barriers / 阅读 / 详情

普朗克公式是关于什么的公式

2023-05-20 03:54:09

热辐射么?

TAG: 公式
共2条回复
马老四

E=H*V

h是常数,v是频率

在某振动频率下,量子所具有的能量

辐射,是量子能量的传播,如光辐射

snjk

关于黑体辐射的

相关推荐

普朗克常量公式

普朗克常量公式是h=6.62606896(33)×10^(-34)J·s。普朗克常数记为h,是一个物理常数,用以描述量子大小。在量子力学中占有重要的角色,马克斯·普朗克在研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和试验结果是相符。一份的能量叫做能量子,每一份能量子等于hν,ν为辐射电磁波的频率,h为一常量,叫为普朗克常数。在不确定性原理中普朗克常数有重大地位,粒子位置的不确定性×粒子速度的不确定性×粒子质量≥普朗克常数。普朗克常数用以描述量子化、微观下的粒子,例如电子及光子,在一确定的物理性质下具有一连续范围内的可能数值。例如,一束具有固定频率ν的光,其能量Ei可表示为:Ei=hv。
2023-02-15 02:31:251

普朗克公式频率和波长

普朗克频率和波长公式是E=hr。普朗克公式是普朗克通过对黑体辐射的深刻研究而建立起来的公式是物理学的一个重大突破,他首次提出的量子论,开创了理论物理学发展的新纪元。普朗克公式是德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。
2023-02-15 02:32:081

普朗克常数和波长计算公式

普朗克常数和波长计算公式E=hv=hc/λ。E等于MC2是计算粒子的能量,任何物体均具有波粒二象性,当然对于光子表现最明显。所以你求光子能量上面两个都能用,但注意M是光子的相对论质量。因为这两个毫不相关,普朗克常数是电磁波中的一个常数,只能用于电磁领域,而声波是机械波,有他自己的一套描述公式。含义辐射场能量密度按频率的分布,式中T是热力学温度,k是玻耳兹曼常数。《辐射场能量密度按波长的分布曲线》表示辐射场能量密度随波长变化的曲线,它同实验结果完全一致。作为黑体的空腔内的辐射场,既可以分解为一系列单色平面波的叠加,又可看作是由光子组成的"气体"。光子的能量ε、动量p、波长λ和频率v之间遵从德布罗意关系ε=hv。
2023-02-15 02:32:321

普朗克黑体辐射公式

Θvdv=8Πhv在物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律,英文:Planck"s law, Blackbody radiation law)描述,在任意温度T下,从一个黑体中发射出的电磁辐射的辐射率与频率彼此之间的关系。历史马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。)。维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。
2023-02-15 02:33:141

求普朗克公式(要推理过程)

Mbλ(T)=2πh(c^2)(λ^-5)*1/[e^(hc/λkT)-1]1)黑体是由带电谐振子组成(即把组成空腔壁的分子、原子的振动看做线性谐振子).这些谐振子辐射电磁波,并和周围的电磁场交换能量。  (2)这些谐振子的能量不能连续变化,只能取一些分立值,这些分立值是最小能量ε的整数倍,即  ε,2ε,3ε,…,nε,…n为正整数,而且假设频率为ν的谐振子的最小能量为ε=hν称为能量子,h称为普朗克常数。
2023-02-15 02:34:151

普朗克能量子公式

能量子的计算公式是h=⒍63×10-34j·s 是普朗克恒量,也就是能量子的能量大小。能量子就是量子,是基于普朗克恒量进行的一种假设,这种假设把能量分成一个一个不可再分的小段,每一段都是一个能量子。在微观世界,体系所具有的能量往往不能连续取值,这种现象称为能量的量子化。随后发现,不仅体系拥有的能量是量子化的,体系发射出来的能量(比如光能)也是一份一份的,这每一份就称为一个量子。普朗克拓展:德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。
2023-02-15 02:34:371

普朗克公式的普朗克量子假设

1900年普朗克获得一个和实验结果一致的纯粹经验公式,1901年他提出了能量量子化假设:辐射中心是带电的线性谐振子,它能够同周围的电磁场交换能量,谐振子的能量不连续,是一个量子能量的整数倍:式中v是振子的振动频率,h是普朗克常数,它是量子论中最基本的常数。根据这个假设,可以导出普朗克公式: 它给出辐射场能量密度按频率的分布,式中T是热力学温度,k是玻耳兹曼常数。如图表示辐射场能量密度随波长变化的曲线,它同实验结果完全一致。作为黑体的空腔内的辐射场,既可以分解为一系列单色平面波的叠加,又可看作是由光子组成的气体。光子的能量ε、动量p、波长λ和频率v之间遵从德布罗意关系ε=hv,则有ε=сp,在p到p+dp的动量间隔内,光子的量子态数目为其中V是空腔的体积。只有腔壁不断发射和吸收光子才能在辐射场中建立起热平衡,所以光子气体中的光子数就不恒定,这意味着光子气体的化学势为零。而且,光子彼此间没有相互作用,光子气体是遵从玻色分布的理想气体。于是,每个量子态上的平均光子数应为这样容易得到普朗克公式。普朗克公式在高频范围hvkT的极限条件下,过渡到维恩公式此式表明,w(v,T)随着v的增加很快地趋近于零,也就是说在热平衡状态下,几乎不存在高频光子,这是因为高频光子的能量远大于kT,而腔壁发射这样高能量的光子的几率是极小的。普朗克公式在低频hv<<kT的极限条件下,过渡到瑞利-金斯公式,这正是以经典统计理论为基础的能量均分的结果。在瑞利-金斯公式中不出现普朗克常数h。可见,把h看作很小乃至零时,量子理论就过渡到经典理论。普朗克通过对黑体辐射的深刻研究而建立起来的公式是物理学的一个重大突破,他首次提出的量子论,开创了理论物理学发展的新纪元。
2023-02-15 02:35:381

