barriers / 阅读 / 详情

电磁波和电磁场有什么区别?是同一种物质吗?请从专业的角度讲解,谢谢

2023-09-07 22:00:22
共3条回复
gitcloud
电磁波是“波”,电磁场是“场”。这看起来是废话,但确是两者的本质区别。
电磁波是电磁场的一种运动形态。在高频率的磁电互变中,不能全部在原位相互转换为电场和磁场的电能、磁能随着电场与磁场的周期转化以电磁波的形式向空间传播出去形成电磁波。
虽然电磁波是电磁场的特殊形态,但两者之间除了相互关联的特性外,有各自独立的性质。最基本的就是:电磁场的特征及其运动变化规律由麦克斯韦方程组确定。电磁波的性质,具有一定的光学特征;
至于两者是否同一物质,要看从那个层面理解。就和煤炭与钻石一样,不同层面会有不同的解释。
cloudcone

电磁波是电场和磁场交替激发出现的一种波,所以可以说电磁波是由电场和磁场构成的。当然。电场和磁场的存在还有其它方式。也可以分别单独存在。

陶小凡

电磁场与电磁波是两个完全不同的概念,电磁波绝不是运动的电磁场。电场是电荷产生的,是带电粒子固有的属性,是电荷相互作用的空间,而磁场是电场的运动效应。电磁波是以太中传播的波,具有一切机械波的共性,与声波具有几乎完全相同的特征。

相关推荐

电磁场的解释 电磁场的解释是什么

电磁子是电磁相互作用的介质。电磁子是比光子更小的物质。推测一:电磁子充满宇宙空间。推测二:电磁子具有自旋性。推测三:电磁子具有流动性。推测四:电磁子可从极性粒子(质子、电子)中心穿过,使得极性粒子形成正极♂和负极♀(类似喷气式飞机)。推测五:极性粒子正极的电磁子流呈喷泉状;负极的电磁子流呈漏斗状。【极性粒子移动定律】质子在电磁子的反作用力推动下,向电流的反方向移动;而电子则顺着电流的方向移动。(王静波2020)【电极定律】同种电极相斥,异种电极相吸。(王静波2020)电磁场电磁场是电流与磁场的统一体。电磁场的运动形式是柱体螺旋运动(类似龙卷风)。电流与磁场是电磁场的两个不同侧面,电流呈直线运动,磁场呈漩涡运动,二者的运动方向相互垂直,遵守左手螺旋定则。【左手螺旋定则】用左手握导体,大拇指指向电流方向,另外四指弯曲的方向为磁力线的方向;用左手握螺线管,让四指弯向与螺线管的电流方向相同,大拇指所指的那一端就是通电螺线管的N极。(王静波2020)电流与磁场的关系电流与磁场相互依存、互为因果,即电流产生磁场,磁场产生电流。导体的电流越大,磁场越强,反之亦然。变压器可使交流电变压,直流电不能变压。【电磁感应定律】磁通量与感应电动势成正比,与感应线圈匝数成正比。(英国法拉第1831)【感应电流定律】感应电流产生的磁场,总是在阻碍引起感应电流的原磁场的磁通量的变化。(俄国楞次1833)电流与磁场的区别1.电流可在导电体中运动,磁场可在物体或真空中运动;2.电流在真空中不能远程运动,磁场可在真空中能远程运动;3.电流的运动速度远低于磁场的运动速度。静电静电是指物体因电子密度不同而产生的电势差。电子密度高的物体显正电,电子密度低的物体显负电。例如:用毛皮摩擦过的硬橡胶棒显正电;用丝绸摩擦过的玻璃棒显负电。物体单位体积内的电子密度越大,排斥力越大。【静电定律】真空中两个带电体之间的相互作用力与电量的乘积成正比,与距离的平方成反比。(王静波2020)公式:F=kQ1Q2/r2式中,F表示带电体间的作用力,k表示静电力常量k=9.0×109Nm2/C2,Q1、Q2表示两个带电体的电量,r表示两个带电体间的距离。【电量分配定律】两个完全相同的带电金属小球接触时,原带异种电量的先中和后平分,原带同种电量的总量平分。
2023-08-31 15:18:572

什么是电磁场

电磁场英文名称:electromagnetic field定义1:由相互依存的电磁和磁场的总和构成的一种物理场。电场随时间变化时产生磁场,磁场随时间变化时又产生电场,两者互为因果,形成电磁场。所属学科:地理学(一级学科);遥感应用(二级学科)定义2:在电磁现象的某些量子特征可以被忽略的范围内,由电场强度E、电通密度D、磁场强度H和磁感应强度B四个相互有关的矢量确定的,与电流密度和体电荷密度一起表征介质或真空中的电和磁状态的场。所属学科:电力(一级学科);通论(二级学科) 有内在联系、相互依存的电场和磁场的统一体和总称 。随时间变化的电场产生磁场 , 随时间变化的磁 电磁场场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子[1]引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。
2023-08-31 15:19:083

电磁场是什么东西。?

电磁场是一种质量非常微小的特殊物质,它充斥在宇宙空间,以前所说的真空中也被这种特殊物质所占据。
2023-08-31 15:19:243

电磁场原理

电磁场原理有库仑定律、法拉第电磁感应定律、麦克斯韦方程组和电磁波理论等。1、库仑定律库伦定律是描述带电粒子间相互作用力的大小与距离的关系。库仑定律表达了电荷数量、正负性、距离等因素对电荷间相互作用力大小的影响。2、法拉第电磁感应定律法拉第电磁感应定律描述导体内移动导电电荷所产生磁场变化引起的电动势大小与磁通量变化的速率成正比。从而描述了电磁现象之间的关联。3、麦克斯韦方程组麦克斯韦方程组由四个部分组成,用于全面描述和计算电场和磁场的行为。它密切关联了电荷间相互作用、磁铁的磁场效应、以及电磁波的传播等物理现象。4、电磁波理论电磁波理论描述了当电场和磁场发生快速的变化时,这些变化会以电磁波的形式以真空中的光速传递。 这个理论揭示了许多现实中的电磁现象,例如无线电通信和可见光的传播。电磁场介绍及具体应用:1、电磁场原理是解释电和磁现象的基本原理。这些原理描述了电荷与导体之间的相互作用,电磁波的传播性质以及其它相关物理现象,这些都对于人们理解电磁现象的本质以及应用场景至关重要。电磁场作为一种重要的物理现象在各个领域得到了广泛应用。2、电磁场应用在通信领域,比如无线通信中的的蜂窝手机、卫星通讯系统等均利用了电磁波传播特性。例如,当手机用户拨打电话时,话音通过天线转化为电磁信号,以一定频率的电磁波传输至基站接收并处理,之后再转发至目标用户,从而实现通信。3、电磁场应用在医学领域,比如核磁共振成像( MRI) 是以原子核中的电子运动产生旋转的磁场特性为基础工作的医学影像检测技术,MRI利用了电磁场对人体组织产生的物理作用,通过对人体各部位进行扫描和探测来达到诊断、治疗的目的。
2023-08-31 15:19:341

电磁场是什么?

有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。
2023-08-31 15:20:333

物理中的“电磁场”是什么?和“电磁波”的关系是怎样的?

电磁场是一种由带电物体产生的一种物理场。电磁波是电磁场的一种运动形态,电磁场在空间的传播就形成了电磁波。
2023-08-31 15:20:445

在电磁场中的b与h,e与d分别是什么意思,有什么区别

B是磁感应强度;H是磁场强度D是电位移;E是电场强度H=B/u D=∈E
2023-08-31 15:21:432

电磁场的本质是什么?

在电磁学里,电磁场(electromagnetic field)是一种由带电物体产生的一种物理场。处于电磁场的带电物体会感受到电磁场的作用力。电磁场与带电物体 (电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光 速向四周传播,形成电磁波。电磁场是电磁作用的媒介,具有能量和动量,是物质的一种存在形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。随时间变化着的电磁场( electromagneticfield)。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用,并推动了电工技术的发展。电磁波是电磁场的一种运动形态。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期转化以电磁波的形式向空间传播出去。电磁波为横波,电磁波的磁场、电场及其行进方向三者互相垂直。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波。波长越长的地面波,其衰减也越少 。电磁波的波长越长也越容易绕过障碍物继续传播。中波或短波等空中波则是靠围绕地球的电离层与地面的反复反射而传播的(电离层在离地面50~400公里之间)。振幅沿传播方向的垂直方向作周期性变化,其强度与距离的平方成反比,波本身带有能量,任何位置之能量、功率与振幅的平方成正比,其速度等于光速(每秒30万公里)。光波也是电磁波,无线电波也有和光波同样的特性,如当它通过不同介质时,也会发生折射、反射、绕射、散射及吸收等。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同、且量值最大的两点之间的距离,就是电磁波的波长λ。电磁波的频率γ即电振荡电流的频率,无线电广播中用的单位是千赫,速度是c。根据λγ=c,求出λ=c/γ。
2023-08-31 15:22:024

电磁场 到底是什么?

电流的变化产生的磁场
2023-08-31 15:22:205

电磁场 到底是什么?

