barriers / 阅读 / 详情

有限元法的基本步骤

2023-08-31 12:00:34
TAG: 有限元
共1条回复
clou

有限元法的基本步骤介绍如下:

有限元

有限元分析的基本步骤通常为:

第一步 前处理。根据实际问题定义求解模型,包括以下几个方面:

(1) 定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。

(2) 定义单元类型:

(3) 定义单元的材料属性:

(4) 定义单元的几何属性,如长度、面积等;

(5) 定义单元的连通性:

(6) 定义单元的基函数;

(7) 定义边界条件:

(8) 定义载荷。

第二步 总装求解: 将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。

第三步 后处理: 对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。

基本特点

有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。

不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

相关推荐

什么是有限元

分类: 教育/科学 >> 科学技术 >> 工程技术科学 解析: 有限元是那些 *** 在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为: 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。 第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。 为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。 第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。 第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。 简言之,有限元分析可分成三个阶段,前处理、处理和后处理。前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。
2023-08-27 23:16:271

有限元分析步骤?

有限元分析步骤介绍如下:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、迭代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。
2023-08-27 23:16:341

有限元分析是什么

有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。有限元法最初应用于航空器的结构强度计算,随有计算机技术的快速发展和普及,现在有限元方法因其高效已广泛应用于几乎所有的科学技术领城。扩展资料应用:有限元分析计算,即操作ANSYS WORKBENCH软件进行分析和计算的环节,是使用软件的主要部分,主要包括分析模块选择、网格划分、载荷和约束加载、求解计算。依照分析方案,本文选择Static Structural静态结构模块。网格划分是有限元分析计算的核心环节,占有至关重要的作用,网格划分质量的好坏,直接决定了计算结果的误差精度,同时也决定了计算过程所耗费的时间,有些情况下甚至决定了计算能否成功进行。很多计算过程中报错,都是因为网格划分不合格造成的。对于静力结构分析来说,网格划分有很多种不同的方式,相互差异很大。本次课题分析中,使用ANSYS WORKBENCH的自动网格划分,软件对于能扫略的部件会使用六面体进行分网,对于不可扫略的部件用四面体或四棱柱分网。分网完毕后,软件中Mesh的属性列表中有Mesh Metric网格质量评分,其中Average值表示平均网格质量,一般情况下,如果Average数值大于0.7,即表示网格质量较好。结合软件评分,需要不断对网格划分进行重新划分调整,直至满足要求。参考资料来源:百度百科-有限元分析
2023-08-27 23:17:421

有限元分析是什么

有限元分析的意思如下:有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。知识拓展有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。简介有限元法最初应用于航空器的结构强度计算,随有计算机技术的快速发展和普及,现在有限元方法因其高效已广泛应用于几乎所有的科学技术领域。
2023-08-27 23:18:001

离散元与有限元的区别

离散元与有限元两者在介质和接入点上有所不同。离散元方法是由分析离散单元的块间接触入手找出其接触的关系建立接触的物理力学模型并根据牛顿第二定律对非连续、离散的模拟仿真。而有限元方法是将介质复杂几何区域离散为具有简单几何形状的单元通过单元集成、外载和约束条件的处理得到方程组再求解该方程组就可以得到该介质行为的近似表达。1、计算方法:目前世界上结构计算方法一般分为有限元(FEM finite element method)、离散元(DEM discrete element method)、还有边界元(EEM)。2、离散元方法:最早是1971年由Cundall提出的一种不连续数值方法模型离散元理论是由分析离散单元的块间接触入手找出其接触的本构关系建立接触的物理力学模型并根据牛顿第二定律建立力、加速度、速度 及其位移之间的关系对非连续、离散的单元进行模拟仿真。3、有限元方法:插值是基于网格的、所以需要人为做好单元、这很耗时间、但是单元就好像人们修了路一样、计算的时候可以节省很多时间、效率比较高。同时、这也是有限元法的一个缺点、大变形问题中的网格畸变问题、本质在于单元插值造成的 。
2023-08-27 23:18:411

有限元网格划分的基本原则

有限元网格划分的基本原则如下:1.均匀性:在有限元网格中,每个单元尽量保持相同形状和尺寸,以确保精度和计算效率。对于特殊区域,可以加密或者消减单元数量来达到更高的精度。2.最小化边界:尽可能地避免划分过多的边界来减少划分成本和模型规模。同时也需要保证划分后生成的单元形状尽量接近平衡形,边界也要尽量与模型中原始边界自然衔接,以确保模型合理性和准确性。3.对称性:在模型存在对称性的情况下,应该合理利用这种对称性,并据此进行划分,减少计算量和优化计算效率。4.实用性:有限元网格划分需要根据实际问题的要求,区分模型重点部位和非重点部位并进行合理划分,尽量保留关键信息,以减少计算代价和提高分析结果在问题中所占的比重。5.避免奇异结构:要避免划分多个小单元而在同一位置无限叠加单元,因为这种奇异结构会导致数值方法不稳定。对于这种情况可以通过适当调整模型的形状和尺寸,或者删减一些不必要的单元来达到优化。综上所述,有限元网格划分的基本原则首先关注精度、可信度和可靠性,同时考虑计算效率和经济性,并根据实际问题进行合理设置。
2023-08-27 23:19:041

有限元和有限单元的区别

有限元和有限单元没有区别。1、在数学中,有限元法是一种为求解偏微分方程边值问题近似解的数值技术。2、有限元法分析计算的本质是将物体离散化,称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来。3、有限元分析中的结构已经不是原有的物体或结构物,而是同新材料的由单元以一定方式连接成的离散物体。随着电子计算机的发展,有限单元法是迅速发展成的一种现代计算方法,广泛应用于求解热传导、电磁场、流体力学等连续性问题。
2023-08-27 23:19:271

有限元收敛性准则是什么

有限元收敛性准则是完备性要求,协调性要求。收敛性是数学分析的基本概念之一,它与“有确定的(或有限的)极限”同义,“收敛于……”相当于说“极限是……(确定的点或有限的数)”。在一些一般性叙述中,收敛和收敛性这两个词(在外语中通常是同一个词)有时泛指函数或数列是否有极限的性质,或者按哪一种意义(什么极限过程)有极限。在这个意义下,数学分析中所讨论的收敛性的不同意义(不同类型的极限过程)大致有:对数列(点列)只讨论当其项序号趋于无穷的收敛性;对一元和多元函数最基本的有自变量趋于定值(定点)的和自变量趋于无穷的这两类收敛性。以及对多元函数还有沿特殊路径的和累次极限意义下的收敛性;对函数列(级数)有逐点收敛和一致收敛。石钟慈还发现并首次从理论上研究了非协调元的一种较普遍存在的奇特的错向收敛现象。即有限元近似解可收敛到非真解的错误极限。他找到若干这种非协调元,具体给出其错误极限,证实非协调元的解有时强烈依赖于网格剖分的几何形状。
2023-08-27 23:19:351

有限元分析方法

  1、前处理。根据实际问题定义求解模型,包括以下几个方面:   (1) 定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。   (2) 定义单元类型:   (3) 定义单元的材料属性:   (4) 定义单元的几何属性,如长度、面积等;   (5) 定义单元的连通性:   (6) 定义单元的基函数;   (7) 定义边界条件:   (8) 定义载荷。   2、总装求解: 将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。   3、后处理: 对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。
2023-08-27 23:19:561

有限元分析有什么作用?

解偏微分方程。随着市场竞争的加剧,产品更新周期愈来愈短,企业对新技术的需求更加迫切,而有限元数值模拟技术是提升产品质量、缩短设计周期、提高产品竞争力的一项有效手段,所以,随着计算机技术和计算方法的发展,有限元法在工程设计和科研领域得到了越来越广泛的重视和应用。已经成为解决复杂工程分析计算问题的有效途径,从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源和科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。扩展资料:基本特点:有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。参考资料来源:百度百科——有限元分析
2023-08-27 23:20:061

有限元分析软件?

问题一:常用的有限元分析软件有什么? 它们拥有丰富完善的单元库、 材料模型库和求解器,并且具有相对独立的前、后处理模块,可以独立完成多学科、多领域的工程分析问题。其缺点是前处理模块中的几何建模功能不强,无法完成复杂模型的建模,因此降低了结构分析结果的可信度。一些流行的三维设计软件却具有极强的几何模型的建模功能,如Pro/ENGINEER、UG和CATIA等。这些三维设计软件可以完成一些复杂的几何模型的建模工作。为了克服通用有限元分析软件建模功能较弱的缺点,当前普遍采用软件间的数据转换,即采用三维设计软件进行精确的三维建模,通过标准数据接口将模型以IGES、DXF或 STEP格式读入到通用有限元分析软件中,然后通过该软件进行精确的计算。 问题二:有限元分析用什么软件最好? 简单的分析,UG,Pro-E,Catia都是可以的。要是复杂分析的话看你应用的场合了。固体分析的话就是ansys和abaqus,如果是强非线性过程的话那就首选abaqus。流固耦合问题是adina和abaqus,不过推荐adina。流体分析的话是flunt。电场分析推荐ansys。这些软件都不太好学,如果你要用abaqus的话建议去买石益平的书,都很不错的。 问题三:的有限元分析的,用什么软件比较好 Abaqus,hyperworks 问题四:有限元分析软件 有限元分析软件编辑词条   有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1. 在世界范围内的知名度: 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2. 应用领域: ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3. 性价比 ANSYS软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。购买ABAQUS软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。因此,从综合效益和长远效益而言,ABAQUS软件的经济性也是非常突出的。 4. 求解器功能 对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。 ABAQUS软件在求解非线性问题时具有非常明显的优势。其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。 另外,由于ABAQUS/......>> 问题五:有限元分析软件哪个好 推荐:ANSYS Workbench,我现在也在用。首先比较全,网格划分工具,静力学、模态、屈曲、热、电磁、热固耦合、流固耦合、流体等模块,应有尽有。另外,软件的集成做的比较好,简单讲,就是将我们分析时常见的步骤集成默认化了,大大减少了用户的工作量,尤其是网格划分。另一个特别显著的优点就是数据的交互!无敌了都! 问题六:有限元分析的常用软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有多物理场耦合计算方面的SOL Multiphysics与三维结构设计方面的Creo(ProE),UG,CATIA等都是比较强大的。 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS,FELAC等 问题七:有限元分析哪个软件好? 都好,看你分析什么了。大部分分析,主流的有限元软件都能胜任。 问题八:哪些软件可以进行有限元分析? 美国ansys公司的ansys软件,中国元计算公司的FELAC软件,个人比较推荐FELAC,他的应用领域比较广,而且比较零活每个人都可以参与开发属于自己领域独一无二的软件,并且可以计算万核以上的并行计算,而ansys对于领域和计算核心数量的限制都比较多。个人比较支持国产,希望能帮到你! 问题九:有限元分析软件的介绍 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司。 问题十:当前的有限元分析软件有哪些及特点是什么? 有限元分析软件推荐元计算公司的FELAC. 产品概述 有限元语言及编译器(Finite Element Language And it"s piler),以下简称FELAC)是中国科学院数学与系统科学研究院梁国平研究院于1983年开始研发的通用有限元软件平台,是具有国际独创性的有限元计算软件,是PFEPG系列软件三十年成果(1983年―2013年)的总结与提升,有限元语言语法比PFEPG更加简练,更加灵活,功能更加强大。目前已发展到2.0版本。其核心采用元件化思想来实现有限元计算的基本工序,采用有限元语言来书写程序的代码,为各领域,各类型的有限元问题求解提供了一个极其有力的工具。FELAC可以在数天甚至数小时内完成通常需要一个月甚至数月才能完成的编程劳动。 FELAC2.2采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的有限元计算C程序。 FELAC2.2面向高校、研究院设计院等科研单位,旨在将科研人员从繁重的代码编写工作中解放出来,快速将理念转化成现实成果,降低开发成本。
2023-08-27 23:20:241