普朗克公式推导

普朗克的基本假设有以下内容: ・ (1)构成绝对黑体的物质看成是带电线性谐振子组成的系统。 (2)线性谐振子的能量不是连续的,而是量子化的。即£ , I=nhy :0,l,2,…,h 为普朗克常数,y为线性谐振子的振动频率。当线性谐振子从一个能量状态过渡到另一个能 , 量状态时,就吸收或辐射量子能量。 (3)各能量状态的线性谐振子遵从麦克斯韦——玻耳兹曼分布规律。线性谐振子能量是 o, l,2£l…,, I,…的几率分别是o,e— l/”,e一 I/KT,…,e一 l/ ,…,其中k为玻耳兹曼 " 常数,丁为绝对黑体所处的平衡温度。 -普朗克按照他的量子假设,并应用经典统计理论求得在单位时间内,从温度为丁的黑体 单位面积上,在频率y—y+dy范围内所辐射的能量为 ^, ‘ ‘ J(y・T)dy= ・而 ・dy 这就是著名的普朗克公式。 在推导普朗克公式中,仅有线性谐振子能量量子化0,sl,2 I,…,” I,…的假设是不能得 到普朗克公式的,还必须考虑到在达到热动平衡态时,处于上述各能量态的几率分布所遵从的 麦克斯韦——玻耳兹曼分布规律。 若以N0,N1,N2,…,^k,…分别表示处于能量为0, 1,2 1,…,” l,…的线性谐振子的数 目,那么N /No=e一 1/ ,即N =N0e一 I/KT,n=0,l,2,- 于是频率为 的线性谐振子的平均能量为 ∑ ∑N (, I/ ) = 一= —————一 ∑N ∑N0e—I/ =0 =0 (e一£I/盯+2e-2eI/盯+3e- /盯+…) 一 。(1+e—eI/盯+e一 I/盯+e一知i/盯+…) 令-T=E./KT,则上式为 一 e-.r+2e-2.r+3e- +… y一 I 1+e-,r+e一2x+e一3 +… 利用等比级数的公式,可以求得上式的分母 l+e一 +e-2a.+e-3.r+…= = 将(3)式代人(2)式,得 (2) (3) 一 ; =一 I(e一 +2e一 +3e一。 +…)(e一 一1) 把上式展开并化简得 ; =一EI ̄e-2x+2e一。r+3e一 +…)一(e一 +2e一 +3e一。 +…)] =E1(e一 +e一2 +e一土 +…) =E1e-a(1+e-a.+e-2.r+e— +…) 将式(3)代人上式得 一 , 1 、 l l I El I ・ ‘ 把EI=h7和 = I/KT代人上式得 。 t= 对由任意材料制成的空腔壁,其上的小孔皆可看作黑体。壁上线性谐振子所辐射的能量与空 间内某一频率的电磁驻波的能量是相等的。利用驻波条件可以求得,在体积在V的空腔中. 频率在 — +d 范围内的驻波数为 dN: dv C 所以在体积v中频率y一 +dy范围的线性谐振子辐射的的能量为 dE=d ̄. d7= d 如果以p( .T)表示黑体辐射能量密度,那末在单位体积内,频率在y一 +dy范围内的线性 谐振子辐射的能量 加.T)dy=可dE= ・南d7 (4) 如果以J( .T)表示黑体的辐射密度,那么在单位时间内,从黑体的单位面积上,频率在y一 +dy范围内的线性谐振子辐射的能量应与能量密度成正比,即I( .T)d7=Ae( ,T)d7 A为比例常数,其值可得为A=c/4,c为光速,于是可得 J( .T)d7=音P( .T)dy 把(4)式代人上式,得普朗克公式: 1(r.T)dy= ・南dy (5) f。 ……一l 若用波长^代替频率 作参量,据f=y.^及 2 ~ J(^.T)d;t=一J(y.T)d7和 =一 dy 普朗克公式还可以写成: m.T)d = ・ (6) 为了充分说明普朗克公式的正确性,可以导出在长波区,普朗克公式与瑞利——金斯公式是一 致的。 ‘ 在长波区k/KT<<I,若把e /KT展成级数 e =-+ +吉( ) - 略去二次项以后各项,代人(6)式得 J( .T) =等KTd2 (7) ^ 这就是在长波区与实验吻合的瑞——金斯公式,普朗克公式与瑞利金斯公式相比较,两者的主 要差异在对谐振子平均能量的计算上。瑞利——金斯认为谐振子的能量是连续的,其平均值 遵守能量均分定理,为KT,即 =KT dE:dN. : KTd , P( .1"):a_1_EE,: KTdy 、 再考虑I( ,T)和p( .T)之间的关系,并用波长^代替频率 作参量,就可得(7)式。 在短波内,k/KT》l,因而可将(6)式分母中的1略去,即 m.r,) i丁2nhc2・ (8) 上式就是在短渡区内与实验吻合的维恩公式。 从以上的分析可看出,普朗克量子理论的胜利并不意味着经典物理学的失败,而是意味着 人类对物理学有了更深刻的认识。量子物理和经典物理都是在一定条件下的产物。新的理论 虽然对原有理论有重大突破,但又不能与原有理论中已经证实了的实验规律相矛盾。事实也 正是这样:普朗克的量子理论在一定条件下的近似,导致了瑞利——金斯公式和维恩公式,从 而肯定了这两个公式成立的条件和各自正确的部分。
2023-02-15 02:36:201

普朗克公式E=hr和质能公式E=MC^2

普朗克研究物体热辐射的规律时,发现关于一定温度的物体发出的热辐射在不同频率上的能量分布不是连续的,物体通过分立的跳跃非连续地改变它们的能量,能量值只能取某个最小能量元的整数倍,为此,普朗克引入了一个新的自然常数 h = 6.63 ×10^-34 J·s来表达能量与频率的关系
2023-02-15 02:36:414