电磁场 有内在联系、相互依存的电场和磁场的统一体和总称 。随时间变化的电场产生磁场 , 随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 电磁场与电磁波: 电磁场由近及远的传播形成电磁波 随时间变化着的电磁场。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用,并推动了电工技术的发展。 M.法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。 继法拉第电磁感应定律之后,J.C.麦克斯韦提出了位移电流概念。电位移来源于电介质中的带电粒子在电场中受到电场力的作用。这些带电粒子虽然不能自由流动,但要发生原子尺度上的微小位移。麦克斯韦将这个名词推广到真空中的电场,并且认为;电位移随时间变化也要产生磁场,因而称一面积上电通量的时间变化率为位移电流,而电位移矢量D的时间导数(即дD/дt)为位移电流密度。它在安培环路定律中,除传导电流之外补充了位移电流的作用,从而总结出完整的电磁方程组,即著名的麦克斯韦方程组,描述了电磁场的分布变化规律。 电磁辐射 麦克斯韦方程表明,不仅磁场的变化要产生电场,而且电场的变化也要产生磁场。时变场在这种相互作用下,产生电磁辐射,即为电磁波。这种电磁波从场源处以光速向周围传播,在空间各处按照距场源的远近有相应的时间滞后现象。电磁波还有一个重要特点,它的场矢量中有与场源至观察点间的距离成反比的分量。这些分量在空间传播时的衰减远较恒定场为小。按照坡印廷定理,电磁波在传播中携有能量,可以作为信息的载体。这就为无线电通信、广播、电视、遥感等技术开阔了道路。 似稳电磁场 时变场中不同于静态场的上述一些现象,其显著程度都与频率的高低及设备的尺寸紧密相关。按照实际需要,在容许的近似范围内,对时变场的部分过程可以当作恒定场处理,称之为似稳电磁场或准静态场。这种方法使分析工作大为简化,在电工技术中是行之有效的方法,已为人们所广泛采用。 交变电磁场与瞬变电磁场 时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。对它们的研究在目的上和方法上有一些各自的特点。交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或时序展开等方法进行分析。 一项新研究发现,电脑、打印机及其他办公设备产生的“电子烟雾”(即电磁场、电磁辐射),可能使员工置身于污染物和细菌水平更高的工作环境中。 由英国伦敦帝国理工大学完成的这项新研究,调查了在工作中因长时间使用电子设备而产生头痛等健康问题的员工。尽管老板们对此很不屑,但新研究表明,这些电磁场会 损害健康。 人们对“电子烟雾”可能对健康产生危害的担心由来已久。去年,英国牛津儿童癌症研究中心报告说,居住在距离高压线200米范围内的儿童罹患白血病的危险,比那些居住在距离高压线600米开外地区的孩子高69%。家电和办公设备产生的低压,也会产生同样的影响。 伦敦帝国理工大学的基思·牙米森,绘制出了典型办公室的电磁场图。他说:“电磁场对空气具有很大的影响,人们的皮肤和肺也会受到电磁场的影响。电磁场会增加人体内的毒素量,污染物的危险和感染的危险随之增加。” 从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波。 电与磁可说是一体两面,变动的电会产生磁,变动的磁则会产生电。电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,而其每秒钟变动的次数便是频率。当电磁波频率低时,主要藉由有形的导电体才能传递;当频率渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。举例来说,太阳与地球之间的距离非常遥远,但在户外时,我们仍然能感受到和勋阳光的光与热,这就好比是「电磁辐射藉由辐射现象传递能量」的原理一样。 电磁辐射是传递能量的一种方式,辐射种类可分为三种: 游离辐射 有热效应的非游离辐射 无热效应的非游离辐射 基地台电磁波 绝非游离辐射波 正像人们一直生活在空气中而眼睛却看不见空气一样,人们也看不见无处不在的电磁波。电磁波就是这样一位人类素未谋面的“朋友”。 电磁波是电磁场的一种运动形态。 在高频电磁振荡的情况下,部分能量以辐射方式从空间传播出去所形成的电波与磁波的总称叫做“电磁波”。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。电磁波为横波。电磁波的磁场、电场及其行进方向三者互相垂直。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波。波长越长的地面波,其衰减也越少。电磁波的波长越长也越容易绕过障碍物继续传播。中波或短波等空中波则是靠围绕地球的电离层与地面的反复反射而传播(电离层在离地面50~400公里之间)。振幅沿传播方向的垂直方向作周期性交变,其强度与距离的平方成反比,波本身带动能量,任何位置之能量功率与振幅的平方成正比。其速度等于光速(每秒3×1010厘米)。光波就是电磁波,无线电波也有和光波同样的特性,如当它通过不同介质时,也会发生折射、反射、绕射、散射及吸收等等。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同和量值最大两点之间的距离,就是电磁波的波长。电磁波的频率γ即电振荡电流的频率,无线电广播中用的单位是千赫,速度是c.根据λγ=c,求出λ=c/γ. 电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,所以电磁波也常称为电波。 1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。 1887年德国物理学家赫兹用实验证实了电磁波的存在。之后,人们又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、微波、红外线、可见光、紫外线、X射线及r射线。 用的波长在10~3000米之间,分长波、中波、中短波、短波等几种。传真(电视)用的波长是3~6米;雷达用的波长更短,3米到几厘米。电磁波有红外线、可见光、紫外线、X射线、γ射线等。各种光线和射线,也都是波长不同的电磁波。其中以无线电的波长最长,宇宙射线的波长最短。 无线电波 3000米~0.3毫米。 红外线 0.3毫米~0.75微米。 可见光 0.7微米~0.4微米。 紫外线 0.4微米~10毫微米 X射线 10毫微米~0.1毫微米 γ射线 0.1毫微米~0.001毫微米 宇宙射线 小于0.001毫微米 电磁辐射 广义的电磁辐射通常是指电磁波频谱而言。狭义的电磁辐射是指电器设备所产生的辐射波,通常是指红外线以下部分。 电磁辐射对人体有的伤害 电磁辐射危害人体的机理主要是热效应、非热效应和积累效应等。 热效应:人体内70%以上是水,水分子受到电磁波辐射后相互摩擦,引起机体升温,从而影响到身体其他器官的正常工作。 非热效应:人体的器官和组织都存在微弱的电磁场,它们是稳定和有序的,一旦受到外界电磁波的干扰,处于平衡状态的微弱电磁场即将遭到破坏,人体正常循环机能会遭受破坏。 累积效应:热效应和非热效应作用于人体后,对人体的伤害尚未来得及自我修复之前再次受到电磁波辐射的话,其伤害程度就会发生累积,久之会成为永久性病态或危及生命。对于长期接触电磁波辐射的群体,即使功率很小,频率很低,也会诱发想不到的病变,应引起警惕! 各国科学家经过长期研究证明:长期接受电磁辐射会造成人体免疫力下降、新陈代谢紊乱、记忆力减退、提前衰老、心率失常、视力下降、血压异常、皮肤产生斑痘、粗糙,甚至导致各类癌症等;男女生殖能力下降、妇女易患月经紊乱、流产、畸胎等症。
2023-08-31 15:22:401

电场是什么磁场是什么电磁场又是什么

电场是电荷及变化磁场周围空间里存在的一种特殊物质。电场与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。电场具有通常物质所具有的力和能量等客观属性。电场的力的性质表现为电场对放入其中的电荷有作用力,这种力称为电场力。电场的能的性质表现为当电荷在电场中移动时,电场力对电荷作功。 能够产生磁力的空间存在着磁场。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。 电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。磁体的磁性来源于电流,电流是电荷的运动,概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力距皆源于此。 电磁场是电磁作用的媒递物,是统一的整体,电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场,变化的磁场产生电场,变化的电磁场以波动形式在空间传播。
2023-08-31 15:23:301

电磁场中的电位场是一个什么场?

标量场。在电磁学里,电磁场是一种由带电物体产生的一种物理场。电磁场中的电位场是一个标量场。由相同电位的点所组成的等值面就是等电位面。
2023-08-31 15:23:411

磁场跟电磁场是一回事吗?

不是
2023-08-31 15:23:543

电磁场是怎样发现的

电磁理论是麦克斯伟提出的:变化的电场产生磁场,变化的磁场产生电场。那么交替变化的电场和磁场将会产生电磁场。但这个理论是赫兹证实的。
2023-08-31 15:24:122

电磁场是不是等于磁铁?电磁场与电磁波是否一样,或有什么不同?

不是一样的,电磁场强调了电和磁的关系,电生磁磁生电,随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。一块磁铁安安静静地呆着不会有电场。电磁波不是场,是一种辐射由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。
2023-08-31 15:24:233

电场,磁场,电磁场三者有什么关系

有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。
2023-08-31 15:24:332

电磁场的动力理论是什么?

电磁感应理论
2023-08-31 15:24:432

电磁场与电磁波的区别? 请问电磁场与电磁波有什么区别?

电磁场与电磁波是相互联系的知识点,一般把电磁场与电磁波作为一门课程来教学,要理解他们的区别还需写基础知识,这门课程先修课有高等数学,大学物理中的电磁学等. 电磁场象别的场论一样,场作为一种特殊的物质存在,象温度场,密度场等,场论是现代分析的一个重要工具.在电磁场中,变化的电场产生变化的磁场,变化的磁场产生变化的电场,相互激发,脱离了场源,以一定的速度传播的这种特殊物质就是电磁波(它是以光速C=3乘10的8次方).研究电磁波需借助场论的分析
2023-08-31 15:25:051

电磁波和电磁场有什么关系

电磁波就是不断变化的电磁场
2023-08-31 15:25:152

请问电磁场与电磁波有什么区别?