一维有限元法

当然,地球物理的问题都是二维或三维问题。但是,为了说明有限元法的基本方法,我们首先介绍一维有限元法。通常经典的变分解法是把泛函极值问题归结为微分方程的求解,而有限元法则反其道而行之,把微分方程的求解转化为相应的泛函的极值问题,这是由于某些微分方程的解很难或不可能解析地求出。这时首先就要建立与其相应的泛函,然后通过剖分、插值,用数值方法直接求得满足一定边界条件的这个泛函极小的近似解。例如求常微分方程y″=1 (9.2.1)在边界条件y(0)=0 y(1)=1的解。这个方程的解析解很易求得,对(9.2.1)式两次积分,并将边界条件代入,可得地球物理数据处理教程这里要求用有限元法求常微分方程(9.2.1)的近似数值解。首先作出与微分方程相应的泛函表达式,令F(x,y,y′)= y′2+y,代入欧拉方程(9.1.9)式,有地球物理数据处理教程这正是(9.2.1)式微分方程,所以相应的泛函是地球物理数据处理教程然后用有限元法求解满足边界条件的上式泛函的极值。第一步,为简单起见,用等分点 x0=0,x1,…,xi-1,xi,…,xn-1,xn=1将区间(0、1)剖分成n个子区间,这些点称为节点,每个子区间称为单元。第i个单元的长度xi-xi-1=h= ,区间(0,1)两端节点x0和xn的函数值y(x0)和y(xn)已由边界条件给定,但区间内各节点的函数值是待求的。这样一来,把连续函数y=y(x)的求解化为节点上函数值的求解,这称为离散化处理。图9.2 单元内函数线性变化示意图第二步,在每个单元内,假定函数y=y(x)是线性的(单元愈小,这种假定愈符合实际),如图9.2所示,即第i单元内的函数yi(x)及其导数y′i(x)是地球物理数据处理教程这称为线性插值。第三步,将积分(9.2.3)式分解成各单元的积分。第i单元上的积分为地球物理数据处理教程将以上yi(x)和y′i(x)的表达式代入,积分后整理可得地球物理数据处理教程可见Ji(y)只与单元的端点(即节点xi和xi-1)的函数值有关,可写作Ji(y)=Ji(yi,yi-1)对各单元积分求和,可得积分(9.2.3)地球物理数据处理教程可见J(y)是区间内各节点xi(i=1,2,…,n-1)上函数值yi的函数,写成J(y)=J(y1、y2、…、yn-1)也可把J(y)看成变量y1、y2、…、yn-1的多元函数。第四步,写出y1、y2、…、yn-1应满足的线性方程组。泛函J(y)取极值,相当于多元函数J(y1、y2、…、yn-1)取极值。已知多元函数取极值应满足条件地球物理数据处理教程由于只有第i单元Ji(yi,yi-1)和第i+1单元Ji+1(yi+1,yi)中含有yi,其他单元均不含yi,所以地球物理数据处理教程考虑到(9.2.4)式,同样可以写出地球物理数据处理教程对(9.2.4)式和上式求偏微商后代入(9.2.5)式,得地球物理数据处理教程若区间[0,1]等分为4个单元,即取n=4,h= 、x1=0.25、x2=0.5、x3=0.75并考虑边界条件y0=0、y4=1。由上式可得方程组地球物理数据处理教程整理后,得地球物理数据处理教程第五步,解上面线性代数方程组,得y1=0.15625,y2=0.375,y3=0.65625将x=0.25,0.5,0.75代入式(9.2.2),相应的精确解为y(0.25)=0.15625,y(0.5)=0.375,y(0.75)=0.65625在这个例子中没有误差,我们也可将单元分得更细,但计算工作量将增加。总之,用有限元方法解一维微分方程的边值问题时,首先建立与微分方程等价的泛函表达式,把微分方程的求解转变为泛函的极值问题,然后对区间进行剖分,划分成许多小单元。在每个小单元内对函数作线性插值后并对泛函积分,再对各单元求和,这样就把连续函数的泛函离散成节点上的函数的泛函。根据泛函取极值的条件,得出各节点的函数值应满足的线性代数方程组,解这个方程组,便可得到各节点上的函数值。我们将这些离散的函数值便作为微分方程的近似数值解。用有限单元方法求解二维或三维微分方程的边值问题的基本方法也是如此。
2023-08-27 23:20:581

什么是有限元分析?

有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。 有限元分析可被用来分析比较复杂的、用一般地说代数方法无法足够精确地分析的系统,它可以提供使用其它方法无法提供的结果。在实践中一般使用电脑来解决在分析时出现的巨量的数和方程组。 在分析一个物体或系统中的压力和变形时有限元分析是一种常用的手段,此外它还被用来分析许多其它问题如热传导、流体力学和电力学。
2023-08-27 23:21:101

里兹法与有限元法的区别

主要区别是,性质不同、方法不同、应用不同,具体如下:一、性质不同1、里兹法是通过泛函驻值条件求未知函数的一种近似方法。2、有限元法有限元分析方法是使用有限元方法来分析静态或动态的物理物体或物理系统进行的分析方法。二、方法不同1、里兹法是直接变分法的一种,以最小势能原理为理论基础。通过选择一个试函数来逼近问题的精确解,将试函数代入某个科学问题的泛函中,然后对泛函求驻值,以确定试函数中的待定参数,从而获得问题的近似解。2、有限元法有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。三、应用不同1、里兹法这一方法在许多力学、物理学、量子化学问题中得到应用。在机械工程领域,它被用于计算多自由度系统(如弹簧-质量系统、变截面轴上的飞轮)大致的共振频率;还可以计算圆柱体的折断载荷。2、有限元法有限元法在工程设计和科研领域得到了越来越广泛的重视和应用,已经成为解决复杂工程分析计算问题的有效途径,从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源和科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。参考资料来源:百度百科-瑞利-里兹法 参考资料来源:百度百科-有限元分析方法参考资料来源:百度百科-有限元分析
2023-08-27 23:21:181

有限元分析结果怎么看

将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。扩展资料:有限元方法/理论已经发展得相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。参考资料来源:百度百科-有限元分析
2023-08-27 23:21:351

有限元分析软件

有限元分析软件编辑词条   有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。  有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。  ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。  结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS  流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS  耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS  性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC  ABAQUS软件与ANSYS软件的对比分析  1. 在世界范围内的知名度:  两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。  由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。  2. 应用领域:  ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。  3. 性价比  ANSYS软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。购买ABAQUS软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。因此,从综合效益和长远效益而言,ABAQUS软件的经济性也是非常突出的。  4. 求解器功能  对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。  ABAQUS软件在求解非线性问题时具有非常明显的优势。其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。  另外,由于ABAQUS/Standard(通用程序)和ABAQUS/Explicit(显式积分)同为ABAQUS公司的产品,它们之间的数据传递非常方便,可以很容易地考虑预紧力等静力和动力相结合的计算情况。  ABAQUS软件的求解器是智能化的求解器,可以解决其它软件不收敛的非线性问题,其它软件也收敛的非线性问题,ABAQUS软件的计算收敛速度较快,并更加容易操作和使用。  5. 人机交互界面  ABAQUS/CAE是ABAQUS公司新近开发的软件运行平台,他汲取了同类软件和CAD软件的优点,同时与ABAQUS求解器软件紧密结合。  与其他有限元软件的界面程序比,ABAQUS/CAE具有以下的特点:  l 采用CAD方式建模和可视化视窗系统,具有良好的人机交互特性。  l 强大的模型管理和载荷管理手段,为多任务、多工况实际工程问题的建模和仿真提供了方便。  l 鉴于接触问题在实际工程中的普遍性,单独设置了连接(interaction)模块,可以精确地模拟实际工程中存在的多种接触问题。  l 采用了参数化建模方法,为实际工程结构的参数设计与优化,结构修改提供了有力工具。  6. 综合性能对比  综合起来,ABAQUS软件具有:  l 更多的单元种类,单元种类达433种,提供了更多的选择余地,并更能深入反映细微的结构现象和现象间的差别。除常规结构外,可以方便地模拟管道、接头以及纤维加强结构等实际结构的力学行为  l 更多的材料模型,包括材料的本构关系和失效准则等,仅橡胶材料模型就达16种。除常规的金属材料外,还可以有效地模拟复合材料、土壤、塑性材料和高温蠕变材料等特殊材料  ANSYS软件与ABAQUS软件、ADINA软件的对比分析  1. 在世界范围内的知名度:  三种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。  ANSYS软件在致力于线性分析的用户中具有很好的声誉;ABAQUS软件则致力于复杂和深入的非线性工程问题;而ADINA软件除了求解非线性问外,其多物理场的流固耦合求解功能也是全球唯一的专利技术。  2. 应用领域:  三种软件同为大型通用分析软件,都具有各自广泛的应用领域。  ANSYS注重应用领域的拓展和合并,目前已覆盖结构、温度、流体、电磁场和多物理场耦合等十分广泛的研究领域;ABAQUS则只具备结构分析功能,功能仅局限于结构力学领域;而ADINA软件和ANSYS软件一样都包括结构、温度、流体及流固耦合的功能,因此其应用领域也是相当广泛。  3. 性价比  三种软件同为美国的有限元分析软件,在价格方面相差不是特别大,不过由于ABAQUS软件仅具有结构分析的功能,因此从整体来看ABAQUS软件是最为便宜的;不过如果需要进行流体计算或者多物理场耦合求解功能的话,则相信ANSYS软件和ADINA软件都会是更好的选择。  4. 求解器功能  对于常规的结构线性问题,三种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。  ABAQUS软件和ADINA软件在求解非线性问题时具有非常明显的优势;而ANSYS软件和ADINA软件则在流体和多物理场耦合功能方面具有无可比拟的优势。  5. 人机交互界面  ANSYS/Workbench、ABAQUS/CAE、ADINA/AUI都是采用CAD方式建模和可视化视窗系统,都具有良好的人机交互特性。三种软件都除了提供窗口操作外都还提供命令流输入,但是ABAQUS/CAE并不对所有的命令流都支持CAE界面操作。  6.建模方式  ANSYS软件和ADINA软件都采用Parasolid为核心的实体建模技术,因此可以和其它Parasolid为核心的CAD软件实行真正无缝的双向数据交换,且该两种软件自身的建模功能很强大。而ABAQUS软件的CAE模块和输入文件两种建模方式是由两家不同的公司研制的,CAE模块功能还不是很完全,一些功能只能通过编辑INP输入文件来实。  7.网格划分  三种软件都提供多种网格划分器,可以进行复杂模型的自由网格划分。  除常见网格划分外,ANSYS软件和ADINA软件还可以对复杂模型进行自动六面体网格划分,从而在节省技术人员工作时间的情况下又保证了网格的精度。  8. 综合性能对比  ANSYS软件的命令流操作非常方便,对于结构循环优化方面比较有优势,但目前还只是局限于线性方面,非线性方面功能很差而且基本没有;  ABAQUS软件则在显式非线性方面有些特色,但隐式非线性方面比不上ADINA,且不具备流体的功能;  ADINA软件则在结构非线性及多物理场耦合方面非常出色,是全球非线性功能最强大的有限元软件之一,而且具有全球最好的流固耦合分析功能。
2023-08-27 23:21:531

