barriers / 阅读 / 详情

常数对数和自然对数的应用

2023-05-20 01:08:25
共2条回复
真可

自然对数

当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828...

它用e表示

以e为底数的对数通常用于㏑

而且e还是一个超越数

e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。

涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星……

螺线特别是对数螺线的美学意义可以用指数的形式来表达:

φkρ=αe

其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。

、“自然律”之美

“自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数:

(1+1/x)^x

当X趋近无穷时的极限。

人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究

(1+1/x)^x

X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。

现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。

生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。

“自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。

如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。

e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。

英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗?

我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。

古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。

有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线!

有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。

“自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)

参考资料:

1.《自然律——美学家和艺术家的瑰宝》

旋涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星……

螺线特别是对数螺线的美学意义可以用指数的形式来表达:

φkρ=αe

其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。

数,美吗?

1、数之美

人们很早就对数的美有深刻的认识。其中,公元前六世纪盛行于古希腊的毕达哥斯学派见解较为深刻。他们首先从数学和声学的观点去研究音乐节奏的和谐,发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。例如发音体(如琴弦)长,声音就长;振动速度快,声音就高;振动速度慢,声音就低。因此,音乐的基本原则在于数量关系。

毕达哥斯学派把音乐中的和谐原理推广到建筑、雕刻等其它艺术,探求什么样的比例才会产生美的效果,得出了一些经验性的规范。例如,在欧洲有长久影响的“黄金律”据说是他们发现的(有人说,是蔡泌于一八五四年提出了所谓的“黄金分割律”。所谓黄金分割律“就是取一根线分为两部分,使长的那部分的平方等于短的那部分乘全线段。”“如果某物的长与宽是按照这个比例所组成的,那么它就比由其它比例所组成的长方形‘要美"。”)。

这派学者还把数学与和谐的原则应用于天文学的研究,因而形成所谓“诸天音乐”或“宇宙和谐”的概念,认为天上诸星体在遵照一定的轨道运动中,也产生一种和谐的音乐。他们还认为,人体的机能也是和谐的,就象一个“小宇宙”。人体之所以美,是由于它各部分——头、手、脚、五官等比例适当,动作协调;宇宙之所以美,是由于各个物质单位以及各个星体之间运行的速度、距离、周转时间等等配合协调。这些都是数的和谐。

中国古代思想家们也有类似的观点。道家的老子和周易《系辞传》,都曾尝试以数学解释宇宙生成,后来又衍为周易象数派。《周易》中贲卦的表示朴素之美,离卦的表示华丽之美,以及所谓“极其数,遂定天下之象”,都是类似数学推理的结论。儒家的荀卿也说过:“万物同宇宙而异体。无宜而有用为人,数也。”庄子把“小我”与“大我”一视同仁,“小年”与“大年”等量齐观,也略同于毕达哥拉斯学派之把“小宇宙”和“大宇宙”互相印证。所谓“得之于手而应用于心,口不能言,有数存在焉与其间”。这种从数的和谐看出美的思想,深深地影响了后世的中国美学。

2、黄金律之美

黄金律历来被染上瑰丽诡秘的色彩,被人们称为“天然合理”的最美妙的形式比例。我们知道,黄金律不仅是构图原则,也是自然事物的最佳状态。中世纪意大利数学家费勃奈舍发现,许多植物叶片、花瓣以及松果壳瓣,从小到大的序列是以0.618:1的近似值排列的,这即是著名的“费勃奈舍数列”:1、2、3、5、8、13、21、34……动物身上的色彩图案也大体符合黄金比。舞蹈教练、体操专家选择人材制定的比列尺寸,例如肩宽和腰的比例、腰部以上与腰部以下的比列也都大体符合黄金比。

现代科学家还发现,当大脑呈现的“倍塔”脑电波的高频与低频之比是1:0.618的近似值(12.9赫兹与8赫兹之比)时,人的心身最具快感。甚至,当大自然的气温(23摄氏度)与人的体温37摄氏度之比为0.618:1时,最适宜于人的身心健康,最使人感到舒适。另外,数学家们为工农业生产制度的优选法,所提出的配料最佳比例、组织结构的最佳比例等等,也都大体符合黄金律。

然而,这并不意味着黄金律比“自然律”更具有美学意义。我们可以证明,当对数螺线:

φkρ=αe

的等比取黄金律,即k=0.0765872,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系。事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618……

因此,黄金律被“自然律”逻辑所蕴含。换言之,“自然律”囊括了黄金律。

黄金律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态。因此,从某种意义上说,黄金律是凝固的“自然律”,“自然律”是运动着的黄金律。

3、“自然律”之美

“自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数:

1(1+——)

X的X次方,当X趋近无穷时的极限。

人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究

1(1+——)

X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。

现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。

生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。

“自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。

如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。

e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。

英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗?

我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。

古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。

有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线!