电磁波就是不断变化的电磁场
2023-08-31 15:25:262

电场和磁场是什么?

最佳答案 - 由提问者2007-01-24 00:12:11选出磁场 magnetic field 电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力矩皆源于此。 与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁力线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。 电磁场是电磁作用的媒递物,是统一的整体,电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场,变化的磁场产生电场,变化的电磁场以波动形式在空间传播。电磁波以有限的速度传播,具有可交换的能量和动量,电磁波与实物的相互作用,电磁波与粒子的相互转化等等,都证明电磁场是客观存在的物质,它的“特殊”只在于没有静质量。 磁现象是最早被人类认识的物理现象之一,指南针是中国古代一大发明。磁场是广泛存在的,地球,恒星(如太阳),星系(如银河系),行星、卫星,以及星际空间和星系际空间,都存在着磁场。为了认识和解释其中的许多物理现象和过程,必须考虑磁场这一重要因素。在现代科学技术和人类生活中,处处可遇到磁场,发电机、电动机、变压器、电报、电话、收音机以至加速器、热核聚变装置、电磁测量仪表等无不与磁现象有关。甚至在人体内,伴随着生命活动,一些组织和器官内也会产生微弱的磁场。 电磁场 electromagnetic field 有内在联系、相互依存的电场和磁场的统一体和总称 。随时间变化的电场产生磁场 , 随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 最佳答案 - 由提问者2007-01-24 00:12:11选出磁场 magnetic field 电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力矩皆源于此。 与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁力线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。 电磁场是电磁作用的媒递物,是统一的整体,电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场,变化的磁场产生电场,变化的电磁场以波动形式在空间传播。电磁波以有限的速度传播,具有可交换的能量和动量,电磁波与实物的相互作用,电磁波与粒子的相互转化等等,都证明电磁场是客观存在的物质,它的“特殊”只在于没有静质量。 磁现象是最早被人类认识的物理现象之一,指南针是中国古代一大发明。磁场是广泛存在的,地球,恒星(如太阳),星系(如银河系),行星、卫星,以及星际空间和星系际空间,都存在着磁场。为了认识和解释其中的许多物理现象和过程,必须考虑磁场这一重要因素。在现代科学技术和人类生活中,处处可遇到磁场,发电机、电动机、变压器、电报、电话、收音机以至加速器、热核聚变装置、电磁测量仪表等无不与磁现象有关。甚至在人体内,伴随着生命活动,一些组织和器官内也会产生微弱的磁场。 电磁场 electromagnetic field 有内在联系、相互依存的电场和磁场的统一体和总称 。随时间变化的电场产生磁场 , 随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。
2023-08-31 15:25:361

电磁场与电磁波的区别

电磁场传播的过程会辐射电磁波
2023-08-31 15:26:056

电场是怎样产生磁场,磁场又是怎样产生电场的?

扬声器(喇叭),电动机,变压器 扬声器内的线圈在电流流过时产生磁场与永磁场感应推动纸盆发声 电动机内导体切割磁感线产生感应电动势 变压器是电磁——磁电感应 电磁波是电磁场的一种运动形态.在高频电磁振荡的情况下,部分能量以辐射方式从空间传播出去所形成的电波与磁波的总称叫做“电磁波”.在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去.然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去. 拿一个收音机你可以收到电台,信号靠什么传播呢?是电磁波,虽然它看不见摸不着,但它是实实在在存在的,是物质的.似稳电磁场 时变场中不同于静态场的上述一些现象,其显著程度都与频率的高低及设备的尺寸紧密相关.按照实际需要,在容许的近似范围内,对时变场的部分过程可以当作恒定场处理,称之为似稳电磁场或准静态场.这种方法使分析工作大为简化,在电工技术中是行之有效的方法,已为人们所广泛采用. 交变电磁场与瞬变电磁场 时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场.对它们的研究在目的上和方法上有一些各自的特点.交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多.瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或时序展开等方法进行分析. 再比如黑洞:在原子的炁子(电磁场)黑洞里,只有炁体流进(形成引力能现象),炁体的流出是在电子或者原子核身上发生的(形成了辐射能现象).另外,光能进入原子会发生湮灭现象(形成原子的吸收光谱现象),就是光物质不见了!其实是转变成了另外的物质——场能、波能或者热能.原子发射光子光能的过程是:当电子远离原子核的时候,虚物进入原子内形成了电磁场(炁子.形成了引力能现象),当电子靠近原子核的时候,电磁场(炁子)从电子身上(电磁场的边缘,就是黑洞的边缘)辐射出去形成了光能,光物质是从电子身上发射出去的,不是从电磁场内部发射出去的.这正是黑洞的现象. 任何星球天体的核心(星核)都是由虚物炁体形成的巨大的炁团——叫做炁子球.炁子球是象电磁场物质一样的物质.量子能够使炁体形成炁流(能量——电场和磁场),炁子球能够使炁体形成引力能和斥力能(五行能量——场能、波能、热能、光能、射线能(量子流)).银河系中心也是这种物质——炁子球.这就是黑洞的本质:黑洞就是能量空间,也就是虚物空间,黑洞物质就是虚物球——炁子球. 天体黑洞和原子黑洞、分子黑洞的本质是一样的,其产生的能量现象也是一样的.大家看一看原子是怎样产生光能的,再想一想,光能物质是从哪里来的,就能够明白这个道理了.分子和物体的结构空间里是电磁场物质(炁子),也就是黑洞物质.天体的核心球都具有黑洞的特性,都是黑洞!在黑洞里只有虚物能够进入,形成了引力,在黑洞的“边缘”,也就是在原子、分子的身上,在星球核的表面上才有物质发射出来.但是在星核球体的内部,是看不到物质辐射出来的,这些星核球内的物质,只有流出星核的表面才能够被看到. 所以黑洞有大小的不同,大黑洞就是天体黑洞,小黑洞就是原子、分子、物体的结构空间里的电磁场物质形成的空间.黑洞空间就是虚物空间,黑洞物质就是虚物,黑洞就是虚物形成的球——炁子球. 黑洞就是电磁场物质形成的团块:炁子球形象地举例:把炁体比做水,水滴球就是炁体球.固体星球就象是表面浮有冰层的水滴(就象水上的冰层一样,冰层就象地壳),液态星球就象是热的水滴.星球的内部都是一样的,都是水滴——炁体球.如果把形成水的水分子的氢氧原子的量子除去,水滴球就是炁体球(炁子球)了.这样的水滴球——例如大海这样的水球吧——我们只能够看到有东西落到海里,却看不到有东西从海里出来,水的结冰和蒸发都是在表面进行的.水是因为有水分子的存在(其实就是因为有量子的存在),我们才能够看到水在内部的流动形态,炁体球(炁子球)的内部没有量子、原子、分子一类的粒子物质存在,我们当然就看不到它的内部的流动情况了.“水滴球”(炁体球、炁子球)不就是黑洞吗?
2023-08-31 15:26:221

在电磁场与电磁波中什么叫无源场?

场内处处散度和旋度为零
2023-08-31 15:26:332

电磁场中场点和源点的区别有哪些?

源点是产生电场的电荷或产生磁场的电流元所在的点,场点是电磁场中点。例如,源点电荷Q在空间产生电场,E=kQ/r^2,场点电荷受到电场力F=Eq。
2023-08-31 15:26:421

电磁场边界条件

电磁场矢量的边界条件可以用麦克斯韦方程组的积分形式导出。麦克斯韦方程组描述电磁场的行为:电场、电势移、B场、H场。此方程组的微分形式要求在作用的点周围总有一个开邻域,否则矢量场E、D、B和H不可微。换句话说,该介质必须是连续的。在电容率与磁导率不同的两种不同介质的分界面上不能使用。对于磁场B的法向分量在界面两边是连续的。对于磁场强度是两种媒质间的表面电流密度。因此在没有表面电流存在的情况下H的切向分量在界面两边是连续的。
2023-08-31 15:26:521

电磁场是怎样产生的谁知道

随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,电磁场以光 速向四周传播,形成电磁波。电磁场是电磁作用的媒递物
2023-08-31 15:27:343

电磁波的电场和磁场都是变化的吗

电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变化的电场会产生磁场(即电流会产生磁场),变化的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。
2023-08-31 15:27:432

麦克斯韦方程组中, B、 E、 H、 D各代表什么?