有限元分析软件的常见软件

Femap+ NX NastranSiemens PLM Software家族的Femap以Parasolid为内核,具有 20年专注于有限元建模领域的工程经验,有助于用户将复杂的模型建模简单化,其基于 Windows 的特性为用户提供了强大的功能,且易学易用!Femap 产品被广泛地应用于多种工程产品系统及过程之中,例如:卫星、航空器、重型起重机、高真空密封器等。Femap 提供了从高级梁建模、中面提取、六面体网格划分,到功能卓越的CAD输入和简化的工具。NX Nastran是CAE解算器技术事实上的标准,是全球航空、航天、汽车、造船等行业绝大部分客户认可的解算器。NX Nastran与Femap的结合为用户提供了一个强大且可承受的解决方案。它是一个许可证灵活、融合了 Siemens PLM Software公司的“公平的市场价值”的价格哲学理念的软件包,为用户提供了强有力的有限元分析工具,用户只需支付较低的整体价格就能得到最高级的Nastran功能。Femap + NX Nastran已经在全球各行业超过10000家企业应用。  COMSOL MultiphysicsCOMSOL Multiphysics是一款大型的高级数值仿真软件。广泛应用于各个领域的科学研究以及工程计算,被当今世界科学家称为“最专业的多物理场全耦合分析软件”。模拟科学和工程领域的各种物理过程,COMSOL Multiphysics以高效的计算性能和杰出的多场双向直接耦合分析能力实现了高度精确的数值仿真。pFEPG元计算科技发展有限公司首席科学家、中国科学院数学与系统科学研究所梁国平研究员团队历经八年的潜心研究,独创了具有国际领先水平的有限元程序自动生成系统(pFEPG)。pFEPG采用元件化思想和有限元语言这一先进的软件设计,为各种领域、各方面问题的有限元求解提供了一个极其有力的工具,采用FEPG可以在数天甚至数小时内完成通常需要数月甚至数年才能完成的编程劳动。pFEPG是目前“幸存”下来的为数不多的CAE技术中发展最好的有限元软件,目前有三百多家科研院、企业应用。也已成为国内做的最大的有限元软件平台。pFEPG作为通用型的有限元软件,能够解决固体力学、结构力学、流体力学、热传导、电磁场以及数学方面的有限元计算,在耦合具有特有的优势,能够实现多物理场任意耦合;在有限元并行计算方面处于领先地位。SciFEASciFEA软件开发的计算功能包括梁、板、壳结构计算;弹性、弹塑性、粘弹性、粘弹塑性、非线性弹性计算;热分析、流体分析、流固耦合、热固耦合、热流固耦合计算等功能。计算的类型包括静力、动力、模态分析等。SciFEA软件已形成了单机版、网络版、集群并行版、GPU并行版,GPU并行版是基于新的GPU/CPU混合架构的并行有限元计算系统。SciFEA可用于机械、土木、电气、电子、热能、航空航天、地质、能源等专业的有限元计算分析。也可用于高校研究所等单位的有限元教学与科研。结构特点SciFEA抛弃了传统CAE软件复杂结构体系设计模式,采用直接面向用户需求的独立模块开发方式。SciFEA软件中的功能模块保持了计算的独立性,对CAE软件功能扩展的复杂度降低。同时,进一步和行业需求集成的灵活度增加。SciFEA软件包括软件操作界面、前后处理和计算功能模块三大部分。前后处理采用欧洲工程数值模拟中心开发的GiD软件包,SciFEA3.0版提供计算功能模块包括:弹性计算、塑性计算、流体计算、粘弹性计算、材料计算、结构计算、损伤破裂计算、水热力耦合计算、传热计算、渗流计算、电磁计算、电热力耦合计算、岩土计算、热固耦合计算、化学反应计算等;计算类型包括稳态、瞬态、动力、非线性等。SciFEA发布的计算功能模块均提供算例,用户可以结合算例学习SciFEA。SciFEA的用户模块挂载功能实现了计算模块的快速整合以及耦合问题的快速求解。软件系列SciFEA提供单机版、网络版、机群并行版、显卡(GPU)并行版,发行的版本为3.0版本。单机版、网络版均提供免费试用的版本。使用版本的使用方式和正式版本一致,只是在计算的单元规模上有少于3000个单元的限制。网络版iSciFEA提供了试用的通用帐号(用户名:guest;密码SciFEA)。iSciFEA,SciFEA在北京超算官网上均有下载。前后处理SciFEA的前后处理器采用欧洲工程数值模拟国际中心开发的GiD软件。GiD软件具有几何建模、网格划分、CAD数据导入、后处理结果显示等功能。GiD采用类似于CAD的操作模式。几何建模可以通过拉伸、旋转、镜象、缩放、偏置等操作得到面、体,可以直接构造矩形、多边形、圆、球、圆柱、圆锥、棱柱、圆环等;通过体面的布尔加、减、交等操作得到模型。网格自动生成GiD可将几何模型自动离散成线单元、三角形单元、四边形单元、四面体单元、六面体单元等,并且可以根据用户的需要对网格进行局部的加密以及网格阶次的选择。CAD和CAE接口GiD提供:IGES、DXF、Parasolid、VDA、STL、Nastran等接口,并且可以将GiD的数据文件写成上述的格式。后处理GiD可将结果写成各种常用的图形文件如:BMP、GIF、TPEG、PNG、TGA、TIFF、VRML等格式,以及AVI、MEPG的动画格式。后处理支持的结果显示方式有:带状云图显示、等直线显示、切片显示、矢量显示、变形显示等等。并且可以根据用户的需要定制显示菜单。SciFEA软件GPU版本超算显卡并行系统(简称SciFEA-GPU)是北京超算自主开发的一款基于GPU/CPU混合架构的有限元分析系统。基于GPU和CPU两种不同架构处理器的结合,组成硬件上的协同模式;通过实现GPU和CPU的混合编程,由CPU负责执行顺序型的代码,由GPU来负责密集的并行计算实现高效有限元分析。同时SciFEA-GPU软件按照全新的可装配的思路进行开发,利用软件的可重用性,降低了软件开发的难度,增加了软件的可靠度。SciFEA-GPU软件的设计架构体现了数值模拟软件个性化发展方向,为用户提供了一种按需选择的高性能计算新模式。SciFEA-GPU在材料固化、岩石破裂、瓦斯运移、孔隙介质渗流均有成功应用,隐式算法的计算效率是单CPU的6-8倍,显式算法在30倍左右。北京超算提供计算GPU加速引擎和GPU并行计算软件开发定制服务。ABAQUSABAQUS是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。达索并购ABAQUS后,将SIMULIA作为其分析产品的新品牌。它是一个协同、开放、集成的多物理场仿真平台。LMS-SamtechSAMTECH公司是世界著名的有限元软件SAMCEF的开发商和供应服务商,公司总部设在比利时列日市,其前身是比利时列日大学的宇航实验室,其软件开发的历史可以追溯到1965年。SAMCEF软件的第一个静力分析程序ASEF与1965年完成。随后在1972和1975年分别增加了模态分析程序DYNAM和热分析程序Thermal ASEF。1977年动力响应程序REPDYN诞生。1978年SAMCEF优化模块OPTI推出。1980年非线性静态和动力学软件SAMCEF Mecano的推出标志着SAMCEF在多柔体动力学领域地位的确立。 2011年8月24日,LMS国际公司正式对外宣布收购SAMTECH公司,成为其最大的控股股东。从此Samtech成为LMS国际公司的有限元专业解决方案。介绍及技术特点SAMCEF Mecano是以解决非线性结构和机构运动学问题的有限元分析软件。可用于各种线性与非线性的结构强度计算,传热学计算机运动鞋问题分析。其有以下求解器构成,能够解决下列专业领域的具体分析 :Mecano Sturcture:专注于解决结构非线性静态和动态分析问题(大位移和大转角)Mecano Motion: 专注于解决柔性静力学,运动学和动力学分析问题Mecano Thermal: 专注于非线性稳态和瞬态分析求解器由这些求解器构成的samcef mecano非线性隐式有限元求解器能够求解一下问题:隐式非线性静力学分析,隐式非线性动力学分析,多体动力学分析,线缆非线性动力学分析和非线性热学分析。目前,在机械系统的动力学和运动学的强度和刚度仿真分析方面主要有两类分析软件,一类是以结构为主要分析对象的有限元分析软件,另一类是以机构运动为主要研究对象的运动鞋仿真分析软件。这些软件的局限性是在处理刚柔耦合问题时不易使用且无法处理非线性的效应。Samcef Mecano 则在这一领域提供了领先的解决方案。其独特的Motion in FEA方法将机构的运动仿真与结构的有限元分析无缝集成,可以很有效地处理刚柔耦合问题并考虑可能的非线性效应。这一领先技术已经在航空,航天,汽车,通用机械,电子设备等多个领域发挥了重要作用。SAMCEFFieldSAMCEF Field是通用的有限元分析前后处理平台。它以图形化界面的形式,完成几何建模,特性定义,载荷和约束处理,网格划分,作业提交和监控以及后处理仿真等操作。它支持各种CAD到CAE模型的导入,以及各种格式结果文件和图表的输出。作为一个开放式的环境,SAMCEF Field通过非常直观的导航功能,为用户进行机构与结构的设计和仿真分析提供了一个必要的工具 。
2023-08-27 23:22:161

非线性有限元分析?

