barriers / 阅读 / 详情

快速傅里叶变换FFT(Fast Fourier Transform)

2023-05-20 03:51:43
TAG: form for ft four a m
共1条回复
max笔记

看了很多网上关于FFT的讲解,有一些是直接忽略了公式的推导,另外一些有推导,但是推导中的细节却没有讲清楚。本着不懂就学的心态,我把FFT的思维和推导细节用公式讲清楚,方便后人能更细致地学习FFT。

在了解FFT之前,需要有一些前置的知识,以下为目录。

其中i为虚数单位即 即虚数单位

复数形式: ,其中i为虚数单位

复数乘法: 对于两个复数 和 ,则

由于欧拉公式(见公式1)令 则复数

其中 为该复数所在复平面圆的半径, 为该复数在复平面中的幅角。则两个复数为 ,即

根据4式可得,两个复数的相乘可以看作是 幅角相加,模长相乘

单位根: 对于满足 方程的复数,我们称其为n次单位根。由于根据复数乘法,我们可知: 复数相乘为幅角相加,模长相乘 。则对于每个单位根,模长为1,幅角的n倍为0。即 (易得)。

为了保证幅角的n倍始终为0,由于 这个性质,我们可以将单位根表示为 ,其中 。

我们发现无论k取值, 的n倍始终为0。

记 ,则n次单位根可以表示为

多项式的系数表达: 给定一个多项式

其中 为系数向量

多项式的点值表达: 给定一个多项式如公式(5),我们将其离散化,设取 (这里为什么是n+1项,将在第四节中讲到) 互不相同的值 ,将其代入可得 ,则 为 在 上的点值表达。

多项式系数表达的乘法: 给定两个多项式

则多项式系数表达的乘法为

其中:

有式(9)可得,计算复杂度为

多项式点值表达的乘法: 给定两个多项式如式(6)与(7),则其在 上的点值表达分别为:

则多项式点值表达的乘法为

可见,当我们已知 即可在 的复杂度下求得结果多项式的点值表达。

对于一个多项式的乘法,根据上述前置知识的补充,我们可以得知:降低多项式乘法复杂度的方法是将常见的多项式系数表达转变为多项式的点值表达,做完点值表达的乘法后,最后再将点值表达转化为系数表达,即可完成多项式乘法。

所以问题转变为:

1.如何将多项式系数表达转变为多项式点值表达

2.如何将多项式点值表达转变为多项式系数表达

由此引出了 离散傅里叶变换 DFT(Discrete Fourier Transformation)和 逆离散傅里叶变换 IDFT(Inverse Discrete Fourier Transformation)

离散化多项式的一种方法是将值代入到多项式中,依次求出点值。显而易见,这种方法的复杂度是 的,这与我们降低复杂度的想法是冲突的。

于是我们引入了FFT的经典算法——Cooley-Tukey 算法,来降低离散化的复杂度,这是一个基于分治策略的算法。

给定一个多项式

我们将其根据奇偶项分成两个项数相同的多项式(将多项式补充到 ,补充项数系数为0。PS:为什么是 项呢,后续将会提及):

显而易见:

在进一步之前:我们需要返回单位根的知识点。根据n次单位根的表达 ,我们可以获得一个等式

我们将其代入式子(14),(15)可得:

至此我们发现原本需要 次代入值的等式降低到了 次,依次递归下去,则我们只需要递归 次即可在 的复杂度下求得式子,即我们求得 个点值对的复杂度为 ,是可以接受的复杂度。

为了更加严谨的证明,以下过程供还有疑问的读者参考

由于式子(16)可得

其中求和中的 直接被替换为 的原因是,经过平方以后,负号被抵消。

复杂度公式则为

以上为Cooley-Tukey离散傅里叶变换DFT的思路。

经过DFT,我们将多项式的系数表达转换为多项式的点值表达。在完成乘法运算以后,我们为了获取系数的变换,需要将多项式的点值表达转换为多项式的系数表达。这时我们使用的方法是逆离散傅里叶变换IDFT,他是DFT的逆。

求解IDFT的过程实际上是一个求解线性方程的问题,给出 个线性方程为:

矩阵形式如下:

假设上述矩阵为 ,则对于矩阵 中值

设两个矩阵相乘以后的结果为

当 时,

当 时,

(其中由于 为 次单位根,又因为 次单位根的 次为1,所以上式成立)

所以

则IDFT便是将 对结果再做一次DFT,即可获得最后的系数。

在具体实现FFT的过程中,还需要考虑到对于每一次递归我们如何进行合理的划分。于是这里引入bitreverse算法,也叫做蝴蝶变换。

通过这种划分方法,我们同时还能总结出另外一个规律,对于对于 个数字中的任意一个位置的数字,假设原本位置为 ,二进制反转的函数为 ,则最后其所在的位置为 (第一个位置为0),其中 为 位二进制。

举例说明:

对于 个数字中的 ,则其 位二进制的反转为 ,则其最后的位置为第 位(ps:图中没有继续将所有的数字划分到每组一个,读者可自行划分检验)

这里可以补充一个写法:假如我们将原数组定义为 ,经过反转后的数组定义为 ,则 。

又因为如果 是偶数,则 ,则对于 ,但考虑到如果是 是奇数,则 ,则对于 其中 为满足 的最小值。

综合写可以写成

通过这个写法,我们可以直接写出所有数字经过DFT划分后的结果。

参考: 从多项式乘法到快速傅里叶

相关推荐

傅里叶变换公式是什么?