有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。

“自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)

2,尤拉的自然对数底公式

(大约等于2.71828的自然对数的底——e)

尤拉被称为数字界的莎士比亚,他是历史上最多产的数学家,也是各领域(包含数学中理论与应用的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。数学史上称十八世纪为“尤拉时代”。

尤拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力,使他在13个小孩子吵闹的环境中仍能精确思考复杂问题。

尤拉一生谦逊,从没有用自己的名字给他发现的东西命名。只有那个大约等于2.71828的自然对数的底,被他命名为e。但因他对数学广泛的贡献,因此在许多数学分支中,反而经常见到以他的名字命名的重要常数、公式和定理。

我们现在习以为常的数学符号很多都是尤拉所发明介绍的,例如:函数符号f(x)、π、e、∑、logx、sinx、cosx以及虚数i等。高中教师常用一则自然对数的底数e笑话,帮助学生记忆一个很特别的微分公式:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你。”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方。”

这个微分公式就是:e不论对x微分几次,结果都还是e!难怪数学系学生会用e比喻坚定不移的爱情!

相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。有人甚至认为:尤拉取自己名字的第一个字母作为自然对数。

而尤拉选择e的理由较为人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;一为e是指数的第一个字母,虽然你或许会怀疑瑞士人尤拉的母语不是英文,可事实上法文、德文的指数都是它。

在实际应用中,指数函数的应用比较多一些。

在概率论中有一种分布是指数分布,其概率密度函数为

f(x)=λe^(-λ) x>0

0 x<=0

这种分布具有无记忆性,和寿命分布类似。 举个例子来说就是,一个人已经活了20岁和他还能再活20岁这两件事是没有关系的。因此指数分布也被戏称为“永远年轻”。另外正态分布也用到了指数函数,只不过表达式比较复杂,这在高中数学中也有涉及到。

在复变函数中,也经常用到指数形式表示一个负数。比如说1+i=根号2*e^(πi/4)

这是根据著名的欧拉公式得到的:cosa+isina=e^(ai),当然复指数与实数范围内的指数有很多不同的地方,在复变函数中还会学深入的学到。

复指数在信号的频谱分析中还有很重要的应用,要研究一个周期信号的还有那些频率分量就要把它展开成若干个复指数函数的线性组合,这个过程叫傅里叶分解,是法国数学家、物理学家傅里叶(Fourier)发现的。学习电信类的相关专业会对信号的分析有一个系统的学习。

幂函数最重要的应用就是级数。不严谨的说,就是把一个函数展开成无穷项等比数列求和的形式,只不过每项都是关于x的幂函数,利用这个幂级数,可以把任意一个函数表示成多项式,方便近似计算。另外,刚才提到的傅里叶分解也就是把一个周期函数(信号)展开成傅里叶级数。如果函数是非周期的(即周期无限大)这个过程就叫做傅里叶变换。

哦啦。管不管用呀?

黑桃云

自然对数

当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828...

它用e表示

以e为底数的对数通常用于㏑

而且e还是一个超越数

e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。

涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星……

螺线特别是对数螺线的美学意义可以用指数的形式来表达:

φkρ=αe

其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。

、“自然律”之美

“自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数:

(1+1/x)^x

当X趋近无穷时的极限。

人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究

(1+1/x)^x

X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。

现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。

生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。

“自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。

如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。

e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。

英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗?

我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。

古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。

有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线!

有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。

“自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)

参考资料:

1.《自然律——美学家和艺术家的瑰宝》

旋涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星……

螺线特别是对数螺线的美学意义可以用指数的形式来表达:

φkρ=αe

其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。

数,美吗?

1、数之美

人们很早就对数的美有深刻的认识。其中,公元前六世纪盛行于古希腊的毕达哥斯学派见解较为深刻。他们首先从数学和声学的观点去研究音乐节奏的和谐,发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。例如发音体(如琴弦)长,声音就长;振动速度快,声音就高;振动速度慢,声音就低。因此,音乐的基本原则在于数量关系。

毕达哥斯学派把音乐中的和谐原理推广到建筑、雕刻等其它艺术,探求什么样的比例才会产生美的效果,得出了一些经验性的规范。例如,在欧洲有长久影响的“黄金律”据说是他们发现的(有人说,是蔡泌于一八五四年提出了所谓的“黄金分割律”。所谓黄金分割律“就是取一根线分为两部分,使长的那部分的平方等于短的那部分乘全线段。”“如果某物的长与宽是按照这个比例所组成的,那么它就比由其它比例所组成的长方形‘要美"。”)。

这派学者还把数学与和谐的原则应用于天文学的研究,因而形成所谓“诸天音乐”或“宇宙和谐”的概念,认为天上诸星体在遵照一定的轨道运动中,也产生一种和谐的音乐。他们还认为,人体的机能也是和谐的,就象一个“小宇宙”。人体之所以美,是由于它各部分——头、手、脚、五官等比例适当,动作协调;宇宙之所以美,是由于各个物质单位以及各个星体之间运行的速度、距离、周转时间等等配合协调。这些都是数的和谐。