问题一:有限元里的线性和非线性是什么意思 线性:最简单讲,理论力学,材料力学,结构力学里教你手算的绝大多数公式都是线性的,坐标轴里的直线就是最简单的线性,成比例增长。非线性:圆,椭圆,抛物线这种力-位移曲线或材料曲线都属于非线性,不成比例增长,来源有3个,1是材料非线性,弹性是线性,塑形是非线性,2是几何非线性,如钓鱼竿受力后变成抛物线了,3是状态非线性,如螺栓松动,又如碰撞或者单边接触,其接触刚度随压力会发生变化,拉力下变成0,这3种情况下,不能按照书里的简单公式求解。用有限元元软件时,我们一般都用非线性求解的,除非你能肯定你的问题就是非常简单的线弹性问题,比如验证材料力学教科书的公式时,这时候用弹性小变形也无所谓。gb里也会把实际问题由非线性简化成线性的,比如用2阶弹性计算代替非线性,而软件里可以用n阶迭代求解,所以比手算强,比线性计算更耗时,因为要迭代嘛。 手机码字不容易,请采纳! 问题二:有限元分析什么时候应该考虑非线性 知乎 看看边界条件是否非线性; 看看是否存在接触,接触就是典型的非线性问题; 看看材料是不是非线性; 就从这三个方面考虑有限元的非线性。 问题三:ansys非线性有限元分析方法及范例应用 课本下载 此为非线性PDF+随书光盘文件 问题四:我的windows xp开机后要停滞将近一分钟才运行IE进程。开机速度很慢,怎么办? 从装遍网卡驱动就好,我电脑就这样 问题五:求非线性有限元分析的MATLAB程序!!!!!!!!! 20分 百度云的地址 pan.baidu/...755398 你注册下就可以下载 问题六:综述各有限元通用软件有哪些,优缺点,适用领域 目前流行的CAE分析软件主要有NASTRAN、ADINA 、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。以下为对这些常用的软件进行的比较和评价: LSTC公司的LS-DYNA系列软件。 LSDYNA长于冲击、接触等非线性动力分析。LS-DYNA是一个通用显式非线性动力分析有限元程序,最初是1976年在美国劳伦斯利弗莫尔国家实验室由J.O.Hallquist主持开发完成的,主要目的是为核武器的弹头设计提供分析工具,后经多次扩充和改进,计算功能更为强大。虽然该软件声称可以求解各种三维非线性结构的高速碰撞、爆炸和金属成型等接触非线性、冲击载荷非线性和材料非线性问题,但实际上它在爆炸冲击方面,功能相对较弱,其欧拉混合单元中目前最多只能容许三种物质,边界处理很粗糙,在拉格朗日――欧拉结合方面不如DYTRAN灵活。 MSC.software公司的DYTRAN软件 在同类软件中,DYTRAN在高度非线性、流固耦合方面有独特之处。MSC.DYTRAN程序是在LS-DYNA3D的框架下,在程序中增加荷兰PISCES;INTERNATIONAL公司开发的PICSES的高级流体动力学和流体结构相互作用功能,还在PISCES的欧拉模式算法基础上,开发了物质流动算法和流固耦合算法发展而来的。但是,由于MSC.DYTRAN是一个混合物,在继承了LS-DYNA3D与PISCES优点的同时,也继承了其不足。首先,材料模型不丰富,对于岩土类处理尤其差,虽然提供了用户材料模型接口,但由于程序本身的缺陷,难于将反映材料特性的模型加上去;其次,没有二维计算功能,轴对称问题也只能按三维问题处理,使计算量大幅度增加;在处理冲击问题的接触算法上远不如当前版的LS-DYNA3D全面。 HKS公司的ABAQUS软件 ABAQUS是一套先进的通用有限元系统,属于高端CAE软件。它长于非线性有限元分析,可以分析复杂的固体力学和结构力学系统,特别是能够驾驭非常庞大的复杂问题和模拟高度非线性问题。ABAQUS不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究,其系统级分析的特点相对于其他分析软件来说是独一无二的。需要指出的是,ABAQUS对爆炸与冲击过程的模拟相对不如DYTRAN和LS-DYNA3D。 ADINA ADINA是近年来发展最快的有限元软件,它独创有许多特殊解法, 如劲度稳定法(Stiffness Stabilization),自动步进法(Automatic Time Stepping),外力-变位同步控制法(Load-Displacement Control)以及BFGS梯度矩阵更新法,使得复杂的非线性问题(如接触,塑性及破坏等), 具有快速且几乎绝对收敛的特性, 且程式具有稳定的自动参数计算,用户无需头痛于调整各项参数。另外值得一提的就是它有源代码,我们可以对程序进行改造,满足特殊的需求。 NASTRAN NASTRAN是大型通用结构有限元分析软件,也是全球CAE工业标准的原代码程序。NASTRAN系统长于线性有限元分析和动力计算,因为和NASA(美国国家宇航局)的特殊关系,它在航空航天领域有着崇高的地位。NASTRAN的求解器效率比ANSYS高一些。 ANSYS ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,发展了很多版本,但是它们核心的计算部分变化不大,只是模块越来越多,这些模块并不是ANSYS公司自己搞的,而是把别人的东西买来集成到......>> 问题七:跪求几何非线性有限元程序???谢谢。。。 ansys,abaqus,nastran,adina……随便哪个都能进行非线性分析,这是很基本的功能,也不是什么高深问题,你不用单独把几何非线性拿出来。
2023-08-27 23:22:301

一般的杆件结构有限元法得到的解是近似解还是准确解,为什么

因为结构力学的解是依据线弹性理论求得的数学解析解,所以为精确解,而有限元得到的解是将原结构离散化、数值化,对非节点求解域进行插值,依据数值计算方法而求得的解,这些解既有为近似解原结构离散化、数值化过程中的舍入误差,也有插值产生的误差,所以为近似解。
2023-08-27 23:22:402

FEA是什么意思?FEA软件可以解决什么问题?

有限元分析(Finite Element Analysis) ,又叫有限元方法(Finite Element Method)。是解偏微分方程的数学方法,被广泛运用于机械、电磁、建筑、流体等领域的仿真研究。可以用来分析橡胶的受力变形,不仅可以只做力场里的动力和静力仿真,还可以耦合温度场分析热应力的情况。现在有很多商业有限元软件,如ANSYS、ABAQUS、ADINA、HYPERWORKS等等。希望对你有用,认可请采纳,谢谢!
2023-08-27 23:22:503

为什么用有限元法解题时, f(x)= x^2+1?

综述:因为这里的变换中:x-1=t,t=x+1,x,t都是整个实数集,可代表任意实数.因此可用任意字母替代,且替代后的定义域仍是实数。有些情况下,得要说明定义域,比如:f(√(x-1))=x,令t=√(x-1)>=0,则x=t^2+1,f(t)=t^2+1,所以f(x)=x^2+1,(x>=0)。有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程。因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。
2023-08-27 23:23:111

有限元分析?

问题一:如何学习有限元分析 飞行器一般用Nastran,可以问下你们老师推荐什么软件,其实所有的大型有限元分析软件都是耿同小异的,学会一个其他也会很容易上手。你要学习有限元分析的话,有限元基础教材看看,然后找本相关软件的书做些练习,即使不懂的也不要紧,多做练习熟练后可以试着解决实际问题,要慢慢积累。 问题二:有限元分析是什么? 这个问题好!有限元就是一个工具,可以利用其进行场的分析,如磁场、电场、应力场、流场等等。因为往往我们只知道一个宏观的作用,但微观(相对的)的情况到底是啥样的不得而知,有限元通过把宏观的大的东西进行划分为一个个小的单元,把这些小的单元当做微观的东西,进而进行分析,得到微观的一个情况。如一个篮球框架,当有人扣篮拉着球框的时候,篮球架肯定会弯,但是弯多少呢?这个就可以利用有限元进行分析。先建立把篮筐架的物理模型,再将模型划分为一个个很小的单元,再添加载荷、约束后进行分析,就能得到结果。 这个概念太大,我是新手,解释不好。详情百度,或者找本有限元的书看看,也许会有些直接的感受 问题三:有限元分析是哪个学科的?大学怎么没学过呀? 有限元是一种分析方法,可以用在力学,流体,场等物理量的分析。 在半导体,加速度计等方面都有应用。 原理就是把连续的物理量分成若干个有限点,利用计算机强大的计算能力,在给定的边界条件下进行时域,场量等分析。 作为一种分析方法,在各种场合都有应用。 有限元分析的书籍各处都有下载,原理明白就可以了。 大学中没有专门的课程。是在力学等课程中作为课外知识了解的。 我在《MEMS器件》课程,半导体物理,半导体器件中应用过。 问题四:有限元分析软件 有限元分析软件编辑词条   有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1. 在世界范围内的知名度: 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2. 应用领域: ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3. 性价比 ANSYS软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。购买ABAQUS软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。因此,从综合效益和长远效益而言,ABAQUS软件的经济性也是非常突出的。 4. 求解器功能 对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。 ABAQUS软件在求解非线性问题时具有非常明显的优势。其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。 另外,由于ABAQUS/......>> 问题五:有限元分析的基本步骤是什么? 元计算FELAC有限元分析的基本步骤如下。1)建立研究对象的近似模型。 2)将研究对象分割成有限数量的单元 研究者很难从整体上分析对象系统,需要把对象系统分解成有限数量的、形式相同、相对简单的分区或组成部分,这个过程也被称为离散化。3)用标准方法对每个单元提出一个近似解 研究者能够比较容易地分析基本单元的行为,提出求解基本单元的方法。4)将所有单元按标准方法组合成一个与原有系统近似的系统 将基本单元组装成一个近似系统,在几何形状和性能特征方面可以近似地代表研究对象。5)用数值方法求解这个近似系统。 采用离散化之后,就不需要再求解复杂的偏微分方程组,而转换为求解线性方程组。数学家提出了许多求解大规模线性方程组的数值算法。6)计算结果处理与结果验证 由数值计算可以得到大量的数据,如何显示、分析数据并找到有用的结论是人们一直关系的问题。 内容拷贝元计算官网 问题六:有限元分析有什么作用? 很作用了 应力分析 找出薄弱处 模态分析 还有热分析 流场之类的 问题七:什么是有限元分析? 有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。有限元分析可被用来分析比较复杂的、用一般地说代数方法无法足够精确地分析的系统,它可以提供使用其它方法无法提供的结果。在实践中一般使用电脑来解决在分析时出现的巨量的数和方程组。在分析一个物体或系统中的压力和变形时有限元分析是一种常用的手段,此外它还被用来分析许多其它问题如热传导、流体力学和电力学。 问题八:有限元分析的发展趋势 纵观当今国际上CAE软件的发展情况,可以看出有限元分析方法的一些发展趋势:1、与CAD软件的无缝集成当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。为了满足工程师快捷地解 决复杂工程问题的要求,许多商业化有限元分析软件都开发了和著名的CAD软件(例如Pro/ENGINEER、Unigraphics、 SolidEdge、SolidWorks、IDEAS、Bentley和AutoCAD等)的接口。有些CAE软件为了实现和CAD软件的无缝集成而采 用了CAD的建模技术,如ADINA软件由于采用了基于Parasolid内核的实体建模技术,能和以Parasolid为核心的CAD软件(如 Unigraphics、SolidEdge、SolidWorks)实现真正无缝的双向数据交换。2、更为强大的网格处理能力有限元法求解问题的基本过程主要包括:分析对象的离散化、有限元求解、计算结果的后处理三部分。由于结构离散后的网格质量直接影响到求解时间及求解结果的 正确性与否,各软件开发商都加大了其在网格处理方面的投入,使网格生成的质量和效率都有了很大的提高,但在有些方面却一直没有得到改进,如对三维实 体模型进行自动六面体网格划分和根据求解结果对模型进行自适应网格划分,除了个别商业软件做得较好外,大多数分析软件仍然没有此功能。自动六面体网格划分 是指对三维实体模型程序能自动的划分出六面体网格单元,大多数软件都能采用映射、拖拉、扫略等功能生成六面体单元,但这些功能都只能对简单规则模型适 用,对于复杂的三维模型则只能采用自动四面体网格划分技术生成四面体单元。对于四面体单元,如果不使用中间节点,在很多问题中将会产生不正确的结果,如果 使用中间节点将会引起求解时间、收敛速度等方面的一系列问题,因此人们迫切的希望自动六面体网格功能的出现。自适应性网格划分是指在现有网格基础上,根据 有限元计算结果估计计算误差、重新划分网格和再计算的一个循环过程。对于许多工程实际问题,在整个求解过程中,模型的某些区域将会产生很大的应变,引起单 元畸变,从而导致求解不能进行下去或求解结果不正确,因此必须进行网格自动重划分。自适应网格往往是许多工程问题如裂纹扩展、薄板成形等大应变分析的必要 条件。3、由求解线性问题发展到求解非线性问题随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求 解,例如薄板成形就要求同时考虑结构的大位移、大应变(几何非线性)和塑性(材料非线性);而对塑料、橡胶、陶瓷、混凝土及岩土等材料进行分析或需考虑材 料的塑性、蠕变效应时则必须考虑材料非线性。众所周知,非线性问题的求解是很复杂的,它不仅涉及到很多专门的数学问题,还必须掌握一定的理论知识和求解技 巧,学习起来也较为困难。为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件,如ADINA、ABAQUS等。它们的共同特点是具有高效的非 线性求解器、丰富而实用的非线性材料库,ADINA还同时具有隐式和显式两种时间积分方法。4、由单一结构场求解发展到耦合场问题的求解有限元分析方法最早应用于航空航天领域,主要用来求解线性结构问题,实践证明这是一种非常有效的数值分析方法。而且从理论上也已经证明,只要用......>>
2023-08-27 23:23:271

