的限制,涡扇发动机的函道比不可能作的很大,比如在涡扇发动机的三鼻祖中,其函道比最大的cj805-23也不过只有1.5而以,而且cj805-23所采用的风扇还是后独一无二的后风扇.

  在前风扇设计的二款发动机中jt3d的函道比大一些达到了1.37.达到如此的函道比,其空气总流量比也比其原型j-57的空气流量大了271%.空气流量的加大发动机的迎风面积也随之变大.风扇的叶片也要作的很长.jt3d的一级风扇的叶片长度为418.2毫米.而j57上的最长的压气机叶片也就大约有二百毫米左右.当风扇叶片变的细长之后,其弯曲、扭转应力加大,在工作中振动的问题也突现了出来.为了解决细长的风扇叶片所带来的麻烦,普惠公司采用了阻尼凸台的方法来减少风扇叶片所带来的振动.凸台位于距风扇叶片根处大约百分之六十五的地方.jt3d发动机的风扇部分装配完成之后,其风扇叶上的凸台就会在叶片上连成一个环形的箍.当风扇叶片运转时,凸台与凸台之间就会产生摩擦阻尼以减少叶片的振动.加装阻尼凸台之后其减振效果是明显的,但其阻尼凸台的缺点也是明显的.首先他增加了叶片的重量,其次他降底了风扇叶片的效率.而且如果设计不当的话当空气高速的流过这个凸台时会发生畸变,气流的畸变会引发叶片产生更大的振动.而且如果采用这种方法由于叶片的质量变大,在发动机运转时风扇本身会产生更大的离心力.这样的风扇叶片很难作的更长,没有更长的叶片也就不会有更高的函道比.而且细长的风扇叶片的机械强度也很低,在飞机起飞着陆过程中,发动机一但吸入了外来物,比如飞鸟之类,风扇的叶片会更容易被损坏,在高速转动中折断的风扇叶片会像子弹一样打穿外函机匣酿成大祸.解决风扇难题一个比较完美的办法是加大风扇叶片的宽度和厚度.这样叶片就可以获得更大的强度以减少振动和外来物打击的损害,而且如果振动被减少到一定程度的话阻尼凸台也可以取消.但更厚重的扇叶其运转时的离心力也将是巨大的.这样就必需要加强扇叶和根部和安装扇叶的轮盘.但航空发动机负不起这样的重量代价.风扇叶片的难题大大的限制了涡扇发动机的发展.

  更高的转数、高大的机械强度、更长的叶片、更轻的重量这样的一个多难的问题最终在八十年代初得到了解决.

  1984年10月,rb211-535e4挂在波音七五七的翼下投入了使用.它是一台有着跨时代意义的涡扇发动机.让它身负如此之名的就是他的风扇.罗·罗公司用了创造性的方法解决了困扰大函道比涡扇发动机风扇的多难问题.新型发动机的风扇叶片叫作"宽弦无凸肩空心夹层结构叶片".故名思意,新型风扇的叶片采用了宽弦的形状来加大机械强度和空心结构以减少重量.新型的空心叶片分成三个部分:叶盆、叶背、和叶芯.它的叶盆和叶背分别是由两块钛合金薄板制成,在两块薄板之间是同样用钛合金作成的蜂窝状结构的"芯".通过活性扩散焊接的方法将叶盆、叶背、叶芯连成一体.新叶片以极轻的重量获得了极大的强度.这样的一块钛合金三明治一下子解决了困扰航空动力工业几十年的大难题.

  新型风扇不光是重量轻、强度大,而且因为他取消了传统细长叶片上的阻尼凸台他的工作效率也要更高一些.风扇扇叶的数量也减少了将近三分之一,rb211-535e4发动机的风扇扇叶只有二十四片.

  1991年7月15日新型宽弦叶片经受了一次重大的考验.印度航空公司的一架a320在起飞阶段其装备了宽弦叶片的v-2500涡扇发动机吸入了一只5.44千克重的印度秃鹫!巨鸟以差不多三百公里的时速迎头撞到了发动机的最前端部件--风扇上!可是发动机在遭到如此重创之后仍在正常工作,飞机安全的降落了.在降落之后,人们发现v-2500的22片宽弦风扇中只有6片被巨大的冲击力打变了形,没有一片叶片发生折断.发动机只在外场进行了更换叶片之后就又重新投入了使用.这次意外的撞击证明了"宽弦无凸肩空心夹层结构叶片"的巨大成功.

  解决宽弦风扇的问题并不是只有空心结构这一招.实际上,当风扇的直径进一步加大时,空心结构的风扇扇叶也会超重.比如在波音777上使用的ge-90涡扇发动机,其风扇的直径高达3.142米.即使是空心蜂窝结构的钛合金叶片也会力不从心.于是通用动力公司便使用先进的增强环氧树脂碳纤维复合材料来制造巨型的风扇扇叶.碳纤维复合材料所制成的风扇扇叶结构重量极轻,而强度却是极大.可是在当复合材料制成的风扇在运转时遭到特大鸟的撞击会发生脱层现像.为了进一步的增大ge-90的安全系数,通用动力公司又在风扇的前缘上包覆了一层钛合金的蒙皮,在其后缘上又用"凯夫拉"进行缝合加固.如此以来ge-90的风扇可谓万无一失.

  当高函道比涡扇发动机的风扇从传统的细长窄弦叶片向宽弦叶片过渡的时候,风扇的级数也经历了一场从多级风扇到单级风扇的过渡.在涡扇发动机诞生之初,由于风扇的单级增压比比较低只能采用多级串联的方式来提高风扇的总增压比.比如jt3d的风扇就为两级,其平均单级增压比为1.32,通过两级串联其风扇总增压比达到了1.74.多级风扇与单级风扇相比几乎没有优点,它重量大、效率低,其实它是在涡扇发动机的技主还不十分成熟的时候一种无耐的选择.随着风扇单级增压比的一步步提高,现如今在中、高函道比的涡扇发动机上单级风扇以是一统天下.比如在ge-90上使用的单级风扇其增压比高达1.65,如此之高的单级增压比以经再没有必要来串接第二级风扇.

  但是在战斗机上使用的低函道比涡扇发动机还在使用着多级风级的结构.比如在f-15a上使用的f100-pw-100涡扇发动机就是由三级构成,其总增压比达到了2.95.低函道涡扇发动机取如此高的风扇增压比其实是风扇、低压压气机合二为一结果.在战斗机上使用的低函道比涡扇发动机为了减少重量它的双转子其实是由风扇转子和压气机转子组成的双转子结构.受战斗机的机内容积所限,采用大空气流量的高函道比涡扇发动机是不现实的,但为了提高推力只能提发动机的出口压力,再者风扇不光要提供全部的外函推力而且还要部分的承担压气机的任务,所以风扇只能采用比较高的增压比.

  其实低函道比的涡扇发动机彩用多级风扇也是一种无耐之举,如果风扇的单级增压比能达到3左右多级风扇的结构就将不会再出现.如果想要风扇的单级增压比达到3一级只能是进一步提高风扇的的转速并在风扇的叶型上作文章,风扇的叶片除了要使用宽弦叶片之外叶片还要带有一定的后掠角度以克服风扇在高速旋转时所产生的激波,只有这样3一级的单级风扇增压比才可能会实现.相现这一点人们将会在二十年之内作到.

  四、压气机

  压气机故名思意,就是用来压缩空气的一种机械.在喷气发动机上所使用的压气机按其结构和工作原理可以分为两大类,一类是离心式压气机,一类是轴流式压气机.离必式压气机的外形就像是一个钝角的扁圆锥体.在这个圆锥体上有数条螺旋形的叶片,当压气机的圆盘运转时,空气就会被螺旋形的叶片"抓住",在高速旋转所带来的巨大离心力之下,空气就会被甩进压气机圆盘与压气机机匣之间的空隙,从而实现空气的增压.与离心式压气机不同,轴流式压气机是由多级风扇所构成的,其每一级都会产生一定的增压比,各级风扇的增压比相乘就是压气机的总增压比.

  在现代涡扇发动机上的压气机大多是轴流式压气机,轴流式压气机有着体积小、流量大、单位效率高的优点,但在一些场合之下离心式压气机也还有用武之地,离心式压气机虽然效率比较差,而且重量大,但离心式压气机的工作比较稳定、结构简单而且单级增压比也比轴流式压气机要高数倍.比如在我国台湾的idf上用的双转子结构的tfe1042-70涡扇发动机上,其高压压气机就采用了四级轴流式与一级离心式的组合式压气机以减少压气机的级数.多说一句,这样的组合式压气机在涡扇发动机上用的不多,但在直升机上所使用的涡轴发动机现在一般都为几级轴流式加一级离心式的组合结构.比如国产的涡轴6、

  涡轴8发动机就是1级轴流式加1级离心式构成的组合压气机.而美国的"黑鹰"直升机上的t700发动机其压气机为5级轴流式加上1级离心式.

  压气机是涡扇发动机上比较核心的一个部件.在涡扇发动机上采用双转子结构很大程度上就是为了迎合压气机的需要.压气机的效率高低直接的影响了发动机的工作效率.目前人们的目标是提高压气机的单级增压比.比如在j-79上用的压气机风扇有17级之多,平均单级增压比为1.16,这样17级叶片的总增压比大约为12.5左右,而用在波音777上的ge-90的压气机的平均单级增压比以提高到了1.36,这样只要十级增压叶片总增压比就可以达到23左右.而f-22的动力f-119发动机的压气机更是了的,3级风扇和6级高压压气机的总增压比就达到了25左右,平均单级增压比为1.43.平均单级增压比的提高对减少压气机的级数、减少发动机的总量、缩短发动机的总长度是大有好处的.

  但随着压气机的增压比越来越高,压气机振喘和压气机防热的问题也就突现了出来.

  在压气机中,空气在得到增压的同时,其温度也在上升.比如当飞机在地面起飞压气机的增压比达到25左右时,压气机的出口温度就会超过500度.而在战斗机所用的低函道比涡扇发动机中,在中低空飞行中由于冲压作用,其温度还会提高.而当压气机的总增压比达到30左右时,压气机的出口温度会达到600度左右.如此高的温度会钛合金以是难当重任,只能由耐高温的镍基合金取而代之,可是镍基合金与钛合金相比基重量太大.与是人们又开发了新型的耐高温钛合金.

苏萦

涡扇发动机

涡扇发动机全称为涡轮风扇发动机(Turbofan)是飞机发动机的一种,由涡轮喷气发动机(Turbojet)发展而成。与涡轮喷射比较,主要特点是首级压缩机的面积大很多,同时被用作为空气螺旋桨(扇),将部分吸入的空气通过喷射引擎的外围向后推。发动机核心部分空气经过的部分称为内涵道,仅有风扇空气经过的核心机外侧部分称为外涵道。涡扇引擎最适合飞行速度400至1,000公里时使用,故此现在多数的飞机引擎都是采用涡扇作为动力来源。

涡扇引擎的旁通比(Bypass ratio,也称涵道比)是不经过燃烧室的空气质量,与通过燃烧室的空气质量的比例。旁通比为零的涡扇引擎即是涡轮喷射引擎。早期的涡扇引擎和现代战斗机使用的涡扇引擎旁通比都较低。例如世界上第一款涡扇引擎,劳斯莱斯的Conway,其旁通比只有0.3。现代多数民航机引擎的旁通比通常都在5以上。旁通比高的涡轮扇引擎耗油较少,但推力却与涡轮喷射引擎相当,且运转时还宁静得多。

涡轮风扇喷气发动机的诞生

二战后,随着时间推移、技术更新,涡轮喷气发动机显得不足以满足新型飞机的动力需求。尤其是二战后快速发展的亚音速民航飞机和大型运输机,飞行速度要求达到高亚音速即可,耗油量要小,因此发动机效率要很高。涡轮喷气发动机的效率已经无法满足这种需求,使得上述机种的航程缩短。因此一段时期内出现了较多的使用涡轮螺旋桨发动机的大型飞机。

实际上早在30年代起,带有外涵道的喷气发动机已经出现了一些粗糙的早期设计。40和50年代,早期涡扇发动机开始了试验。但由于对风扇叶片设计制造的要求非常高。因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机实用化的阶段。

50年代,美国的NACA(即NASA 美国航空航天管理局的前身)对涡扇发动机进行了非常重要的科研工作。55到56年研究成果转由通用电气公司(GE)继续深入发展。GE在1957年成功推出了CJ805-23型涡扇发动机,立即打破了超音速喷气发动机的大量纪录。但最早的实用化的涡扇发动机则是普拉特·惠特尼(Pratt & Whitney)公司的JT3D涡扇发动机。实际上普·惠公司启动涡扇研制项目要比GE晚,他们是在探听到GE在研制CJ805的机密后,匆忙加紧工作,抢先推出了了实用的JT3D。

1960年,罗尔斯·罗伊斯公司的“康威”(Conway)涡扇发动机开始被波音707大型远程喷气客机采用,成为第一种被民航客机使用的涡扇发动机。60年代洛克西德“三星”客机和波音747“珍宝”客机采用了罗·罗公司的RB211-22B大型涡扇发动机,标志着涡扇发动机的全面成熟。此后涡轮喷气发动机迅速的被西方民用航空工业抛弃。

涡轮风扇喷气发动机的原理

涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。

涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。

涡轮风扇喷气发动机的优缺点

如前所述,涡扇发动机效率高,油耗低,飞机的航程就远。

再也不做稀饭了
* 回复内容中包含的链接未经审核,可能存在风险,暂不予完整展示!
http://zhidao.b***.com/question/58524226.html

相关推荐

涡轮风扇发动机工作原理

涡轮风扇喷气发动机的原理涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。
2023-08-18 05:23:431

涡扇发动机工作原理问题?