中国古代思想家们也有类似的观点。道家的老子和周易《系辞传》,都曾尝试以数学解释宇宙生成,后来又衍为周易象数派。《周易》中贲卦的表示朴素之美,离卦的表示华丽之美,以及所谓“极其数,遂定天下之象”,都是类似数学推理的结论。儒家的荀卿也说过:“万物同宇宙而异体。无宜而有用为人,数也。”庄子把“小我”与“大我”一视同仁,“小年”与“大年”等量齐观,也略同于毕达哥拉斯学派之把“小宇宙”和“大宇宙”互相印证。所谓“得之于手而应用于心,口不能言,有数存在焉与其间”。这种从数的和谐看出美的思想,深深地影响了后世的中国美学。

2、黄金律之美

黄金律历来被染上瑰丽诡秘的色彩,被人们称为“天然合理”的最美妙的形式比例。我们知道,黄金律不仅是构图原则,也是自然事物的最佳状态。中世纪意大利数学家费勃奈舍发现,许多植物叶片、花瓣以及松果壳瓣,从小到大的序列是以0.618:1的近似值排列的,这即是著名的“费勃奈舍数列”:1、2、3、5、8、13、21、34……动物身上的色彩图案也大体符合黄金比。舞蹈教练、体操专家选择人材制定的比列尺寸,例如肩宽和腰的比例、腰部以上与腰部以下的比列也都大体符合黄金比。

现代科学家还发现,当大脑呈现的“倍塔”脑电波的高频与低频之比是1:0.618的近似值(12.9赫兹与8赫兹之比)时,人的心身最具快感。甚至,当大自然的气温(23摄氏度)与人的体温37摄氏度之比为0.618:1时,最适宜于人的身心健康,最使人感到舒适。另外,数学家们为工农业生产制度的优选法,所提出的配料最佳比例、组织结构的最佳比例等等,也都大体符合黄金律。

然而,这并不意味着黄金律比“自然律”更具有美学意义。我们可以证明,当对数螺线:

φkρ=αe

的等比取黄金律,即k=0.0765872,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系。事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618……

因此,黄金律被“自然律”逻辑所蕴含。换言之,“自然律”囊括了黄金律。

黄金律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态。因此,从某种意义上说,黄金律是凝固的“自然律”,“自然律”是运动着的黄金律。

3、“自然律”之美

“自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数:

1(1+——)

X的X次方,当X趋近无穷时的极限。

人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究

1(1+——)

X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。

现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。

生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。

“自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。

如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。

e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。

英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗?

我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。

古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。

有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线!

有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。

“自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)

2,尤拉的自然对数底公式

(大约等于2.71828的自然对数的底——e)

尤拉被称为数字界的莎士比亚,他是历史上最多产的数学家,也是各领域(包含数学中理论与应用的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。数学史上称十八世纪为“尤拉时代”。

尤拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力,使他在13个小孩子吵闹的环境中仍能精确思考复杂问题。

尤拉一生谦逊,从没有用自己的名字给他发现的东西命名。只有那个大约等于2.71828的自然对数的底,被他命名为e。但因他对数学广泛的贡献,因此在许多数学分支中,反而经常见到以他的名字命名的重要常数、公式和定理。

我们现在习以为常的数学符号很多都是尤拉所发明介绍的,例如:函数符号f(x)、π、e、∑、logx、sinx、cosx以及虚数i等。高中教师常用一则自然对数的底数e笑话,帮助学生记忆一个很特别的微分公式:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你。”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方。”

这个微分公式就是:e不论对x微分几次,结果都还是e!难怪数学系学生会用e比喻坚定不移的爱情!

相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。有人甚至认为:尤拉取自己名字的第一个字母作为自然对数。

而尤拉选择e的理由较为人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;一为e是指数的第一个字母,虽然你或许会怀疑瑞士人尤拉的母语不是英文,可事实上法文、德文的指数都是它。

在实际应用中,指数函数的应用比较多一些。

在概率论中有一种分布是指数分布,其概率密度函数为

f(x)=λe^(-λ) x>0

0 x<=0

这种分布具有无记忆性,和寿命分布类似。 举个例子来说就是,一个人已经活了20岁和他还能再活20岁这两件事是没有关系的。因此指数分布也被戏称为“永远年轻”。另外正态分布也用到了指数函数,只不过表达式比较复杂,这在高中数学中也有涉及到。

在复变函数中,也经常用到指数形式表示一个负数。比如说1+i=根号2*e^(πi/4)

这是根据著名的欧拉公式得到的:cosa+isina=e^(ai),当然复指数与实数范围内的指数有很多不同的地方,在复变函数中还会学深入的学到。

复指数在信号的频谱分析中还有很重要的应用,要研究一个周期信号的还有那些频率分量就要把它展开成若干个复指数函数的线性组合,这个过程叫傅里叶分解,是法国数学家、物理学家傅里叶(Fourier)发现的。学习电信类的相关专业会对信号的分析有一个系统的学习。

幂函数最重要的应用就是级数。不严谨的说,就是把一个函数展开成无穷项等比数列求和的形式,只不过每项都是关于x的幂函数,利用这个幂级数,可以把任意一个函数表示成多项式,方便近似计算。另外,刚才提到的傅里叶分解也就是把一个周期函数(信号)展开成傅里叶级数。如果函数是非周期的(即周期无限大)这个过程就叫做傅里叶变换。

哦啦。管不管用呀?