傅里叶变换公式公式描述:公式中F(ω)为f(t)的像函数,f(t)为F(ω)的像原函数。傅立叶变换在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。简介因FFT是为时序电路而设计的,因此,控制信号要包括时序的控制信号及存储器的读写地址,并产生各种辅助的指示信号。同时在计算模块的内部,为保证高速,所有的乘法器都须始终保持较高的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数,而这一切都需要控制信号的紧密配合。为了实现FFT的流形运算,在运算的同时,存储器也要接收数据。这可以采用乒乓RAM的方法来完成。这种方式决定了实现FFT运算的最大时间。对于4k操作,其接收时间为4096个数据周期,这样FFT的最大运算时间就是4096个数据周期。另外,由于输入数据是以一定的时钟为周期依次输入的,故在进行内部运算时,可以用较高的内部时钟进行运算,然后再存入RAM依次输出。
2023-02-13 21:34:061

傅里叶变换定义式

傅里叶变换(FT)傅里叶变换的目的是可将时域(即时间域)上的信号转变为频域(即频率域)上的信号,随着域的不同,对同一个事物的了解角度也就随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。傅里叶变换公式:(w代表频率,t代表时间,e^-iwt为复变函数)傅里叶变换认为一个周期函数(信号)包含多个频率分量,任意函数(信号)f(t)可通过多个周期函数(基函数)相加而合成。从物理角度理解傅里叶变换是以一组特殊的函数(三角函数)为正交基,对原函数进行线性变换,物理意义便是原函数在各组基函数的投影。
2023-02-13 21:36:311

傅里叶变换的公式?

根据欧拉公式,cosω0t=[exp(jω0t)+exp(-jω0t)]/2。直流信号的傅里叶变换是2πδ(ω)。根据频移性质可得exp(jω0t)的傅里叶变换是2πδ(ω-ω0)。再根据线性性质,可得cosω0t=[exp(jω0t)+exp(-jω0t)]/2的傅里叶变换是πδ(ω-ω0)+πδ(ω+ω0)。扩展资料计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。时间抽取算法  令信号序列的长度为N=2,其中M是正整数,可以将时域信号序列x(n)分解成两部分,一是偶数部分x(2n),另一是奇数部分x(2n+1),于是信号序列x(n)的离散傅里叶变换可以用两个N/2抽样点的离散傅里叶变换来表示和计算。考虑到和离散傅里叶变换的周期性,式⑴可以写成⑶其中(4a)(4b)由此可见,式⑷是两个只含有N/2个点的离散傅里叶变换,G(k)仅包括原信号序列中的偶数点序列,H(k)则仅包括它的奇数点序列。虽然k=0,1,2,…,N-1,但是G(k)和H(k)的周期都是N/2,它们的数值以N/2周期重复。
2023-02-13 21:38:141

常见函数傅里叶变换基本公式是什么?

傅里叶变换是:F(ω)=∫(∞,-∞) f(t)e^(-iωt)dt f(t) = (1/2π) ∫(∞,-∞) F(ω)e^(iωt)dω 令:f(t)=δ(t),那么:∫(∞,-∞) δ(t)e^(-iωt)dt = 1 而上式的反变换。傅立叶变换的主要作用就是让函数在时域和频域可以相互转化。最显而易见的应用就是:当输入函数和单位冲激响应函数都被转化为频域函数后,两个频域函数直接做乘法,就可以得到输出的频域函数。最后再反变换回时域,就可以得到输出的时域函数。简介因FFT是为时序电路而设计的,因此,控制信号要包括时序的控制信号及存储器的读写地址,并产生各种辅助的指示信号。同时在计算模块的内部,为保证高速,所有的乘法器都须始终保持较高的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数,而这一切都需要控制信号的紧密配合。
2023-02-13 21:38:351

如何理解傅里叶变换公式

Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。定义f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。通俗解释首页,使用正余弦波,理论上可以叠加为一个矩形。[2] 第一幅图是一个郁闷的余弦波 cos(x)傅里叶变换(5张)第二幅图是 2 个卖萌的余弦波的叠加 cos (x) +a.cos (3x)第三幅图是 4 个发春的余弦波的叠加第四幅图是 10 个便秘的余弦波的叠加随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。是上图的正弦波累加成矩形波,我们换一个角度来看看:这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱。可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为 0 的正弦波。
2023-02-13 21:41:421

求f(x)的傅里叶变换?!