1、涡扇的推力不完全来自反冲,还有压气机的排气力。这个和火箭发动机及涡喷不一样,后两个都是完全靠反冲来产生动力。2、引擎产生的阻力和引擎的转速关系不大,主要是面积大小和飞机飞行速度的快慢决定的。3、涡扇本来就是热机,动力当然来自他自己。靠燃烧航空煤油来产生。都说是涡扇了,当然是燃气轮机,涡扇本身就是动力装置,不需要其他动力装置。4、气体燃烧产生推力,推动叶轮旋转,和风车差不多。5、点击参考资料,看图之后仔细想想就明白了。
2023-08-18 05:23:512

涡轮风扇发动机的工作原理

涡扇发动机全称为涡轮风扇发动机(Turbofan)是飞机发动机的一种,由涡轮喷气发动机(Turbojet)发展而成。与涡轮喷气比较,主要特点是首级压缩机的面积大很多,同时被用作为空气螺旋桨(扇),将部分吸入的空气通过喷射引擎的外围向後推。发动机核心部分空气经过的部分称为内涵道,仅有风扇空气经过的核心机外侧部分称为外涵道。涡扇引擎最适合飞行速度400至1,000公里时使用,因此现在多数的飞机引擎都采用涡扇作为动力来源。 涡扇引擎的旁通比(Bypass ratio,也称涵道比)是不经过燃烧室的空气质量,与通过燃烧室的空气质量的比例。旁通比为零的涡扇引擎即是涡轮喷气引擎。早期的涡扇引擎和现代战斗机使用的涡扇引擎旁通比都较低。例如世界上第一款涡扇引擎,劳斯莱斯的Conway,其旁通比只有0.3。现代多数民航机引擎的旁通比通常都在5以上。旁通比高的涡轮扇引擎耗油较少,但推力却与涡轮喷气引擎相当,且运转时还宁静得多。 涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。 涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。 风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。 由喷管排出燃气和风扇排出空气共同产生反作用推力的燃气涡轮发动机。涡轮风扇发动机由风扇、压气机、燃烧室、驱动压气机的高压涡轮、驱动风扇的低压涡轮和排气系统组成。其中压气机、燃烧室和高压涡轮三部分统称为核心机,由核心机排出的燃气中的可用能量,一部分传给低压涡轮用以驱动风扇,余下的部分在喷管中用于加速排出的燃气。风扇转子实际上是 1级或几级叶片较长的压气机,空气流过风扇后,一部分流入核心机称为内涵气流由喷管高速排出产生推力,另一部分围绕核心机的外围流过,称为外涵气流,也产生推力。这种有内外二个涵道的涡轮风扇发动机又称为内外涵发动机。 流经外涵和内涵的空气流量之比称为涵道比或流量比。涵道比对涡轮风扇发动机性能影响较大,涵道比大,耗油率低,但发动机的迎风面积大;涵道比较小时,迎风面积小,但耗油率大。内外涵两股气流分开排入大气的称为分排式涡轮风扇发动机。内外涵两股气流在内涵涡轮后的混合器中相互渗混后通过同一喷管排入大气的,称为混排式涡轮风扇发动机。涡轮风扇发动机也可安装加力燃烧室,成为加力涡轮风扇发动机。在分排式涡轮风扇发动机上的加力燃烧室可以分别安装在内涵涡轮后或外涵通道内,在混排式涡轮风扇发动机上则可装在混合器后面。 核心机相同时,涡轮风扇发动机的工质(工作介质)流量介于涡轮喷气发动机和涡轮螺旋桨发动机之间。涡轮风扇发动机比涡轮喷气发动机的工质流量大、喷射速度低、推进效率高、耗油率低、推力大。50年代发展的第一代涡轮风扇发动机,其涵道比、压气机增压比和燃气温度都较低,耗油率比涡轮喷气发动机仅低25%左右,大约为 0.06~ 0.07公斤/牛·时(0.6~0.7公斤/公斤力·时)。60年代末、70年代初发展了高涵道比(5~8)、高增压比(25~30)和高燃气温度 (1600~1750K)的第二代涡轮风扇发动机,耗油率降低到0.03~0.04公斤/牛·时(0.3~0.4公斤/公斤力·时),推力则高达200~250千牛(20000~25000公斤力)。高涵道比涡轮风扇发动机的噪声低,排气污染小,多用作大型客机的动力装置,这种客机在11公里高度的巡航速度可达950公里/时。但这种高涵道比的涡轮风扇发动机的排气喷射速度低,迎风面积大,不宜用于超音速飞机上。 有些歼击机使用了小涵道比、带加力燃烧室的涡轮风扇发动机,在亚音速飞行时不使用加力燃烧室,耗油率和排气温度都比涡轮喷气发动机低,因而红外辐射强度较弱,不易被红外制导的导弹击中。使用加力作2倍以上音速的飞行时,产生的推力可超过加力涡轮喷气发动机,地面标准大气条件下的推重比已达8左右。 1. 涡喷发动机 进气道进气---压气机增压---燃烧室加热---涡轮膨胀作功带动压气机---尾喷管膨胀加速---排气到体外 发动机转起来之后,压气机源源不断地把压缩了的空气送到后面的燃烧室,在燃烧室里空气和燃油混合燃烧,向后排出高温高速高压气体,这些气体带动涡轮旋转,涡轮和压气机是用轴连在一起的,因此涡轮旋转了,压气机也跟着旋转,就不断地把空气压缩进去了 2. 涡轮风扇发动机 2.1分开排气涡轮风扇发动机 进气道进气--风扇增压--气流分为两股 内涵气流:压气机增压--燃烧室加热--涡轮膨胀作功带动风扇和压气机--内涵尾喷管膨胀加速--排气到体外 外涵气流:外涵道--外涵尾喷管膨胀加速--排气到体外 我们常见的民航客机所采用的发动机,多半是分别排气涡轮风扇发动机,比如著名的V2500,PW4000,GE90.... 2.2混合排气涡轮风扇发动机 进气道进气--风扇增压--气流分为两股 内涵气流:压气机增压--燃烧室加热--涡轮膨胀作功带动风扇和压气机--混合器 外涵气流:外涵道--混合器 两股气流在混合器中掺混--尾喷管膨胀加速--排气到体外
2023-08-18 05:24:111

涡扇发动机工作原理

。。排气的时候进气口是关闭的。
2023-08-18 05:24:213

谁能介绍一下涡轮风扇发动机的工作的原理

是使用多组由大直径到小直径涡轮形状叶片嵌镶在发动机内(在发动机外的可看到螺旋浆叶的则称涡浆发动机)高速旋转的主轴上,因之称涡扇发动机,使进入发动机内的空气增压,产生高压气体喷射出去,从而产生推力。一般涡扇发动机多用于大型客机、大型军用运输机、远程轰炸机。最著名的有英国根据我国科学家吴仲华的三维空气动力学公式设计出来的:斯贝式发动机
2023-08-18 05:24:281