相关推荐

关于幂函数的问题

严格按照定义!!!f(x)=x^a(a是常数)
2023-01-13 12:43:533

幂函数用matlab怎么表示

1、首先双击matlab软件图标,打开matlab软件,可以看到matlab软件的界面。2、使用“0.1:0.1:5;”创建一维数组,表示从0.1到5,每隔0.1会取一个数字。这个一维数组用来作为一元一次函数的横坐标的数值。3、接着创建三个幂函数,分别是y1=x.^(1/4); y2=x.^(1/2); y3=x.^(3/2)。4、使用函数plot(x,y1,x,y2,x,y3);在一张图中绘制这三个幂函数的图像,如果要绘制其中一个使用函数plot(x,y1) 或 plot(x,y2) 或 plot(x,y3)进行绘制。5、使用函数title()给该幂函数图像添加标题,使用函数xlabel()、ylabel()给幂函数的图像添加坐标轴名称。6、使用语句grid on;给幂函数图像添加坐标分割线,也成为网格线
2023-01-13 12:43:561

c#中幂函数怎样表示

pow(a,b)
2023-01-13 12:43:594

一个关于幂函数的问题,望解答

首先我们要明白:对于幂函数其幂次必须为不可约分数。即:如果a为幂次,则a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数。因此:函数f(x)=x^(2/4)必须先改写为f(x)=x^(1/2).然后才可以讨论x的特性,如:定义域,f(x)的值域。(注解疑问:如果认为“p、q互质”不成立,则有:y=(-2)^(2/4))=(-2)*(-2)^(1/4)=4)^(1/4);看起来底数为负数也是成立的。然而,我们知道y=(-2)^(1/2)底数为负数是不能开方的,是不成立的,为什么y=(-2)^(2/4)幂次是对的呢?。是因为我们忽视了幂函数的基本性质:幂次分子分母必须“p、q互质”。
2023-01-13 12:44:031

C语言中的幂函数怎么写?

extern float pow(float x, float y)用法:#include <math.h>功能:计算x的y次幂。说明:x应大于零,返回幂指数的结果。举例:// pow.c#include <stdlib.h>#include <math.h>#include <conio.h>void main(){printf("4^5=%f",pow(4.,5.));getchar();}相关函数:pow10C语言是一门通用计算机编程语言,应用广泛。C语言的设计目标是提供一种能以简易的方式编译、处理低级存储器、产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言。
2023-01-13 12:44:101

如何在excel里面插入幂函数

可以用power公式,数值为1+i,幂为-n
2023-01-13 12:44:146

在c++中 幂函数怎么表示给个例子 谢谢

二次幂 a*a 高次幂可调用函数pow(float x, float y); 进行计算
2023-01-13 12:44:202

C++中幂函数如何用递归函数表示

int f(int x,int n){if (n==0)return 1;elsereturn x*f(x, n-1);}与最佳答案的区别见斜体加粗部分,正确性可自行验证。
2023-01-13 12:44:232

幂函数的底数为何值?

幂函数底数的取值范围是大于0。x大于0是对α的任意取值都有意义的。幂函数在高考数学 、高等数学 、工业化应用中有很大份量;幂函数包含了数量丰富的各种函数,衍生出去,衔接了个数不菲的常用函数,譬如:一次函数、二次函数、正比例函数、反比例函数、根式函数、立方函数。函数的由来:十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念。因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。
2023-01-13 12:44:261

幂函数x^n怎么用以e为底的式子表示

解:x^n=e^(ln x^n)或者x^n=e^(n lnx)你好,你的题目问的不是很清楚,不知道我的答案是不是你想要的若是,望采纳,若不是,请追问。
2023-01-13 12:44:332