请问普朗克公式,这个式子表明了什么

1、德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。2、随着v的增加很快地趋近于零,也就是说在热平衡状态下,几乎不存在高频光子,这是因为高频光子的能量远大于kT,而腔壁发射这样高能量的光子的几率是极小的。普朗克公式在低频hv< 更多关于普朗克公式,这个式子表明了什么,进入:https://www.abcgonglue.com/ask/beecb31616092109.html?zd查看更多内容
2023-02-15 02:37:431

普朗克长度是多少 用公式表示

普朗克长度l=gh/c3~10-35m=10E-33厘米(是约等于.)
2023-02-15 02:38:041

普朗克长度是多少用公式表示

普朗克长度l=gh/c3~10-35m=10E-33厘米(是约等于.)
2023-02-15 02:38:491

太阳辐射的能量公式是什么?

简单看一下,选用一个简单的公式。所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射(当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体,但许多地物是较好的黑体近似(在某些波段上)。1900年普朗克根据辐射过程具有量子特性的假设,导出了与实验相符合的普朗克公式,求出了黑体辐射能力与黑体温度及波长的关系;普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为B(λ,T)=2hc2/λ5·1/exp(hc/λRT)-1B(λ,T)—黑体的光谱辐射亮度(W,m-2,Sr-1,μm-1)λ—辐射波长(μm)T—黑体绝对温度(K、T=t+273k)C—光速(2.998×108m·s-1)h—普朗克常数,6.626×10-34J·SK—波尔兹曼常数(Bolfzmann),1.380×10-23J·K-1基本物理常数exp—为自然对数的底根据此公式可以作出不同温度下绝对黑体的辐射能力随波长的分布曲线。(1)理论上,任何温度的绝对黑体都发射波长0~∞μm的辐射,但温度不同,辐射能力不同,辐射能集中的波段也不同。例如温度为6000K的物体总辐射能力比288K大得多。而且6000K温度的物体的辐射能量主要集中在0.17~4μm波段内,而288K温度的物体的辐射能量主要集中在3.3~80μm波段内。(2)每一温度下,黑体辐射都有一辐射最强的波长,称为这个温度下发射的辐射峰值,并用λmax表示,即光谱曲线的极大值。物体温度越高,其辐射峰值所对应的波长λmax越短。3
2023-02-15 02:39:101

如何从普朗克黑体公式推导出 韦恩位移公式来

niu bi
2023-02-15 02:39:523

E=nhv 普朗克黑体辐射公式中的E表示什么东西的能量? v又是什么的频率?

普朗克假设黑体是由带电谐振子组成,而这些谐振子辐射电磁波,v就是这个电磁波的频率.而谐振子的能量就是E被认为是不连续的,是某个单位能量的整数倍,而这个单位能量就是hv
2023-02-15 02:40:131

普朗克辐射公式说明了一个什么问题?

普朗克辐射公式没办法说明能量的不连续吧?它是内插过的啊。。。不过他的推导过程说明了辐射光谱能量分布的不连续特性planck辐射公式没有说明光和引力的任何关系。建议您去看一下这个公式的背景。
2023-02-15 02:40:552

光波频率越高,能量越大,波长越短,物理是怎么解释的?普朗克公式只是计算,不回答原因。

光波频率越高,能量越大,波长越短,物理是怎么解释的?普朗克公式只是计算,不回答原因。光波频率越高,能量越大,波长越短,物理是怎么解释的?普朗克公式只是计算,不回答原因。因为光速是一定的,用V表示光速,f表示频率,入表示波长,则有公式如下:V=入f,因为光速恒定,f越高,则波长入越短。而光波的能量完全取决于光源发出光的瞬间所能提供出的能量,能量越大,自然频率越高,波长越短。为什么波长越短,频率越高,而波长越长,频率越低?所谓波长是指俩相邻波峰或波谷之间的距离若存在能量相同的俩种波,波长越长,则相邻波峰或波谷之间的距离越长,也就是说此波的周期越长我们都知道.平率和周期是成反比的,所以周期越长的波频率低,反之亦然高二物理波长,频率和波速“由入=v/f可得,频率越高,波长越短”为什么不对?需要前提:同一介质中因为不同介质波速不同,这样v不是定值了。波长越短,频率越大,对不对?不对。没有说波速一定,这种情况下波长与频率无关。初中物理。由公式波速=波长·频率,可知频率越高,波速越快。对吗并非如此,波速不仅与频率有关,也与波长有关,频率越高,波长会相应的降低,波速不可能无限增大利用普朗克公式计算最大辐亮度普朗克量子假设1900年,普朗克从理论上推汇出一个与实验符合得非常好的公式:Mbλ(T)=2πh(c^2)(λ^-5)*1/[e^(hc/λkT)-1]称为普朗克公式。h=6.63×10^-34称为普朗克常数。为推汇出这个公式,普朗克作了如下两条假设:(1)黑体是由带电谐振子组成(即把组成空腔壁的分子、原子的振动看做线性谐振子).这些谐振子辐射电磁波,并和周围的电磁场交换能量。(2)这些谐振子的能量不能连续变化,只能取一些分立值,这些分立值是最小能量ε的整数倍,即?ε,2ε,3ε,…,nε,…n为正整数,而且假设频率为ν的谐振子的最小能量为ε=hν称为能量子,h称为普朗克常数。为什么频率越大(波长越短),折射率越大?这是光学中的内容根据爱因斯坦的光电说得出光机具有波动性也具有粒子性波长越小那么光就主要变现为粒子性所以单个的粒子能量就越高咯所以频率就越大了介子对他的折射程度就越大所以折射率就越大为什么频率越大(波长越短),折射率越大,在根据光速计算公式c=λγ频率越大,波长越短,光从真空射入介质,频率越高,折射角越小,折射率越大。请问下波长越长,波长越短,频率越高,频率越低各有什么好处波长越长,则频率越低,传播路径越长,如红外线波长越短,则频率越高,穿透能力越强,如γ射线温度越高能量越大,辐射的波长越短,是不是紫外光拥物体温度越高辐射光子的能量越大,光子的波长越短物体温度越高组成物质的原子的能级越高,由波尔理论,当原子有高能级向低能级跃迁时释放光子,光子能量E=Em-En能级差m-n越大释放的光子能量越大由爱因斯坦光子理论E=hv=hc/λλ=E/hch普朗克常量h=6.63x10^-34j.sc=3.0x10^8m/s结论:光子能量越大,光子波长越短
2023-02-15 02:41:571