涡轮风扇发动机原理

扇发动机是喷气发动机的一个分支,从血缘关系上来说涡扇发动机应该算得上是涡喷发动机的小弟弟.从结构上看,涡扇发动机只不过是在涡喷发动机之前(之后)加装了风扇而已.然而正是这区区的几页风扇把涡喷发动机与涡扇发动机严格的区分开来.涡扇发动机这个"小弟弟"仗着自已身上的几页风扇也青出于蓝. 现代的军用战斗机要求越来越高的机动性能,较高的推重比能赋予战斗机很高的垂直机动能力和优异的水平加速性能.而且在战时,如果本方机场遭到了对方破坏,战斗机还可以利用大推力来减少飞机的起飞着陆距离.比如装备了f-100-pw-100的f-15a当已方机机的跑道遭到部分破坏时,f-15可以开全加力以不到300米的起飞滑跑距离起飞.在降落时可以用60度的迎角作低速平飞,在不用减速伞和反推力的情况下,只要500米的跑道就可以安全降落. 更高的推重比是每一个战斗机飞行员所梦寐以求的.但战斗机的推重比在很大和度上是受发动机所限--如果飞机发动机的推重比小于6一级的话,其飞机的空战推重比就很难达到1,如果强行提高飞机的推重比的话所设计的飞机将在航程、武器挂载、机体强度上付出相当大的代价.比如前苏联设计的苏-11战斗机使用了推重比为4.085的ал-7ф-1-100涡喷发动机.为了使飞机的推重比达到1,苏-11的动力装置重量占了飞机起飞重量的26.1%.相应的代价是飞机的作战半径只有300公里左右. 而在民用客机、运输机和军用的轰炸机、运输机方面.随着新材料的运用飞机的机身结构作的越来越大,起飞重量也就越来越大,对发动机的推力要求也越来越高.在高函道比大推力的涡扇发动机出现之前,人们只能采用让大型飞机挂更多的发动机的方法来解决发动机的推力不足问题.比如b-52g轰炸机的翼下就挂了八台j-57-p-43w涡喷发动机.该发动机的单台最大起飞推力仅为6237公斤(喷水).如果b-52晚几年出生的话它完全可以不挂那么多的发动机.在现在如果不考虑动力系统的可靠性,像b-52之类的飞机只装一台发动机也未尝不可. 而涡扇发动机的诞生就是为了顺应人们对航空发动机越来越高的推力要求而诞生的.因为提高喷气发动机的推力最简单的办法就是提高发动机的空气流量. 一、历史 在五十年代未、六十年代初,作为航空动力的涡喷发动机以经相当的成熟.当时的涡喷发动机的压气机总增压比以经可以达到14左右,而涡轮前的最高温度也以经达到了1000度的水平.在这样的条件下,涡喷发动机进行部分的能量输出以经有了可能.而当时对发动机的推力要求又是那样的迫切,人们很自然的想到了通过给涡喷发动机加装风扇以提高迎风面积增大空气流量进而提高发动机的推力. 当时人们通过计算发现,以当时的涡喷发动的技术水平,在涡喷发动机加装了风扇变成了涡扇发动机之后,其技术性能将有很大的提高.当涡扇发动机的风扇空飞流量与核心发动机的空气流量大至相当时(函道比1:1),发动机的地面起飞推力增大了面分之四十左右,而高空巡航时的耗油量却下降了百分之十五,发动机的效率得到了极大的提高. 这样的一种有着涡喷发动机无法比及的优点的新型航空动力理所当然的得到了西方各强国的极大重视.各国都投入了极大的人力、物力和热情来研究试制涡扇发动机,在涡扇发动机最初研制的道路上英国人走在了美国人之前.英国的罗尔斯·罗伊斯公司从一九四八年就开始就投入了相当的精力来研制他们的"康维"涡扇发动机.在一九五三年的时候"康维"进行了第一次的地面试车.又经过了六年的精雕细刻,一九五九年九月"康维mk-508"才最终定型.这个经过十一年孕妇的难产儿有着当时涡喷发动机难以望其项背的综合性能."康维"采用了双转子前风扇的总体结构,函道比为0.3推重比为3.83地面台架最大推力为7945公斤,高空巡航推力为2905公斤,最大推力时的耗油量为0.735千克/小时/千克,压气机总增压比为14,风扇总增压比为1.90,而且英国人还在"康维"上首次采用了气冷的涡轮叶片.当康维最终定型了之后,英国人迫不及待的把他装在了vc-10上! 美国人在涡扇发动机的研发上比英国人慢了一拍,但是其技术起点非常的高.美国人并没有走英国人从头研制的老路,美国的普·惠公司利用自已在涡喷发动机上的丰富的技术储备,采用了以经非常成熟的j-57作为新涡扇发动的内函核心发动机.j-57是美国人从1947年就开始设计的一种涡喷发动机,1949年完成设计,1953年正式投产.j57在投产阶段共生产了21226台是世界上产量最大的三种涡喷发动机之一,先后装备了f-100、f-101、f-102、b-52等机种.j-57在技术上也有所突破,他是世界上第一台采用双转子结构的喷气发动机,由单转子到双转子是喷气发动机技术上的一大进步.不光是核心发动机,就连风扇普惠公司也都是采用的以经相当成熟的部件,以被撤消了型号的j91核动力喷气发动机的长叶片被普惠公司拿来当作新涡扇的风扇.一九六零年七月,普惠公司的jt3d涡扇发动机诞生了.jt3d的最终定型时间比罗罗的康维只晚了几个月,可是在性能上却是大大的提高.jt3d也是采用了双轴前风扇的设计,地面台架最大推力8165公斤,高空巡航推力2038公斤,最大推力耗油0.535千克/小时/千克,推重比4.22,函道比1.37,压气机总增压比13.55,风扇总增压比1.74(以上数据为jt3d-3b型发动机的数据).jt3d的用处很广,波音707、dc-8用的都是jt3d.不光在民用,在军用方面jt3d也大显身手,b-52h、c-141a、e-3a用的都是jt-3d的军用型tf-33. 现今世界的三大航空动力巨子中的罗·罗、普·惠,都以先后推出了自已的第一代涡扇作品.而几乎是在同一时刻,三巨头中的令一个也推出了自已的第一代涡扇发动机.在罗·罗推出"康维"之后第八个月、普·惠推出jt-3d的前一个月.通用动力公司也定型了自已的第一代涡扇发动机cj805-23.cl805-23的地面台架最大推力为7169公斤,推重比为4.15,函道比为1.5,压气机增压比为13,风扇增压比为1.6,最大推力耗油0.558千克/小时/千克.与普·惠一样,通用动力公司也是在现有的涡喷发动机的基础之上研发自已的涡扇发动机,被用作新涡扇的内函核心发动机的是j79.j-79与1952年开始设计,与1956年投产,共生产了16500多台,他与j-57一样也是有史以来产量最高的三种涡喷发动机之一.与j57的双转子结构不不同,j79是单转子结构.在j-79上首次采用了压气机可调整流叶片和加力全程可调喷管,j-79也是首次可用于两倍音速飞行的航空发动机. 通用动力公司的cj805-23涡扇发动机是涡扇发动机的中一个决对另类的产品,让cj805-23如此与众不同的地方就在于他的风扇位置.他是唯一采用后风扇设计的涡扇发动机. 在五六十年代,人们在设计第一代涡扇发动机的时候遇到了很大的困难.首先是由于大直径的风扇与相对小直径的低压压气机联动以后风扇叶片的翼尖部分的线速度超过了音速,这个问题在当时很难解决,因为没有可利用的公式来进行运算人们只能用一次又一次的试验来发现、解决问题.第二是由于在压气机之前多了风扇使得压气机的工作被风扇所干拢.第三是细长的风扇叶片高速转动所引起的振动. 而通用动力公司的后风扇设计一下子完全避开了这三个最主要的困难.cj805-23的后风扇实际上是一个双节的叶片,叶片的下半部分是涡轮叶片,上半部分是风扇叶片.这样的一个叶片就像涡轴发动的自由涡轮一样被放在内函核心发动机的尾部.叶片与核心发动机的转子没有丝毫的机械联系,这样人们就可以随心所欲的来设计风扇的转速,而且叶片的后置也不会对压气机产生不良影响.但在回避困难的同时也引发了新的问题. 首先是叶片的受热不匀,cj805-23的后风扇叶片的涡轮部分在工作时的最高温度达到了560度,而风扇部分的最低温度只有38度.其次,由于后风扇不像前风扇那样工作在发动机的冷端,而是工作在发动机的热端,这样一来风扇的可靠性也随之下降,而飞机对其动力的要求最重要的一条就是万无一失.而且风扇后置的设计使得发动机的由于形状上的原因其飞行阻力也要大于风扇前置的发动机. 当"康维"、jt-3d、cj805-23这些涡扇发动机纷纷定型下线的时候,人们也在不断的反思在涡扇发动机研制过程.人们发现,如果一台涡扇发动机如果真的像"康维"那样从一张白纸上开始试制则最少要用十年左右的时间新发动机才能定型投产.而如果像jt-3d或cj805-23那样利用以有的一台涡喷发动机作为内函发动机来研制涡扇发动机的话,因为发动机在技术上最难解决的部分都以得到了解决,所以无论从时间上还是金钱、人力、物力上都要节省很多.在这样的背景之下,为了缩短新涡扇的研制时间、减少开发费用.美国政府在还末对未来的航空动力有十分明确的要求的情况下,从一九五九年起开始执行"先进涡轮燃气发生器计划",这个计划的目地就是要利用最最新的科研成果来试制一种燃气核心机,并进行地面试车,以暴露解决各部分的问题.在这个燃气核心机的其础之上进行放大或缩小,再加装其它的部件,如压气机、风扇等等就可以组装成不同类型的航空涡轮发动机.如涡扇、涡喷、涡轴、涡桨等等."先进涡轮燃气发生器计划"实际上是一个有相当前瞻意味的预研工程. 用今天的眼光来看,这个工程的指导方向无疑是正确的.美国的政府实际上是在激励本国的两大动力公司向航空动力系统中最难的部分开刀.因为在燃气涡轮发动机中最最严重的技术难点就产生在这个以燃气发生器和燃气涡轮为主体的燃气核心机上.在每一台以高温燃气来驱动燃气涡轮为动力的发动机上,由燃气发生器和燃气涡轮所组成的燃气核心机的工作地点将是这台发动的最高温度、最大压力的所在地.所以其承受的应力也就最大,工作条件也最为苛刻.但燃气核心机的困难不只是压力和温度,高转数所带来的巨大的离心力、飞机在加速时的巨大冲击,如果是战斗机还要考虑到当飞机进行机动时所产生的过载和因过载以引起的零部件变形.在为数众多的困难中单拿出无论哪一个都将是一个工程上的巨大难题.但如果这些问题不被解决掉那么更先进的喷气发动机也就无从谈起. 在这个计划之下,普惠公司与通用动力公司都很快的推出了各自研发的燃气核心机.普惠公司的核心机被称作stf-200而通用动力公司的燃气核心机为ge-1.时至今日美国人在四十年前发起的这场预研还在发挥着他的作用,现如今普惠公司和通用动力公司出品的各式航空发动机如果真的都求其根源都话,它们却都是来自于stf-200与ge-1这两个老祖宗. 二、单转子和多转子 在研制一台新的涡扇发动机的时候,最先解决的问题是他的总体结构问题.总体结构的问题说明白一些就是发动机的转子数目多少.目前涡扇发动机所采用的总体结构无非是三种,一是单转子、二是双子、三是三转子.其中单转子的结构最为简单,整个发动机只有一根轴,风扇、压气机、涡轮全都在这一根轴上.结构简单的好处也不言自明--省钱!一方面的节省就总要在另一方而复出相应的代价. 首先从理论上来说单转子结构的涡扇发动机的压气机可以作成任意多的级数以期达到一定的增压比.可是因为单转子的结构限制使其风扇、低压压气机、高压压气机、低压涡轮、高压涡轮必须都安装在同一根主轴之上,这样在工作时他们就必须要保持相同的转速.问题也就相对而出,当单转子的发动机在工作时其转数突然下降时(比如猛收小油门),压气机的高压部分就会因为得不到足够的转数而效率严重下降,在高压部分的效率下降的同时,压气机低压部分的载荷就会急剧上升,当低压压气机部分超载运行时就会引起发动机的振喘,而在正常的飞行当中,发动机的振喘是决对不被允许的,因为在正常的飞行中发动机一但发生振喘飞机十有八九就会掉下来.为了解决低压部分在工作中的过载只好在压气机前加装导流叶片和在压气机的中间级上进行放气,即空放掉一部分以经被增压的空气来减少压气机低压部分的载荷.但这样以来发动机的效率就会大打折扣,而且这种放掉增压气的作法在高增压比的压气机上的作用也不是十分的明显.更要命的问题发生在风扇上,由于风扇必须和压气机同步,受压气机的高转数所限单转子涡扇发动机只能选用比较小的函道比.比如在幻影-2000上用的m-53单转子涡扇发动机,其函道只有0.3.相应的发动机的推重比也比较小,只有5.8. 为了提高压气机的工作效率和减少发动机在工作中的振喘,人们想到了用双转子来解决问题,即让发动机的低压压气机和高压压气机工作在不同的转速之下.这样低压压气机与低压涡轮联动形成了低压转子,高压压气机与高压涡轮联动形成了高压转子.低压转子的转速可以相对低一些.因为压缩作用在压气机内的空气温度升高,而音速是随着空气温度的升高而升高的,所以而高压转子的转速可以设计的相对高一些.即然转速提高了,高压转子的直径就可以作的小一些,这样在双转子的喷气发动机上就形成了一个"蜂腰",而发动机的一些附属设备比如燃油调节器、起动装置等等就可以很便的装在这个"蜂腰"的位置上,以减少发动机的迎风面积降低飞行阻力.双转子发动机的好处不光这些,由于一般来说双转子发动机的的高压转子的重量比较轻,起动惯性小,所以人们在设计双转子发动机的时候都只把高压转子设计成用启动机来驱动,这样和单转子发动机相比双转子的启动也比较容易,启动的能量也要求较小,启动设备的重量也就相对降低. 然而双转子结构的涡扇发动机也并不是完美的.在双转子结构的涡扇发动机上,由于风扇要和低压压气机联动,风扇和低压压气机就必须要互相将就一下对方.风扇为将就压气机而必需提高转数,这样直径相对比较大的风扇所承受的离心力和叶尖速度也就要大,巨大的离心力就要求风扇的重量不能太大,在风扇的重量不能太大的情况下风扇的叶片长度也就不能太长,风扇的直径小下来了,函道比自然也上不去,而实践证明函道比越高的发动机推力也就越大,而且也相对省油.而低压压气机为了将就风扇也不得不降低转数,降低了压气机的转数压气机的工作效率自然也就上不去,单级增压比降低的后果是不得不增加压气机风扇的级数来保持一定的总增压比.这样压气机的重量就很难得以下降. 为了解压气机和风扇转数上的矛盾.人们很自然的想到了三转子结构,所谓三转子就是在二转子发动机上又了多了一级风扇转子.这样风扇、高压压气机和低压压气机都自成一个转子,各自都有各自的转速.三个转子之间没有相对固定的机械联接.如此一来,风扇和低压转子就不用相互的将就行事,而是可以各自在最为合试的转速上运转.设计师们就可以相对自由的来设计发动机风扇转速、风扇直径以及函道比.而低压压气机的转速也可以不受风扇的肘制,低压压气机的转速提高之后压气的的效率提高、级数减少、重量减轻,发动机的长度又可以进一步缩小. 但和双转子发动机相比,三转子结构的发动机的结构进一步变的复杂.三转子发动机有三个相互套在一起的共轴转子,因而所需要的轴承支点几乎比双转子结构的发动机多了一倍,而且支撑结构也更加的复杂,轴承的润滑和压气机之间的密闭也更困难.三转子发动机比双转子发动机多了很多工程上的难题,可是英国的罗·罗公司还是对他情有独钟,因为在表面的困难背后还有着巨大的好处,罗罗公司的rb-211上用的就是三转子结构.转子数量上的增加换来了风扇、压气机、涡轮的简化. 三转子rb-211与同一技术时期推力同级的双转子的jt-9d相比:jt-9d的风扇页片有46片,而rb-211只有33片;压气机、涡轮的总级数jt-9d有22级,而rb-211只有19级;压气机叶片jt-9d有1486片,rb-211只有826片;涡轮转子叶片rb211也要比jt9d少,前者是522片,而后者多达708片;但从支撑轴承上看,rb-211有八个轴承支撑点,而jt9d只有四个. 三、风扇 涡扇发动机的外函推力完全来自于风扇所产生的推力,风扇的的好坏直接的影响到发动机的性能,这一点在高函道比的涡扇发动机上由是.涡扇发动机的风扇发展也经历了几个过程.在涡扇发动机之初,由于受内函核心机功率和风扇材料的机械强度的限制,涡扇发动机的函道比不可能作的很大,比如在涡扇发动机的三鼻祖中,其函道比最大的cj805-23也不过只有1.5而以,而且cj805-23所采用的风扇还是后独一无二的后风扇. 在前风扇设计的二款发动机中jt3d的函道比大一些达到了1.37.达到如此的函道比,其空气总流量比也比其原型j-57的空气流量大了271%.空气流量的加大发动机的迎风面积也随之变大.风扇的叶片也要作的很长.jt3d的一级风扇的叶片长度为418.2毫米.而j57上的最长的压气机叶片也就大约有二百毫米左右.当风扇叶片变的细长之后,其弯曲、扭转应力加大,在工作中振动的问题也突现了出来.为了解决细长的风扇叶片所带来的麻烦,普惠公司采用了阻尼凸台的方法来减少风扇叶片所带来的振动.凸台位于距风扇叶片根处大约百分之六十五的地方.jt3d发动机的风扇部分装配完成之后,其风扇叶上的凸台就会在叶片上连成一个环形的箍.当风扇叶片运转时,凸台与凸台之间就会产生摩擦阻尼以减少叶片的振动.加装阻尼凸台之后其减振效果是明显的,但其阻尼凸台的缺点也是明显的.首先他增加了叶片的重量,其次他降底了风扇叶片的效率.而且如果设计不当的话当空气高速的流过这个凸台时会发生畸变,气流的畸变会引发叶片产生更大的振动.而且如果采用这种方法由于叶片的质量变大,在发动机运转时风扇本身会产生更大的离心力.这样的风扇叶片很难作的更长,没有更长的叶片也就不会有更高的函道比.而且细长的风扇叶片的机械强度也很低,在飞机起飞着陆过程中,发动机一但吸入了外来物,比如飞鸟之类,风扇的叶片会更容易被损坏,在高速转动中折断的风扇叶片会像子弹一样打穿外函机匣酿成大祸.解决风扇难题一个比较完美的办法是加大风扇叶片的宽度和厚度.这样叶片就可以获得更大的强度以减少振动和外来物打击的损害,而且如果振动被减少到一定程度的话阻尼凸台也可以取消.但更厚重的扇叶其运转时的离心力也将是巨大的.这样就必需要加强扇叶和根部和安装扇叶的轮盘.但航空发动机负不起这样的重量代价.风扇叶片的难题大大的限制了涡扇发动机的发展. 更高的转数、高大的机械强度、更长的叶片、更轻的重量这样的一个多难的问题最终在八十年代初得到了解决. 1984年10月,rb211-535e4挂在波音七五七的翼下投入了使用.它是一台有着跨时代意义的涡扇发动机.让它身负如此之名的就是他的风扇.罗·罗公司用了创造性的方法解决了困扰大函道比涡扇发动机风扇的多难问题.新型发动机的风扇叶片叫作"宽弦无凸肩空心夹层结构叶片".故名思意,新型风扇的叶片采用了宽弦的形状来加大机械强度和空心结构以减少重量.新型的空心叶片分成三个部分:叶盆、叶背、和叶芯.它的叶盆和叶背分别是由两块钛合金薄板制成,在两块薄板之间是同样用钛合金作成的蜂窝状结构的"芯".通过活性扩散焊接的方法将叶盆、叶背、叶芯连成一体.新叶片以极轻的重量获得了极大的强度.这样的一块钛合金三明治一下子解决了困扰航空动力工业几十年的大难题. 新型风扇不光是重量轻、强度大,而且因为他取消了传统细长叶片上的阻尼凸台他的工作效率也要更高一些.风扇扇叶的数量也减少了将近三分之一,rb211-535e4发动机的风扇扇叶只有二十四片. 1991年7月15日新型宽弦叶片经受了一次重大的考验.印度航空公司的一架a320在起飞阶段其装备了宽弦叶片的v-2500涡扇发动机吸入了一只5.44千克重的印度秃鹫!巨鸟以差不多三百公里的时速迎头撞到了发动机的最前端部件--风扇上!可是发动机在遭到如此重创之后仍在正常工作,飞机安全的降落了.在降落之后,人们发现v-2500的22片宽弦风扇中只有6片被巨大的冲击力打变了形,没有一片叶片发生折断.发动机只在外场进行了更换叶片之后就又重新投入了使用.这次意外的撞击证明了"宽弦无凸肩空心夹层结构叶片"的巨大成功. 解决宽弦风扇的问题并不是只有空心结构这一招.实际上,当风扇的直径进一步加大时,空心结构的风扇扇叶也会超重.比如在波音777上使用的ge-90涡扇发动机,其风扇的直径高达3.142米.即使是空心蜂窝结构的钛合金叶片也会力不从心.于是通用动力公司便使用先进的增强环氧树脂碳纤维复合材料来制造巨型的风扇扇叶.碳纤维复合材料所制成的风扇扇叶结构重量极轻,而强度却是极大.可是在当复合材料制成的风扇在运转时遭到特大鸟的撞击会发生脱层现像.为了进一步的增大ge-90的安全系数,通用动力公司又在风扇的前缘上包覆了一层钛合金的蒙皮,在其后缘上又用"凯夫拉"进行缝合加固.如此以来ge-90的风扇可谓万无一失. 当高函道比涡扇发动机的风扇从传统的细长窄弦叶片向宽弦叶片过渡的时候,风扇的级数也经历了一场从多级风扇到单级风扇的过渡.在涡扇发动机诞生之初,由于风扇的单级增压比比较低只能采用多级串联的方式来提高风扇的总增压比.比如jt3d的风扇就为两级,其平均单级增压比为1.32,通过两级串联其风扇总增压比达到了1.74.多级风扇与单级风扇相比几乎没有优点,它重量大、效率低,其实它是在涡扇发动机的技主还不十分成熟的时候一种无耐的选择.随着风扇单级增压比的一步步提高,现如今在中、高函道比的涡扇发动机上单级风扇以是一统天下.比如在ge-90上使用的单级风扇其增压比高达1.65,如此之高的单级增压比以经再没有必要来串接第二级风扇. 但是在战斗机上使用的低函道比涡扇发动机还在使用着多级风级的结构.比如在f-15a上使用的f100-pw-100涡扇发动机就是由三级构成,其总增压比达到了2.95.低函道涡扇发动机取如此高的风扇增压比其实是风扇、低压压气机合二为一结果.在战斗机上使用的低函道比涡扇发动机为了减少重量它的双转子其实是由风扇转子和压气机转子组成的双转子结构.受战斗机的机内容积所限,采用大空气流量的高函道比涡扇发动机是不现实的,但为了提高推力只能提发动机的出口压力,再者风扇不光要提供全部的外函推力而且还要部分的承担压气机的任务,所以风扇只能采用比较高的增压比. 其实低函道比的涡扇发动机彩用多级风扇也是一种无耐之举,如果风扇的单级增压比能达到3左右多级风扇的结构就将不会再出现.如果想要风扇的单级增压比达到3一级只能是进一步提高风扇的的转速并在风扇的叶型上作文章,风扇的叶片除了要使用宽弦叶片之外叶片还要带有一定的后掠角度以克服风扇在高速旋转时所产生的激波,只有这样3一级的单级风扇增压比才可能会实现.相现这一点人们将会在二十年之内作到. 四、压气机 压气机故名思意,就是用来压缩空气的一种机械.在喷气发动机上所使用的压气机按其结构和工作原理可以分为两大类,一类是离心式压气机,一类是轴流式压气机.离必式压气机的外形就像是一个钝角的扁圆锥体.在这个圆锥体上有数条螺旋形的叶片,当压气机的圆盘运转时,空气就会被螺旋形的叶片"抓住",在高速旋转所带来的巨大离心力之下,空气就会被甩进压气机圆盘与压气机机匣之间的空隙,从而实现空气的增压.与离心式压气机不同,轴流式压气机是由多级风扇所构成的,其每一级都会产生一定的增压比,各级风扇的增压比相乘就是压气机的总增压比. 在现代涡扇发动机上的压气机大多是轴流式压气机,轴流式压气机有着体积小、流量大、单位效率高的优点,但在一些场合之下离心式压气机也还有用武之地,离心式压气机虽然效率比较差,而且重量大,但离心式压气机的工作比较稳定、结构简单而且单级增压比也比轴流式压气机要高数倍.比如在我国台湾的idf上用的双转子结构的tfe1042-70涡扇发动机上,其高压压气机就采用了四级轴流式与一级离心式的组合式压气机以减少压气机的级数.多说一句,这样的组合式压气机在涡扇发动机上用的不多,但在直升机上所使用的涡轴发动机现在一般都为几级轴流式加一级离心式的组合结构.比如国产的涡轴6、 涡轴8发动机就是1级轴流式加1级离心式构成的组合压气机.而美国的"黑鹰"直升机上的t700发动机其压气机为5级轴流式加上1级离心式. 压气机是涡扇发动机上比较核心的一个部件.在涡扇发动机上采用双转子结构很大程度上就是为了迎合压气机的需要.压气机的效率高低直接的影响了发动机的工作效率.目前人们的目标是提高压气机的单级增压比.比如在j-79上用的压气机风扇有17级之多,平均单级增压比为1.16,这样17级叶片的总增压比大约为12.5左右,而用在波音777上的ge-90的压气机的平均单级增压比以提高到了1.36,这样只要十级增压叶片总增压比就可以达到23左右.而f-22的动力f-119发动机的压气机更是了的,3级风扇和6级高压压气机的总增压比就达到了25左右,平均单级增压比为1.43.平均单级增压比的提高对减少压气机的级数、减少发动机的总量、缩短发动机的总长度是大有好处的. 但随着压气机的增压比越来越高,压气机振喘和压气机防热的问题也就突现了出来. 在压气机中,空气在得到增压的同时,其温度也在上升.比如当飞机在地面起飞压气机的增压比达到25左右时,压气机的出口温度就会超过500度.而在战斗机所用的低函道比涡扇发动机中,在中低空飞行中由于冲压作用,其温度还会提高.而当压气机的总增压比达到30左右时,压气机的出口温度会达到600度左右.如此高的温度会钛合金以是难当重任,只能由耐高温的镍基合金取而代之,可是镍基合金与钛合金相比基重量太大.与是人们又开发了新型的耐高温钛合金.
2023-08-18 05:24:511