求f(x)=sinw0t的傅里叶变换(w0为了与w区分)根据欧拉公式得sinw0t=(e^jw0t-e^(-jw0t)/(2j)因为直流信号1的傅里叶变换为2πδ(w)而e^jw0t是直流信号傅里叶变换的频移所以e^jw0t的傅里叶变换为2πδ(w-w0),同理e^(-jw0)的傅里叶变换为2πδ(w+w0)所以F(jw)=[πδ(w-w0)-πδ(w+w0)]/j
2023-02-13 21:42:031

傅里叶变换,拉氏变换

有公式:f(t-T) <--> e^(-jωT)X(jω)  和    e^(jω"t)f(t) <--> X(j(ω-ω"))    (这里ω"是一个给定的ω。)这样吧:直接从定义来算。见图。
2023-02-13 21:42:241

sinwt的傅里叶变换公式是什么?

sinwt的傅里叶变换公式是:cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。傅里叶变换就是把信号表示成正弦波的叠加。经过傅里叶变换,信号f(t)变为F(w),F(w)的大小表征了频率为w的正弦波的强度。你的问题是要解释一下为什么这样变换就可以做到这件事。数学上,我们说正弦波是正交的,意思是e^(jwt) e^(-jw"t)积分后是delta函数,w"=w时为无穷大,否则为0。试 类比矢量的正交,设x,y分别是二维空间里两个方向的单位矢量,他们正交是指他们之间的点积x.x=y.y=1, x.y=0。傅里叶变换的相关公式:e^(-jwt) = cos(wt) - jsin(wt)e^(jwt) = cos(wt) + jsin(wt)sin(wt) = (1/2j) [e^(jwt) - e^(-jwt)]cos(wt) = (1/2j) [e^(jwt) + e^(-jwt)]有了以上公式,就可将傅里叶级数、傅里叶变换/反变换等相关公式,改写成“指数形式(e的指数形式)”。它同时展示了一点:e^(jwt) 在复平面中,可以作为一个“基”,因为它已经包含了实轴(实数单位“1”)上和虚轴(虚数单位“j”)上两个正交的“基”。这也从另一个方面解释了,为什么总是可以用之前傅里叶的方法,来“分解”很多函数。
2023-02-13 21:43:051

快速傅里叶变换——理论

离散信号傅里叶变换的公式如下所示: 离散傅里叶变换的原理是将原本非周期的信号复制扩展为周期信号,在实际的数字电路处理中,处理的信号是有限长的,取长度为N,即N为信号 的周期,对于有限长周期信号,其离散傅里叶变换有如下性质: 其中 为周期信号的傅里叶级数,而 表示当且仅当 时有 ,因此可以将傅里叶变换转为离散表达,如下所示: 考虑 以N为周期,因此仅需要计算k从0到N-1即可,取 此公式写成矩阵乘法模式如下所示: W为一个 的方阵,该计算的复杂度为 对于系数矩阵中的元素 ,其公式如下所示: 考虑 ,推导公式如下所示: 再考虑 和 的情况: 再考虑 和 的情况: 最后考虑 且 或 的情况: 根据上述推导,可以得出系数W具有以下四条性质,这三条性质会在后续推导中用到: 基n快速傅里叶变换用于一个长度N为 的序列,例如基2快速傅里叶作用在 的序列上,基4快速傅里叶作用在 的序列上。现在考虑基2FFT的推导(硬件实现一般使用基4或基8FFT实现),首先写出有限长离散序列的傅里叶变换,记一个信号 的FFT变换为 : 快速傅里叶变换的核心思想为 分而治之 ,即 分治法 ,该思想的核心是将一个长度为N的问题,分级为两个长度为 的问题,应用在这里即是需要将一个序列长度为N的FFT变换问题分解为两个序列长度为 的FFT变换。首先进行如下变换: 矩阵的形式如下所示: 根据W的性质 ,代入后有: 矩阵形式的表达如下所示,现在的矩阵为两个个高度为N,长度为N/2的矩阵。 代入 ,根据W的性质 有: 矩阵表达如下所示: 代入 ,根据W的性质 有: 矩阵表达如下所示: 根据上述推导,一个长度为N点的离散傅里叶变换被变为一个长度为 的离散傅里叶变换,取 公式如下所示: 根据频域抽取基2FFT的算法,除了按前后分类外,还可以直接按奇偶进行分类,公式如下所示: 对应的矩阵表示为: 取序列 , 代入上述表达式,取 再代入W的变换性质可得: 其对应的矩阵为: 即将对F[k]的上半部分结果分解为两个FFT结果的和,即: 现在考虑F[k]的下半部分,公式如下所示: 取 ,代入有: 代入W的性质 和 ,有: 将变量i更换为k,其矩阵形式为: 最终可以将结果汇总为: 蝶形运算的公式如下,蝶形运算输入为 和 ,输出为 和 ,系数为 : 其转换为矩阵表达为: 蝶形公式对应着2点FFT的计算,2点FFT的计算如下所示: 转换为矩阵表达为: 对应到蝶形运算有: 首先列出基2频域抽取FFT的分治公式: 以一个8点FFT为例,输入序列为: 进行第一次分治,分为两个4点FFT,序列为: 示意图如下所示,偶数标号的结果由第一个FFT生成,奇数标号的结果由第二个FFT生成: 随后进行第二次分治,将每个4点FFT分解为两个2点FFT,每个序列为: 示意图如下所示: 最终通过2点FFT计算出结果,但如上图所示,计算出的结果位置与标号并不对应,例如计算输出的标号为2的数据(Y10[1])应当位于输出序列(X)的标号4(X[4])。其变换规律为计算输出的标号为n的数据(第n+1个数据)对应到输出序列标号为m的数据,n为m的二进制反序。以计算输出标号为6(第七个数据)的数据Y13[0]为例,6的二进制为110,反序为011,对应十进制数为3,即有 。 首先列出时域抽取FFT的分治公式:
2023-02-13 21:45:321

三角波的傅里叶变换公式是什么?