D:电位移矢量B:磁感应强度H:磁场强度E:电场强度其中,B和E是基本量,H和D是辅助矢量。由于历史的原因,误将H称为磁场强度,一直沿用至今。在麦克斯韦方程组中,E和B是电磁场的基本物理量,它们代表介质中总的宏观电磁场,而D和H只是引进的两个辅助场量.E和D、B和H的关系与电磁场所在物质的性质有关。对于各同性线性物质,它们有如下简单关系:扩展资料:一、相关历史虽然有些历史学家认为麦克斯韦并不是现代麦克斯韦方程组的原创者,在建立分子涡流模型的同时,麦克斯韦的确独自地推导出所有相关的方程。现代麦克斯韦方程组的四个方程,都可以在麦克斯韦的1861年论文《论物理力线》、1865年论文《电磁场的动力学理论》和于1873年发行的名著《电磁通论》的第二册,第四集,第九章"电磁场的一般方程"里,找到可辨认的形式。尽管没有任何矢量标记和梯度符号的蛛丝马迹。这本往后物理学生必读的教科书它的发行日期,早于赫维赛德、海因里希·赫兹等等的著作。二、相关应用麦克斯韦利用这四个方程计算出了电磁波的传播速度,并发现电磁波的速度与光速相同。于是他预言光的本质是电磁波,后由赫兹由实验证明这一预言的正确性。从麦克斯韦方程组,可以推论出光波是电磁波。麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。从这些基础方程的相关理论,发展出现代的电力科技与电子科技。参考资料来源:百度百科-麦克斯韦方程
2023-08-31 15:27:511

电磁场中静电场中所涉及的主要常量有哪些,各场量之间的关系

电磁场和静电场有什么区别静电场由静止电荷(相对于观察者静止的电荷)激发的电场.根据静电场的高斯定理,静电场的电场线,起于正电荷,终止于负电荷,或从无穷远到无穷远,故静电场是有源场.从安培环路定理来说它是一个无旋场.根据环量定理,静电场中环量恒等于零,表明静电场中沿任意闭合路径移动电荷,电场所做的功都为零,因此静电场是保守场.根据库仑定律,两个点电荷之间的作用力跟它们电量的乘积成正比,和它们距离的平方成反比,作用力的方向在它们的连线上,即F=kQ1Q2/r2,K为静电力恒量,约为9*10 9牛米2/库2注意,点电荷是当带电体的距离比它们的大小大得多时,带电体的形状和大小可以忽略不计的电荷感应电场  变化磁场激发的电场叫感应电场或涡旋电场.感应电场的电场线是闭合的,没有起点、终点.闭合的电场线包围变化的磁场,属于非保守场.电磁感应现象说明,电荷能激发电场,磁场变化也能激发电场.磁场变化导致通过闭合导体回路的磁通量发生变化,回路中便产生感应电流,也产生了电荷定向移动的电场.实验表明,导体不存在,磁场变化,也能激发电场.
2023-08-31 15:28:191

电磁场对人有什么危害

电磁辐射对人的作用1、热效应。人体70%以上是水,水分子受到一定强度电磁辐射后互相摩擦,引起机体升温,从而影响体内器官的工作温度。2、非热效应。人体的器官和组织都存在微弱的电磁场,它们是稳定和有序的,一旦外界电磁场的干扰强度过大,处于平衡状态的微弱电磁场将有可能受到影响甚至破坏。3、累积效应。热效应和非热效应作用于人体后,当对人体的影响尚未来得及自我恢复之前,若再次受到过量电磁波辐射的长期影响,其影响程度就会发生累积,久而久之会形成永久性累积影响。[1] 电磁辐射危害专家介绍,超过 2 毫高斯以上电磁辐射就会导致人患疾病,首当其冲的便是人体皮肤和黏膜组织,症状表现为眼睑肿胀、眼睛充血、鼻塞流涕、咽喉不适,或全身皮肤出现反复荨麻疹、湿疹、瘙痒等;影响人体免疫功能时可能出现白癜风、银屑病、过敏性紫癜等。据了解,电磁波辐射已被世卫组织列为继水源、大气、噪声之后的第四大环境污染源,成为危害人类健康的隐形 “ 杀手 ” ,长期而过量的电磁辐射会对人体生殖、神经和免疫等系统造成伤害,成了皮肤病、心血管疾病、糖尿病、癌突变的主要诱因。而家用电器、办公电子、手机电脑等成为电磁波辐射的最大来源。
2023-08-31 15:28:305

电磁场的分布是怎样排列的?

电磁场 有内在联系、相互依存的电场和磁场的统一体和总称 。随时间变化的电场产生磁场 , 随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。电磁场与电磁波:电磁场由近及远的传播形成电磁波随时间变化着的电磁场。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用,并推动了电工技术的发展。   M.法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。   继法拉第电磁感应定律之后,J.C.麦克斯韦提出了位移电流概念。电位移来源于电介质中的带电粒子在电场中受到电场力的作用。这些带电粒子虽然不能自由流动,但要发生原子尺度上的微小位移。麦克斯韦将这个名词推广到真空中的电场,并且认为;电位移随时间变化也要产生磁场,因而称一面积上电通量的时间变化率为位移电流,而电位移矢量D的时间导数(即дD/дt)为位移电流密度。它在安培环路定律中,除传导电流之外补充了位移电流的作用,从而总结出完整的电磁方程组,即著名的麦克斯韦方程组,描述了电磁场的分布变化规律。   电磁辐射  麦克斯韦方程表明,不仅磁场的变化要产生电场,而且电场的变化也要产生磁场。时变场在这种相互作用下,产生电磁辐射,即为电磁波。这种电磁波从场源处以光速向周围传播,在空间各处按照距场源的远近有相应的时间滞后现象。电磁波还有一个重要特点,它的场矢量中有与场源至观察点间的距离成反比的分量。这些分量在空间传播时的衰减远较恒定场为小。按照坡印廷定理,电磁波在传播中携有能量,可以作为信息的载体。这就为无线电通信、广播、电视、遥感等技术开阔了道路。   似稳电磁场  时变场中不同于静态场的上述一些现象,其显著程度都与频率的高低及设备的尺寸紧密相关。按照实际需要,在容许的近似范围内,对时变场的部分过程可以当作恒定场处理,称之为似稳电磁场或准静态场。这种方法使分析工作大为简化,在电工技术中是行之有效的方法,已为人们所广泛采用。   交变电磁场与瞬变电磁场  时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。对它们的研究在目的上和方法上有一些各自的特点。交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或时序展开等方法进行分析。一项新研究发现,电脑、打印机及其他办公设备产生的“电子烟雾”(即电磁场、电磁辐射),可能使员工置身于污染物和细菌水平更高的工作环境中。 由英国伦敦帝国理工大学完成的这项新研究,调查了在工作中因长时间使用电子设备而产生头痛等健康问题的员工。尽管老板们对此很不屑,但新研究表明,这些电磁场会 损害健康。 人们对“电子烟雾”可能对健康产生危害的担心由来已久。去年,英国牛津儿童癌症研究中心报告说,居住在距离高压线200米范围内的儿童罹患白血病的危险,比那些居住在距离高压线600米开外地区的孩子高69%。家电和办公设备产生的低压,也会产生同样的影响。 伦敦帝国理工大学的基思·牙米森,绘制出了典型办公室的电磁场图。他说:“电磁场对空气具有很大的影响,人们的皮肤和肺也会受到电磁场的影响。电磁场会增加人体内的毒素量,污染物的危险和感染的危险随之增加。” 从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波。 电与磁可说是一体两面,变动的电会产生磁,变动的磁则会产生电。电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,而其每秒钟变动的次数便是频率。当电磁波频率低时,主要藉由有形的导电体才能传递;当频率渐提高时,电磁波就会外8.528.cm
2023-08-31 15:28:501

电磁场对人体的影响有多大?