二维光子气体的普朗克公式

二维光子气体的普朗克公式复杂。普朗克公式在高频范围hvkT的极限条件下,过渡到维恩公式,wv,T随着v的增加很快地趋近于零,在热平衡状态下,二维光子气体的普朗克公式复杂。
2023-02-15 02:42:181

普朗克公式E=hr啥意思?

先纠正一下,你打错了:是E=hv, 其中h是普朗克常数,h=6.67*10^(-34)J*s,v是指电磁波频率,E指光字的能量。 近代理论物理学认为,光也有粒子性,光(电磁波)的能量不是连续的而是被分成了一份一份的,每一份就是一个光量子,简称光子。这个方程很重要,它揭示了每一个光子的能量与光频率之间的关系,也就是光子能量等于其频率与普朗克常数的乘积。
2023-02-15 02:42:391

普朗克黑体辐射公式推导

普朗克黑体辐射公式推导是德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分,也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。普朗克是先假设了电磁波的能量是量子化的,然后才推导出的黑体辐射的公式,而不是先有的式子后给解释。普朗克给的能量量子化的解释:黑体中经典粒子的振动能量只能取某些特定的值。封闭谐振腔内的振动频率必然是量子化的,普朗克把黑体看作是谐振腔,把能量想成某一基本能量的整数倍在物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律,英文:Planck"s law, Blackbody radiation law)描述,在任意温度T下,从一个黑体中发射出的电磁辐射的辐射率与频率彼此之间的关系。
2023-02-15 02:43:001

普朗克公式推导

对不起不会呀!
2023-02-15 02:44:443

普朗克公式的读法是什么

德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。
2023-02-15 02:45:051

如何从普朗克黑体辐射公式推导出维恩位移定律和stefan-boltznmann 定律

热量总是从高温物体向低温物体辐射,物体因自身的温度直接向外发射能量的方式,叫做热辐射,温度越高,辐射越强。其辐射时发出能量满足方程w=ks1s2(t1-t2)/r2,其中k为热辐射常数,t1-t2为温度差,s1为高温物体面积,s2为低温物体面积,r为两物体之间距离。热辐射的基本定律:一、黑体辐射定律黑体具有最大的吸收力(α=1),同时亦具有最大的辐射力(ε=1)。在实际物体中不存在绝对黑体,为此引出人工黑体,几乎全部入射能量都被空腔吸收殆尽。腔内空间的辐射场系由腔内表面的发射和反射叠加而成,是各向同性的,而且必定和从小孔选出的辐射具有相同的性质。二、普朗克(M.Planck)定律该规律描述了黑体单色辐射力随波长及温度的变化规律。在一定温度下,黑体在不同波长范围内辐射能量各不相同。三、斯蒂芬-玻尔兹曼定律Eb=σbT4W/m2;σb=5.67*10-8W/(m2K4) 描述了黑体辐射力随表面温度的变化规律。也可以计算某一波长范围内的辐射力。四、兰贝特(Lambert)余弦定律包括的内容:半球空间上,黑体的辐射强度与方向无关。而各朝向辐射同性的表面称为漫辐射表面。漫辐射表面的辐射力是辐射强度的π倍。五、维恩位移定律随着温度T增高,最大单色辐射力Ebλ,max所对应的峰值波长λmax逐渐向短波方向移动。λmaxT=2897.6μK。
2023-02-15 02:45:261

E=h*v是什么公式,好像是个普朗克的什么公式,希望大神来具体讲解下

电磁波的吸收和发射不是连续的,而是以一种最小的能量单位ε=hν,为最基本单位而变化着的,理论计算结果才能跟实验事实相符,这样的一份能量ε,叫作能量子。其中v是辐射电磁波的频率,h=6.62559*10^-34Js,即普朗克常数。也就是说,振子的每一个可能的状态以及各个可能状态之间的能量差必定是hv的整数倍。 在空间传播的光也不是连续的,而是一份一份的,每一份叫一个光量子,简称光子,光子的能量E跟跟光的频率v成正比,即E=hv。这个学说以后就叫光量子假说。光子说还认为每一个光子的能量只决定于光子的频率,例如蓝光的频率比红光高,所以蓝光的光子的能量比红光子的能量大,同样颜色的光,强弱的不同则反映了单位时间内射到单位面积的光子数的多少。
2023-02-15 02:45:473

普朗克由什么假设推出了黑体辐射公式?