飞机上发动机有涡轮和涡扇发动机的工作原理是怎么样的?

涡轮发动机是内燃机的一种。常用作飞机的发动机。按照涵道比的不同,分为涡轮风扇发动机或涡轮喷气发动机;另外还有涡轮旋桨发动机(或涡轮螺旋桨发动机、涡轮桨发动机等),以及类似但用于直升机上的涡轮轴发动机,以及由涡轮发动机衍生出来,用于车辆、船舰、发电等的燃气涡轮引擎。所有的涡轮发动机都具备压缩机(Compressor)、燃烧室(Cumbustion)、涡轮机(Turbine,也就是涡轮发动机之名的来源)三大部份。压缩机通常还分成低压压缩机(低压段)和高压压缩机(高压段),低压段有时也兼具进气风扇增加进气量的作用,进入的气流在压缩机内被压缩成高密度、高压、低速的气流,以增加发动机的效率。气流进入燃烧室后,由供油喷嘴喷射出燃料,在燃烧室内与气流混合并燃烧。燃烧后产生的高热废气,接著会推动涡轮机使其旋转,然后带著剩余的能量,经由喷嘴或排气管排出,至于会有多少的能量被用来推动涡轮,则视涡轮发动机的种类与设计而定,涡轮机会和压缩机一样分成高压段与低压段
2023-08-18 05:25:001

涡扇飞机发动机点火起动原理?

他回答的是CFM56发动机
2023-08-18 05:25:122

介绍下 涡喷发动机 涡扇发动机 涡轮发动机的区别

涡扇发动机是利用涡轮带动发动机前面的风扇转动,从而产生推力。气流分叉成两股。一股是不经过燃烧室的,直接流向发动机尾部,这部分气流是风扇产生的。另一部分则是由燃烧室的空气瞬间膨胀加压产生的,这部分的气流和涡喷发动机的原理是一样的。但是与涡喷发动机不同的是,涡扇发动机的大部分推力来自于风扇产生的气流。有一个指标是衡量这两部分气流的比值的,叫做bypass ratio(B)。就是风扇产生的mass flow rate比上了燃烧室产生的mass flow rate。通常来说,飞机在起飞时B可以达到3-4,就是60%——80%的推力来自于风扇。而飞机做level flight(平飞),B大约在0.8-1左右。就是说两部分气流几乎相等。涡喷发动机就没有前面的那个风扇了,只有依靠燃烧室的气流推进了。涡扇发动机在小于或接近1马赫的时候经济性比涡喷好,所以大部分的商用客机使用的是涡扇发动机。而涡喷发动机在大于1马赫也就是超音速的情况下经济性好,所以很多的战斗机使用涡喷发动机。若是说到如何区分它们的话,就是发动机前方的风扇了,你可以在客机的发动机前方看到一个很大的风扇的,而涡喷则没有风扇。涡轮发动机主要类型有:涡轮喷气发动机(主要用于军机);涡轮风扇发动机(主要用于干线飞机和军机);涡轮螺旋桨发动机(主要用于支线飞机);涡轮轴发动机(主要用于直升机)此外还有螺旋桨及风扇组合的浆扇发动机。从喷气推进方式来讲,还有冲压喷气发动机(主要用于导弹和靶机),采用间歇燃烧原理的脉冲喷气发动机,以及不同类型组合的发动机,如涡轮/冲压喷气发动机。涡喷发动机 涡扇发动机都属于涡轮发动机
2023-08-18 05:25:312

什么是涡桨、涡喷、涡扇发动机?

涡喷:最基本的,结构简单,直径小,所以迎风阻力小。有大量的热量没有利用即从尾喷管排出,费油。 涡桨:介于涡喷与活塞螺旋桨之间,在涡轮后再加一自由涡轮,带动螺旋桨转动,燃料利用率提高,省油。但速度快时螺旋桨翼尖易达到音速,导致效率降低,阻力也大,所以飞行速度不高。 涡扇:介于涡喷与涡桨之间,是在涡桨基础上改进的。将螺旋桨直径缩小,叶片增多,是为风扇,放进外层壳体内,即形成发动机的外涵道。外涵道所占比例(涵道比)越大,就越省油,所以民用大型飞机多用之。但涵道比大了直径也大了,迎风阻力增大,导致速度降低,因此战斗机多用小涵道比涡扇。 涡轮是一种将流动工质的能量转换为机械功的旋转式动力机械。它是航空发动机、燃气轮机和蒸汽轮机的主要部件之一。工作原理:就拿汽油机工作原理来说,每向气缸里面提供1公斤的汽油,大约需要气缸吸入15公斤的空气,才能保证汽油充分燃烧。然而这15公斤的空气,其体积将是非常大的,光靠气缸在发动机进气过程产生的真空度,不容易将这么大体积的空气完全吸入。因此,提高发动机吸入气体的能力,也就是提高发动机的充气效率就显得尤为重要。有两种方法来增加发动机的进气量,第一种是后段式增压技术,从原理上讲,后段式增压技术就是采用专门的压气机将气体在进入气缸前预先进行压缩,提高进入气缸的气体密度,减小气体的体积,这样,在单位体积里,气体的质量就大大增加了,进气量即可满足燃料的燃烧需要,从而达到提高发动机功率的目的。增压过程中采用的压气机又叫做增压器。第二种是前段式进气技术,还是利用气缸的真空度,从进气支管将空气补充进气缸。不管是哪种技术,控制好进气量是关键。 涡扇气流通道有两个:内涵和外涵。内涵要经过风扇、压气机、燃烧室、涡轮和喷口;外涵直接通过风扇后排出。如果是带加力的发动机(如F-22等军用飞机的的发动机:F-119等)那外涵气流还要经过加里燃烧室。现在民航几乎没有使用涡喷的(亚音速是经济性不好),CFM56,GE90,PW4000,RB211,Trent等,都是典型的不带加力的涡扇发动机。 涡喷气流通道只有一个。高速的时候效率较高。但是,十分废油。现在连战斗机都很少用纯涡喷的。早期的喷气发动机涡喷居多。如 707 用的 JT3D 就是涡喷发动机。 与涡喷发动机相比,涡扇发动机热效率高,油耗低,因而能够获得较大的推重比。这些是涡喷发动机无论如何都难以达到的。其实涡喷发动机和涡扇发动机的核心机是基本相同的,所不同的是涡扇发动机是在涡喷发动机的基础上增加了几级涡轮,这些涡轮带动一排或几排风扇,风扇后的气流一部分进入压气机(内涵道),燃烧后从喷口喷出,另一部分则不经过燃烧,而通过外涵道直接排到空气中。所以,涡扇发动机的推力是风扇抗力和喷口推力的总和。
2023-08-18 05:25:381

涡喷 涡扇到底有什么区别?大涵道比和小涵道比有什么区别?涡轮冲压的工作原理?涡轴和涡桨的区别?