用幂函数表示函数的等价无穷小量 如图 五角星

  解:6题(2)小题,利用广义二项展开式,并无穷小量替换。  ∵当x→0时,(1+x)^α~1+αx,设x=π/2-t,则t→0,sinx=cost~1-(1/2)t^2,∴1-(sinx)^(α+β)=1-(cost)^(α+β)~1-[1-(1/2)t^2]^(α+β)~[(α+β)/2]t^2,  同理,1-(sinx)^α~(α/2)t^2,1-(sinx)^β~(β/2)t^2,  ∴原式=lim(t→0){[(α+β)/2]t^2}/[(αβ/4)t^4]^(1/2)=(α+β)/(αβ)^(1/2)。  7题,(3)小题,用广义二项展开式,(1+x)^α~1+αx+[α(α-1)/2]x^2,  ∴(1+2x)^(1/2)-(1+3x)^(1/3)~1+x-(1/8)x^2-[1+x-(1/9)x^2]=(-1/72)x^2。  (5)题,∵sinx~x,∴(xsinx)^(1/2)~x。  (6)题,仿(3)小题,有(1+tanx)^(1/2)-(1+sinx)^(1/2)~1+(1/2)tanx-[1+(1/2)sinx]=(1/2)(tanx-sinx),  而tanx~x+(1/3)x^3,sinx~x-(1/6)x^3,∴(1+tanx)^(1/2)-(1+sinx)^(1/2)~(1/4)x^3。  供参考。
2023-01-13 12:44:361

根号下x怎么用x的幂函数表示

x的(1/2)次方。根据根号下x与幂函数的转化关系,根号下y=根号x可以变化为f(X)=x的1/2次方,根号下x用x的幂函数来表示就是x的(1/2)次方。
2023-01-13 12:44:431

surfer中幂函数怎么表达

3.8 绘制矢量地图 矢量地图是Surfer 7版本才有的功能。矢量地图是包含小的箭头的绘图表达。每个箭头都与箭头所在位置的方向和大小有关。例如,矢量地图能描述地形学的表面局部的坡度:箭头的方向表明局部的斜面的陡峭程度,箭头的尺寸表明局部的。
2023-01-13 12:44:461

如何在EXCEL里面插入幂函数?

幂的函数是POWER. =POWER(底数,幂值)假设,i 是A2,n是B2.公式可以变为:=POWER(1+A2,B2)结合你的公式就变成了=1/POWER(1+A2,B2)另外,据我了解,在EXCEL2003,.2007都没有直接插入你问题中所表达的直观数学公式.就算在WORD2007的公式符号插入中也没有发现类似的.就算有,也不能复制到EXCEL中应用.如果你是要求值的,你还是采用变通的方法.用POWER按单元格引用的方式来应用吧.但如果你只是要写下这种印刷版数学公式的,我不会,但请赐教,谢谢!
2023-01-13 12:44:502

利用函数的幂函数展开式求各式的近似值在math怎么表达

没有技巧。实际上,不外乎e^x,1/(1-x),sinx,cosx这几个,多做几个题,多写几遍,也就记住了。
2023-01-13 12:44:531

最最菜的问题,vb中的幂函数是哪个

5的平方,在VB里表达为5^29的立方,在VB里表达为9^3729的立方根,在VB里表达为729^(1/3)
2023-01-13 12:44:561

用C语言表示10的N次方怎么表示(符号)

C语言中有两种方式可以表示10的N次方:1、直接用浮点数表示:10的N次方为1e10也可写成1e+10(如果是负N次方的话就把加号变成减号)。e大小写都可以,需要注意的是e前面必须有一个数字,不然的话就非法表达。2、用幂函数表示:在c语言中,求x的y次方可用pow(x,y)表示,所以10的N次方也可表示为pow(10,N)。其中pow函数在头文件math.h中,所以调用该函数的时候,必须将math.h加进来,即#include原型:externfloatpow(floatx,floaty);功能:计算x的y次幂。说明:x应大于零,返回幂指数的结果。
2023-01-13 12:44:592

(a+1)3次方乘(-a-1)平方幂函数表示?

(a+1)³×(-a-1)²=(a+1)³×(a+1)²=(a+1)⁵
2023-01-13 12:45:034

a=xy=√x表示什么含义

a=xy=√x表示的含义是y=√x是幂函数,y等于x的算术平方根,y=√x=x^(2分之1)形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
2023-01-13 12:45:101

关于幂函数的一个疑问

f(x)=x^(2/4)→f(x)=x^(1/2)→f(x)=√x x≥0 对
2023-01-13 12:45:144

反比例函数、二次函数、幂函数、指数函数、对数函数、反函数的图像各有什么特征?