对城市的影响 在大城市的每个住家里,其电磁环境都存在很大问题。一个个钢筋水泥盒子破坏了自然场,而家用电器又产生了大量有别于自然环境的电磁场。可遗憾的是,任何一座大城市的这么一个普普通通问题,还有就是无线电通讯、日常办公 磁暴发生时的太阳和生活所使用的电器所产生的电磁辐射,却又无法避免。其中电磁辐射最强的当数微波炉、无氟冰箱、抽油烟机、电烤箱和电视机。 电磁场对居民身体的不良影响是当今社会的一个相当现实的问题,不仅专家和科学家在积极探讨,全世界的舆论也在予以关注。尤其是现在,实际上所有大城市市内和城外相当大的一部分地域都被移动通讯系统的电磁辐射所覆盖,这个问题变得更加尖锐。对细胞的影响 为了弄清这种情况会对我们的身体健康有多大的危险,很有必要提到细胞的交际语言之一——电磁波。正是在电磁波的帮助下,细胞才有可能互相传递信息,其中包括一些得绝对服从的重要指令。 接到这种指令之后,细胞马上重新调整自己的工作,但是它并不总是能分辨所接到的指令是否合理,只能像个士兵一切统统照办。可是,如果它接到的指令是相互排斥、相互矛盾的呢…… 如果我们工作的地方长期在同时使用好几件能产生磁场的电器,我们的细胞就会是这个反应,因为这种环境会产生大强度的磁暴。 人处在磁暴中到底会有些什么反应对我们不少人已经不是秘密:血压突变,头疼,心血管功能紊乱,等等。 不过这都还只是表面现象,因为更严重的,乃至不可逆转的过程发生在细胞内部。 用老鼠做的试验表明,在电磁场的影响下,动物的举动变得具有攻击性。老鼠会无缘无故地发火,拼命地在笼子里跑来跑去,久久都恢复不了正常。 据世界卫生组织专家们得出的结论,一个表面看上去健康的孩子暴死的综合征、艾滋病、慢性疲劳和精神萎靡全都是电磁场对人体影响的结果。尤其是孩子对电磁场的不良影响最为敏感。电磁场同长寿的关系 有人问:那电磁场究竟同现代人的寿命有何关系?对此俄罗斯医学副博士、组织学教研室助教德米特里·阿佳克申有自己的见解。他认为,电磁场对我们身体细胞的任何生命过程都在施加影响。这就意味着也影响到对诸如细胞的遗传器官、蛋白合成、能量传递与利用、细胞膜以及其他一些跟衰老起到关键作用的系统。 再说,由于人类活动而形成的电磁场辐射对细胞的生命过程及其“自我感觉”进行粗暴干涉,尤其是近些年来这种干涉越来越大。比如说,近50年来电磁场的强度比过去已是几十倍,甚至是几百倍地增长,这对人体细胞不能不说是最大的灾难。 其结果是细胞的机能遭到破坏,肌肉组织和器官中的细胞数量骤减,它们之间变得不再“了解”,这就会导致整个机体不再能统一正常发挥职能。而重要的是,任何磁场都具有对人的生命系统组织起到破坏作用的频率和振幅渠道,从而加速人的衰老。即使是人能逃避电磁场的影响,但也于事无补。因为人体细胞能“牢记”电磁场的影响,而后者的生物效应又“习惯于”积累,所以它们往往会引起神经系统的退化,还会引发白血病、荷尔蒙紊乱,可能还会引发肿瘤。 世界卫生组织1996-2000年的“电磁场与人的健康”国际科学规划指出,诸如癌症、行为发生变化、失忆、帕金森和老年性痴呆、艾滋病以及包括自杀率上升等其他诸多现象都是电磁场影响的结果。 阿佳克申还认为,人体内就数神经系统、免疫系统、内分泌系统和生殖系统的细胞对磁场的作用最敏感。在电磁场的作用下,神经系统内细胞间的信息传递系统失灵,大脑的整个工作瘫痪,最后导致行为变异、失忆和对周围发生的事件无法进行正确的判断。电磁场一分钟或一小时的作用所引起的过程可以在神经系统延续好几个星期和几个月。经研究发现,凡长期接触电磁场的人,即使是强度不大,都爱变得神经紧张。生命在于运动 电磁场最容易对神经系统、免疫系统、内分泌系统和生殖系统产生影响。 免疫系统的改变会产生过敏反应,降低身体的抗感染力。除此之外,近些年还发现电磁场容易致癌。 内分泌系统受到电磁场的影响,会降低人体对外界环境的适应能力。 由此看来,电磁场无疑是促使细胞衰老的一个重要因素。 既然电磁场的影响无法避免,那能不能哪怕稍稍减少呢? 首先是尽量少在产生电磁场的电器旁工作,或者把这些电器摆在稍远一些的地方。其次是加强运动,努力激活体内的细胞,保持其旺盛的生命力。也就是说,最大限度地提高它们对病毒、细菌和辐射的抵抗力。
2023-08-31 15:28:581

电磁场边界条件

电磁场的边界条件 boundary conditions for electromagnetic field 电磁场在两种不同媒质分界面上,从一侧过渡到另一侧时,场矢量E、D、B、H一般都有一个跃变。电磁场的边界条件就是指场矢量的这种跃变所遵从的条件,也就是两侧切向分量之间以及法向分量之间的关系。在某些电动力学或电磁场理论的书中,为了与另一种边界条件(在区域的表面上给定的有关场矢量的边值)相区别,将本条所解释的电磁场边界条件称为电磁场的边值关系。 电磁场的边界条件可以由麦克斯韦方程组的积分形式推出,它实际上是积分形式的极限结果。这些边界条件是n·(D1-D2)=ρs; (1) n×(E1-E2)=0; (2) n·(B1-B2)=0; (3) n×(H1-H2)=J)s。 (4) 式中n为两媒质分界面法线方向的单位矢量,场矢量E、D、B、H的下标1或2分别表示在媒质1或2内紧靠分界面的场矢量,ρs为分界面上的自由电荷面密度,Js为分界面上的传导电流面密度。式(1)表示在分界面两侧电位移矢量D的法向分量的差等于分界面上的自由电荷面密度。当分界面上无自由电荷时,两侧电位移矢量的法向分量相等,即其法向分量是连续的。式(2)表示在分界面两侧电场强度E的切向分量是连续的。式(3)表示在分界面两侧磁通密度B的法向分量是连续的。式(4)表示在分界面两侧磁场强度H的切向分量的差等于分界面上的表面传导电流面密度。当分界面上无表面传导电流时,两侧磁场强度的切向分量相等,即其切向分量是连续的。 当媒质2为理想导体时,E2、D2、B2、H2等于零,式(1)表示D1的法向分量等于自由电荷面密度;式(2)表示E1无切向分量式(3)表示B1的法向分量为零;式(4)表示H1的切向分量等于表面传导电流面密度,并且与电流方向正交
2023-08-31 15:29:072

电磁场与电磁波

电磁场产生电磁波
2023-08-31 15:29:242

电磁场的传播方程

在电磁学教程中已经知道,对导电介质,利用电磁场的麦克斯韦方程,在千克、米、秒实用单位制中,可得电磁场的表达式为固体地球物理学:地震学、地电学与地热学这里H,E分别为磁场强度和电场强度(都是矢量);σ为电导率;μ为导磁系数;ε为介电常数;t为时间。为简便起见,以下我们都讨论谐变场问题,即设H=H0e-iωt,E=E0e-iωt,于是式(9-1)和式(9-2)分别简化为固体地球物理学:地震学、地电学与地热学其中:固体地球物理学:地震学、地电学与地热学称为波的传播系数,亦称波数。当σ/ωε>>1时,即忽略介质的位移电流时, 固体地球物理学:地震学、地电学与地热学。式(9-3)和式(9-4)两式为磁场和电场所满足的波动方程。
2023-08-31 15:29:341

电磁场 到底是什么?

电磁场英文名称:electromagneticfield定义:由相互依存的电磁和磁场的总和构成的一种物理场。电场随时间变化时产生磁场,磁场随时间变化时又产生电场,两者互为因果,形成电磁场。详见百度百科电磁场一条
2023-08-31 15:29:573

电磁场 是什么意思

简易定义:能够产生磁力的空间存在着磁场。磁场是一种特殊的物质。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。)电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力矩皆源于此。而现代理论则说明,磁力是电场力的相对论效应。 与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。 电磁场是电磁作用的媒递物,是统一的整体,电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场,变化的磁场产生电场,变化的电磁场以波动形式在空间传播。电磁波以有限的速度传播,具有可交换的能量和动量,电磁波与实物的相互作用,电磁波与粒子的相互转化等等,都证明电磁场是客观存在的物质,它的“特殊”只在于没有静质量。 磁现象是最早被人类认识的物理现象之一,指南针是中国古代一大发明。磁场是广泛存在的,地球,恒星(如太阳),星系(如银河系),行星、卫星,以及星际空间和星系际空间,都存在着磁场。为了认识和解释其中的许多物理现象和过程,必须考虑磁场这一重要因素。在现代科学技术和人类生活中,处处可遇到磁场,发电机、电动机、变压器、电报、电话、收音机以至加速器、热核聚变装置、电磁测量仪表等无不与磁现象有关。甚至在人体内,伴随着生命活动,一些组织和器官内也会产生微弱的磁场。 地球的磁级与地理的两极相反.磁场方向:规定小磁针的北极在磁场中某点所受磁场力的方向为该电磁场的方向。磁感线:在磁场中画一些曲线,使曲线上任何一点的切线方向都跟这一点的磁场方向相同,这些曲线叫磁力线。磁力线是闭合曲线。规定小磁针的北极所指的方向为磁力线的方向。磁铁周围的磁力线都是从N极出来进入S极,在磁体内部磁力线从S极到N极。电磁场electromagnetic field 有内在联系、相互依存的电场和磁场的统一体和总称 。随时间变化的电场产生磁场 , 随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 地磁场geomagnetic field 从地心至磁层顶的空间范围内的磁场。地磁学的主要研究对象。人类对于地磁场存在的早期认识,来源于天然磁石和磁针的指极性。磁针的指极性是由于地球的北磁极(磁性为S极)吸引着磁针的N极,地球的南磁极(磁性为N极)吸引着磁针的S极。这个解释最初是英国W.吉伯于1600年提出的。吉伯所作出的地磁场来源于地球本体的假定是正确的。这已为1839年德国数学家C.F.高斯首次运用球谐函数分析法所证实。 地磁场是一个向量场。描述空间某一点地磁场的强度和方向,需要3个独立的地磁要素。常用的地磁要素有7个,即地磁场总强度F,水平强度H,垂直强度Z,X和Y分别为H的北向和东向分量,D和I分别为磁偏角和磁倾角。其中以磁偏角的观测历史为最早。在现代的地磁场观测中,地磁台一般只记录H,D,Z或X,Y,Z。 近地空间的地磁场,像一个均匀磁化球体的磁场,其强度在地面两极附近还不到1高斯,所以地磁场是非常弱的磁场。地磁场强度的单位过去通常采用伽马(γ),即10高斯。1960年决定采用特斯拉作为国际测磁单位,1高斯=10^(-4)特斯拉(T),1伽马=10^(-9)特斯拉=1纳特斯拉(nT),简称纳特。地磁场虽然很弱,但却延伸到很远的空间,保护着地球上的生物和人类,使之免受宇宙辐射的侵害。 地磁场包括基本磁场和变化磁场两个部分,它们在成因上完全不同。基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,变化非常缓慢。变化磁场包括地磁场的各种短期变化,主要起源于地球外部,并且很微弱。 地球的基本磁场可分为偶极子磁场、非偶极子磁场和地磁异常几个组成部分。偶极子磁场是地磁场的基本成分,其强度约占地磁场总强度的90%,产生于地球液态外核内的电磁流体力学过程,即自激发电机效应。非偶极子磁场主要分布在亚洲东部、非洲西部、南大西洋和南印度洋等几个地域,平均强度约占地磁场的10%。地磁异常又分为区域异常和局部异常,与岩石和矿体的分布有关。 地球变化磁场可分为平静变化和干扰变化两大类型。平静变化主要是以一个太阳日为周期的太阳静日变化,其场源分布在电离层中。干扰变化包括磁暴、地磁亚暴、太阳扰日变化和地磁脉动等,场源是太阳粒子辐射同地磁场相互作用在磁层和电离层中产生的各种短暂的电流体系。磁暴是全球同时发生的强烈磁扰,持续时间约为1~3天,幅度可达10纳特。其他几种干扰变化主要分布在地球的极光区内。除外源场外,变化磁场还有内源场。内源场是由外源场在地球内部感应出来的电流所产生的。将高斯球谐分析用于变化磁场,可将这种内、外场区分开。根据变化磁场的内、外场相互关系,可以得出地球内部电导率的分布。这已成为地磁学的一个重要领域,叫做地球电磁感应。 地球变化磁场既和磁层、电离层的电磁过程相联系,又和地壳上地幔的电性结构有关,所以在空间物理学和固体地球物理学的研究中都具有重要意义。磁场类型1.恒定磁场 磁场强度和方向保持不变的磁场称为恒定磁场或恒磁场,如铁磁片和通以直流电的电磁铁所产生的磁场。2.交变磁场 磁场强度和方向在规律变化的磁场,如工频磁疗机和异极旋转磁疗器产生的磁场。3.脉动磁场 磁场强度有规律变化而磁场方向不发生变化的磁场,如同极旋转磁疗器、通过脉动直流电磁铁产生的磁场。4.脉冲磁场 用间歇振荡器产生间歇脉冲电流,将这种电流通入电磁铁的线圈即可产生各种形状的脉冲磁场。脉冲磁场的特点是间歇式出现磁场,磁场的变化频率、波形和峰值可根据需要进行调节。 恒磁场又称为静磁场,而交变磁场,脉动磁场和脉冲磁场属于动磁场。磁场的空间各处的磁场强度相等或大致相等的称为均匀磁场,否则就称为非均匀磁场。离开磁极表面越远,磁场越弱,磁场强度呈梯度变化。
2023-08-31 15:30:094