同学你是学飞行员的?
2023-08-18 05:26:005

涡轮增压风扇发动机是什么工作原理

他不叫涡轮增压风扇发动机,而是涡轮风扇发动机。 涡轮风扇发动机由风扇、低压压气机(髙涵比涡扇特有)、高压压气机、燃烧室、驱动压气机的高压涡轮、驱动风扇的低压涡轮和排气系统组成。其中高压压气机、燃烧室和高压涡轮三部分统称为核心机,由核心机排出的燃气中的可用能量,一部分传给低压涡轮用以驱动风扇,余下的部分在喷管中用于加速排出的燃气。风扇转子实际上是 1级或几级叶片较长的压气机,空气流过风扇后,分成两路:一路是内涵气流,空气继续经压气机压缩,在燃烧室和燃油混合燃烧,燃气经涡轮和喷管膨胀,燃气以高速从尾喷口排出,产生推力,流经路程为经低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮,燃气从喷管排出;另一路是外涵气流,风扇后空气经外涵道直接排入大气或同内涵燃气一起在喷管排出。涡轮风扇发动机组合了涡轮喷气和涡轮螺桨发动机的优点。涡扇发动机转换大部分的燃气能量成驱动风扇和压气机的扭矩,其余的转换成推力。涡扇发动机的总推力是核心发动机和风扇产生的推力之和。这种有内外二个涵道的涡轮风扇发动机又称为内外涵发动机。也就是说,涡扇发动机可以是分开排气的或混合排气的,可以是短外涵的或长外涵(全涵道)的。 风扇可作为低压压气机的第1级由低压涡轮驱动,也可以由单独的涡轮驱动。 涡扇发动机的推力由两部分组成:内涵产生的推力和外涵产生的推力。对于高涵道比涡扇发动机,风扇产生的推力占78%以上。流经外涵和内涵的空气流量之比称为涵道比或流量比。涵道比对涡轮风扇发动机性能影响较大,涵道比大,耗油率低,但发动机的迎风面积大;涵道比较小时,迎风面积小,但耗油率大。内外涵两股气流分开排入大气的称为分排式涡轮风扇发动机。内外涵两股气流在内涵涡轮后的混合器中相互渗混后通过同一喷管排入大气的,称为混排式涡轮风扇发动机。涡轮风扇发动机也可安装加力燃烧室,成为加力涡轮风扇发动机。在分排式涡轮风扇发动机上的加力燃烧室可以分别安装在内涵涡轮后或外涵通道内,在混排式涡轮风扇发动机上则可装在混合器后面。
2023-08-18 05:26:192

涡轮、涡扇、涡喷发动机各有什么特点?

总的来说涡扇气流通道有两个:内涵和外涵。内涵要经过风扇、压气机、燃烧室、涡轮和喷口;外涵直接通过风扇后排出。如果是带加力的发动机(如F-22等军用飞机的的发动机:F-119等)那外涵气流还要经过加里燃烧室。现在民航几乎没有使用涡喷的(亚音速是经济性不好),CFM56,GE90,PW4000,RB211,Trent等,都是典型的不带加力的涡扇发动机。 涡喷气流通道只有一个。高速的时候效率较高。但是,十分废油。现在连战斗机都很少用纯涡喷的。早期的喷气发动机涡喷居多。如 707 用的 JT3D 就是涡喷发动机。 与涡喷发动机相比,涡扇发动机热效率高,油耗低,因而能够获得较大的推重比。这些是涡喷发动机无论如何都难以达到的。其实涡喷发动机和涡扇发动机的核心机是基本相同的,所不同的是涡扇发动机是在涡喷发动机的基础上增加了几级涡轮,这些涡轮带动一排或几排风扇,风扇后的气流一部分进入压气机(内涵道),燃烧后从喷口喷出,另一部分则不经过燃烧,而通过外涵道直接排到空气中。所以,涡扇发动机的推力是风扇抗力和喷口推力的总和涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。 到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。 问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。 涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。 工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。 涡轮喷气发动机的优缺点 这类发动机具有加速快、设计简便等优点,是较早实用化的喷气发动机类型。但如果要让涡喷发动机提高推力,则必须增加燃气在涡轮前的温度和增压比,这将会使排气速度增加而损失更多动能,于是产生了提高推力和降低油耗的矛盾。因此涡喷发动机油耗大,对于商业民航机来说是个致命弱点。 涡轮风扇喷气发动机的原理 战斗机动力装置的设计,总是追求更高的推重比;大型飞机自重和载重的不断增大,对发动机提出了更高的推力要求。而涡扇发动机的诞生就是为了顺应人们对航空发动机越来越高的推力要求而诞生的。因为提高喷气发动机的推力最简单的办法就是提高发动机的空气流量。 涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。 涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。 从结构上看,目前涡扇发动机可分为单转子、双转子、三转子 涡轮风扇发动机可以再细分为不加力式和加力式。前者不仅涡轮前温度较高,而且风扇直径较大,涵道比可达8以上,这种发动机的经济性优于涡轮喷气发动机,而可用飞行速度又比活塞式发动机高,在现代大型干线客机、军用运输机等最大速度为M0.9左右的飞机中得到广泛的应用。根据热机的原理,当发动机的功率一定时,参加推进的工质越多,所获得的推力就越大,不加力式涡轮风扇发动机由于风扇直径大,空气流量就大,因而推力也较大。同时由于排气速度较低,这种发动机的噪音也较小。加力式涡轮风扇发动机在飞机巡航中是不开加力的,这时它相当于一台不加力式涡轮风扇发动机,但为了追求高的推重比和减小阻力,这种发动机的涵道比一般在1.0以下。在高速飞行时,发动机的加力打开,外涵道的空气和涡轮后的燃气一同进入加力燃烧室喷油后再次燃烧,使推力可大幅度增加,甚至超过了加力式涡轮喷气发动机,而且随著速度的增加,这种发动机的加力比还会上升,并且耗油率有所下降。加力式涡轮风扇发动机由于具有这种低速时较油耗低,开加力时推重比大的特点
2023-08-18 05:26:291

涡桨,涡喷,涡扇发动机的原理分别是什么?各有什么性能特点?

都是燃气轮机的不同变种。机械效率在内燃机中最高,烧航空煤油。
2023-08-18 05:26:406

航空发动机中涡喷,涡扇和涡桨发动机各有什么优缺点?

用涡扇发动机做栗子吧。涡扇发动机有两个涵道分别流通空气,内涵道既加热又加速,外涵道只加速不加热。发动机的推力是通过加速空气得到的反作用力产生的。那么,内涵道既加热又加速,所以同样多的空气,获得的能量大,推力也大。因为热量也可以转化为压力和速度。但是,同样的能量(燃油)下,内涵道获得的推力反而小了,因为一部分能量变成了热量。那么好了,如果我们需要发动机推力一定的情况下空气流量尽可能小,或者在空气流量一定的情况下推力尽可能大,就需要把内涵道做大,外涵道做小,完全取消外涵道时就成了涡喷。如果我们需要在推力一定的情况下燃油消耗尽可能小,或者在燃油消耗一定的情况推力尽可能大,就需要把外涵道做大,内涵道做小。内涵道小到极限时就可以把发动机的外涵道机匣(外罩)去掉,这成了涡桨(内涵道不能取消,因为外涵道的动力需要内涵道提供)。在地面工作时,航空涡轮发动机的压气机会吸入空气,这时在进气道内形成一个低压区,在进气道外面,越靠近发动机进气口的地方空气压强就越低,压强梯度以音速向外传播并推动空气向发动机流动。因此在亚音速状态下,空气是被发动机“吸”进来的。有限的进气道能够获得大得多的空气流量,那么在空气流量足够的情况下,外涵道大的涡扇甚至涡桨就会比涡喷省油得多。但在超音速飞行状态下,飞行速度超过压强梯度传播速度,发动机前方的空气不会自发流动,于是只能被动的“冲”进发动机。所以超音速时发动机的空气流量会被进气道的面积严格限定,而扩大进气道又会增大阻力。在阻力(进气道面积)一定的情况下,外涵道小的涡扇甚至涡喷就能获得更大的推力。推力一定时一定条件下会比较省油,因为随着进气道扩大,阻力上升很快。总结来说。亚音速条件下,涡扇的涵道比越大越省油,涡桨最省油,涡喷最费油。超音速条件下,涡扇的涵道比越小有效推力越大,而且一般会省油。涡喷性能最好。涡桨一般超不过音速,因为螺旋桨的桨叶会比飞机更快到达音速,阻力和震动都太大了。
2023-08-18 05:26:592

f22战斗机的原理

:F-22用的F119那是涡扇发动机,喷气机的基本原理说起来就比较复杂了。首先需要进气。也就是从发动起进气道吸入空气(吸气动力哪里来的,下面马上说到)。光是空气是不够的,空气必须要经过压缩,才能够供涡轮机使用。这就是压气机,一般使用的轴流式压气机,就是一组涡轮叶片,将空气压缩到2atm送入燃烧室。燃烧室入口处有喷油嘴,将燃油雾化喷出。涡轮机工作的时候燃烧室处于恒定高温,无需任何点燃措施燃料就会燃烧,高温燃气向后喷出,推动燃烧室后面的一个涡轮旋转,涡轮再经过一个主轴,带动压气机旋转(OK,解释了上面压气机的动力来源问题。燃气经过涡轮以后,到达尾喷,尾喷一般是收缩状的,将燃气高速向后喷出,获得动力。这就是所有涡轮机的基础——涡轮喷气发动机的工作原理。涡轮喷气发动机大多数能量都用在高速气流上了,所以涡喷发动机往往推力不大,耗油却很大。所以现在已经逐渐不用了。主要用涡扇、涡桨、桨扇三中发动机,F119发动机就是涡扇发动机。涡扇机就是在涡轮主轴前端安装一个风扇,风扇后面分成两股,一股气流进入压气机-燃烧室-涡轮-尾喷,这个部分称为内涵道,另一部分直接利用风扇取得的动能到达尾部,称为外涵道。外涵道气流量与内涵道气流量比值称为涵道比。战斗机一般使用的小涵道比涡扇机。如果没有风扇,直接利用涡轮主轴来驱动的话,就是涡轮轴发动机。现代直升机主要就是用的是这种发动机。还有中型水面舰艇使用的燃气轮机,其实也是这种发动机。陆地上移动的物体,就我所知,美国M1A1 Amrams主战坦克使用的就是涡轮发动机,原理和F119其实是一样的,不过动力输出上不一样。所以Abrams拥有非常强大的功率与速度。
2023-08-18 05:27:141

飞机上发动机有涡轮和涡扇发动机,工作原理是怎么样的?

原理类似,都是先压缩空气再燃烧喷出。涡扇在前几级压缩时,部分空气再压缩燃烧喷出。部分经外涵道,不燃烧喷出。涡喷已逐渐被涡扇取代。可看看《航空知识》或参考www.cfso.org
2023-08-18 05:27:232

求航空涡扇发动机的基本原理,优先采纳附有配图说明的回答。

我是学汽车发动机的,偶尔也看看涡轮发动机就是一口大一口小,大口进气,小口出气,就会产生推力,就像是风扇,但是小口喷出的是热空气就不一样了,要比冷空气的推力要大得多,你要是学机械的看看图就能看懂
2023-08-18 05:27:312

涡扇发动机的外涵道的工作原理?通过压气室后直接排出提供推力?为什么又可以省油?

你可以把涡轮螺旋桨发动机看成外涵道无限大,你就明白了。
2023-08-18 05:27:533

什么是涡扇发动机?

现在的民航客机普遍使用的是涡扇发动机。涡扇发动机从其工作原理上来说,属于涡轮机的一种(流体冲击叶轮转动产生动力);同时从其做功的原理上来说,涡扇发动机又属于喷气式发动机的一种(喷射高速流体做功)。“涡轮机”与“喷气发动机”两个概念并不冲突,准确的说法是,现在的客机使用的是“涡轮扇叶喷气式发动机”。涡轮扇叶发动机(涡扇式发动机)改进自涡轮喷气式发动机(涡喷发动机)。相比而言,在燃油经济性方面有较大提高,因此受到商业航班的青睐。
2023-08-18 05:28:131

单轴涡扇发动机离合器工作原理

单轴涡扇发动机离合器工作原理是当离合器处于离合状态时,燃气轮机和涡扇之间处于分离状态。在这种情况下,燃气轮机和涡扇之间的传动系统断开,涡扇不会转动,燃气轮机可以自由地旋转。这种情况主要出现在发动机启动和关停的时候。当离合器处于联合状态时,燃气轮机与涡扇之间处于联接状态。在这种情况下,离合器将燃气轮机的动力传递到涡扇,从而推动飞机前进。这种情况主要出现在飞机起飞和飞行阶段中。
2023-08-18 05:28:211

涡轮喷气发动机与涡轮风扇发动机有什么区别?