这是初中高中数学所有函数的性质 图像 1.一次函数(包括正比例函数) 最简单最常见的函数,在平面直角坐标系上的图象为直线。 定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R 值域:R 奇偶性:无 周期性:无 平面直角坐标系解析式(下简称解析式): ①ax+by+c=0[一般式] ②y=kx+b[斜截式] (k为直线斜率,b为直线纵截距,正比例函数b=0) ③y-y1=k(x-x1)[点斜式] (k为直线斜率,(x1,y1)为该直线所过的一个点) ④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式] ((x1,y1)与(x2,y2)为直线上的两点) ⑤x/a-y/b=0[截距式] (a、b分别为直线在x、y轴上的截距) 解析式表达局限性: ①所需条件较多(3个); ②、③不能表达没有斜率的直线(平行于x轴的直线); ④参数较多,计算过于烦琐; ⑤不能表达平行于坐标轴的直线和过圆点的直线。 倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a)。 2.二次函数题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。 定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷) 奇偶性:偶函数 周期性:无 解析式: ①y=ax^2+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b^2)/4a); ⑷Δ=b^2-4ac, Δ>0,图象与x轴交于两点: ([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ<0,图象与x轴无交点; ②y=a(x-h)^2+t[配方式] 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a); 3.反比例函数 在平面直角坐标系上的图象为双曲线。 定义域:(负无穷,0)∪(0,正无穷) 值域:(负无穷,0)∪(0,正无穷) 奇偶性:奇函数 周期性:无 解析式:y=1/x 4.幂函数 y=x^a ①y=x^3 定义域:R 值域:R 奇偶性:奇函数 周期性:无 图象类似于将一个过圆点的二次函数的第四区间部分关于x轴作轴对称 后得到的图象(类比,这个方法不能得到三次函数图象) ②y=x^(1/2) 定义域:[0,正无穷) 值域:[0,正无穷) 奇偶性:无(即非奇非偶) 周期性:无 图象类似于将一个过圆点的二次函数以原点为旋转中心,顺时针旋转 90°,再去掉y轴下方部分得到的图象(类比,这个方法不能得到三次 函数图象) 5.指数函数 在平面直角坐标系上的图象(太难描述了,说一下性质吧……) 恒过点(0,1)。联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减。 定义域:R 值域:(0,正无穷) 奇偶性:无 周期性:无 解析式:y=a^x a>0 性质:与对数函数y=log(a)x互为反函数。 *对数表达:log(a)x表示以a为底的x的对数。 6.对数函数 在定义域上的图象与对应的指数函数(该对数函数的反函数)的图象关于直线y=x轴对称。 恒过定点(1,0)。联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减。 定义域:(0,正无穷) 值域:R 奇偶性:无 周期性:无 解析式:y=log(a)x a>0 性质:与对数函数y=a^x互为反函数。 7.三角函数 ⑴正弦函数:y=sinx 图象为正弦曲线(一种波浪线,是所有曲线的基础) 定义域:R 值域:[-1,1] 奇偶性:奇函数 周期性:最小正周期为2π 对称轴:直线x=kπ/2 (k∈Z) 中心对称点:与x轴的交点:(kπ,0)(k∈Z) ⑵余弦函数:y=cosx 图象为正弦曲线,由正弦函数的图象向左平移π/2个单位(最小平移量)所得。 定义域:R 值域:[-1,1] 奇偶性:偶函数 周期性:最小正周期为2π 对称轴:直线x=kπ (k∈Z) 中心对称点:与x轴的交点:(π/2+kπ,0)(k∈Z) ⑶正切函数:y=tg x 图象的每个周期单位很像是三次函数,很多个,均匀分布在x轴上。 定义域:{x│x≠π/2+kπ} 值域:R 奇偶性:奇函数 周期性:最小正周期为π 对称轴:无 中心对称点:与x轴的交点:(kπ,0)(k∈Z)。 *三角函数的性质略了,太多,光公式就不止千个。另外,三角函数的图象平移、拉伸变化,在图象平移内容中说得很清楚(不在这里,在教材里)我就不多说了。 大功告成!希望对你的学习有所帮助。
2023-01-13 12:45:271

用C语言表示10的N次方怎么表示(符号)如题

c语言中有两种方式可以表示10的n次方:1、直接用浮点数表示:10的n次方为1e10也可写成1e+10(如果是负n次方的话就把加号变成减号)。e大小写都可以,需要注意的是e前面必须有一个数字,不然的话就非法表达。2、用幂函数表示:在c语言中,求x的y次方可用pow(x,y)表示,所以10的n次方也可表示为pow(10,n)。其中pow函数在头文件math.h中,所以调用该函数的时候,必须将math.h加进来,即#include原型:externfloatpow(floatx,floaty);功能:计算x的y次幂。说明:x应大于零,返回幂指数的结果。
2023-01-13 12:45:302

如何解幂函数 matlab

Unable to find closed form solution表示方程没有解析解,最后答案不能用k表示
2023-01-13 12:45:343

(1+X)的m次方展开成x的幂函数,要像图里面的用这个符号表达

以Word2003为例,在Word菜单中选择“插入”中的“对象”,在弹出的对话框中的“对象类型”内下拉移动条,找到“Microsoft 公式 3.0”,选中后按确定退出。通过公式选择框来进行构建自己所需要的数学公式。
2023-01-13 12:45:372

幂函数中的n趋于无穷即表示趋于正无穷吗

一般是这样。习惯上n看作自然数,即经典的教科书上都是这样约定俗成。
2023-01-13 12:45:431

1/x这种形式是幂函数吗

是.形如y=x^a的函数都是幂函数;1/x=^(-1),当然就是幂函数。否认1/x是幂函数,就和否认x·x幂函数一样是不对的,因为x·x=x².
2023-01-13 12:45:471

如何在excel里面插入幂函数?