三角波的傅里叶变换公式是:f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间。傅立叶变换表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。整体结构:其中,WN=exp(-2pi/N)。X(k)和x(n)都为复数。与之相对的快速傅里叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅里叶变换,Cooley-Tukey算法可导出DIT和DIF算法。本文运用的基本思想Cooley-Tukey算法,即将高点数的傅里叶变换通过多重低点数傅里叶变换来实现。虽然DIT与DIF有差别。故在运算量和算法复杂性等方面完全一样,而没有性能上的优劣之分,所以可以根据需要任取其中一种,本文主要以DIT方法为对象来讨论。
2023-02-13 21:46:142

如何理解傅里叶变换公式?

在数学和物理中,或者更准确一点,数学物理方法中,把一个任意函数进行fourier变换的意义等价于把一个函数进行以平面波为基的展开。这和3维下把一个矢量按照x,y,z基展开是一样的,这一点陈先生已经说明了。不但可以按平面波展开,还可以按照球面波展开。只要保证你选取的基是完全且正交的即可(应该属于泛函分析的范畴,要考虑你函数空间的性质,定义norm等)至于为什么取负,因为沿着时间向前传播的平面波,在物理和数学上写作-i omega t 。在工程上写jomega t。这是习惯;如果你取i omega t ,相当于你做了t->-t的时间反演变换,某些量子系统具有时间反演不变性,会得到一些能谱的性质(比如简并程度最大为2之类)。
2023-02-13 21:49:013

傅里叶变换所有公式

傅立叶定律是传热学中的一个基本定律,可以用来计算热量的传导量。   相关的公式为:Φ=-λA(dt/dx),q=-λ(dt/dx)
2023-02-13 21:51:051

傅里叶变换公式

如果公式中是积分变量是角频率ω,就不需要2π,如果积分变量是f,就需要乘以2π,因为ω=2πf
2023-02-13 21:54:121

傅里叶变换 积分的公式

傅里叶变换 公式
2023-02-13 21:54:331

傅里叶变换

当白色的光经过三菱镜的时候,就会分解成七色光。这就是一种傅里叶变换,将白色光分解成其中颜色的光,逆变换是七色光合成白色光。 光是具有波粒二象性,所以我们可以认为光是波,那么,他的函数就是 , 其中 表示频率, 每一种颜色的光都是一个正弦波函数,所以白色光的函数表示就是:我们看到的是7色光,而实际上是无穷多光,所以标准的表达式:我们能够同时听到各种各样的声音,但是,我们的大脑弄将噪音剔除,而听清楚人的说话声音。这个过程与七色光是类似的。每一个声音都是一个波,那么,大脑将声音分解出来,将自己不想听的声波过滤掉,就是滤波,那么,就能够从混合的声音中听清楚想要的声音了。 前面所说的例子,都涉及到一个操作,就是变换,这种变换就傅里叶变换,将一个函数分解成若干个函数的线性组合。 先从傅里叶级数入手。对于任意一个周期函数 其周期为 , 其可以分解成如下:为什么是上面的公式?从几个方面来解释, 1. 周期 2. 函数分解 3. 函数的基 因为 的周期是 , 所以,我们选择的函数,需要也是周期是 , 在上面的式子中, 的最小周期是 , 因为其最小周期是 ,所以 也是其周期。 例如 通过上面的解释,我们知道 和 都是满足周期是 的。 任何一个函数都能够分解成一个奇函数和一个偶函数的和。因为所以 是奇函数; 同理可以证明 是偶函数。 在介绍函数的基,先看看向量基,这是我们熟悉的事情。对于直角坐标系任意点都可以通过两个基本向量来表示, 分别是 和 , 也就是:三维的也同样, 在向量空间,我们将 , 称作基向量,而任何一个向量都可以通过基向量的线性组合来表示出来。 那么,函数能否有类似的这样一组基来表示成函数基的线性组合呢?如果能够表示成基的线性组合,那么函数的分解这个问题也就解决了? 看看向量基具备的特性,然后,我们在仿照来寻找函数基. 向量满足正交性。也就是 顺便说一下, 其实代表了两个向量的相似度,正交基是垂直的所以相似度为0. 根据向量的正交性,可以推断出函数的正交性是满足 现在来考察 , 为了简单起见,令 , 考察 区间, 这样就是看 与 .所以与向量的正交性定义是一致的,所以认为 与 是正交的。 同样的方式,可以证明以下是正交的: 所以, 是正交的,这也就是我们看到的傅里叶表达式,可以通过 这三个正交基来线性组合表达的方式。 有了函数正交基的概念,求解系数就变得非常容易,因为相互正交的积分为0, 自己与自己正交为 。先求解 为了简单,我们假设 , 对 两边同时乘以正交基 并积分。如下:所以有同理也可以推导出 对于 来说,乘以 后做积分即可。可以看出每一个系数实际就是 乘以 其相应正交基的积分。 上面是假设 ,那么,去掉这个限制,用 来表示,就是如下:求 的傅里叶级数,当 . 依据公式,求得: , , 所以令 , 有所以有:这么神奇的级数和。 欧拉公式:通过欧拉公式,变换得到:带入到傅里叶级数中有:通过上面的等式,也可以得出:现在复数域上傅里叶变换的表达式就是:在这种变化下,正交基是 与 。也就是:当 时, 当 时, 所以也是符合符合正交基的定义的。有了正交基,计算 就方便了,两边乘以 积分即可。所以有:前面的计算是假设 , 更通用的公式是:傅里叶级数将函数从时域转换到频域。我们将傅里叶级数稍稍变化一下写法,以向量的形式写出来。就是:我们将系数向量单独看,也就是说任何一个函数 , 如果,我们知道了系数向量也就知道了 , 因为函数基的向量都是一样的,每一个函数基又是周期函数,所以频率就代表了这个函数基,这样周期函数组成的函数基空间,就是频域。可以用下面的式子来表达:是 的 傅里叶级数变换; 是 的逆变换。如果讲 以 为坐标系绘制成图像,就是频谱。 目前为止,我们使用了两种变换,分别是实数域变换和复数域变换,变幻出了不同的系数。那么,这些系数有什么含义? 在正弦函数基变化下,我们知道对于 其中, 是振幅,也就是代表了正弦波的能量。所以不论在哪种分解下,都是能量在不同的维度上的分解。对于复数域上: 其中 表示 的共轭。 所以这些系数也可以看做是能量。上面的推导,也叫: 帕塞瓦。 前面的傅里叶级数是基于周期是 的周期函数变换而来。那么对于非周期函数如何解决呢? 可以将其转化成 的函数来看待。为了方便,我们假设周期 .令将以上带入 有:令:有:这与傅里叶级数的形式是一样的(一个是积分一个是求和), 是函数基。 的傅里叶变换就是 , 是 的傅里叶逆变换, 。 就是频率曲线。 绘制出来是频谱,那么 就是曲线。 这幅图很好的说明了这个过程: , 那么 的傅里叶变换 是什么呢?直接计算:所以 。这个性质在解微分方程的时候,非常方便。 帕塞瓦定理:卷积的傅里叶变换。 卷积操作的傅里叶变换推导:所以 和 的卷积的傅里叶变换就是, 独自傅里叶变换的乘积。在实际的情况中,我们很难获得连续的值,那么,就通过等间距采样来获得信号数据。那么,离散的采样回来的数据,如何进行傅里叶变换?这就是 离散傅里叶变换 D.F.T。 假设采样了 个等间距的点, 获得数据是 ,令 , 离散傅里叶变换的表达式如下:令 , 就有:上面的的式子可以写成矩阵的形式:这就是离散傅里叶变换。那么,离散傅里叶变换的逆变换如何计算呢? 就是对变换矩阵 求逆矩阵即可。到此已经将傅里叶级数,傅里叶变换,离散傅里叶变化 以及 傅里叶变换的卷积相关性质介绍完毕。
2023-02-13 21:57:011