从外观上差别不大。x0dx0a两者的共同点都是压气机压缩空气在燃烧室燃烧膨胀做功推动涡轮然都涡轮驱动压气机。这个也是燃气涡轮发动机的基本工作原理。x0dx0a区别就是涡喷发动机只有单个流道。而涡扇发动机通常是在普通的双转子的涡喷发动机的基础上,加装了有涡轮驱动的风扇和一个外罩(构成一个外涵道)。从结构的差别就是这样,你看见的涡喷前面像风扇一样的东西是压气机的叶片,而涡扇发动机前面的是风扇。x0dx0a涡扇发动机结构上有外涵道和内涵道,外涵道的喷出的空气直接排除发动机产生推力,内涵道的就是进入燃烧室了。x0dx0a涡扇发动机的外涵道和内涵道的空气质量流量之比,叫涵道比。涵道比小于1,定义为小涵道比,大于4定义为大涵道比,大于1小于4为中涵道比。涵道比是涡扇发动机的重要设计参数,它对发动机耗油率和推重比有很大影响。x0dx0a涡扇发动机的优点是在燃气发生器相同的情况下,涡扇发动机的空气流量大,排气速度低,所以推进效率高,耗油率低,噪声低。不加力的涡扇发动机是高亚音速旅客机和运输机的理想动力;带加力的涡扇发动机则适用于超音速军用飞机。
2023-08-18 05:28:501

涡扇和涡喷发动机有什么区别?

1、效率不同:涡喷发动机比涡扇发动机热效率高,油耗低,因而能够获得较大的推重比。2、结构不同:涡扇发动机是在涡喷发动机的基础上增加了几级涡轮,这些涡轮带动一排或几排风扇,风扇后的气流一部分进入压气机(内涵道),燃烧后从喷口喷出,另一部分则不经过燃烧,而通过外涵道直接排到空气中。3、工作原理不同:涡轮风扇发动机由风扇、低压压气机(髙涵比涡扇特有)、高压压气机、燃烧室、驱动压气机的高压涡轮、驱动风扇的低压涡轮和排气系统组成。扩展资料涡喷:函道比为零,一般压气机或增压涡轮功率更大一些。常用于战斗机等特殊用飞机,有些军用直升机也采用涡喷发动机。涡扇:涵道比不为零,一般客机都采用涡扇发动机。涡扇发动机相比涡喷更适用于客机,因为其经济燃油效率和低噪。主要原因还是涡扇的推重比更适用于亚音速飞机。涡扇的内涵道会产生高压气体与燃油混合并燃烧,燃烧后的高温气体推动涡轮做功。涡喷和涡扇最大区别就是涡扇比涡喷多若干级冲压涡轮,从而在油耗降低的同时还大大提高了推进效率。参考资料来源:百度百科-涡喷发动机百度百科-涡扇发动机
2023-08-18 05:29:013

涡轮风扇发动机是怎么工作的

工作原理涡轮风扇发动机由风扇、低压压气机(髙涵比涡扇特有)、高压压气机、燃烧室、驱动压气机的高压涡轮、驱动风扇的低压涡轮和排气系统组成。其中高压压气机、燃烧室和高压涡轮三部分统称为核心机,由核心机排出的燃气中的可用能量,一部分传给低压涡轮用以驱动风扇,余下的部分在喷管中用于加速排出的燃气。风扇转子实际上是1级或几级叶片较长的压气机,空气流过风扇后,分成两路:一路是内涵气流,空气继续经压气机压缩,在燃烧室和燃油混合燃烧,燃气经涡轮和喷管膨胀,燃气以高速从尾喷口排出,产生推力,流经路程为经低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮,燃气从喷管排出;另一路是外涵气流,风扇后空气经外涵道直接排入大气或同内涵燃气一起在喷管排出。涡轮风扇发动机组合了涡轮喷气和涡轮螺桨发动机的优点。涡扇发动机转换大部分的燃气能量成驱动风扇和压气机的扭矩,其余的转换成推力。涡扇发动机的总推力是核心发动机和风扇产生的推力之和。这种有内外二个涵道的涡轮风扇发动机又称为内外涵发动机。也就是说,涡扇发动机可以是分开排气的或混合排气的,可以是短外涵的或长外涵(全涵道)的。 风扇可作为低压压气机的第1级由低压涡轮驱动,也可以由单独的涡轮驱动。 涡扇发动机的推力由两部分组成:内涵产生的推力和外涵产生的推力。对于高涵道比涡扇发动机,风扇产生的推力占78%以上。流经外涵和内涵的空气流量之比称为涵道比或流量比。涵道比对涡轮风扇发动机性能影响较大,涵道比大,耗油率低,但发动机的迎风面积大;涵道比较小时,迎风面积小,但耗油率大。内外涵两股气流分开排入大气的称为分排式涡轮风扇发动机。内外涵两股气流在内涵涡轮后的混合器中相互渗混后通过同一喷管排入大气的,称为混排式涡轮风扇发动机。涡轮风扇发动机也可安装加力燃烧室,成为加力涡轮风扇发动机。在分排式涡轮风扇发动机上的加力燃烧室可以分别安装在内涵涡轮后或外涵通道内,在混排式涡轮风扇发动机上则可装在混合器后面。
2023-08-18 05:30:451

涡轮风扇发动机工作原理

涡轮风扇喷气发动机的原理涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。
2023-08-18 05:31:021

涡轮风扇发动机工作原理

涡轮风扇喷气发动机的原理涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。
2023-08-18 05:31:131

涡扇发动机工作原理 你知道吗

1、涡轮风扇发动机由风扇、低压压气机(髙涵比涡扇特有)、高压压气机、燃烧室、驱动压气机的高压涡轮、驱动风扇的低压涡轮和排气系统组成。其中高压压气机、燃烧室和高压涡轮三部分统称为核心机,由核心机排出的燃气中的可用能量,一部分传给低压涡轮用以驱动风扇,余下的部分在喷管中用于加速排出的燃气。 2、风扇转子实际上是1级或几级叶片较长的压气机,空气流过风扇后,分成两路:一路是内涵气流,空气继续经压气机压缩,在燃烧室和燃油混合燃烧,燃气经涡轮和喷管膨胀,燃气以高速从尾喷口排出,产生推力,流经路程为经低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮,燃气从喷管排出;另一路是外涵气流,风扇后空气经外涵道直接排入大气或同内涵燃气一起在喷管排出。
2023-08-18 05:31:211

涡扇发动机工作原理问题

1、涡扇的推力不完全来自反冲,还有压气机的排气力。这个和火箭发动机及涡喷不一样,后两个都是完全靠反冲来产生动力。2、引擎产生的阻力和引擎的转速关系不大,主要是面积大小和飞机飞行速度的快慢决定的。3、涡扇本来就是热机,动力当然来自他自己。靠燃烧航空煤油来产生。都说是涡扇了,当然是燃气轮机,涡扇本身就是动力装置,不需要其他动力装置。4、气体燃烧产生推力,推动叶轮旋转,和风车差不多。5、点击参考资料,看图之后仔细想想就明白了。
2023-08-18 05:31:301

战斗机的涡扇和涡喷发动机区别在哪?

涡喷和涡扇最大区别就是涡扇比涡喷多若干级冲压涡轮,从而在油耗降低的同时还大大提高了推进效率--注意,推力并不一定提高,由于涡喷的喷气速度太快了,从而产生了类似螺旋桨转速过高产生超空泡导致效率降低,而涡扇好比是降低了转速的大叶螺旋桨--好比二冲程发动机和四冲程发动机的区别
2023-08-18 05:31:406

飞机上发动机有涡轮和涡扇发动机的工作原理是怎么样的?

涡轮发动机是内燃机的一种。常用作飞机的发动机。按照涵道比的不同,分为涡轮风扇发动机或涡轮喷气发动机;另外还有涡轮旋桨发动机(或涡轮螺旋桨发动机、涡轮桨发动机等),以及类似但用于直升机上的涡轮轴发动机,以及由涡轮发动机衍生出来,用于车辆、船舰、发电等的燃气涡轮引擎。所有的涡轮发动机都具备压缩机(Compressor)、燃烧室(Cumbustion)、涡轮机(Turbine,也就是涡轮发动机之名的来源)三大部份。压缩机通常还分成低压压缩机(低压段)和高压压缩机(高压段),低压段有时也兼具进气风扇增加进气量的作用,进入的气流在压缩机内被压缩成高密度、高压、低速的气流,以增加发动机的效率。气流进入燃烧室后,由供油喷嘴喷射出燃料,在燃烧室内与气流混合并燃烧。燃烧后产生的高热废气,接著会推动涡轮机使其旋转,然后带著剩余的能量,经由喷嘴或排气管排出,至于会有多少的能量被用来推动涡轮,则视涡轮发动机的种类与设计而定,涡轮机会和压缩机一样分成高压段与低压段
2023-08-18 05:32:471

涡喷和涡扇的区别?他们的工作原理是什么?

涡扇就是涡轮多了一个外涵道,就是涡轮分出一部分动力驱动一个涡扇,提供额外推力的同时可以冷却排气
2023-08-18 05:33:103

涡轮风扇发动机是如何工作的?

现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。 空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。 进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。 从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,气流在涡轮中膨胀所做的功正好等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远小于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。 从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。 一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,目前只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至1.5倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。 随着航空燃气涡轮技术的进步,人们在涡轮喷气发动机的基础上,又发展了多种喷气发动机,如根据增压技术的不同,有冲压发动机和脉动发动机;根据能量输出的不同,有涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和螺桨风扇发动机等。 喷气发动机尽管在低速时油耗要大于活塞式发动机,但其优异的高速性能使其迅速取代了后者,成为航空发动机的主流。
2023-08-18 05:33:261

为什么大型客机用涡轮风扇发动机

原因是这样的,首先你必须明白,各种类型的发动机“涡扇”也好“涡浆”也好并没有好与不好,只不过是“适合”与“不适合”的问题由于民航客机用的“涡扇”相对于“涡浆”而言的耗油量较大,可是产生的噪音较小,当然,这种类型的发动机就更适合于应用在民用客机上,而所谓的“涡浆”发动机虽然能够产生较大的推力,可是噪音也相对较大,所以也就更适合于应用在大型运输机上。不知道这样的回答能不能令你满意
2023-08-18 05:33:542