普朗克提出一个大胆的、革命性的假设:每个带电线性谐振子发射和吸收能量是不连续的,这些能量值只能是某个最小能量元e的整数倍,而每个能量元和振子频率成正比。由这一假设,普朗克推出了著名的黑体辐射公式。后来人们称e为能量子,称h为普朗克常数。
2023-02-15 02:46:081

用普朗克公式证明维恩位移

Planck公式:r(λ,T)=常数/{λ^5*[e^(hc/kTλ)-1]}dr/dλ=0(实际上是对λ求偏微分),化简=>5[e^(hc/kTλ)-1]- e^(hc/kTλ)* (hc/kTλ)=0令hc/kTλ=x=>e^(-x)+x/5=1这个等式的数值解为x=4.965=hc/kTλ=>λT=0.2014 hc/...
2023-02-15 02:47:111

量子力学诞生120年了,是时候搞懂它了

1873年麦克斯韦出版了科学名著《电磁理论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经典物理学的重要支柱之一。他还预言了电磁波的存在,电磁波的存在也正式敲开了现代无线通信的大门。 1888年赫兹经过反复实验,发明了一种电波环,发现了人们怀疑和期待已久的电磁波。 赫兹的实验公布后,轰动了全世界的科学界,由法拉第开创、麦克斯韦总结的电磁理论,至此才取得了决定性的胜利,并被科学界所广泛接受。 到了19世纪末,科学界许多科学家已经开始深入研究电磁波,由此诞生了黑体,黑体则是属于热力学范畴,黑体是一个理想化了的物体,为了研究不依赖于物质具体物性的热辐射规律,物理学家以此作为热辐射研究的标准物体。它能够吸收外来的全部电磁辐射,并且不会有任何的反射与透射。换句话说,黑体对于任何波长的电磁波的吸收系数为1,透射系数为0。 而我们知道一切温度高于绝对零度的物体都能产生热辐射,温度愈高,辐射出的总能量就愈大,短波成分也愈多。 随着温度上升,黑体所辐射出来的电磁波则称为黑体辐射。 最著名的根据经典物理学体系来解释黑体辐射的是维恩位移定律,在一定温度下,绝对黑体的温度与辐射本领最大值相对应的波长λ的乘积为一常数,即λ(m)T=b(微米)。在公式中,b=0.002897m·K,称为维恩常量。 它表明,当绝对黑体的温度升高时,辐射本领的最大值向短波方向移动。维恩位移定律不仅与黑体辐射的实验曲线的短波部分相符合,而且对黑体辐射的整个能谱都符合,但是长波不行。 后来从瑞利——金斯公式推出,在短波区(紫外光区)随着波长的变短,辐射强度可以无止境地增加,这和实验数据相差十万八千里,是根本不可能的。这个失败后来被科学家埃伦菲斯特称为“紫外灾难”。 简单来说紫外灾难则指的是在经典统计理论中,能量均分定律预言黑体辐射的强度在紫外区域会发散至无穷大,这和事实严重违背。 普朗克将维恩定律加以改良,又将玻尔兹曼公式重新诠释来解释黑体辐射现象,从而得到了 改变物理世界的普朗克黑体公式 。 简单来说,普朗克公式只有在假设能量在传播的过程中,不是连续不断的,不存在无限小的单位,而是必须被分成一段、一段的,能量传播必须有一个最小单位,这个完美的公式及黑体辐射的问题只有在使用这种假设才能被解释的通。 一旦这个假设成立,那么便意味着由伽利略、牛顿所建立的经典力学的根基就要被动摇,因为在经典力学中,时间、空间、能量都是连续不断的,可以无限被分割的,普朗克的这个假设就意味着经典力学的根本就是错误的。 1900 年 12 月 14 日,在德国物理学会上普朗克公布了其推算得来的普朗克黑体公式,普朗克得到的公式在全波段范围内都和实验结果符合得相当好。 而这一天,也将注定被载入史册,当普朗克在发表这一伟大成果的时候,就标志着量子力学的诞生和新物理学革命宣告开始。 量子力学在今天被定义为是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。玻尔领导的哥本哈根学派在其中发挥了不可替代的作用,量子力学的发展和完善都是由他们来完成的。 哥本哈根诠释也成为了量子力学的正统解释。波恩的概率解释、海森堡的不确定性原理和玻尔的互补原理,三者共同构成了量子论“哥本哈根解释”的核心,而量子力学的核心方程则是薛定谔方程。他们构成了微观世界的框架,影响了我们对于整个宇宙的认识,也左右了未来物理学研究的导向。 1926年,薛定谔从经典力学的哈密顿-雅可比方程(使用分析力学中求解动力学问题的一个方程)出发,利用变分法(一种求解边界值问题的方法)和德布罗意方程,最后求出了一个非相对论的方程,用希腊字母ψ来=代表波的函数,最终形式是: 这就是名震 20 世纪物理史的 薛定谔波动方程 。认为电子是一种波,就像云彩一般(电子云说法的由来),放大来看后,就好像在空间里融化开来,变成无数振动的叠加,平常表现出量子的状态,是因为它蜷缩的太过厉害,看起来就像一个小球。函数ψ就是电子电荷在空间中的实际分布。 薛定谔方程的诞生首先就论证了氢原子的离散能量谱。在玻尔的原子模型中,电子被限制在某些能量级上,薛定谔将他的方程用于氢原子,发现他的解精确的重现了玻尔的能量级。堪称是对量子力学发展的神助攻~ 薛定谔方程可以说在物理史上具有极伟大的意义,被誉为“十大经典公式”之一,是世界原子物理学文献中应用最广泛、影响最大的公式。 而量子力学的核心方程就是 薛定谔方程 ,它就好比是牛顿第二定律在经典力学中的位置。