傅里叶变换常用公式是什么?

  公式如下图:  傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。  Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。  傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。   ①傅里叶变换  ②傅里叶逆变换  傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。
2023-02-13 21:58:031

傅里叶变换是什么公式

  公式如下图:  傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。  Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。  傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。   ①傅里叶变换  ②傅里叶逆变换  傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。
2023-02-13 21:59:251

傅里叶变换公式

傅里叶变换公式是cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。傅立叶变换表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。相关定义1、傅里叶变换属于谐波分析。2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。3、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。
2023-02-13 22:02:091

傅里叶变换公式是什么?

傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
2023-02-13 22:04:121

傅里叶变换公式表

f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。称为积分运算f(t)的傅立叶变换。傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
2023-02-13 22:05:181

傅里叶变换的基本性质公式

傅立叶变换的公式为:即余弦正弦和余弦函数的傅里叶变换如下:傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。扩展资料如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间。则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值。在一个周期内具有有限个极值点、绝对可积。傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数定义在离散点上而非连续域内,且须满足有限性或周期性条件。
2023-02-13 22:05:391

如何理解傅里叶变换公式

首先讲一下傅里叶变换的由来和作用: 信号是有很多不同频率的波叠加在一起的,信号越简单叠加的波的频率就越少。如果要使用那些信号关键就是怎么对这些信号进行处理。在时域中看到有些信号波形非常复杂,根本无从下手。这时候有高人发现如果从频域入手分析,就发现这些无规律的信号就变成很有规律了,原来这些复杂的信号都是由很多很多不同的频率的正弦波组成的。 既然如此,时域很复杂无法处理,而在频域很有规律,就更好处理,那就到频域来处理。所以就有这些变换,傅氏变换、拉氏变换、Z变换,只是针对的对象不一样而已,目的都是把信号从时域转到频域。 转到频域后,处理的时候只要设置一些窗口函数(起分离出有用函数的作用)和待处理的频域函数相乘,就把需要的频率分离出来了。但如果先从时域转到频域,与窗口函数相乘(做需要的信号处理),再把得出结果从频域转到时域,那样就会非常麻烦。这时候又有高人弄出一个叫卷积的东西,时域相乘频域卷积,频域相乘时域卷积。
2023-02-13 22:07:024

傅里叶变换怎么算?