什么是涡扇发动机?什么是涡喷发动机?具体介绍一下

  涡扇发动机  全称为涡轮风扇发动机(Turbofan)是飞机发动机的一种,由涡轮喷气发动机(Turbojet)发展而成。与涡轮喷气比较,主要特点是首级压缩机的面积大很多,同时被用作为空气螺旋桨(扇),将部分吸入的空气通过喷射引擎的外围向后推。发动机核心部分空气经过的部分称为内涵道,仅有风扇空气经过的核心机外侧部分称为外涵道。涡扇引擎最适合飞行速度400至1,000公里时使用,因此现在多数的飞机引擎都采用涡扇作为动力来源。  涡扇引擎的旁通比(Bypass ratio,也称涵道比)是不经过燃烧室的空气质量,与通过燃烧室的空气质量的比例。旁通比为零的涡扇引擎即是涡轮喷气引擎。早期的涡扇引擎和现代战斗机使用的涡扇引擎旁通比都较低。例如世界上第一款涡扇引擎,劳斯莱斯的Conway,其旁通比只有0.3。现代多数民航机引擎的旁通比通常都在5以上。旁通比高的涡轮扇引擎耗油较少,但推力却与涡轮喷气引擎相当,且运转时还宁静得多。  ..涡轮风扇发动机的诞生  二战后,随着时间推移、技术更新,涡轮喷气发动机显得不足以满足新型飞机的动力需求。尤其是二战后快速发展的亚音速民航飞机和大型运输机,飞行速度要求达到高亚音速即可,耗油量要小,因此发动机效率要很高。涡轮喷气发动机的效率已经无法满足这种需求,使得上述机种的航程缩短。因此一段时期内出现了较多的使用涡轮螺旋桨发动机的大型飞机。 实际上早在30年代起,带有外涵道的喷气发动机已经出现了一些粗糙的早期设计。40和50年代,早期涡扇发动机开始了试验。但由于对风扇叶片设计制造的要求非常高。因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机实用化的阶段。 50年代,美国的NACA(即NASA 美国航空航天管理局的前身)对涡扇发动机进行了非常重要的科研工作。55到56年研究成果转由通用电气公司(GE)继续深入发展。GE在1957年成功推出了CJ805-23型涡扇发动机,立即打破了超音速喷气发动机的大量纪录。但最早的实用化的涡扇发动机则是普拉特·惠特尼(Pratt & Whitney)公司的JT3D涡扇发动机。实际上普·惠公司启动涡扇研制项目要比GE晚,他们是在探听到GE在研制CJ805的机密后,匆忙加紧工作,抢先推出了了实用的JT3D。 1960年,罗尔斯·罗伊斯公司的“康威”(Conway)涡扇发动机开始被波音707大型远程喷气客机采用,成为第一种被民航客机使用的涡扇发动机。60年代洛克西德“三星”客机和波音747“珍宝”客机采用了罗·罗公司的RB211-22B大型涡扇发动机,标志着涡扇发动机的全面成熟。此后涡轮喷气发动机迅速的被西方民用航空工业抛弃。 涡轮风扇喷气发动机的原理 涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。 涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。  编辑本段涡轮风扇发动机的优缺点  如前所述,涡扇发动机效率高,油耗低,飞机的航程就远  .........................  ............  .......  ...  .  涡轮喷气发动机  是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力。油耗比涡轮风扇发动机高。涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1945年末的战斗。相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,当今的涡喷发动机均为轴流式。  .....原理及工作方式  涡轮喷气发动机应用喷气推进避免了火箭和冲压喷气发动机固有的弱点。因为采用了涡轮驱动的压气机,因此在低速时发动机也有足够的压力来产生强大的推力。涡轮喷气发动机按照“工作循环”工作。它从大气中吸进空气,经压缩和加热这一过程之后,得到能量和动量的空气以高达2000英尺/秒(610米/秒)或者大约1400英里/小时(2253公里/小时)的速度从推进喷管中排出。在高速喷气流喷出发动机时,同时带动压气机和涡轮继续旋转,维持“工作循环”。涡轮发动机的机械布局比较简单,因为它只包含两个主要旋转部分,即压气机和涡轮,还有一个或者若干个燃烧室。然而,并非这种发动机的所有方面都具有这种简单性,因为热力和气动力问题是比较复杂的。这些问题是由燃烧室和涡轮的高工作温度、通过压气机和涡轮叶片而不断变化着的气流、以及排出燃气并形成推进喷气流的排气系统的设计工作造成的。  飞机速度低于大约450英里/小时(724公里/小时)时,纯喷气发动机的效率低于螺旋桨型发动机的效率,因为它的推进效率在很大程度上取决于它的飞行速度;因而,纯涡轮喷气发动机最适合较高的飞行速度。然而,由于螺旋桨的高叶尖速度造成的气流扰动,在350英里/小时(563公里/小时)以上时螺旋桨效率迅速降低。这些特性使得一些中等速度飞行的飞机不用纯涡轮喷气装置而采用螺旋桨和燃气涡轮发动机的组合 -- 涡轮螺旋桨式发动机。  螺旋桨/涡轮组合的优越性在一定程度上被内外涵发动机、涵道风扇发动机和桨扇发动机的引入所取代。这些发动机比纯喷气发动机流量大而喷气速度低,因而,其推进效率与涡轮螺旋桨发动机相当,超过了纯喷气发动机的推进效率。  涡轮/冲压喷气发动机将涡轮喷气发动机(它常用于马赫数低于3的各种速度)与冲压喷气发动机结合起来,在高马赫数时具有良好的性能。这种发动机的周围是一涵道,前部具有可调进气道,后部是带可调喷口的加力喷管。起飞和加速、以及马赫数3以下的飞行状态下,发动机用常规的涡轮喷气式发动机的工作方式;当飞机加速到马赫数3以上时,其涡轮喷气机构被关闭,气道空气借助于导向叶片绕过压气机,直接流入加力喷管,此时该加力喷管成为冲压喷气发动机的燃烧室。这种发动机适合要求高速飞行并且维持高马赫数巡航状态的飞机,在这些状态下,该发动机是以冲压喷气发动机方式工作的。  涡轮/火箭发动机与涡轮/冲压喷气发动机的结构相似,一个重要的差异在于它自备燃烧用的氧。这种发动机有一多级涡轮驱动的低压压气机,而驱动涡轮的功率是在火箭型燃烧室中燃烧燃料和液氧产生的。因为燃气温度可高达3500度,在燃气进入涡轮前,需要用额外的燃油喷入燃烧室以供冷却。然后这种富油混合气(燃气)用压气机流来的空气稀释,残余的燃油在常规加力系统中燃烧。虽然这种发动机比涡轮/冲压喷气发动机小且轻,但是,其油耗更高。这种趋势使它比较适合截击机或者航天器的发射载机。这些飞机要求具有高空高速性能,通常需要有很高的加速性能而无须长的续航时间。  .......结构  进气道  轴流式涡喷发动机的主要结构如图,空气首先进入进气道,因为飞机飞行的状态是变化的,进气道需要保证空气最后能顺利的进入下一结构:压气机(compressor,或压缩机)。进气道的主要作用就是将空气在进入压气机之前调整到发动机能正常运转的状态。在超音速飞行时,机头与进气道口都会产生激波(shockwave,又称震波),空气经过激波压力会升高,因此进气道能起到一定的预压缩作用,但是激波位置不适当将造成局部压力的不均匀,甚至有可能损坏压气机。所以一般超音速飞机的进气道口都有一个激波调节锥,根据空速的情况调节激波的位置。  两侧进气或机腹进气的飞机由于进气道紧贴机身,会受到机身附面层(boundary layer,或边界层)的影响,还会附带一个附面层调节装置。所谓附面层是指紧贴机身表面流动的一层空气,其流速远低于周围空气,但其静压比周围高,形成压力梯度。因为其能量低,不适于进入发动机而需要排除。当飞机有一定迎角(angle of attack,AOA,或称攻角)时由于压力梯度的变化,在压力梯度加大的部分(如背风面)将发生附面层分离的现象,即本来紧贴机身的附面层在某一点突然脱离,形成湍流。湍流是相对层流来说的,简单说就是运动不规则的流体,严格的说所有的流动都是湍流。湍流的发生机理、过程的模型化现在都不太清楚。但是不是说湍流不好,在发动机中很多地方例如在燃烧过程就要充分利用湍流。  压气机  压气机由定子(stator)页片与转子(rotor)页片交错组成,一对定子页片与转子页片称为一级,定子固定在发动机框架上,转子由转子轴与涡轮相连。现役涡喷发动机一般为8-12级压气机。级数越多越往后压力越大,当战斗机突然做高g机动时,流入压气机前级的空气压力骤降,而后级压力很高,此时会出现后级高压空气反向膨胀,发动机工作极不稳定的状况,工程上称为“喘振”,这是发动机最致命的事故,很有可能造成停车甚至结构毁坏。防止“喘振”发生有几种办法。经验表明喘振多发生在压气机的5,6级间,在次区间设置放气环,以使压力出现异常时及时泄压可避免喘振的发生。或者将转子轴做成两层同心空筒,分别连接前级低压压气机与涡轮,后级高压压气机与另一组涡轮,两套转子组互相独立,在压力异常时自动调节转速,也可避免喘振。  燃烧室与涡轮  空气经过压气机压缩后进入燃烧室与煤油混合燃烧,膨胀做功;紧接着流过涡轮,推动涡轮高速转动。因为涡轮与压气机转子连在一根轴上,所以压气机与涡轮的转速是一样的。最后高温高速燃气经过喷管喷出,以反作用力提供动力。燃烧室最初形式是几个围绕转子轴环状并列的圆筒小燃烧室,每个筒都不是密封的,而是在适当的地方开有孔,所以整个燃烧室是连通的,后来发展到环形燃烧室,结构紧凑,但是整个流体环境不如筒状燃烧室,还有结合二者优点的组合型燃烧室。  涡轮始终工作在极端条件下,对其材料、制造工艺有着极其苛刻的要求。目前多采用粉末冶金的空心页片,整体铸造,即所有页片与页盘一次铸造成型。相比起早期每个页片与页盘都分体铸造,再用榫接起来,省去了大量接头的质量。制造材料多为耐高温合金材料,中空页片可以通以冷空气以降温。而为第四代战机研制的新型发动机将配备高温性能更加出众的陶瓷粉末冶金的页片。这些手段都是为了提高涡喷发动机最重要的参数之一:涡轮前温度。高涡前温度意味着高效率,高功率。  喷管及加力燃烧室  喷管(nozzle,或称喷嘴)的形状结构决定了最终排除的气流的状态,早期的低速发动机采用单纯收敛型喷管,以达到增速的目的。根据牛顿第三定律,燃气喷出速度越大,飞机将获得越大的反作用力。但是这种方式增速是有限的,因为最终气流速度会达到音速,这时出现激波阻止气体速度的增加。而采用收敛-扩张喷管(也称为拉瓦尔喷管)能获得超音速的喷气流。飞机的机动性来主要源于翼面提供的空气动力,而当机动性要求很高时可直接利用喷气流的推力。在喷管口加装燃气舵面或直接采用可偏转喷管(也称为推力矢量喷管,或向量推力喷嘴)是历史上两种方案,其中后者已经进入实际应用阶段。著名的俄罗斯Su-30、Su-37战机的高超机动性就得益于留里卡设计局的AL-31推力矢量发动机。燃气舵面的代表是美国的X-31技术验证机。  在经过涡轮后的高温燃气中仍然含有部分未来得及消耗的氧气,在这样的燃气中继续注入煤油仍然能够燃烧,产生额外的推力。所以某些高性能战机的发动机在涡轮后增加了一个加力燃烧室(afterburner,或后燃器),以达到在短时间里大幅度提高发动机推力的目的。一般而言加力燃烧能在短时间里将最大推力提高50%,但是油耗惊人,一般仅用于起飞或应付激烈的空中缠斗,不可能用于长时间的超音速巡航。  ......使用情况  涡喷发动机适合航行的范围很广,从低空低亚音速到高空超音速飞机都广泛应用。前苏联的传奇战斗机米格-25高空超音速战机即采用留里卡设计局的涡喷发动机作为动力,曾经创下3.3马赫的战斗机速度纪录与37250米的升限纪录。(这个纪录在一段时间内不太可能被打破的)  与涡轮风扇发动机相比,涡喷发动机燃油经济性要差一些,但是高速性能要优于涡扇,特别是高空高速性能。
2023-08-18 05:34:051

涡轮 涡桨 涡喷 涡扇发动机的区别 优缺点及原理是什么啊?

哎,通俗易懂一点……看一下我以前回答过的吧……http://zhidao.baidu.com/question/515570908?&oldq=1
2023-08-18 05:34:152

战斧式巡航导弹的燃料是什么?工作原理是什么?

战斧巡航导弹(Tomahawk cruise missile)是美国研制的一种从敌防御火力圈外投射的纵深打击武器,能够自陆地,船舰,空中与水面下发射,攻击舰艇或陆上目标,主要用于对严密设防区域的目标实施精确攻击。1970年由通用动力公司推出,1972年开始研制,1976年首次试飞,1983年装备部队。该导弹飞行速度快,在航行中采用惯性制导加地形匹配或卫星全球定位修正制导,可以自动调整高度和速度进行高速攻击。导弹表层有吸收雷达波的涂层,具有隐身飞行性能,是美国军械库中最有威力的“防空区外发射”导弹。具有低空飞行、命中率高等特点。动力装置:涡轮风扇发动机+固体火箭助推器战斧式巡航导弹_百度百科http://baike.baidu.com/link?url=E7YEJTfcOHh9QggtOtSPHya7Jh2dk-g6RR0e_IsM21pTUlv236VaAurSqZKIFMxw
2023-08-18 05:34:242

f22战斗机涡喷工作原理,汽车是不是可以用?

可以用
2023-08-18 05:34:444

涡扇发动机原理矛盾啊?

气体向后喷出,因为压气机就是压缩气体增压的,经过压气机后的压力可以达到30倍进口压力,气体通过对涡轮做工排出。从前面排出那是不可能的,原理上没问题。
2023-08-18 05:35:042

我还是搞不太清楚涡轮喷气发动机和 涡轮风扇发动机的一些区别,劳驾详细解答一下,谢谢!

涡轮喷气发动机英文名称:turbojet engine定义:在单个流道内靠发动机喷出的高速燃气产生反作用推力的燃气涡轮发动机。涡轮是为了增温增压以提高喷射所能产生的推力。涡轮风扇发动机英文名称:turbofan engine其他名称:内外涵发动机定义:由在压气机前安装的一级或多级风扇形成的外涵气流与内涵喷管排出的或内外涵气流掺混后排出的燃气共同产生推力的燃气涡轮发动机。通俗的说就是连煽带推。
2023-08-18 05:35:156

为什么现在的客机都用涡轮发动机而不用喷气发动机

现在的客机和军机基本都使用涡扇发动机。涡轮喷气发动机实在没效率,排气温度高,浪费能量
2023-08-18 05:35:425

客机是涡喷发动机还是涡扇?