幂的函数是POWER. =POWER(底数,幂值)假设,i 是A2,n是B2.公式可以变为:=POWER(1+A2,B2)结合你的公式就变成了=1/POWER(1+A2,B2)另外,据我了解,在EXCEL2003,2007都没有直接插入你问题中所表达的直观数学公式。就算在WORD2007的公式符号插入中也没有发现类似的.就算有,也不能复制到EXCEL中应用。如果你是要求值的,你还是采用变通的方法.用POWER按单元格引用的方式来应用吧。
2023-01-13 12:46:101

幂函数表达式(1+i)^n*Yi/[(1+i)^n-1]怎么在excel中表达,n,i,k都是变量,可求出结果

例如a1为n,b1为i,c1为k那么公式为=(1+b1)^a1*Yb1/((1+b1)^a1-1)不明白你那个大写的Y是干什么的?
2023-01-13 12:46:131

幂函数的极坐标表示

这个似乎没有多大意义吧,表示出来很不方便。x=ρsinθy=ρcosθ代入就行,不过还是说一句没多大意义
2023-01-13 12:46:161

在C++中怎么表示出幂函数

pow(double x,double y)
2023-01-13 12:46:191

幂函数底数的取值范围是什么?

幂函数底数的取值范围是大于0。x大于0是对α的任意取值都有意义的。幂函数在高考数学 、高等数学 、工业化应用中有很大份量;幂函数包含了数量丰富的各种函数,衍生出去,衔接了个数不菲的常用函数,譬如:一次函数、二次函数、正比例函数、反比例函数、根式函数、立方函数。函数的由来:十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念。因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。
2023-01-13 12:46:261

幂函数底数的取值范围

幂函数底数的取值范围是大于0。x大于0是对α的任意取值都有意义的。幂函数在高考数学 、高等数学 、工业化应用中有很大份量;幂函数包含了数量丰富的各种函数,衍生出去,衔接了个数不菲的常用函数,譬如:一次函数、二次函数、正比例函数、反比例函数、根式函数、立方函数。函数的由来:十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念。因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。
2023-01-13 12:46:321

幂函数底数的取值范围是什么范围?

幂函数底数的取值范围是大于0。x大于0是对α的任意取值都有意义的。幂函数在高考数学 、高等数学 、工业化应用中有很大份量;幂函数包含了数量丰富的各种函数,衍生出去,衔接了个数不菲的常用函数,譬如:一次函数、二次函数、正比例函数、反比例函数、根式函数、立方函数。函数的由来:十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念。因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。
2023-01-13 12:46:381

幂函数底数的取值范围是什么?

幂函数底数的取值范围是大于0。x大于0是对α的任意取值都有意义的。幂函数在高考数学 、高等数学 、工业化应用中有很大份量;幂函数包含了数量丰富的各种函数,衍生出去,衔接了个数不菲的常用函数,譬如:一次函数、二次函数、正比例函数、反比例函数、根式函数、立方函数。函数的由来:十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念。因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。
2023-01-13 12:46:451

幂函数底数的取值范围是什么范围?

幂函数底数的取值范围是大于0。x大于0是对α的任意取值都有意义的。幂函数在高考数学 、高等数学 、工业化应用中有很大份量;幂函数包含了数量丰富的各种函数,衍生出去,衔接了个数不菲的常用函数,譬如:一次函数、二次函数、正比例函数、反比例函数、根式函数、立方函数。函数的由来:十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念。因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。
2023-01-13 12:46:541

Ln在数学中表示什么

第一,L必须小写。第二,ln是log的特殊情况.log以a为底的函数是把幂函数y=a的x次方的x、y轴交换形成的函数。而ln就是a=e的特殊情况.e是自然对数,是一个很有用的数字,大约2.7多,到大学用的就比较多了.
2023-01-13 12:47:051

fortran语言中的%表示什么?

fortran语言中没有幂函数.幂函数用运算符表示,幂运算符是两个星号(两个乘号).例如:a**b就是a的b次方.(a**b)**c--就是a的b次方以后再c次方.
2023-01-13 12:47:086

复变中tanz用幂函数表示

2023-01-13 12:47:131

用计算器算出来的数里有一个E,代表什么意思算

富士通防晒霜她的身上党组织
2023-01-13 12:47:204

CPLEX中指数函数怎么表达,比如x^0.3

C语言中有两种方式可以表示指数:1、直接用浮点数表示:10的N次方为 1e10 也可写成1e+10(如果是负N次方的话就把加号变成减号)。e大小写都可以,需要注意的是e前面必须有一个数字,不然的话就非法表达。2、用幂函数表示:在c语言中,求x的y次方可用pow(x,y)表示,所以10的N次方也可表示为pow(10,N)。其中pow函数在头文件math.h中,所以调用该函数的时候,必须将math.h加进来,即#include <math.h>原型:extern float pow(float x, float y);功能:计算x的y次幂。说明:x应大于零,返回幂指数的结果。
2023-01-13 12:47:231