F(jw)=[πδ(w-w0)-πδ(w+w0)]/j。求f(x)=sinw0t的傅里叶变换(w0为了与w区分)。根据欧拉公式得sinw0t=(e^jw0t-e^(-jw0t)/(2j)。因为直流信号1的傅里叶变换为2πδ(w)。而e^jw0t是直流信号傅里叶变换的频移。所以e^jw0t的傅里叶变换为2πδ(w-w0),同理e^(-jw0)的傅里叶变换为2πδ(w+w0)。所以F(jw)=[πδ(w-w0)-πδ(w+w0)]/j。傅里叶变换:Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
2023-02-13 22:09:041

傅里叶变换的11个性质公式

傅里叶变换是:F(ω)=∫(∞,-∞) f(t)e^(-iωt)dt f(t) = (1/2π) ∫(∞,-∞) F(ω)e^(iωt)dω 令:f(t)=δ(t),那么:∫(∞,-∞) δ(t)e^(-iωt)dt = 1 而上式的反变换。傅立叶变换的主要作用就是让函数在时域和频域可以相互转化,最显而易见的应用就是:当输入函数和单位冲激响应函数都被转化为频域函数后,两个频域函数直接做乘法,就可以得到输出的频域函数,最后再反变换回时域,就可以得到输出的时域函数。傅立叶变换:傅里叶变换的作用主要是将函数转化成多个正弦组合(或e指数)的形式,本质上变换之后信号还是原来的信号只是换了一种表达方式 这样可以更直观的分析一个函数里的频率、幅值、相位成分,所以分析一个复杂的信号只需经过傅里叶变换后可以轻易的看出其频率和相位、幅度分量。
2023-02-13 22:09:251

傅里叶变换公式对照表

傅里叶变换的本质,就是用各种频率不同的周期函数(频域)线性表示原始函数(时域),必然具有线性性。这与积分的线性性是一致的。傅里叶变换的目的是可将时域(即时间域)上的信号转变为频域(即频率域)上的信号,随着域的不同,对同一个事物的了解角度也就随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。注意事项:在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
2023-02-13 22:10:061

傅里叶变换公式对照表

傅里叶变换公式是cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。傅立叶变换表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。相关定义1、傅里叶变换属于谐波分析。2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。3、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。
2023-02-13 22:12:321

信号的傅里叶变换是怎么求的?

F(jw)=[πδ(w-w0)-πδ(w+w0)]/j。求f(x)=sinw0t的傅里叶变换(w0为了与w区分)。根据欧拉公式得sinw0t=(e^jw0t-e^(-jw0t)/(2j)。因为直流信号1的傅里叶变换为2πδ(w)。而e^jw0t是直流信号傅里叶变换的频移。所以e^jw0t的傅里叶变换为2πδ(w-w0),同理e^(-jw0)的傅里叶变换为2πδ(w+w0)。所以F(jw)=[πδ(w-w0)-πδ(w+w0)]/j。傅里叶变换:Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
2023-02-13 22:13:131

sinwt的傅里叶变换怎么算?

sinwt的傅里叶变换公式是cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。变换提出傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
2023-02-13 22:17:031

傅立叶变换怎么用?

sinwt的傅里叶变换公式是cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。变换提出傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
2023-02-13 22:18:471

信号的傅立叶变换怎么求?

F(jw)=[πδ(w-w0)-πδ(w+w0)]/j。求f(x)=sinw0t的傅里叶变换(w0为了与w区分)。根据欧拉公式得sinw0t=(e^jw0t-e^(-jw0t)/(2j)。因为直流信号1的傅里叶变换为2πδ(w)。而e^jw0t是直流信号傅里叶变换的频移。所以e^jw0t的傅里叶变换为2πδ(w-w0),同理e^(-jw0)的傅里叶变换为2πδ(w+w0)。所以F(jw)=[πδ(w-w0)-πδ(w+w0)]/j。傅里叶变换:Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
2023-02-13 22:19:281

sinwt的傅里叶变换公式是什么

sinwt的傅里叶变换公式是cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。变换提出傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
2023-02-13 22:21:111

sinwt的傅里叶变换公式是什么?

sinwt的傅里叶变换公式是cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。傅立叶变换表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。相关信息:傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
2023-02-13 22:22:541

sinwt变换公式是什么?

sinwt的傅里叶变换公式是cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。变换提出傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
2023-02-13 22:23:361

什么是傅里叶变换?

  公式如下图:  傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。  Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。  傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。   ①傅里叶变换  ②傅里叶逆变换  傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。
2023-02-13 22:24:591

常见函数的傅立叶变换

傅立叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。折叠变换提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
2023-02-13 22:27:031

写出傅里叶变换的正变换和逆变换公式。急!!!!

第二个公式错了
2023-02-13 22:28:063

傅里叶变换公式问题?

, 原函数经过傅里叶变换变成像函数, 像函数经过傅里叶逆变换变成原函数, 逆变换变成像函数要加1/2*π
2023-02-13 22:30:353

傅里叶级数怎么求导?