有限元软件介绍

研究采用的有限元分析软件为日本软脑公司开发的二维有限元分析软件2D-σ和三维有限元分析软件3D-σ。该软件具有操作容易、快速建模、网格的自动生成、分析结果的可视化及可操作性等优点。3D-σ主要分为前处理、计算和后处理三大功能块。前处理通过定义点、线、面、体和群等对象来进行问题的几何模型定义,通过对分析区域的设定来设定材料参数和进行网格分割数的设定,设定约束条件和荷载条件,然后自动生成计算网格。该功能主要在二维窗口内完成,3D-σ建模的思路是把三维问题转化为二维问题,即在二维窗口内定义问题的一个剖面,然后把该剖面在第三维上进行拓展,从而建立三维模型。3D-σ提供了新建群、编辑群两个二维窗口。二维窗口内提供了点、线、矩形、弧等图形元等一系列功能。由这些功能能方便地定义出一个问题的二维剖面、编辑一个已经存在的剖面,并提供切换到三维窗口的功能。三维窗口提供了第三维拓展、材料参数、荷载条件、边界条件设定等功能。在三维窗口中,提供了在三维水平上显示面、群、体的功能以及显示、隐藏所选择的体的功能,提供了切换到二维窗口的功能。3D-σ的后处理,除在二维水平上具有2D-σ的所有后处理功能外,还在三维水平上提供了上述这些功能,而且,还提供了只显示或隐藏所选择的体的部分结果的功能。3D-σ支持的材料模型主要有弹性、弹-塑性两种。另外,系统也支持热应力分析和地震力分析模型。对于弹-塑性模型,提供了Tresc、Huber-Von Mises、Mohr-Coulomb、Druck-Prager屈服准则。3D-σ解方程组采用了先进行系数方阵预处理的PCCG法,使用PC机解大规模矩阵成为现实,实践证明使用该软件的PC机可以在20多分钟内解超过40000个节点的模拟。
2023-08-27 23:23:371

学好有限元需要哪些数学基础

数值分析,主要是一些算法泛函分析,涉及到有限元的基础,也就是推导等等前置的学科就是微积分等了
2023-08-27 23:23:463

有限元应力场模拟中的主要问题

用上述方法进行地应力场的反演分析中,结果的合理性受以下几个因素的影响,认真分析下列因素,对于提高模拟的可靠性十分重要。(1)几何模型的形状、大小几何模型是指从实际模拟的复杂地质问题中抽象出来的模型的几何性状和尺寸,它的确定主要基于模拟的对象内各种构造形迹的空间组合型式或构造样式,依据研究的对象、内容、目的和要求而定。在同一种外力作用方式下,不同形状、大小的模型,其内部的应力分布有很大的差异,因此,正确选择合理的几何模型是保证计算“拟合”精度的基础。模型的大小可根据研究区的范围和精度要求而定。(2)区域构造格架的选取区域构造格架的选取直接影响着区内应力的分布和集中。其中,主要有两方面的内容:一是岩层,特别是岩石力学性质有明显差异的岩层的合并问题;二是相互交切、限制、错动、叠加的各种构造带、力学结构面的取舍问题。区域构造格架的选取过程也是地质模型建立的过程。(3)边界条件的确定外力和位移条件是模拟分析中必须考虑的边界条件,外力的大小、作用方式、方向以及位移的大小和方向应与模型的建立结合起来考虑。数值模拟的过程就是不断改变这些条件使实测值与模拟值达到最佳“吻合”的过程。但是,边界条件值选取范围应满足“全信息分析”的结果。这些信息的来源包括:①利用变形显微构造、现今地应力测量、震源机值解、古地磁和其他地球物理方法获取的地应力方向;②综合分析各模拟构造的构造资料,从变形场的角度建立各点的应变状态,是反推外力作用方式的一条重要途径;③从测量地质体的相互切割、错断的距离和采用仪器测量的方法,可获得研究区内不同点的位移资料,分析区域位移场特征,反推外力作用方式。在区域的地应力场的反分析中,常常根据研究的目的,结合模型的建立确定位移的边界条件。较为合理的方法是,综合研究区内构造条件、岩性条件,划分不同的小区,如应力屏蔽区、无应变区、刚性岩体区、塑性岩体区等,再根据地质方法分析得到的位移结果,确定位移约束条件。(4)力学模型的选择力学模型的选择取决于地质模型的特征、研究的内容、所要解决的问题,以及结果的精度要求。目前,除各种平面力学模型外,以三维力学模型为主体的三维分析已广泛运用于应力场模拟的研究。(5)计算值与实测值的最佳拟合准则地应力的模拟是一个力学过程的反演问题。模拟计算的目的就是利用这种构造运动的结果,再现构造运动过程、动力来源以及整个研究区的应力分布状态和规律。从理论上讲,由于资料的局限性和不完备性,结果具有多解性。加之从几何模型的选择→地质模型的建立→约束条件的确定→力学模型(包括力学参数)的选择,或不同程度地抽象、简化,或人为地选取,使模拟计算值的可靠度大为降低。把数量不多的测点的模拟值与实测值的拟合精度作为唯一的判别准则,是有一定局限性的。最佳拟合准则的确立是一个有待进一步探讨的问题。应考虑的内容包括:①应力轨迹的对应性:模拟计算所得的应力轨迹图与地质研究和各种测试所获得的粗的应力轨迹图相对应;②应力变化规律的对应性:模拟所获得的应力值与地质研究和各种测试所获的应力值在空间上的变化具有量级上的对应;③位移轨迹对应模拟所获得的轨迹图、数值变化规律与地质调查、位移测量、大地测量所获的结果相对应。在符合上述规律的前提下,测点的模拟值与实测值的拟合程度是判断模拟精度的标准。开展的模拟工作,在充分考虑了研究地质体的条件下,通过5~8年的实际应用检验,证实模拟结果与实际地层的应力状态情况有较高的吻合性。
2023-08-27 23:23:551

有限元分析的意义和作用

有限元分析的意义和作用是解偏微分方程。有限元分析是指利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是不久的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算。并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
2023-08-27 23:25:081

有限元分析中单位如何确定

这张图片可以很好解释mm制与m制单位下的各个物理量的单位。
2023-08-27 23:25:382

有限元分析有什么作用?

很多作用了应力分析 找出薄弱处模态分析 还有热分析 流场之类的
2023-08-27 23:25:553

有限元力施加到一个面上面怎么求解

一,在实体设计中绘制一个能在两端施加力的一个零件实体二首先把设计树中零件的名称改为英文或者数字的形式(ALGOR不能识别中文格式)三保存,保存时要把文件名改为英文或者数字格式四,点击ALGOR图标五进入ALGOR界面,点击网络模型,表面回声呈网格状,会有报告产生六点击进入条件施加界面七,选择材料八可以根据需求选择或者编辑材料属性九切换到表面选择状态十选择约束端定为全约束11选择另一个表面施加表面力12,点击分析图标进行分析13进行分析14显示结果,点击下方播放按钮,可观看逐步施加力的变化过程
2023-08-27 23:26:335

有限元分析是什么 在机械设计上有什么用

说白了,就是设计的产品仿真它的运行情况,看他的受力变形,震动等实际相比符不符合,或者对新设计的产品进行改进后进行分析仿真
2023-08-27 23:26:513

有限元分析的基本流程

有限元分析的基本流程如下:第一步 前处理。根据实际问题定义求解模型,包括以下几个方面:定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。定义单元类型。定义单元的材料属性。定义单元的几何属性,如长度、面积等;定义单元的连通性:定义单元的基函数;定义边界条件:定义载荷。第二步 总装求解: 将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。第三步 后处理: 对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
2023-08-27 23:27:071

有限元的基本概念

为了阐明复杂空间的物理现象,通常要先取空间中任意小的体积单元,然后弄清该体积元中各种物理的相关关系。受外力作用的静止物体中的微小单元,不仅受外力的作用,而且也可能受其内部体积力的作用,这些力保持着平衡状态。从物体中取出一微小单元,如用应力和面积的乘积来表示作用在该单元表面X方向的力,并将体积力也考虑进去,则X方向上力的平衡可由下式表示:油气藏现今地应力场评价方法及应用整理(1-31)式得:油气藏现今地应力场评价方法及应用若使(1-32)式始终成立,则必须有:油气藏现今地应力场评价方法及应用上式为X方向上的应力平衡本构方程。同样可以得到Y和Z方向上力的平衡方程式,形成如下方程组:油气藏现今地应力场评价方法及应用当上式中不考虑Z项即是二维问题的平衡方程。对于岩体力学问题,最关心的是在给定某些边界条件下某个空间内各种成分(变形、应力、应变等)的具体量值。因此,所要讨论的是在给定边界条件下某个区域内的平衡方程的求解问题。传统的数学方法仅推导出了几个特殊问题的严密理论解,而对一般问题,传统的数学方法是不可能推导出理论解的。由于无法直接得到整个模拟区域的解,通常先将相应区域分解为多个能直接求得其解的单元,然后再对由这些单元组成的整个区域进行研究,这种将复杂系统简单化为多个单元的过程称为“离散化”。离散化方法有很多,每种方法都是通过增加自由度而逐渐逼近真实解,其中,被灵活用于各个领域、且具有较强通用性的近似方法即是有限元法。
2023-08-27 23:27:351

什么是有限元分析?