当x趋向于0时,用x的幂函数表示下列函数的等价无穷小量

1,用Taylor展开式。(1+2x)^1/2=1+1/2(2x)-1/8(2x)+......(1+3x)^1/3=1+1/3(3x)-1/9(3x)+.....于是有 (1+2x)^1/2-(1+3x)^1/3 =1/3x-1/4x=1/12x.这就是它的等价无穷小!。2,因为sinx的等价无穷小x,所以有xsinx的等价无穷小为x^2,于是有√(xsinx) 等价无穷小为|x|.
2023-01-13 12:47:261

已知幂函数y=x的m²-2m-3(m∈N+)的图像关于y轴对称,且在(0,正无穷)上是减函数,求满足

幂函数y=x的m²-2m-3(m∈N+)的图像关于y轴对称,说明y是偶函数,满足y(x)=y(-x),对于任意x≠0,因此:幂指数m²-2m-3(m∈N+)为偶数;又,幂函数y在(0,∞)上是减函数,说明:幂指数m²-2m-3(m∈N+)<0;综上,幂指数m²-2m-3(m∈N+)为负偶数;而m²-2m-3(m∈N+)最小值为-4(当m=1时取得),满足负偶数要求;m=2时,m²-2m-3=-3,是负奇数,不满足题意,舍去;m≥3时,m²-2m-3≥0,为非负数,也不满足题意,舍去;故:m=1为唯一解。(a+1)^(-m/3)<(3-2a)^(-m/3)即:(a+1)^(-1/3)<(3-2a)^(-1/3)由幂函数:y=x^(-1/3)的特征:在(-∞,0)上、和(0,∞)上为减函数,因此a必须满足:(1)3-2a<a+1<0;或者(2)0<3-2a<a+1;解得:(1)∅;(2)2/3<a<3/2;综上,满足(a+1)^(-1/3)<(3-2a)^(-1/3)的a的取值范围为:(2/3,3/2)。
2023-01-13 12:47:301

初等函数的定义是什么?

初等函数定义:由常数和基本初等函数经过有限次四则运算和有限次函数复合步骤所构成并可用一个式子表示的函数。初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生,并且能用一个解析式表示的函数。简介幂函数定义:一般地,形如y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0时x≠0)等都是幂函数。一般形式如下:(α为常数,且可以是自然数、有理数,也可以是任意实数或复数。)指数函数定义:指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于2.718281828,还称为欧拉数。一般形式如下:(a>0, a≠1)对数函数定义:一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。一般形式如下:(a>0, a≠1,x>0,特别当α=e时,记为y=ln x)
2023-01-13 12:47:371

求(1+2x)^1/2-(1+3x)^1/3 (x->0) 的等价无穷小量 用x的幂函数表示

设y[x]=(1+2x)^(1/2)-(1+3x)^(1/3), Limit[y[x],x -> 0]=0, Limit[y"[x],x -> 0]=0, Limit[y""[x],x -> 0]=1, 可见 y[x]与1/2×x^2是等价无穷小量. 说明 如果当x->0时,y[x]的n-1阶函数=0,y[x]的n阶函数=m,(m≠0),则 y[x]与x^n ×m/n!为等价无穷小量.
2023-01-13 12:47:471

C语言中 F=G*(m1*m2 / R*R) 其中G=6.637*10ˉ³(立方根) 在C语言中怎么表达?

c语言没有立方根运算符直接0.001立方根是三分之一次,不是负3次否则用幂函数pow(10,-3)表示10的负3次
2023-01-13 12:47:512

c语言中10的n次方怎么表示

n个10相乘
2023-01-13 12:47:5415

c语言中如何表示指数

2023-01-13 12:48:067

C语言中指数表示法怎么使用

C语言中有两种方式可以表示指数:1、直接用浮点数表示:10的N次方为 1e10 也可写成1e+10(如果是负N次方的话就把加号变成减号)。e大小写都可以,需要注意的是e前面必须有一个数字,不然的话就非法表达。2、用幂函数表示:在c语言中,求x的y次方可用pow(x,y)表示,所以10的N次方也可表示为pow(10,N)。其中pow函数在头文件math.h中,所以调用该函数的时候,必须将math.h加进来,即#include <math.h>原型:extern float pow(float x, float y);功能:计算x的y次幂。说明:x应大于零,返回幂指数的结果。
2023-01-13 12:48:146

基本初等函数的联系与应用

有对数函数 又有一次函数 分式函数的函数如何解告诉值域求定义域或者反之!!
2023-01-13 12:48:262

若幂函数f(x)与函数g(x)的图像关于直线y=x对称,且函数g(x)的图像经过(3√3,√3/3),f(x)表达

y=(3)^3√3X/2
2023-01-13 12:48:291