正是基于薛定谔方程的建立,之后才有了关于量子力学的诠释,波函数坍缩,量子纠缠,多重世界等等的激烈讨论。 在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数来确定,因此波函数成为量子力学研究的主要对象。力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。 它揭示了微观物理世界物质运动的基本规律,是原子物理学中处理一切非相对论问题的有力工具,在原子、分子、固体物理、核物理、化学等领域中被广泛应用。 后来玻恩更是提出概率幅的概念,成功地解释了薛定谔方程中波函数的物理意义。 玻恩认为, 由于观测精度有限,有些物理现象尤其是微观物理现象要像经典物理那样精确是不可能的,只能以概率解释。即使是经典物理,也不能做到绝对的精确,只是有些误差可以忽略罢了。 玻恩的统计解释认为:波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。波函数Ψ因此就称为概率幅 玻恩的统计解释提出之后,波函数Ψ的绝对值的平方因此就称为概率幅,玻恩成功地解释了以反对量子力学为目的的薛定谔方程中波函数的物理意义。这种统计或概率方法,和它所伴随的非连续性波函数坍缩,成功策反了薛定谔方程,成为了量子力学的核心。 玻尔则有一句著名的话:“电子的真身,或者电子的原型?本来面目?都是毫无意义的单词,对我们来说,唯一知道的只是我们每次看到的电子是什么。我们看到电子呈现出粒子性,又看到电子呈波动性,那么当然我们就假设它是粒子和波的混合体。我们无需去关心它“本来”是什么,也无需担心大自然“本来”是什么,我只关心我们能“观测”到大自然是什么。电子又是粒子又是波,但每次我们观察它,它只展现出其中一面,这里的关键是我们“如何”观察它,而不是它“究竟”是什么。” 玻尔更是因此提出了互补性原理:原子现象不能用经典力学所要求的完备性来描述。在构成完备的经典描述的某些互相补充的元素,在这里实际上是相互排除的,这些互补的元素对描述原子现象的不同面貌都是需要的。 所以既然物质具有波粒二象性。根据互补原理, 一个实验可以展示出物质的粒子行为,或波动行为;但不能同时展示出两种行为。(提取重点哈~) 海森堡的测不准原理则是指,你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克常数除于4π(ΔxΔp≥h/4π)。 普朗克常数是在量子物理学中非常重要的一个自然常数,也是一个物理常数,可以说在描述量子(一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子,是能量的最小单位)大小方面具有非常重要的地位,是德国的著名物理学家和量子学的创始人马克斯.普朗克 1900 发现的。 普朗克常数记为 h,是一个物理常数,普朗克常数用以描述量子化、微观下的粒子,例如电子及光子,在一确定的物理性质下具有一连续范围内的可能数值。在第 26 届国际计量大会(CGPM)表决通过,普朗克常数的精确数约为: h =6.62607015×10-34 J·s 这个理论是说,你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克常数除于 4π ,这表明微观世界的粒子行为与宏观物质很不一样。 海森堡指出,要想测量粒子的位置和速度,最好是用光照到一个粒子上的方式来测量,一部分光波被此粒子散射开来,由此指明其位置。但不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。 但普朗克指出,不能用任意小量的光,至少要用一个光子,而这个光子会扰动粒子,并以一种不能预见的方式改变粒子的速度。 如果要想测定一个粒子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个粒子的扰动也会越大,对它的速度测量也会越不精确;如果想要精确测量一个粒子的速度,那就要用波长较长的波,那就不能精确测定它的位置。 总结来说, 你选择以确定电子位置的实验本身,就导致了你无法对电子的动量进行精密的测量! 玻尔为首哥本哈根派认为,这一测不准原理是自然界固有的不确定性导致的! 简而言之,人类并不能获得实在世界的确定的结果,只能由这次测量推测下一次测量的各种结果的分布几率,而无法对事物在两次测量之间的行为做出具体描述。 哥本哈根诠释的三大核心原理,前两者摧毁了经典力学构建的严格因果性,互补原理和不确定原理又合力捣毁了世界的绝对客观性。量子力学构建了一个前所未有的世界,它与我们的常识相违背,与我们所看见的宏观世界格格不入。但是,它却能够解释量子世界一切不可思议的现象。 如今,即使过了120年,我们依然无法完全消化120年前科学大繁荣时代留下来的巨大财富,虽然在最近的几十年里,量子力学给物理学、工业和人类生活带来了翻天覆地的变化,我们赖以生活的半导体工业、激光、核磁共振都来源于此,但是我们对于量子力学的 探索 还还在刚刚入门,比如对量子力学深度运用的量子通信、量子计算机等都还在起步阶段。所以物理学家费曼才会在1964年这样说:“我想我可以有把握地说,没有人真正理解量子力学”。 希望在未来有一天,我们能够真正完全攻克量子力学!
2023-02-15 02:47:321