有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。 有限元分析可被用来分析比较复杂的、用一般地说代数方法无法足够精确地分析的系统,它可以提供使用其它方法无法提供的结果。在实践中一般使用电脑来解决在分析时出现的巨量的数和方程组。 在分析一个物体或系统中的压力和变形时有限元分析是一种常用的手段,此外它还被用来分析许多其它问题如热传导、流体力学和电力学。
2023-08-27 23:27:471

有限元分析方法

1、前处理。根据实际问题定义求解模型,包括以下几个方面:(1)定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。(2)定义单元类型:(3)定义单元的材料属性:(4)定义单元的几何属性,如长度、面积等;(5)定义单元的连通性:(6)定义单元的基函数;(7)定义边界条件:(8)定义载荷。2、总装求解:将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。3、后处理:对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。
2023-08-27 23:28:111

什么是有限元法

在数学中,有限元法(fem,finiteelementmethod)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互联子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
2023-08-27 23:28:211

有限元分析结果怎么看

将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。扩展资料:有限元方法/理论已经发展得相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。参考资料来源:百度百科-有限元分析
2023-08-27 23:28:321

有限元的介绍

在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
2023-08-27 23:28:501

有限元节点是什么

就是单元和单元连接的点,软件里叫做node
2023-08-27 23:29:071

有限元分析有什么用

问题一:有限元分析是什么 在机械设计上有什么用 有限元分析总的来说就是将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的近似解,然后推导求解这个域总的满足条件,从而得到问题的解。 它涉及的范围很广,比如说水利工程、结构工程、汽车、土木、机电、焊接、材料、隧道、模具、振动、流体方面都有很广的应用、机械设计方面主要用的多的就是对机械产品做受力分析、看看你的产品的承受载荷之后的变形情况、从而验证你的设计是否合理,这方面软件用的多是ANSYS和Abqus,当然你还可以结合其他软件、比如说建模什么的在CAD软件里面会方便些,还有一些专门的网格划分软件,有时候结合着用会省时一些,可以大大减少工作量,望采纳,谢谢了 问题二:有限元分析是什么? 这个问题好!有限元就是一个工具,可以利用其进行场的分析,如磁场、电场、应力场、流场等等。因为往往我们只知道一个宏观的作用,但微观(相对的)的情况到底是啥样的不得而知,有限元通过把宏观的大的东西进行划分为一个个小的单元,把这些小的单元当做微观的东西,进而进行分析,得到微观的一个情况。如一个篮球框架,当有人扣篮拉着球框的时候,篮球架肯定会弯,但是弯多少呢?这个就可以利用有限元进行分析。先建立把篮筐架的物理模型,再将模型划分为一个个很小的单元,再添加载荷、约束后进行分析,就能得到结果。 这个概念太大,我是新手,解释不好。详情百度,或者找本有限元的书看看,也许会有些直接的感受 问题三:有限元分析主要是分析啥 ,有什么具体用处哦? 有限元主要是一种算法,基本思想是数学上的微分思想,例如ANSYS就是一大型通用有限元分析软件,我们可以利用有限元分析结构、流体、电厂、磁场、声场等等。。。 问题四:有限元分析有用吗 有用啊 问题五:学习有限元分析有用吗 如果对结构有限元分析感兴趣,应该从材料力学、弹性力学开始。对应力、应变、平衡方程、本构关系、位移-应变关系等知识有了了解以后,可以学习变分法的知识,看钱伟长先生的《变分法及有限元》。有了力学和变分学基础,就可以看一些比较基础的有限元书籍了,比如Zienkiewicz先生的《有限元方法》(有中文版),里面用到的数学知识不多。如果想对有限元的收敛性分析、稳定性分析有比较深入的了解,需要看有限元数学理论方面的专著,这时需要对泛函分析、Sobolev空间比较熟悉。当然只想解决工程问题,不必往这个方向发展。 问题六:有限元分析到底有没有用 多少都有点用处吧 问题七:常用的有限元分析软件有什么? 它们拥有丰富完善的单元库、 材料模型库和求解器,并且具有相对独立的前、后处理模块,可以独立完成多学科、多领域的工程分析问题。其缺点是前处理模块中的几何建模功能不强,无法完成复杂模型的建模,因此降低了结构分析结果的可信度。一些流行的三维设计软件却具有极强的几何模型的建模功能,如Pro/ENGINEER、UG和CATIA等。这些三维设计软件可以完成一些复杂的几何模型的建模工作。为了克服通用有限元分析软件建模功能较弱的缺点,当前普遍采用软件间的数据转换,即采用三维设计软件进行精确的三维建模,通过标准数据接口将模型以IGES、DXF或 STEP格式读入到通用有限元分析软件中,然后通过该软件进行精确的计算。 问题八:有限元分析用什么软件最好? 简单的分析,UG,Pro-E,Catia都是可以的。要是复杂分析的话看你应用的场合了。固体分析的话就是ansys和abaqus,如果是强非线性过程的话那就首选abaqus。流固耦合问题是adina和abaqus,不过推荐adina。流体分析的话是flunt。电场分析推荐ansys。这些软件都不太好学,如果你要用abaqus的话建议去买石益平的书,都很不错的。 问题九:ANSYS有限元分析软件具体是做什么用的啊 是在建模基础上 对应力进行有限元分析 然后得出各个部分的应变安装软件以后 多看看教程慢慢学 复杂的有限元分析掌握确实有点难 毕竟万事开头难嘛简单的Ansys功能不难掌握 问题十:有限元分析是什么东西 有限元是一门技术,一个新手经过一定的技术训练可以很好的掌握有限元分析的技术。但是,做有限元分析要想得到可靠的、合理的结果则必须做到以下几点: 1)掌握相关的理论知识,比如力学知识、电磁学等,这要看你具体分析哪一类型的问题 2)积累必要的经验,比如有限元网格质量的控制、接触参数的定义、时间步控制、收敛控制等等 反复考察与模型或程序相关的东西
2023-08-27 23:29:161

什么叫有限元分析技术

有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的 (较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。简言之,有限元分析可分成三个阶段,前处理、处理和后处理。前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。
2023-08-27 23:29:401

为什么有的时候用有限元法计算出来是负数呢?

综述:因为这里的变换中:x-1=t,t=x+1,x,t都是整个实数集,可代表任意实数.因此可用任意字母替代,且替代后的定义域仍是实数。有些情况下,得要说明定义域,比如:f(√(x-1))=x,令t=√(x-1)>=0,则x=t^2+1,f(t)=t^2+1,所以f(x)=x^2+1,(x>=0)。有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程。因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。
2023-08-27 23:29:481

有限元模型是什么?

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个只有具有多物理场分析能力的软件才能求解这个模型。 压电材料选用PZT5-H晶体
2023-08-27 23:30:062

有限元分析软件(有限元分析软件ansys)

有限元分析软件编辑词条有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSCABAQUS软件与ANSYS软件的对比分析1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。2.应用领域:ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。3.性价比ANSYS软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。购买ABAQUS软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。因此,从综合效益和长远效益而言,ABAQUS软件的经济性也是非常突出的。4.求解器功能对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。ABAQUS软件在求解非线性问题时具有非常明显的优势。其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。另外,由于ABAQUS/Standard(通用程序)和ABAQUS/Explicit(显式积分)同为ABAQUS公司的产品,它们之间的数据传递非常方便,可以很容易地考虑预紧力等静力和动力相结合的计算情况。ABAQUS软件的求解器是智能化的求解器,可以解决其它软件不收敛的非线性问题,其它软件也收敛的非线性问题,ABAQUS软件的计算收敛速度较快,并更加容易操作和使用。5.人机交互界面ABAQUS/CAE是ABAQUS公司新近开发的软件运行平台,他汲取了同类软件和CAD软件的优点,同时与ABAQUS求解器软件紧密结合。与其他有限元软件的界面程序比,ABAQUS/CAE具有以下的特点:l采用CAD方式建模和可视化视窗系统,具有良好的人机交互特性。l强大的模型管理和载荷管理手段,为多任务、多工况实际工程问题的建模和仿真提供了方便。l鉴于接触问题在实际工程中的普遍性,单独设置了连接(interaction)模块,可以精确地模拟实际工程中存在的多种接触问题。l采用了参数化建模方法,为实际工程结构的参数设计与优化,结构修改提供了有力工具。6.综合性能对比综合起来,ABAQUS软件具有:l更多的单元种类,单元种类达433种,提供了更多的选择余地,并更能深入反映细微的结构现象和现象间的差别。除常规结构外,可以方便地模拟管道、接头以及纤维加强结构等实际结构的力学行为l更多的材料模型,包括材料的本构关系和失效准则等,仅橡胶材料模型就达16种。除常规的金属材料外,还可以有效地模拟复合材料、土壤、塑性材料和高温蠕变材料等特殊材料ANSYS软件与ABAQUS软件、ADINA软件的对比分析1.在世界范围内的知名度:三种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉;ABAQUS软件则致力于复杂和深入的非线性工程问题;而ADINA软件除了求解非线性问外,其多物理场的流固耦合求解功能也是全球唯一的专利技术。2.应用领域:三种软件同为大型通用分析软件,都具有各自广泛的应用领域。ANSYS注重应用领域的拓展和合并,目前已覆盖结构、温度、流体、电磁场和多物理场耦合等十分广泛的研究领域;ABAQUS则只具备结构分析功能,功能仅局限于结构力学领域;而ADINA软件和ANSYS软件一样都包括结构、温度、流体及流固耦合的功能,因此其应用领域也是相当广泛。3.性价比三种软件同为美国的有限元分析软件,在价格方面相差不是特别大,不过由于ABAQUS软件仅具有结构分析的功能,因此从整体来看ABAQUS软件是最为便宜的;不过如果需要进行流体计算或者多物理场耦合求解功能的话,则相信ANSYS软件和ADINA软件都会是更好的选择。4.求解器功能对于常规的结构线性问题,三种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。ABAQUS软件和ADINA软件在求解非线性问题时具有非常明显的优势;而ANSYS软件和ADINA软件则在流体和多物理场耦合功能方面具有无可比拟的优势。5.人机交互界面ANSYS/Workbench、ABAQUS/CAE、ADINA/AUI都是采用CAD方式建模和可视化视窗系统,都具有良好的人机交互特性。三种软件都除了提供窗口操作外都还提供命令流输入,但是ABAQUS/CAE并不对所有的命令流都支持CAE界面操作。6.建模方式ANSYS软件和ADINA软件都采用Parasolid为核心的实体建模技术,因此可以和其它Parasolid为核心的CAD软件实行真正无缝的双向数据交换,且该两种软件自身的建模功能很强大。而ABAQUS软件的CAE模块和输入文件两种建模方式是由两家不同的公司研制的,CAE模块功能还不是很完全,一些功能只能通过编辑INP输入文件来实。7.网格划分三种软件都提供多种网格划分器,可以进行复杂模型的自由网格划分。除常见网格划分外,ANSYS软件和ADINA软件还可以对复杂模型进行自动六面体网格划分,从而在节省技术人员工作时间的情况下又保证了网格的精度。8.综合性能对比ANSYS软件的命令流操作非常方便,对于结构循环优化方面比较有优势,但目前还只是局限于线性方面,非线性方面功能很差而且基本没有;ABAQUS软件则在显式非线性方面有些特色,但隐式非线性方面比不上ADINA,且不具备流体的功能;ADINA软件则在结构非线性及多物理场耦合方面非常出色,是全球非线性功能最强大的有限元软件之一,而且具有全球最好的流固耦合分析功能。
2023-08-27 23:30:551

有限元分析软件哪个好?