电磁场是什么意思?

在电磁学里,电磁场(electromagnetic field)是一种由带电物体产生的一种物理场。处于电磁场的带电物体会感受到电磁场的作用力。电磁场与带电物体 (电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光 速向四周传播,形成电磁波。电磁场是电磁作用的媒介,具有能量和动量,是物质的一种存在形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。随时间变化着的电磁场( electromagneticfield)。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用,并推动了电工技术的发展。电磁波是电磁场的一种运动形态。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期转化以电磁波的形式向空间传播出去。电磁波为横波,电磁波的磁场、电场及其行进方向三者互相垂直。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波。波长越长的地面波,其衰减也越少 。电磁波的波长越长也越容易绕过障碍物继续传播。中波或短波等空中波则是靠围绕地球的电离层与地面的反复反射而传播的(电离层在离地面50~400公里之间)。振幅沿传播方向的垂直方向作周期性变化,其强度与距离的平方成反比,波本身带有能量,任何位置之能量、功率与振幅的平方成正比,其速度等于光速(每秒30万公里)。光波也是电磁波,无线电波也有和光波同样的特性,如当它通过不同介质时,也会发生折射、反射、绕射、散射及吸收等。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同、且量值最大的两点之间的距离,就是电磁波的波长λ。电磁波的频率γ即电振荡电流的频率,无线电广播中用的单位是千赫,速度是c。根据λγ=c,求出λ=c/γ。电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播即形成了电磁波,所以电磁波也常称为电波。1864年,英国科学家麦克斯韦在总结前人研究电磁现象取得的成果的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。1887年德国物理学家赫兹 用实验证实了电磁波的存在。之后,人们又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、微波、红外线、可见光、紫外线、X射线及r射线。
2023-08-31 15:30:271

什么叫电磁场?产生电磁场的条件是什么

电磁场(electromagnetic field)是一种由带电物体产生的一种物理场。处于电磁场的带电物体会感受到电磁场的作用力。电磁场与带电物体 (电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。感应电流电磁场产生的条件:① 电路是闭合且通着的;②穿过闭合电路的磁通量发生变化;(如果缺少一个条件,就不会有感应电流产生)[1] .M.法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电 磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的相互联系。法拉第电磁感应定律的重要意义在于,一方面,依据电磁感应的原理,人们制造出了发电机,电能的大规模生产和远距离输送成为可能;另一方面,电磁感应现象在电工技术、电子技术以及电磁测量等方面都有广泛的应用。电磁场由近及远的扰动的传播形成电磁波,随时间变化着的电磁场。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用 ,并推动了电工技术的发展。
2023-08-31 15:30:361

电磁场的介绍

在电磁学里,电磁场(electromagnetic field)是一种由带电物体产生的一种物理场。处于电磁场的带电物体会感受到电磁场的作用力。电磁场与带电物体 (电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。
2023-08-31 15:30:451

电场、磁场与电磁场的关系??

电场与磁场统称为电磁场。
2023-08-31 15:31:202

大地电磁场的一般性质

大地电场与地球变化磁场密切相关(克拉耶夫 A Π,1955;孙振江,王华俊,1984;石应骏等,1985;朴化荣,1990;陈乐寿,王光锷,1990),两者的场源都是来自地球外部的各种电流体系,因而具有相同类型的变化。这种变化的电场和磁场统称为大地电磁场。这里我们将通过大地电场的讨论,来了解大地电磁场的一般性质。大地电场的变化可分为两大类,一类是地电场的平静变化,另一类是地电场的干扰变化。平静变化是连续出现的,具有确定的周期性。平静变化有多种周期性,其中变化周期为11 a的,与太阳黑子出现的周期相同;有年变化周期,与太阳公转周期相同,并与季度变化有关,夏季场强幅度大,冬季场强幅度小;有月变化周期,与月球绕地球的周期相同;有静日地电日变化,与地球自转周期相同。以上最重要的是静日地电日变化。干扰变化是偶然发生的,它有高频地电变化,周期为10-4~1 s;有地电脉动,周期为0.2~1000 s;有地电湾扰,无周期,持续时间为1~3 h;有扰日地电日变化,周期为1 d;有地电暴,变化持续的时间为1~3 d。另外,大地电场不仅幅度随时间变化,方向也是不断改变的。在某段时间内,如果将在南北和东西两个方向测得的电场之合成矢量端点连成一条曲线,如图1-2-1所示,当该曲线近似成一条直线时,则称为线性极化;不规则时称为非线性极化。图1-2-1 大地电场的极化(一)地电日变化静日地电日变化和扰日地电日变化具有相同的周期,二者叠加在一起构成的地电变化称为地电日变化。地电日变化的场源是分布在电离层中的电流系,其中静日地电日变化的电流系主要分布在中、低纬度区的上空,高度为100 km。地电日变化形态和幅度如图1-2-2所示,其幅度主要随着纬度的改变而变化。利用世界各个地电台站上的同一时刻的大地电流观测值,可以绘出大地电场或大地电流在地面上的分布。图1-2-3是O.Gish等,利用世界时18时的全球资料编制的大地电流分布图。由于全球地电台站的数目太少,且分布不均匀南半球主要是海洋,所以此图只能给出大地电流分布的一个概貌。由图可见,南半球和北半球各有8个涡旋电流(南半球只画出4个),地球赤道是这些涡旋电流的近似对称面。赤道两侧的8个涡旋电流与静日地电变化相对应,白天电流强,夜间电流弱。高纬度处的涡旋电流与扰日地电变化相对应。地电日变化的整个过程有两次起伏,变化的平均幅度约为10 mV·km-1。(二)地电微变化由于高频地电变化幅度比较小,所以常称为地电微变化,其频率如图1-2-4所示。E和H分别表示电场和磁场,二者频谱是一一对应的。从图中可以清楚地看出变化幅度与变化频率的关系:在1 Hz附近,幅度最小;高于或低于这个频率,变化幅度增大,并且在一些频段上幅度具有极值。图1-2-2 地电场与地磁场的日变化对照图由雷电引起的高频地电变化的频率为1~104 Hz。按无线电波划分,这是低频(ELF)。地电脉动P的频率为10-3~1 Hz,其中又可分为许多小频段。频率10-4~10-3 Hz的变化已经是地电湾扰了。1.高频地电变化有一种局部的天电系统称为雷暴系统,主要产生于赤道上空约8 km处,它产生的电磁噪音的影响几乎遍及全球。雷暴的数目在时间上也有一定的统计规律,通常最大值出现在世界时20点左右,最小值在04点左右。这种时间规律与阳光照射的地表性质有关。世界时20点左右,阳光直射到太平洋上,海水的蒸发作用最大,大气的对流最激烈,同时赤道两侧的地下电流也最强。这时,水蒸气所携带的不同电性的粒子最多,电荷的积累与释放作用也就最强烈,所以雷电暴的数目也就最多。相反,当世界时04点时,太阳直射于干燥的非洲大陆,水蒸气最少,因此雷电的数目也最少。雷电的数目还有一对次极大和次极小,分别出现在10点和02点左右。图1-2-5是利用极距为1 km的电极记录到的雷电信号,频率为8 Hz的地电变化明显可见。所记录的低空闪电产生的电磁噪声的频谱与闪电的距离有密切关系。图1-2-3 世界时18时的全球大地电流分布图图1-2-4 短周期电磁脉动频谱图闪电产生的电磁脉冲示于图1-2-6,当距离很近时,单个闪电产生单个脉冲(a)。当距离很远时,由于电磁波的反射,单个闪电可以产生多个脉冲(b)。图中还附有多个雷暴对应多个脉冲的例子(c)。图1-2-5 雷电信号记录图2.地电脉动太阳辐射的带电粒子一方面绕着地磁场的磁力线运动,另一方面还沿着磁力线的方向在两极之间往返振荡,带电粒子的这种运动所产生的电磁效应是电磁脉动的场源。地电脉动和地磁脉动具有相同的周期和成因,其周期为0.2~1000 s。根据脉动形态又分为规则脉动Pc型和不规则脉动Pi型。Pc型脉动的幅度较稳定,形态较规则,其持续时间从几分钟到8 h不等。Pi型脉动幅度不稳定,形态不规则,持续时间一般为10 min左右。电磁脉动主要是高纬度地区的电磁现象,夜间出现较多,季节变化复杂。在地电学研究中,电磁脉动占有重要地位。(三)地电湾扰由太阳辐射产生的高速太阳风(带电粒子流),在电磁场作用下,在高度约为300 km的极区电离层形成电流系,并在距离地心约5~7个地球半径的远处形成一个赤道电流环,它们分别是地电湾扰和地电暴的场源。地电湾扰是具有形态规则而无周期的电磁扰动,形如湾扰故得名。一般在高纬度地区湾扰幅度较大。(四)地电暴地电暴和地磁暴几乎在全球同时发生,在地磁赤道处变化幅度最大、持续时间可长达1~3 d。随着纬度升高变化幅度逐渐减小。它与太阳活动有关,在电磁暴过程中往往叠加着电磁湾扰和电磁脉动,因此电磁暴的形态十分复杂。关于大地电磁场的起源问题虽然目前研究的还不够充分。但是,多数人认为它是一种宇宙现象。根据这一认识,天然电磁场源是由太阳微粒辐射(太阳风)作用下形成的地球磁层和电离层的变化。太阳风的微粒辐射流具有相当高的导电能力,所以地球的正常偶极磁场不能穿过它而受到畸变(见图1-2-7)。在导电的电离层中形成很强且变化迅速的电流。这些电流主要集中在靠近地极70°纬度带附近,即大地电磁场的场源位于100km左右的高空处,在地球表面上的有限区域内可视为似平面波。这种平面电磁波在铅直方向上穿透地层过程中,在导电地层内激发出涡旋电流,其传播深度主要依赖于振动频率或者场的变化周期。图1-2-6 闪电产生的电磁脉冲
2023-08-31 15:31:301