  公式如下图:  傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。  Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。  傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。   ①傅里叶变换  ②傅里叶逆变换  傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。
2023-02-13 22:31:181

傅里叶变换

原文1 2 先说一个最直接的用途。把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。但是在频域呢?则简单的很,无非就是几条竖线而已。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。 再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。 可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为0的正弦波。也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。 如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。时域的基本单元就是“1秒”,如果我们将一个角频率为 的正弦波 看作基础,那么频域的基本单元就是 有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢? 就是一个周期无限长的正弦波,也就是一条直线! 所以在频域,0频率也被称为直流分量 ,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。 上一章的关键词是:从侧面看。这一章的关键词是:从下面看。 通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。 基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可 ,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。 在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。 注意到,相位谱中的相位除了0,就是 。因为 ,所以实际上相位为 的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于 ,所以相位差是周期的, 和 都是相同的相位。人为定义相位谱的值域为 ,所以图中的相位差均为 。 傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。 傅里叶变换是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。 虚数i我们只知道它是-1的平方根,可是它真正的意义是什么呢? 在数轴上有一个红色的线段,它的长度是1。当它乘以3的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了180度。我们知道乘-1其实就是乘了两次 i使线段旋转了180度,那么乘一次 i 呢——答案很简单——旋转了90度。 欧拉公式: 当x等于Pi的时候: 这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义: 这里,我们可以用两种方法来理解正弦波: 第一种前面已经讲过了,就是螺旋线在实轴的投影。 另一种需要借助欧拉公式的另一种形式去理解: 将以上两式相加再除2,得到: 我们刚才讲过, 可以理解为一条逆时针旋转的螺旋线,那么 则可以理解为一条顺时针旋转的螺旋线。而 则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了! 从代数上看,傅立叶级数就是通过三角函数和常数项来叠加逼近周期为 的函数 在“代数细节”一文中解释了,实际上是把 当作了如下基的向量: 是基1下的坐标, 是对应基的坐标 比如刚才提到的, 的方波 ,可以初略的写作:
2023-02-13 22:35:081

求sinc函数傅里叶变换的具体步骤

sinc函数有两个定义,有时区分为归一化sinc函数和非归一化的sinc函数。它们都是正弦函数和单调递减函数 1/x的乘积:sinc(x) = sin(pi * x) / (pi *x);归一化rect xsinc函数与窗函数的傅里叶变换对 根据傅里叶变换的对称性质 sinc函数的傅里叶变换的形式就是一个系数1/2π乘以一个窗函数啦 矩形函数与sinc函数互为傅里叶变换。有公式sinc(σt/2π)↔(2π/σ) rect (ω/σ)。 所以你的这个变换为rect(ω/2π)或者为rect(f)MATLAB可以实现傅里叶变换问题
2023-02-13 22:35:502

sinx的傅立叶变换为多少手算

sin傅里叶变换公式 - 全面解析傅立叶变换(非常详细) - weixin - 39827506的博...1. 傅立叶变换的提出 傅立叶是一位法国数学家和物理学家,原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier于1807年在法国科学学会上发表了一篇论文2. 傅立叶变换分类 根据原信号的不同类型,我们可以把傅立叶变换分为四种类别: 1、非周期性连续信号 傅立叶变换(Fourier Transform) 2、周期3. 一个关于实数离散傅立叶变换(Real DFT)的例子 先来看一个变换实例,下图是一个原始信号图像: 这个信号的长度是16,于是可以把这个信号分解9
2023-02-13 22:38:341

快速傅里叶变换的计算方法

计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。时间抽取算法  令信号序列的长度为N=2,其中M是正整数,可以将时域信号序列x(n)分解成两部分,一是偶数部分x(2n),另一是奇数部分x(2n+1),于是信号序列x(n)的离散傅里叶变换可以用两个N/2抽样点的离散傅里叶变换来表示和计算。考虑到和离散傅里叶变换的周期性,式⑴可以写成⑶其中(4a)(4b)由此可见,式⑷是两个只含有N/2个点的离散傅里叶变换,G(k)仅包括原信号序列中的偶数点序列,H(k)则仅包括它的奇数点序列。虽然k=0,1,2,…,N-1,但是G(k)和H(k)的周期都是N/2,它们的数值以N/2周期重复。因为于是由式⑶和式⑷得到(5a)(5b)因此,一个抽样点数为N 的信号序列x(n)的离散傅里叶变换,可以由两个 N/2抽样点序列的离散傅里叶变换求出。依此类推,这种按时间抽取算法是将输入信号序列分成越来越小的子序列进行离散傅里叶变换计算,最后合成为N点的离散傅里叶变换。通常用图1中蝶形算法的信号流图来表示式⑸的离散傅里叶变换运算。例如,N=8=2的抽样点的信号序列x(n)的离散傅里叶变换,可用如图2所示的FET算法的信号流图来计算。① N=2点的离散傅里叶变换的计算全由蝶形运算组成,需要M级运算,每级包括N/2个蝶形运算,总共有 个蝶形运算。所以,总的计算量为次复数乘法运算和N log2N次复数加法运算。② FFT算法按级迭代进行,计算公式可以写成⑹N抽样点的输入信号具有N个原始数据x0(n),经第一级运算后,得出新的N个数据x1(n),再经过第二级迭代运算,又得到另外N个数据x2(n),依此类推,直至最后的结果x(k)=xM(k)=X(k)在逐级迭代计算中,每个蝶形运算的输出数据存放在原来存贮输入数据的单元中,实行所谓“即位计算”,这样可以节省大量存放中间数据的寄存器。③ 蝶形运算中加权系数随迭代级数成倍增加。由图2可以看出系数的变化规律。对于N=8,M=3情况,需进行三级迭代运算。在第一级迭代中,只用到一种加权系数;蝶形运算的跨度间隔等于1。在第二级迭代中,用到两种加权系数即、;蝶形运算的跨度间隔等于2。在第三级迭代中,用到4种不同的加权系数即、、、;蝶形运算的跨度间隔等于4。可见,每级迭代的不同加权系数的数目比前一级迭代增加一倍;跨度间隔也增大一倍。④ 输入数据序列x(n)需重新排列为x(0)、x⑷、x⑵、x⑹、x⑴、x⑸、x⑶、x⑺,这是按照二进制数的码位倒置所得到的反序数,例如N=8中数“1”的二进制数为“001”,将其码位倒转变为“100”,即为十进制数“4”。频率抽取算法 按频率抽取的 FFT算法是将频域信号序列X(k)分解为奇偶两部分,但算法仍是由时域信号序列开始逐级运算,同样是把N点分成N/2点计算FFT,可以把直接计算离散傅里叶变换所需的N次乘法缩减到次。在N=2的情况下,把N点输入序列x(n)分成前后两半⑺时间序列x1(n)±x2(n)的长度为N/2,于是N点的离散傅里叶变换可以写成(8a)(8b)频率信号序列X(2l)是时间信号序列x1(n)+x2(n)的N/2点离散傅里叶变换,频率信号序列X(2l+1)是时间信号序列【x1(n)-x2(n)】的N/2点离散傅里叶变换,因此,N点离散傅里叶变换的计算,通过两次加(减)法和一次乘法,从原来序列获得两个子序列,所以,频率抽取算法也具有蝶形运算形式。以2为基数的FFT基本蝶形运算公式为⑼其计算量完全和时间抽取算法一样,即只需次乘法运算和Nlog2N次加(减)法运算。图3 表示N=8=2点的离散傅里叶变换的信号流图。由图可见,它以三级迭代进行即位计算,输入数据是按自然次序存放,使用的系数也是按自然次序,而最后结果则以二进制反序存放。实际上,频率抽取算法与时间抽取算法的信号流图之间存在着转置关系,如将流图适当变形,可以得出多种几何形状。除了基2的FFT算法之外,还有基4、基8等高基数的FFT算法以及任意数为基数的FFT算法。
2023-02-13 22:39:161