普朗克黑体公式为什么宣告了牛顿时代的终结?

物理学史可以分为三个时代,分别是由古希腊学者亚里士多德开创的亚里士多德时代,第二个时代就是由伽利略开创到牛顿手里完善的经典物理学时代,也被称为牛顿时代,经典物理学是以经典力学、经典电磁场理论和经典统计力学为三大支柱的经典物理体系。。而第三个时代则是现代物理学时代。我们首先要知道的就是,新的时代的到来并不意味着旧时代被全部推翻,亚里士多德的许多理论今天在一些领域依然适用,牛顿的经典力学在宏观低速领域依然是真理。新时代的到来是在新的领域之内产生了新的理论,从而引来着物理研究走向新的方向。在19世纪中后期,许多物理学家认为这座由经典力学、经典电磁场理论和经典统计力学构建的物理大厦已经足够完美。著名物理学家基尔霍夫就说过:“物理学已经无所作为,往后无非在已知规律的小数点后面加上几个数字而已。”因为当时所有的物理学家都认为一切力学现象原则上都能够从经典力学得到解释,牛顿力学以及分析力学已成为解决力学问题的有效的工具。对于电磁现象的分析,已形成麦克斯韦电磁场理论,这是电磁场统一理论,这种理论还可用来阐述波动光学的基本问题。至于热现象,也已经有了唯象热力学和统计力学的理论,它们对于物质热运动的宏观规律和分子热运动的微观统计规律,几乎都能够做出合理的说明。所以物理学“是一门高度发展的、几乎是臻善臻美的科学”。然而打脸来的太快,黑体辐射与紫外灾难直接引发了经典物理学的危机,宣告了第三时代的到来。我们都知道,到了 19世纪的时候,麦克斯韦的电磁理论已经被接受,这个时候大家就可以研究电磁波了,由此诞生了黑体,黑体则是属于热力学范畴,黑体是一个理想化了的物体,为了研究不依赖于物质具体物性的热辐射规律,物理学家以此作为热辐射研究的标准物体。它能够吸收外来的全部电磁辐射,并且不会有任何的反射与透射。换句话说,黑体对于任何波长的电磁波的吸收系数为1,透射系数为0。其中任何物体都具有不断辐射、吸收、反射电磁波的性质。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。一切温度高于绝对零度的物体都能产生热辐射,温度愈高,辐射出的总能量就愈大,短波成分也愈多。热辐射的光谱是连续谱,波长覆盖范围理论上可从0直至∞,一般的热辐射主要靠波长较长的可见光和红外线传播。由于电磁波的传播无需任何介质,所以热辐射是在真空中唯一的传热方式。热辐射和红外光线而随着温度上升,黑体所辐射出来的电磁波则称为黑体辐射。19世纪末,卢梅尔等人进行了著名实验―黑体辐射实验,发现黑体辐射的能量不是连续的,它按波长的分布仅与黑体的温度有关。从经典物理学的角度看来,这个实验的结果是不可思议的。其中最著名的根据经典物理学体系来解释黑体辐射的是维恩位移定律,在一定温度下,绝对黑体的温度与辐射本领最大值相对应的波长λ的乘积为一常数,即λ(m)T=b(微米)。在公式中,b=0.002897m·K,称为维恩常量。它表明,当绝对黑体的温度升高时,辐射本领的最大值向短波方向移动。维恩位移定律不仅与黑体辐射的实验曲线的短波部分相符合,而且对黑体辐射的整个能谱都符合,但是长波不行。而英国物理学家瑞利和物理学家、天文学家金斯则认为能量是一种连续变化的物理量,建立起在波长比较长、温度比较高的时候和实验事实比较符合的黑体辐射公式。但是,从瑞利——金斯公式推出,在短波区(紫外光区)随着波长的变短,辐射强度可以无止境地增加,这和实验数据相差十万八千里,是根本不可能的。所以这个失败被埃伦菲斯特称为“紫外灾难”。简单来说紫外灾难则指的是在经典统计理论中,能量均分定律预言黑体辐射的强度在紫外区域会发散至无穷大,这和事实严重违背。在这个时候,物理学家们惊觉原来还有许多未知的领域等着他们去探索,经典力学并非全知全能,把经典力学奉为圣经在这个时候已经不再适用了。这个时候,我们的普朗克先生横空出世,普朗克在年轻的时候,他的老师约里就曾劝他不要学纯理论,然而他的后来被啪啪打脸,因为普朗克成为了牛顿时代的终结者,现代物理学的奠基人。这才是老师叫普朗克不要学物理的原因啊普朗克的一生特别悲剧,他的第一任妻子、以及和第一任妻子所生的四个孩子都先他而去。可以说,是一个过得非常辛酸的人。这里我们先要了解一下玻尔兹曼常数,玻尔兹曼常数等于理想气体常数除以阿伏伽德罗常数,即R=kNA,其物理意义是单个气体分子的平均动能随热力学温度变化的系数,即Ek=(3/2)kT,Ek为分子的平均动能,T为绝对温度。由于观测手段的限制,我们无法测量微观单个分子的动能,但是我们可以测量宏观系统的温度,通过玻尔兹曼常数,我们就可以通过测量宏观物理量来计算微观物理量。气体中的原子和分子沿着各个方向飞速移动,彼此碰撞,也与容器壁碰撞反弹。玻尔兹曼常数将宏观世界与微观世界相连接,而玻尔兹曼后来提出的玻尔兹曼熵公式则同时研究宏观世界与微观世界,从宏观世界入手,去探求微观世界。在这个公式里玻尔兹曼给予了“熵”以微观解释。将“熵”引入了微观领域。普朗克将维恩定律加以改良,又将玻尔兹曼熵公式重新诠释来解释黑体辐射现象,从而得到了改变物理世界的普朗克黑体公式。在进行公式推算的时候,普朗克做了能量量子化假设假设,第一黑体是由带电谐振子组成(即把组成空腔壁的分子、原子的振动看做线性谐振子).这些谐振子辐射电磁波,并和周围的电磁场交换能量。第二就是这些谐振子的能量不能连续变化,只能取一些分立值,这些分立值是最小能量ε的整数倍,即ε,2ε,3ε,…,nε,… n为正整数,而且假设频率为ν的谐振子的最小能量为ε=hν称为能量子,h称为普朗克常数。其中能量子是指一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。而普朗克常数则是在以后的量子物理学中非常重要的一个自然常数,也是一个物理常数,普朗克常数用以描述量子化、微观下的粒子,例如电子及光子,在一确定的物理性质下具有一连续范围内的可能数值。可以说在描述量子大小方面具有非常重要的地位。普朗克发现电磁波的发射和吸收不是连续的,而是一份一份地进行的,由此普朗克得出来世界上不连续的结论普朗克常数记为 h,在第 26 届国际计量大会(CGPM)表决通过,普朗克常数的精确数约为:h=6.62607015×10-34 J·s简单来说,普朗克公式只有在假设能量在传播的过程中,不是连续不断的,不存在无限小的单位,而是必须被分成一段、一段的,能量传播必须有一个最小单位,这个完美的公式及黑体辐射的问题只有在使用这种假设才能被解释的通。可一旦这个假设成立,那么便意味着由伽利略、牛顿所建立的经典力学的根基就要被动摇,因为在经典力学中,时间、空间、能量都是连续不断的,可以无限被分割的,普朗克的这个假设就意味着经典力学的根本就是错误的。1900 年 12 月 14 日,在德国物理学会上普朗克公布了其推算得来的普朗克黑体公式,普朗克得到的公式在全波段范围内都和实验结果符合得相当好。而这一天,也将注定被载入史册,当普朗克在发表这一伟大成果的时候,就标志着量子论的诞生和新物理学革命宣告开始。后来物理学家们在理论研究与实验中发现:不单单能量存在着最小单位,空间、时间、长度、角动量、自旋等等物理量都是一段、一段的,它们也都存在着最小单位,量子化是量子力学的基础。普朗克的发现证明了:原来世界是不连续的。而到了 1905 年爱因斯坦发表《关于光的产生和转化的一个试探性观点》提出了光量子成功解释光电效应,他在文中对普朗克先前的量子化理论进行拓宽,认为光可以看作由携带着量子化能量的"载流子"所组成的粒子,他将这种"载流子"称为光子,光子的能量等于普朗克常数与其频率的乘积,因此光的能量只取决于频率,而无关乎光强。当光子的波长足够小、频率足够高、能量足够大时,就足以令电子克服原子核的束缚而逸出,爱因斯坦还提出了每一个光量子的能量E与辐射的频率ν的关系是E=hν。1924年萨特延德拉·纳特·玻色发展了光子的统计力学,从而在理论上推导了普朗克定律的表达式。普朗克黑体公式顺利解决了黑体辐射问题,也解决了紫外灾难,但是紫外灾难的彻底解决也同样是由爱因斯坦和萨特延德拉·纳特·玻色彻底解决的。在科学史上很难找到其它发现能象普朗克的基本作用量子一样在仅仅一代人的短时间里产生如此非凡的结果。从 1900 年到 1930 年,爱因斯坦、薛定谔、玻尔、海森堡等无数伟大的科学家在此基础上,提出了影响整个物理研究走向的理论,而且这个发现将人类的观念,不仅是有关经典科学的观念, 而且是有关通常思维方式的观念的基础砸得粉碎, 人们意识到,物理研究新的征程已经开启,新的物理大厦的基石已经夯实,正等着他们添砖加瓦。现代物理两大支柱的奠基人正如爱因斯坦在 1918 年普朗克 60 岁生日时候的演讲中说的那样:在科学 的殿堂里有各种各样的人:有人爱科学是为了满足智力上的快感;有人是为了纯粹功利的目的,而普朗克热爱科学是为了得到现象世界那些普遍的基本规律, ;他成了一个以伟大的创造性观念造福于世界的人。
2023-02-15 02:47:531