磁场与电场?

电磁场是电磁作用的媒递物,是统一的整体,电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场,变化的磁场产生电场,变化的电磁场以波动形式在空间传播.电磁波以有限的速度传播,具有可交换的能量和动量,电磁波与实物的相互作用,电磁波与粒子的相互转化等等,都证明电磁场是客观存在的物质,它的“特殊”只在于没有静质量. 磁现象是最早被人类认识的物理现象之一,指南针是中国古代一大发明.磁场是广泛存在的,地球,恒星(如太阳),星系(如银河系),行星、卫星,以及星际空间和星系际空间,都存在着磁场.为了认识和解释其中的许多物理现象和过程,必须考虑磁场这一重要因素.在现代科学技术和人类生活中,处处可遇到磁场,发电机、电动机、变压器、电报、电话、收音机以至加速器、热核聚变装置、电磁测量仪表等无不与磁现象有关.甚至在人体内,伴随着生命活动,一些组织和器官内也会产生微弱的磁场. 电磁场electromagnetic field 有内在联系、相互依存的电场和磁场的统一体和总称 .随时间变化的电场产生磁场 ,随时间变化的磁场产生电场,两者互为因果,形成电磁场.电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波.电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式.电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定. 从地心至磁层顶的空间范围内的磁场.地磁学的主要研究对象.人类对于地磁场存在的早期认识,来源于天然磁石和磁针的指极性.磁针的指极性是由于地球的北磁极(磁性为S极)吸引着磁针的N极,地球的南磁极(磁性为N极)吸引着磁针的S极.这个解释最初是英国W.吉伯于1600年提出的.吉伯所作出的地磁场来源于地球本体的假定是正确的.这已为1839年德国数学家C.F.高斯首次运用球谐函数分析法所证实.,7,
2023-08-31 15:31:381

电磁场是怎么形成的?

电磁场有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。
2023-08-31 15:32:011

电场,磁场,电磁场三者有什么关系

电场和磁场是同一种物质的两种形态,或者说磁场是电场的时空变换形式。
2023-08-31 15:32:123

麦克斯韦经典电磁理论

麦克斯韦在稳恒场理论的基础上,提出了涡旋电场和位移电流的概念。这就是麦克斯韦电磁场理论的基本概念如下:变化的电场和变化的磁场彼此不是孤立的,它们永远密切地联系在一起,相互激发,组成一个统一的电磁场的整体。麦克斯韦电磁场理论的要点可以归结为:1、几分立的带电体或电流,它们之间的一切电的及磁的作用都是通过它们之间的中间区域传递的,不论中间区域是真空还是实体物质。2、电能或磁能不仅存在于带电体、磁化体或带电流物体中,其大部分分布在周围的电磁场中。3、导体构成的电路若有中断处,电路中的传导电流将由电介质中的位移电流补偿贯通,即全电流连续。且位移电流与其所产生的磁场的关系与传导电流的相同。4、磁通量既无始点又无终点,即不存在磁荷。5、光波也是电磁波。麦克斯韦方程组是由四个微分方程构成:(1)、u2207·E=ρ/ε0,描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。(2)、u2207·B=0,描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。(3)、u2207×E=-u2202B/u2202t,描述了变化的磁场激发电场的规律。(4)、u2207×B=μ0J+1/c2*u2202E/u2202t (c2=1/μ0ε0),描述了变化的电场激发磁场的规律。扩展资料麦克斯韦方程都是用微积分表述的,涉及到的方程包括:1、高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量。麦克斯韦:电位移的散度等于电荷密度。2、磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零。3、法拉第电磁感应定律,即电磁场互相转化,电场强度的旋度等于磁感应强度对时间的负偏导。4、安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和。物理意义方程1:任何闭合曲面的电位移通量只与该闭合曲面内自由电荷有关,同时反映了变化的磁场所产生的电场总是涡旋状的——电场的高斯定理。方程2:变化的磁场产生涡旋电场,即变化的磁场总与电场相伴——法拉弟电磁感应定律。方程3:任何形式产生的磁场都是涡旋场,磁力线都是闭合的——磁场的高斯定理。方程4:全电流与磁场的关系,揭示了变化电场产生涡旋磁场的规律,即变化的电场总与磁场相伴——全电流定律。在各向同性介质中,电磁场量之间有如下的关系:根据麦克斯韦方程组、电磁场量之间关系式、初始条件及电磁场量的边界条件,可以确定任一时刻介质中某一点的电磁场。参考资料来源:百度百科-麦克斯韦方程组参考资料来源:百度百科-电磁理论参考资料来源:百度百科-麦克斯韦理论
2023-08-31 15:32:431

电场,磁场,电磁场三者有什么关系

电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光 速向四周传播,形成电磁波。电磁场是电磁作用的媒介,具有能量和动量,是物质的一种存在形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播即形成了电磁波,所以电磁波也常称为电波。扩展资料:1864年,英国科学家麦克斯韦在总结前人研究电磁现象取得的成果的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。1887年德国物理学家赫兹用实验证实了电磁波的存在。之后,人们又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、微波、红外线、可见光、紫外线、X射线及r射线。麦克斯韦电磁理论麦克斯韦电磁场理论的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系。这个电磁场理论体系的核心就是麦克斯韦方程组。麦克斯韦方程组是由四个微分方程构成:(1)u2207·E=ρ/ε0,描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。(2)u2207·B=0,描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。(3)u2207×E=-u2202B/u2202t,描述了变化的磁场激发电场的规律。(4)u2207×B=μ0J+1/c2*u2202E/u2202t (c2=1/μ0ε0),描述了变化的电场激发磁场的规律。参考资料来源:百度百科——电磁理论参考资料来源:百度百科——电磁场
2023-08-31 15:32:591