问题一:ansys到底好不好用,相比其它有限元分析软件,哪个做有限元分析最好。初学者最好用什么 先定位自己属于哪一种初学者: 1.软件初学者,熟悉有限元:解决线性问题可以选择ANSYS或NASTRAN,解决非线性问题选择ABAQUS或MARC; 2.完全初学者,不熟悉有限元:可以使用ANSYS作为学习软件,该软件的方便习惯有限元处理问题的憨程。 注意:有限元方法解析问题的最关键是模型简化、网格处理、参数及边界条件合理正确的定义,后面的工作可以交给软件处理,最后就是如何分析结果的有效性。 问题二:有限元分析用什么软件最好? 简单的分析,UG,Pro-E,Catia都是可以的。要是复杂分析的话看你应用的场合了。固体分析的话就是ansys和abaqus,如果是强非线性过程的话那就首选abaqus。流固耦合问题是adina和abaqus,不过推荐adina。流体分析的话是flunt。电场分析推荐ansys。这些软件都不太好学,如果你要用abaqus的话建议去买石益平的书,都很不错的。 问题三:的有限元分析的,用什么软件比较好 Abaqus,hyperworks 问题四:有限元分析软件哪个好 推荐:ANSYS Workbench,我现在也在用。首先比较全,网格划分工具,静力学、模态、屈曲、热、电磁、热固耦合、流固耦合、流体等模块,应有尽有。另外,软件的集成做的比较好,简单讲,就是将我们分析时常见的步骤集成默认化了,大大减少了用户的工作量,尤其是网格划分。另一个特别显著的优点就是数据的交互!无敌了都! 问题五:有限元分析软件 有限元分析软件编辑词条   有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1. 在世界范围内的知名度: 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2. 应用领域: ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3. 性价比 ANSYS软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。购买ABAQUS软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。因此,从综合效益和长远效益而言,ABAQUS软件的经济性也是非常突出的。 4. 求解器功能 对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。 ABAQUS软件在求解非线性问题时具有非常明显的优势。其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。 另外,由于ABAQUS/......>> 问题六:有限元分析哪个软件好? 都好,看你分析什么了。大部分分析,主流的有限元软件都能胜任。 问题七:当前的有限元分析软件有哪些及特点是什么? 有限元分析软件推荐元计算公司的FELAC. 产品概述 有限元语言及编译器(Finite Element Language And it"s piler),以下简称FELAC)是中国科学院数学与系统科学研究院梁国平研究院于1983年开始研发的通用有限元软件平台,是具有国际独创性的有限元计算软件,是PFEPG系列软件三十年成果(1983年―2013年)的总结与提升,有限元语言语法比PFEPG更加简练,更加灵活,功能更加强大。目前已发展到2.0版本。其核心采用元件化思想来实现有限元计算的基本工序,采用有限元语言来书写程序的代码,为各领域,各类型的有限元问题求解提供了一个极其有力的工具。FELAC可以在数天甚至数小时内完成通常需要一个月甚至数月才能完成的编程劳动。 FELAC2.2采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的有限元计算C程序。 FELAC2.2面向高校、研究院设计院等科研单位,旨在将科研人员从繁重的代码编写工作中解放出来,快速将理念转化成现实成果,降低开发成本。 问题八:有限元分析的常用软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有多物理场耦合计算方面的SOL Multiphysics与三维结构设计方面的Creo(ProE),UG,CATIA等都是比较强大的。 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS,FELAC等 问题九:请问有限元分析用哪个软件最好? 最好的软件就是你最会用的软件,功能上各个软件都差不多;都能算出同样的结果。 问题十:有限元计算模拟哪个软件最好 ABAQUS和ANSYS都是用的很多的,能够模拟分析很多问题。静态、动态,线性、非线性,接触等问题都可以解决。具体看计算哪种模型再选择。
2023-08-27 23:31:061

有限元分析是本科还是研究生课程

本科。《有限元分析》是高等学校机械类专业的一门技术基础必修课程,也可作为近机械类相关专业本科生的必修课、选修课。有限元分析利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。
2023-08-27 23:31:151

人工智能与有限元

谷歌的AlphaGo与柯杰的大战已经结束数日,而DeepMind承诺的50分棋谱也已经公布,而作为当前最先进的计算机“技术”,有限元方法有没有与机器学习(人工智能)进一步结合并碰发出绚丽的“火花”呢??答案是肯定的!!! 什么是人工智能 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。 机器学习是人工智能的一个分支,简单地说,就是通过算法,使机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来进行预测。 常见的机器学习算法如: u2714神经网络(Neural Network) u2714支持向量机(Support Vector Machines, SVM)Boosting u2714决策树(Decision Tree) u2714随机森林(Random Forest) u2714贝叶斯模型(Bayesian Model)等。 早期的机器学习算法由于受到理论模型和计算资源的限制,一般只能进行浅层学习,只在搜索排序系统、垃圾邮件过滤系统、内容推荐系统等地方有所应用。 而之后发生的几件事,掀起了深度学习的浪潮。一件是2006年,加拿大多伦多大学教授Hinton和他的学生Salakhutdinov在Science上发表了一篇文章,揭示了具有多个隐层的神经网络(即深度神经网络)优异的学习性能,并提出可以通过“逐层初始化”技术,来降低深度学习网络训练的难度; 第二件事是在2012年 底,Geoff Hinton 的博士生 Alex Krizhevsky、Ilya Sutskever利用卷积神经网络(Convolutional Neural Network, CNN)在图片分类的竞赛 ImageNet 上,击败了拥有众多人才资源和计算资源的Google,拿到了第一名。 如今机器学习已深入到包括语音识别,图像识别,数据挖掘等诸多领域并取得了瞩目的成绩。 有限元法的发展简史 有限元方法(FEA)即有限单元法,它是一种数值分析(计算数学)工具,但不是唯一的数值分析工具。在工程领域还有其它的数值方法,如:有限差分法、边界元方法、有限体积法。 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。事实上,有限单元法已经成为在已知边界条件和初始条件下求解偏微分方程组的一般数值方法。 有限单元法在工程上的应用属于计算力学的范畴,而计算力学是根据力学中的理论,利用现代电子计算机和各种数值方法,解决力学中的实际问题的一门新兴学科。它横贯力学的各个分支,不断扩大各个领域中力学的研究和应用范围,同时也在逐渐发展自己的理论和方法。 神经网络与力学 其实,在深度学习浪潮掀起之前,力学和工程领域早已开始在计算力学研究中结合神经网络模型,开发出更优的算法,一个典型的例子便是有限元神经网络模型。 由于在实际工程问题中存在大量的非线性力学现象,如在结构优化问题中,需要根据需求设计并优化构件结构,是一类反问题,这些非线性问题难以用常规的方法求解,而神经网络恰好具有良好的非线性映射能力, 因而可得到比一般方法更精确的解。 将有限元与神经网络结合的方法有很多,比如针对复杂非线性结构动力学系统建模问题,可以将线性部分用有限元进行建模,非线性构件用神经网络描述(如输入非线性部件状态变量,输出其恢复力),再通过边界条件和连接条件将有限元模型部分和神经网络部分结合,得到杂交模型。 另一种方法是首先通过有限元建立多种不同的模型,再将模态特性(即最终需要达到的设计要求)作为输入变量,将对应的模型结构参数作为输入变量,训练神经网络,利用神经网络的泛化特性,得到设计参数的修正值。 结合Monter Carlo方法,进行多组有限元分析,将数据输入神经网络中进行训练,可以用来分析结构的可靠度。 已有研究成果 [1]余凯,贾磊,陈雨强,徐伟. 深度学习的昨天、今天和明天[J]. 计算机研究与发展,2013,09:1799-1804. [2]周春桂,张希农,胡杰,谢石林. 基于有限元和神经网络的杂交建模[J]. 振动工程学报,2012,01:43-48. [3]费庆国,张令弥. 基于径向基神经网络的有限元模型修正研究[J]. 南京航空航天大学学报,2004,06:748-752. [4]许永江,邢兵,吴进良. 基于有限元-神经网络-Monte-Carlo的结构可靠度计算方法[J]. 重庆交通大学学报(自然科学版),2008,02:188-190+216. 未来的一些方向 1、图形显示方面(有限元与AR&VR) 随着有限元计算涉及的领域以及计算的规模不断增大,计算结果的高效、高质量的前后处理也随之成为了一个问题。 AR&VR在图形化数据展示方面,将我们从显示屏解放出来,可以以一种更加直观的方式查看计算分析数据,未来在分析结果VR展示方面,会有较大的突破。 国内也有学者已经展开了相关方面的研究,比如《虚拟现实环境中有限元前后处理功能实现》等论文,有限元虚拟处理技术(FEMVR)也开始逐步进入相关软件领域,例如:ANSYS COMSOL可以和MATLAB做交互,新版MATLAB内置了一些人工智能算法。 2、有限元与大数据、云计算 计算规模增大,伴随着计算机能力的提升,随之而来的云计算,解脱了对于计算机硬件的束缚,对于可以放开规模与数量的分析计算,有限元与大数据以及云计算的碰撞,对于未来问题的解决,将有一个质的飞跃,量变到质变的直观体现,在有限元与大数据中会有一个绚丽的展示。 3、有限元与人工智能 人工智能作为全球热的技术,与“古老”的有限元之间,相信可以在老树上发新芽,而我们可以欣喜的看到,相关的研究也已经开展,期待未来对于现实问题的解决,能有更好的更优的方案。 4、CAD数据与CAE数据的无缝对接 目前等几何分析(Isogeometric Analysis, IGA)的发展热度来看,将CAD中用于表达几何模型的NURBS基函数作为形函数,克服FEA中模型精度损失的问题,实现CAD和CAE的无缝结合,是一个很有前途和潜力的发展方向。 5、CAE与MBD的深度融合 未来CAEFEM可能会与多体动力学仿真(MBS)软件深度整合起来。实际系统中某些运动部件的弹性无法忽略,甚至是主要动力学行为的来源,所以就产生了柔性多体动力学仿真这个需求,这样只需要定义相关部件的受力和边界条件,其余的都是内部作用,仿真即节省工作量又较为真实可信。而且现在的确有很多MBS软件里面可以把部件建成弹性体,如LMS Virtual Lab,Simpack等等,但过程没有那么傻瓜;除了简单的梁、轴等零件,复杂形状的零件要依赖FEM软件事先生成的数据文件。 6、网格工作的智能化,傻瓜化 将来对弹性体建模可能更加傻瓜,先把刚性多体系统模型建起来,然后在建模环境(前处理)中直接make body flexible,系统可以根据这个部件的形状、材料、边界条件等选择合适的网格类型,并把运动和力的作用点couple到对应的节点(组)上。比如说汽车悬挂系统仿真,在一个工作环境下就能把某个部件的应力校核给做了,而不需要说搞多体建模的人要把边界力生成一个load case再发给专门的FEM工程师去做。 (部分来自知乎) 如何追上有限元的发展 任何技术的进步,都要在实践中展示技术的威力,有限元的发展,会随着技术的进步,特别是计算机技术的进步,在未来无论是应用软件的研究还是智能程序的开发,都将有无限的机会与可能。 积极学习新技术,新方法,在应用领域,关注有限元相关软件的新功能。 1、了解热点、跟踪前沿 2、结合实际拓展应用 3、掌握自动化相关技术 想要更多,点击此处
2023-08-27 23:31:241