现在的民航客机普遍使用的是涡扇发动机。涡扇发动机从其工作原理上来说,属于涡轮机的一种(流体冲击叶轮转动产生动力);同时从其做功的原理上来说,涡扇发动机又属于喷气式发动机的一种(喷射高速流体做功)。“涡轮机”与“喷气发动机”两个概念并不冲突,准确的说法是,现在的客机使用的是“涡轮扇叶喷气式发动机”。涡轮扇叶发动机(涡扇式发动机)改进自涡轮喷气式发动机(涡喷发动机)。相比而言,在燃油经济性方面有较大提高,因此受到商业航班的青睐。
2023-08-18 05:36:312

涡扇发动机的哪个部门向飞机提供动力

众所周知,航空发动机作为现今飞机的动力源泉,而航空发动机只不过是一个概称。涡扇发动机和涡喷发动机,都隶属于航空发动机的范畴。只不过,在今天涡扇发动机的应用范围要比涡喷发动机广泛的多。所以,各主要航空强国,都在倾尽全力的研发涡扇发动机,谋求在航空动力上走在前列。现在就来揭秘涡扇发动机的工作原理以及应用的先进技术。涡扇发动机的组成从前至后,涡扇发动机由“风扇,压气机,燃烧室,导向叶片,高压涡轮叶片和涡轮盘,低压涡轮叶片和涡轮盘,加力燃烧室,尾喷管”,这七大部分组成。而在这七大组成部分中,还会有细分的结构。如在压气机中,也可以分为高压压气机和低压压气机。低压压气机在前,紧临着风扇。高压压气机在后,与燃烧室相连。涡扇发动机的工做原理:简单来说,涡扇发动机就是将空气吸进燃烧室中,与喷出的燃料混合后进行燃烧,产生的高温高压气流,经过高低压涡轮后,从尾喷管喷出,最后产生推力,推动飞机前进。下面就来细细分析一下,涡扇发动机各个部分的主要作用。风扇:风扇的作用主要就是将空气吸进压气机,进行预压缩。被风扇吸进发动机的空气,一部分进入低压压气机中,也就是内涵道,经过燃烧后,进入尾喷管。另一部分进入外涵道,不经过燃烧流到尾喷管。压气机:压气机的作用主要就是,将被风扇吸进来的空气加压加速后吹入燃烧室中。燃烧室:被压气机吹过来的空气,进入燃烧室之后当做氧化剂与燃料混合后进行燃烧。导向叶片:从燃烧室出来的气流,经过导向叶片后,以最合适的角度吹向高压涡轮叶片。高压涡轮叶片和涡轮盘:燃烧之后的高温高压高速气流,吹动高压涡轮叶片,并带动涡轮盘高速转动。而涡轮盘是直接固定在涡轮轴上的,也顺便带动涡轮轴转动,引起高压压气机的转动。低压涡轮叶片和涡轮盘:当高温高压高速气流,流经高压涡轮叶片时,会损失一些能量。进而流经低压涡轮叶片,吹动低压涡轮盘转动。而低压涡轮盘也是固定在涡轮轴上,其转动之后又引起低压压气机和风扇的转动。加力燃烧室:经过低压涡轮叶片之后的,高温高压气流所具备的能量必然不如在燃烧室时的多,而进入加力燃烧室后,还会重新燃烧,提供更大的推力。尾喷管:经过加力燃烧室燃烧之后的高温高压高速气流,通过尾喷管喷出来。也就是说,风扇首先吸入空气-压气机将空气压缩-进入燃烧室开始燃烧-流经高低压涡轮,带动风扇和压气机单人运转-进入加力燃烧室燃烧-由尾喷管喷出。以上就是涡扇发动机,具体的工作原理。既然知道了涡扇发动机的工作原理,那么,涡扇发动机是如何启动呢?这就需要飞机自带的APU,也就是辅助动力系统。顾名思义,APU就是辅助飞机启动的动力系统。首先由飞机上的蓄电池给APU供电,当APU启动之后,就开始喷油燃烧,之后带动涡轮旋转,最终带动压气机开始压缩空气。并注入涡扇发动机的启动机中,然后带动涡扇发动机的压气机旋转,使得空气可以进入燃烧室进行燃烧,最终启动涡扇发动机。也就是说,APU是一部台小型的独立燃气涡轮发动机。在了解涡扇发动机的工作原理之后,接下来就看一下,现今涡扇发动机所用的先进技术。在所用的技术中,又分为制造技术和设计技术。设计技术:高低压涡轮对转,奇数不对称叶片。高低压涡轮对转:这样设计的好处就是减重和减少共振。因为高低压涡轮在同向旋转时,会产生共振,而共振会对涡轮叶片造成损坏。从而对发动机的寿命造成极为不利的影响。而高低压涡轮对转,就可以让高低压涡轮旋转产生力相互抵消。如此一来,共振就减少了,也就可以提高航空发动机的寿命。奇数不对称叶片:将叶片设计成奇数而不对称,也是为了减少共振。因为偶数叶片也就意味着对称,在旋转时就会发生共振。另外每个叶片都要设计的不相同,也是为了减少共振。制造技术:真空电子束焊接,单晶耐高温合金叶片,整体叶盘,复合材料风扇,粉末冶金涡轮盘。整体叶盘技术:传统航空发动机的高低压涡轮叶片,和涡轮盘是分开的。涡轮叶片是直接安装在涡轮盘上的,并由榫头,榫槽,锁紧装置进行固定。很明显,多了榫头,锁紧装置。由此来看,最直接的影响结果就是涡扇发动机的部件数量增多,使得制造流程增多,产速减慢,还带来了重量的增加。不仅仅减小了涡扇发动机的推重比,还给维护带来了困难。而整体叶盘技术,就是把叶片和叶片融为一体,也就省去了榫头,榫槽,锁紧装置。当省去了这些部件之后,带来的不仅仅是维护时的便捷,还有涡扇发动机推重比的增加。所以说,整体叶盘技术的使用,对涡扇发动机而言,有着极大的好处。单晶耐高温合金材料:由于高压涡轮叶片,直面从燃烧室出来的高温高压高速气流。所以对其耐高温性能,抗蠕变性能,抗冲击性能,机械疲劳性能,抗氧化,抗高温腐蚀性能等有较高的要求。由于要具备以上的性能,也就注定了高压涡轮叶片的性能,在涡扇发动机中是最强的。随着科技的发展,涡扇发动机的涡轮叶片所使用的材料,先后经过了变形高温合金,普通铸造等轴晶高温合金,定向凝固高温合金,单晶耐高温合金这四个阶段。目前大量应用的就是单晶耐高温合金。目前来说,单晶耐高温合金材料,已经发展了五代。第一代主要是美制“CMSX-2,PWA1480”,国产“DD403,DD402”。第二代主要是美制“CMSX-4,PWA1484”,国产“DD406,DD408”。第三代主要美制“CMSX-10”,国产“DD409”,日本的“TMS-75”。第四代主要是日本的“TMS-138”。第五代主要是日本的“TMS-162”。从第一代到第五代,单晶耐高温合金的耐高温性能,抗蠕变能力,抗高温腐蚀,抗氧化能力依次增大。只不过日本制造的第三代至第五代单晶耐高温合金使用了大量的铼,导致造价飙升,最大的可能存在于实验室中。但是考虑到XF9-1涡扇发动机出来了,估计其也使用了第四代或者第五代单晶耐高温合金。因为提高涡前温度,可以显著的增大发动机的推力,所以高压涡轮叶片的耐高温上限是越高越好。复合材料风扇:早些时候的涡扇发动机的,风扇叶片是由金属制成的。但是金属的重量大,对发动机的推重比不利。此外,叶片得重量越大,在转动时的离心力也越大,对叶盘的影响也越大。而复合材料制造的风扇叶片具备质量轻,强度高,耐腐蚀性能强,抗冲击能力强的特点。如今的复合材料叶片是由500层Hexcel的HexPly M91碳纤维增强体,高韧性和耐冲击环氧预浸料制成。不过,风扇前缘依然由钛合金制成。综合来看,涡扇发动机的性能会越来越好的。
2023-08-18 05:36:411

混合排气涡扇发动机

混合排气涡轮风扇发动机 进气道进气--风扇增压--气流分为两股 内涵气流:压气机增压--燃烧室加热--涡轮膨胀作功带动风扇和压气机--混合器 外涵气流:外涵道--混合器 两股气流在混合器中掺混--尾喷管膨胀加速--排气到体外 涡轮风扇发动机要比涡轮喷气发动机更省油,尤其是超过音速不太多时。所以民用喷气飞机都是采用的涡轮风扇发动机。 我国民用分开排气涡轮风扇发动机还未研制成功,军用混合排气涡轮风扇发动机已成功批量生产相当于英国60年代的SPEY,用于飞豹上。相当于苏27上的AL31的太行前一段时间报道研制成功,但不知道是否投入批量生产。美国现在用于F22的涡扇已能无加力超音速巡航。而AL31还不行。
2023-08-18 05:37:071

飞行背包的技术原理

飞行背包根据飞机发动机的的工作原理而做成,主要有两种,一种是涡轮发动机,一种是涡扇发动机涡扇发动机的工作原理:涡扇发动机是喷气发动机的一个分支,从血缘关系上来说涡扇发动机应该算得上是涡喷发动机的变种。从结构上看,涡扇发动机只不过是在涡喷发动机之前(之后)加装了风扇而已。然而正是这区区的几页风扇把涡喷发动机与涡扇发动机严格的区分开来。涡扇发动机的诞生就是为了顺应人们对航空发动机越来越高的推力要求而诞生的。因为提高喷气发动机的推力最简单的办法就是提高发动机的空气流量。
2023-08-18 05:37:151

航空涡扇发动机的压气机叶片为什么要分很多级

航空涡扇发动机的压气机叶片每一级所在的位置,工作时压强是不一样的,为了达到发动机所需要的工作压力,必须多级加压,逐渐增强。叶片像龙卷风形状一样叶片并不是发动机所需要的空气动力学外形,假如使用这样的叶片,那么效率将是很低的,发动机根本不可能工作。
2023-08-18 05:37:312

飞机的发动机有多少个缸

双个,歼十只是单缸
2023-08-18 05:37:4212

战斗机发动机问题及原理

除了涡扇,还有涡喷我以前在部队就是飞机机械员,我们部队的飞机就是涡扇的,歼轰7A,飞豹战斗机很强大的,听过吧.你要是想了解飞机的话我们可以交流交流,我以前可是天天在飞机底下工作啊,天天摸发动机,我可以很白话的跟你形容出来,那些专业的术语我都听不懂,听着也没什么意思.
2023-08-18 05:38:246

涡扇、涡喷、涡轴、涡轮发动机有什么区别?

涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机均属于燃气涡轮发动机。涡轮喷气发动机(涡喷发动机)是出现最早的燃气涡轮发动机,其构造相对简单,主要由压气机、涡轮和燃烧室构成。在工作时,从前端吸入大量的空气,经过压气机增压后进入燃烧室,与燃料混合燃烧形成高温高速的燃气向后喷出,燃气在经过涡轮时,一部分能量带动涡轮叶片旋转,再经传动轴带动压气机做功,其余大部分燃气经由喷管向后喷出提供推力。由于大多数情况下涡喷发动机的排气速度超过音速,燃气仍有相当一部分能量未被利用,而单纯的提高涡轮前温度会降低发动机热效率,因此充分利用燃气的剩余能量就显得十分必要。由此出现的涡轮风扇发动机(涡扇发动机)实际上就是在涡喷发动机的后方再增加若干低压(低速)涡轮,这些涡轮带动一定数量的风扇,继续消耗掉一部分涡喷发动机的燃气排气动能,从而进一步降低燃气排出速度。而风扇吸入的气流一部分如涡喷发动机一样,送进压气机(术语称“内涵道”)增压燃烧做功,另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)提供推力。所以,涡扇发动机的推力实际上就由两部分组成:由内涵道流出的高压燃气和由外涵道流出的低压空气。二者混合以后既降低了排气速度,提高了推进效率;又增大了流量,提高了推力,因而在综合性能上比涡喷发动机有明显提高。尽管涡扇发动机提高了推进效率,但是在低速情况下,涡扇发动机的效率仍不及活塞发动机,因此有人想到利用涡轮来驱动螺旋桨,既提高了低速推进效率,又克服活塞发动机振动大的缺点。这就是涡轮螺旋桨发动机(涡桨发动机),它在推进原理上与活塞螺旋桨发动机相同,区别之处在于动力来源。涡桨发动机在构造上与涡扇发动机相似,不同之处在于涡桨发动机在涡轮处安装有更多的叶片,从而通过燃气获得更多的能量来驱动螺旋桨。从某种意义上来说,涡桨发动机可以看做是外涵道无限大的涡扇发动机。另外,由于低压涡轮的转速很高,不能直接驱动螺旋桨,因此还需要安装若干组减速齿轮,这要增加相当的重量代价。涡轮轴发动机是从涡桨发动机演变而来的,涡桨发动机带动的是螺旋桨,而涡轴发动机带动的则是直升机的旋翼。区别在于涡轴发动机有一个特殊的自由涡轮,自由涡轮只向外输出轴功率,不带动压气机。
2023-08-18 05:38:413

喷气式发动机的扇叶旋转的动力来自什么?

喷气发动机简单来说,是由压气机、燃烧室、涡轮组成,压气机压缩空气进入燃烧室,在燃烧室内燃烧后成为高温高压气体,然后驱动涡轮,再从喷气口喷出。涡轮通过主轴和压气机相连,你所说的扇叶就是压气机的一种,这个动力来源就是涡轮。可以理解为从喷射的气流中获取了部分能量来驱动风扇。
2023-08-18 05:39:032

喷气式发动机的扇叶旋转的动力来自什么?

如图,大涵道比民用涡扇发动机工作原理图。空气由风扇加压加速后,一部分进入内涵到,一部分进入外涵道。内涵到的空气通过压气机加压进入燃烧室,在燃烧室与燃料混合后燃烧,形成高温高压气体喷出后,驱动高压涡轮。涡轮转动在带动同轴的风扇与压气机工作。这是一个动力循环的过程。所以,总有一个开始点。那就是发动机启动过程。其实所有的热机都有一个启动过程。汽车发动机由启动马达带动,当转速达到一定程度后,发动机才能自行运转。飞机发动机也是同样的。要启动发动机,飞机必须通电通气,电源和气源靠辅助动力装置APU提供。如果飞机APU故障,那么就只能靠地面电源车和高压气源车来提供。在发动机的风扇后面有一台气动起动机,和两个点火盒,用来把来自飞机电源的115交流电变成一万五到两万伏的高压直流电,燃烧室左右各一个点火点嘴,用来产生电火花。飞机就是依靠这些装置相互配合启动的,当然飞机发动机启动过程随着转速及空气压力的不同分为几个步骤,不像一般的汽车发动机那么简单。所以说,飞机发动机的旋转动力来自燃烧室高温高压气体推动涡轮后产生的。而启动时的动力则来自于许多机构,的相互协调。电能为主要。
2023-08-18 05:39:222