电磁场的基本方程及边界条件

(一)麦克斯韦方程组麦克斯韦方程组是电磁场必须遵从的微分方程组,在国际单位制中的表达式为地电场与电法勘探式中:E为电场强度,V·m-1;B为磁感应强度或磁通密度,T;D为电通量密度或电位移,C·m-2;H为磁场强度,A·m-1;j为电流密度,A·m-2;ρ为自由电荷密度,C·m-3。▽称为哈密顿算符,它是矢量微分算符,在直角坐标系中为:地电场与电法勘探▽和矢量场的点积和叉积,分别表示矢量场的散度和旋度。例如:地电场与电法勘探方程组的物理意义是:电场可以是电荷密度q引起的有散场,也可以是由变化磁场引起的涡旋场,磁场H是由传导电流j和位移电流图1-2-7 地球磁层结构激励产生的涡旋场,空间并无独立的磁荷存在。电磁场四个基本量通过物性参数ε和μ联系起来,在各向同性介质中它们的关系是:地电场与电法勘探ε和μ分别为介质的介电常数和磁导率。介质的这些参数在一般表册中都以相对介电常数εr和相对磁导率μr的形式给出,它们是介质的参数ε或μ和真空中相应的参数ε0和μ0的比值:地电场与电法勘探εr和μr是量纲为一的,但ε和μ在国际单位制中都有量纲,真空中ε0和μ0分别为地电场与电法勘探电磁场中电流密度j和E的关系为地电场与电法勘探式中σ为介质的电导率:地电场与电法勘探实际工作中磁场B的测量单位用nT,电场的单位用mV·km-1,长度单位用km,电阻率单位用Ω·m。(二)谐变场的麦克斯韦方程组利用傅立叶变换可将任意随时间变化的电磁场分解为一系列谐变场的组合,通常我们以e-iωt表示谐变场的时间因子(即以负谐时表示),根据欧拉公式可知:地电场与电法勘探可见它的实部和虚部都表示场随时间是谐变的。大地电磁测深所讨论的电磁场频率是极低的,一般研究周期T>1 s的振动,这时导电介质中的位移电流相对于传导电流j=σE可以忽略不计(ωεu226aσ)。于是,导电介质低频谐变场的麦克斯韦方程组为地电场与电法勘探式中ue0ba·E=0是因为导电介质内部体电荷密度实际上为零,公式中时间因子都隐含在场E和H之中,方程组(1-2-1a)~(1-2-4a)是大地电磁测深理论研究的出发点。(三)电磁场的波动方程和边界条件交变电磁场在互相激励,互相转化的过程中,将以波的形式在介质中传播。电磁波的波动方程描述了电场或磁场随空间和时间变化的规律,谐变场的波动方程称为赫姆霍兹方程,它可以由麦克斯韦方程组导出。对1-2-1a式两边取旋度:地电场与电法勘探根据矢量分析公式,等式左边地电场与电法勘探等式右边用(1-2-2a)式代入,得:地电场与电法勘探或写成地电场与电法勘探其中地电场与电法勘探k称为传播常数,它是一个复数,亦称复波数或[复]角波数。用类似的方法可以求得:地电场与电法勘探式(1-2-11)和(1-2-13)称为赫姆霍兹方程,它们是在谐变场的情况下,E波和H波的波动方程。▽2 称为普拉斯算符,它在笛卡尔坐标系中为地电场与电法勘探矢量场的拉普拉斯算符运算,按矢量加法分别对其分量进行,例如:地电场与电法勘探其中地电场与电法勘探用赫姆霍兹方程求解介质中电磁场分布和一般求偏微分方程的定解问题一样,它必须满足给定的边界条件。两种介质分界面处的边界条件,可以利用麦克斯韦方程组的积分形式导出下列一组对应的关系式:麦克斯韦方程组边界条件地电场与电法勘探即场E和H在分界面两侧的切线分量是连续的,而D和B在分界面两侧的法线分量是连续的。另外,根据电荷守恒原理可以导出分界面两侧电流密度j的法向分量也是连续的,即地电场与电法勘探而在无穷远处所有电磁场各量均应为零。
2023-08-31 15:33:151

关于电磁场的概念

电磁场 有内在联系、相互依存的电场和磁场的统一体和总称 。随时间变化的电场产生磁场 , 随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。电磁场与电磁波:电磁场由近及远的传播形成电磁波随时间变化着的电磁场。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用,并推动了电工技术的发展。   M.法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。   继法拉第电磁感应定律之后,J.C.麦克斯韦提出了位移电流概念。电位移来源于电介质中的带电粒子在电场中受到电场力的作用。这些带电粒子虽然不能自由流动,但要发生原子尺度上的微小位移。麦克斯韦将这个名词推广到真空中的电场,并且认为;电位移随时间变化也要产生磁场,因而称一面积上电通量的时间变化率为位移电流,而电位移矢量D的时间导数(即дD/дt)为位移电流密度。它在安培环路定律中,除传导电流之外补充了位移电流的作用,从而总结出完整的电磁方程组,即著名的麦克斯韦方程组,描述了电磁场的分布变化规律。   电磁辐射  麦克斯韦方程表明,不仅磁场的变化要产生电场,而且电场的变化也要产生磁场。时变场在这种相互作用下,产生电磁辐射,即为电磁波。这种电磁波从场源处以光速向周围传播,在空间各处按照距场源的远近有相应的时间滞后现象。电磁波还有一个重要特点,它的场矢量中有与场源至观察点间的距离成反比的分量。这些分量在空间传播时的衰减远较恒定场为小。按照坡印廷定理,电磁波在传播中携有能量,可以作为信息的载体。这就为无线电通信、广播、电视、遥感等技术开阔了道路。   似稳电磁场  时变场中不同于静态场的上述一些现象,其显著程度都与频率的高低及设备的尺寸紧密相关。按照实际需要,在容许的近似范围内,对时变场的部分过程可以当作恒定场处理,称之为似稳电磁场或准静态场。这种方法使分析工作大为简化,在电工技术中是行之有效的方法,已为人们所广泛采用。   交变电磁场与瞬变电磁场  时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。对它们的研究在目的上和方法上有一些各自的特点。交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或时序展开等方法进行分析。一项新研究发现,电脑、打印机及其他办公设备产生的“电子烟雾”(即电磁场、电磁辐射),可能使员工置身于污染物和细菌水平更高的工作环境中。 由英国伦敦帝国理工大学完成的这项新研究,调查了在工作中因长时间使用电子设备而产生头痛等健康问题的员工。尽管老板们对此很不屑,但新研究表明,这些电磁场会 损害健康。 人们对“电子烟雾”可能对健康产生危害的担心由来已久。去年,英国牛津儿童癌症研究中心报告说,居住在距离高压线200米范围内的儿童罹患白血病的危险,比那些居住在距离高压线600米开外地区的孩子高69%。家电和办公设备产生的低压,也会产生同样的影响。 伦敦帝国理工大学的基思·牙米森,绘制出了典型办公室的电磁场图。他说:“电磁场对空气具有很大的影响,人们的皮肤和肺也会受到电磁场的影响。电磁场会增加人体内的毒素量,污染物的危险和感染的危险随之增加。” 从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波。 电与磁可说是一体两面,变动的电会产生磁,变动的磁则会产生电。电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,而其每秒钟变动的次数便是频率。当电磁波频率低时,主要藉由有形的导电体才能传递;当频率渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。举例来说,太阳与地球之间的距离非常遥远,但在户外时,我们仍然能感受到和勋阳光的光与热,这就好比是「电磁辐射藉由辐射现象传递能量」的原理一样。 电磁辐射是传递能量的一种方式,辐射种类可分为三种: 游离辐射 有热效应的非游离辐射 无热效应的非游离辐射 基地台电磁波 绝非游离辐射波 正像人们一直生活在空气中而眼睛却看不见空气一样,人们也看不见无处不在的电磁波。电磁波就是这样一位人类素未谋面的“朋友”。 电磁波是电磁场的一种运动形态。 在高频电磁振荡的情况下,部分能量以辐射方式从空间传播出去所形成的电波与磁波的总称叫做“电磁波”。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。电磁波为横波。电磁波的磁场、电场及其行进方向三者互相垂直。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波。波长越长的地面波,其衰减也越少。电磁波的波长越长也越容易绕过障碍物继续传播。中波或短波等空中波则是靠围绕地球的电离层与地面的反复反射而传播(电离层在离地面50~400公里之间)。振幅沿传播方向的垂直方向作周期性交变,其强度与距离的平方成反比,波本身带动能量,任何位置之能量功率与振幅的平方成正比。其速度等于光速(每秒3×1010厘米)。光波就是电磁波,无线电波也有和光波同样的特性,如当它通过不同介质时,也会发生折射、反射、绕射、散射及吸收等等。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同和量值最大两点之间的距离,就是电磁波的波长。电磁波的频率γ即电振荡电流的频率,无线电广播中用的单位是千赫,速度是c.根据λγ=c,求出λ=c/γ.电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,所以电磁波也常称为电波。 1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。 1887年德国物理学家赫兹用实验证实了电磁波的存在。之后,人们又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、微波、红外线、可见光、紫外线、X射线及r射线。 用的波长在10~3000米之间,分长波、中波、中短波、短波等几种。传真(电视)用的波长是3~6米;雷达用的波长更短,3米到几厘米。电磁波有红外线、可见光、紫外线、X射线、γ射线等。各种光线和射线,也都是波长不同的电磁波。其中以无线电的波长最长,宇宙射线的波长最短。无线电波 3000米~0.3毫米。红外线 0.3毫米~0.75微米。可见光 0.7微米~0.4微米。紫外线 0.4微米~10毫微米X射线 10毫微米~0.1毫微米γ射线 0.1毫微米~0.001毫微米宇宙射线 小于0.001毫微米
2023-08-31 15:33:351