如何理解傅里叶变换公式

1楼的想法错了吧.不一定是服从卡方分布的,单独这么想没什么用,你可以随便举个例子算下.回想下卡方分布的推导,实际上就是在x12+x22+.xn2的约束下,对x1,x2..xn的联合密度函数求积分.但是如果是这几个随机变量相关,那显然就是不独立了.联合密度也不能等同于他们的乘积,根据协方差阵可以写出这个n元正态分布.根据不同的协方差阵会得出不一样的分布.具体你可以代几个进去看看,不过肯定不会是简单的参数n的卡方分布
2023-02-13 22:39:571

在信号与系统教材里傅里叶变换公式为x(w)=∫(∝ -∝)x(t)e-jwdt; 而在数字信号处理里傅里叶变换公式为

首先你公式写错了: x(jw)=∫(∝ -∝)x(t)e-jwt dt 。Ω和w没什么区别,都是角频率,只是写法不一样。相对来说,我们更习惯于x(jΩ)的书写方式,或者x(jw)的写法。而x(w)写法则显得更数学。自变量值是w,x(jw)的写法只是把公式里的那个j一起写上而已,没任何影响的。加个j或许是为了表示w在实数域取值吧。学东西我们要学原理,要融汇贯通。而不是死记硬背也不是死抠一些或许书写确实不太规范,但是已成传统的细节。
2023-02-13 22:40:186

二维高斯函数的傅里叶变换后的公式

在a>0时,f(x)=e^-ax^2的傅立叶变换是F(ξ)=[1/√(2a)]e^-[ξ^2/(4a)]是由公式F(ξ)=[1/√(2π)]∫(-∞,+∞)f(x)e^-(iξx)dx
2023-02-13 22:41:011

数学傅里叶变换公式中e^-1wx的w是什么意思?

这里ω也是一个实数,我们说傅里叶变换是从时域到频域的变换,因此ω可理解为一种频率。至所以说“为一种”是因为对于空间的傅氏变换,那个频率与我们一般说的无线电频率什么的是不一样的。
2023-02-13 22:41:221

傅里叶变换

先把at当成一个整体u,利用公式求傅里叶变换,在公式的后面的e^(-jwt),转换成含有u的式子,得出结果之后化简一下,你要的答案就出来了
2023-02-13 22:41:431

有关傅里叶变换

是的。对Sm(t)进行傅里叶变换,F(Sm (t))=积分Sm(t)*exp(-iwt)dt,积分区间为负无穷到正无穷。exp(-iwt)用欧拉公式exp(ix)=cosx+isinx打开,被积函数再利用奇偶性化简。
2023-02-13 22:42:051

傅里叶变换怎么做的呀?

根据公式做傅里叶变换后,得到每个频率点上的系数F(w),w=2*pi*f是角频率。舍掉高频部分的系数(即高于某个频率点w0的傅里叶系数置0,F(w>w0)=0),然后利用傅里叶反变换公式,得到新的时域信号f(t);截止频率w0越小,得到的曲线越光滑matlab里面有fft和ifft函数,直接用就行了,不明白可以头条给我
2023-02-13 22:42:261

圆周率公式

圆周率公式:π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。“兀”是由中国古代数学家祖冲之的割圆术求出来的。圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592653),是代表圆周长和直径的比值。是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592653便足以应付一般计算。
2023-02-13 22:44:101