点源二维有限元法的应用

与赫姆霍兹方程对应的二维有限元法在电法勘探中有较广的使用范围,有重要的意义。对电阻率法,用点源二维有限元方法对不同的情况进行了试算和应用,取得了较好的效果。9.6.1 理论对比图9.19中示出了二层介质时偶极测深装置有限元法计算的视电阻率ρs曲线与理论曲线的对比,图中实线为理论曲线,黑点为计算结果,地电断面和装置均附在图中。由图可见,计算值与理论值符合很好,计算误差在1%以内。图9.19 二层ρs偶极测深曲线图9.20示出了对两种不同电阻率介质的垂直接触带上偶极测深视电阻率ρs曲线的计算结果,与理论曲线对比,计算误差在2%以内。图中实线为理论曲线,黑点为计算结果。图9.20 垂直接触带ρs偶极测深曲线9.6.2 模型试算结果为检验前述算法,对大地水平,即在没有地形影响的情况下,设置了以下几种模型(图9.21、图9.22、图9.23、图9.24),每个模型的参数标注在模型下,采用对称四极测深和温纳装置进行了试算。其中对以上设计的前三种模型都采用对称四极斯伦贝尔装置,其最大电极距为25m,最小电极距为1m。后一种模型采用温纳装置,最大电极距为24m,最小电极距为1.5m。试算的结果如图所示。模型1:设计了三层,第一层和第三层的电阻率都是100Ω· m,第二层的电阻率是10Ω·m,第二层的中心埋深h=4m。图9.21 模型1与视电阻率等值线图图9.22 模型2与视电阻率等值线图模型2:在大地水平面下有一个形状为正方体的物体,其边长为6m,中心埋深h=5m,电阻率为10Ω·m,围岩电阻率为100Ω·m。模型3:在大地水平面下有两个形状为正方体的物体,其边长为5m,中心埋深h=4.5m,电阻率为10Ω·m,围岩电阻率为100Ω·m。模型4:在大地水平面下有三个截面形状为正方形的物体,其长为6m,高为6m,中心埋深为5m,其电阻率为10Ω·m,围岩电阻率为100Ω·m,用有限单元法计算的温纳装置下的视电阻率断面等值线图如图9.24所示。图9.23 模型3与视电阻率等值线图图9.24 模型4与温纳装置视电阻率断面等值线图从计算的结果看是较好的,计算精度较高,视电阻率等值线图较好地反映了地下物体的电性分布。而且,这使结果的分析和解释变得直观和形象。9.6.3 模拟实际电测深曲线的一个结果四川省某地云母矿,产出于高阻伟晶岩脉内。其中,一个已知矿区的实测三极电剖面ρs曲线示于图9.25中,图下方为已知地质剖面,上方为实测ρs曲线,虚线为点源二维有限元的计算结果,图中每个点号之间的距离为10m,三极剖面的极距AO=80m。图9.26中示出了有限元法计算时所取的地电断面,其上方亦为计算ρs曲线,该地电断面是根据实际地质情况、物性数据并考虑电测深曲线特点而选取的,其中取了5条高阻岩脉,还有一些高阻地表滚石层。图9.25 某地云母矿上三极剖面ρs曲线1—实测值;2—有限元计算结果图9.26 模拟时所采用的地电断面和有限元计算结果ρ1=1000Ω·m,ρ2=26000Ω·m,ρ3=12000Ω·m左面4个高阻岩脉下延深度160m
2023-08-27 23:31:511

ANSYS结构有限元高级分析方法与范例应用的目录

第二版前言第一版前言第1篇 ANSYS结构有限元分析基础第1章 ANSYS有限元分析基础1.1 ANSYS程序的理论背景和分析功能综述1.1.1 ANSYS程序的理论背景1.1.2 结构有限元分析的基本过程与问题1.1.3 ANSYS程序结构分析能力概述1.2 ANSYS程序的基本使用入门(一)1.2.1 使用ANSYS分析问题的一般流程1.2.2 ANSYS的界面布局、程序架构及两种操作方式1.2.3 最常用的ANSYS界面操作1.3 ANSYS程序的基本使用入门(二)1.3.1 直接法建立有限元模型1.3.2 由几何模型到有限元网格——间接建模法1.3.3 加载、多工况静力分析及后处理初步1.4 APDL语言及参数化分析1.5 ANSYS常见问题及操作技巧1.5.1 与前后处理相关的问题1.5.2 与加载相关的问题1.5.3 获取函数、定制工具条及ANSYS的暂停第2章 桁架杆系有限元分析及ANSYS实例2.1 桁架杆系有限元分析的概念2.2 可用于桁架分析的ANSYS单元2.2.1 Link1单元特性简介2.2.2 LINK8单元特性简介2.2.3 LINK10单元特性简介2.3 分析实例:平板网架结构的静力分析第3章 梁系结构分析方法及ANSYS实例3.1 梁系结构有限元分析提要3.2 ANSYS中的梁单元概述3.2.1 BEAM3单元特性介绍3.2.2 BEAM4单元特性介绍3.2.3 BEAM188和BEAM189梁单元特性简介3.3 分析实例:ANSYS各类梁单元的综合应用3.3.1 刚铰混合结构的内力图3.3.2 三向交叉梁系的计算3.3.3 施工防护结构中的承重桁架分析第4章 弹性平面问题的有限元分析及ANSYS算例4.1 弹性平面问题有限元分析的基本方法4.2 ANSYS提供的平面问题单元4.3 分析实例:独立重力坝的静力分析第5章 轴对称问题的有限元分析及ANSYS算例5.1 ANSYS轴对称问题分析提要5.2 分析实例:厚球壳的轴对称分析第6章 三维实体结构的ANSYS分析及算例6.1 三维实体结构ANSYS有限元分析提要6.2 分析实例:网架焊接空心球节点的受力分析第7章 板壳结构的ANSYS分析及算例7.1 板壳结构ANSYS有限元分析提要7.2 分析实例:圆柱壳屋面结构的静力分析7.3 分析实例:板梁结构中梁截面的偏置第2篇 ANSYS结构分析专题第8章 ANSYS结构动力分析专题8.1 ANSYS结构动力分析概述8.1.1 模态分析及其ANSYS实现过程8.1.2 谐响应分析8.1.3 瞬态动力学分析8.1.4 谱分析8.2 ANSYS模态分析例题:几何刚度对梁自振特性的影响8.3 谐响应分析例题:不同激励模式谐振响应的比较8.4 瞬态分析的例题:移动载荷作用下的吊车梁8.5 谱分析例题:悬臂结构地震响应谱分析第9章 ANSYS结构非线性分析专题9.1 ANSYS结构非线性分析概述9.1.1 结构非线性问题的几种类型9.1.2 非线性问题的一般分析方法9.1.3 ANSYS结构非线性分析的过程与选项9.2 接触问题的分析方法9.2.1 接触问题概述9.2.2 ANSYS的接触分析功能9.2.3 ANSYS接触分析流程及接触向导的使用9.3 几何非线性例题:油罐底效应的简化分析9.3.1 问题描述9.3.2 ANSYS分析全过程9.3.3 ANSYS分析命令流9.4 材料非线性例题:钢筋混凝土梁的分析9.5 接触分析例题:插销拨拉过程的接触分析第10章 结构的稳定性分析方法及ANSYS范例10.1 ANSYS结构稳定性分析的基本概念10.2 工字梁的特征值屈曲分析10.2.1 建立分析模型10.2.2 特征值屈曲分析与结果显示10.3 工字梁的非线性屈曲分析第11章 ANSYS结构最优化设计11.1 优化设计问题的数学表述与ANSYS优化设计流程11.2 分析实例:平板网架结构的优化设计第12章 子结构技术简介12.1 子结构分析的概念12.2 ANSYS子结构分析的步骤12.2.1 生成部分12.2.2 使用部分12.2.3 扩展部分12.3 子结构分析例题:空腹梁12.3.1 问题描述12.3.2 分析过程第3篇 工程范例精选第13章 框架-剪力墙结构的分析13.1 分析对象简介13.2 框架-剪力墙结构的模型建立13.2.1 结构建模的总体规划13.2.2 几何模型的建立13.2.3 划分网格13.3 重力载荷和风载荷作用下的结构响应13.3.1 计算重力载荷作用下的结构响应13.3.2 风载荷作用下的结构响应13.4 结构模态分析13.5 地震作用下结构的弹性时程分析13.5.1 计算地震作用瞬态解13.5.2 观察地震作用结构响应第14章 海洋石油平台结构的动力分析14.1 海洋平台结构简介14.2 平台结构的模型建立14.2.1 结构建模的总体规划14.2.2 几何模型的建立14.2.3 划分网格14.3 海洋平台结构的模态分析14.3.1 计算模态解14.3.2 结果观察与分析14.4 海洋平台谐响应分析14.5 冰载荷作用下海洋平台结构响应14.5.1 获得瞬态分析解14.5.2 观察结果14.6 波浪载荷作用下海洋平台随机振动分析14.6.1 ANSYS随机振动分析简介14.6.2 波浪载荷简介14.6.3 获得谱解14.6.4 合并模态14.6.5 计算响应的功率谱密度第15章 大跨空间结构的建模与分析15.1 大跨空间结构的ANSYS建模与分析概述15.2 施威德勒型球面网壳的建模过程详解15.3 网壳结构的固有振动特性分析15.4 特征值屈曲分析15.5 考虑初始缺陷的非线性屈曲分析附录A ANSYS的程序模块、启动器以及几何建模专题A.1 ANSYS11.0的主要产品模块A.2 ANSYS产品启动器A.3 ANSYS经典环境建模操作专题附录B 部分结构单元的形函数B.1 一维单元B.2 二维单元B.3 三维单元附录C ANSYS结构分析常用命令参考
2023-08-27 23:32:001

有限元模拟的优缺点?

优点:精确,易编程性高。缺点:与实际试验效果相符度不太高,只能通过试验来修正有限元结果。
2023-08-27 23:32:183

有限元分析是什么?

有限元分析是对生活中的各种现象的一个模拟仿真,以前在没有有限元分析的时候,工程师们对于几何形状比较复杂和奇异的结构进行相应的力学会很困难,甚至基本上无法求解。这是因为对于奇异结构来说,建立描述全域的控制方程很多时候是不可能的。有限元是将奇异结构进行有限的离散成一个个小块(单元),再对这种标准的小块建立控制方程,单元上有相应的节点,例如六面体单元的8个顶点就是相应的8个节点(不同单元节点数不同)。节点是用来传递各种力学信息的点,节点之间的力学信息是通过插值函数来实现的(有多种插值函数)。完成以上离散过程后,也就是对每一个单元的控制方程(矩阵形式),进行组装,把相应的边界条件和外载荷带入组装的的总方程中,通过相应的算法,计算出变形,应力,应变,等。当然,这是最简单的结构静力分析过程,有限元的思想可以应用到很多领域,电磁,流体,结构,振动,冲击,复合材料,声学,优化等等…
2023-08-27 23:32:295