普朗克公式在分析化学中的应用有哪些?

1. 总体和样本的统计学计算;2. 随机误差的正态分布的特点及区间概率的概念;3. t分布曲线,置信度和平均值的置信区间;显著性检验:t检验和F检验;异常值的取舍方法;4. 系统误差和随机误差的传递计算;5. 提高分析结果准确度的方法。第五章 酸碱滴定法1. 活度的概念及计算,酸碱质子理论;2. 酸碱的离解平衡,酸碱水溶液酸度、质子平衡方程;3. 酸碱平衡体系中各型体的分布分数的计算和用质子理论即PBE方程式处理酸碱平衡的基本方法;4. 酸碱平衡中溶液酸碱度的计算方法,包括强酸(碱)溶液、一元和多元弱酸(碱);酸混合溶液;两性物质溶液;酸碱缓冲溶液的pH计算;5. 缓冲溶液的作用原理及种类,缓冲容量的计算;有效缓冲范围;几种常用的缓冲溶液的配制和应用;6. 指示剂的变色原理及选择原则;常用指示剂的变色范围及终点变化情况;7. 酸碱滴定过程中氢离子浓度的变化规律,化学计量点、滴定突跃、滴定终点的含义、指示剂的选择;酸碱直接准确滴定、多元酸分步滴定的判别式;酸碱滴定中二氧化碳的影响;酸碱滴定的终点误差;
2023-02-15 02:55:061

1900年10月19日普朗克提出了什么公式以及有什么影响?

1900年10月19日,他在德国物理学会的一次会议上提出了著名的“普朗克公式”。这个公式虽然没有引起大的影响,但他已是奏响两个月后“量子假说”序曲。
2023-02-15 02:55:271

普朗克公式的普朗克生平简介

德国物理学家。量子论的奠基人 。1858年,普朗克生于德国基尔一个法学家家庭。1874年进慕尼黑大学读数学,后转入柏林大学学物理。1877~1878年去柏林大学听过数学家K.魏尔斯特拉斯和物理学家 H.von亥姆霍兹和G.R.基尔霍夫的讲课 。在柏林期间 ,他认真自学了R.克劳修斯的著作《力学的热理论》,从此立志去寻找像热力学定律那样具有普遍性的自然规律。1879年在慕尼黑大学取得博士学位后,先后在该校和基尔大学任教。1888年柏林大学任命他为基尔霍夫的继任人和理论物理学研究所主任,1892年升为教授。1900年,他在黑体辐射研究中引入能量量子,因此于1918年获诺贝尔物理学奖。1918年选为英国皇家学会会员,1930~1937年担任威廉皇家科学促进协会会长。后因反对纳粹暴政,普朗克1935年被免去院长职务。晚年退出科学界,从事反法西斯活动。1947年10月3日卒于格丁根。
2023-02-15 02:55:481

普朗克是如何认为这个“凑”出来的公式的?

普朗克经过精确的实验,发现他所“凑”出来的公式能与实验相符,这使他十分高兴。他认为,这说明这个公式必然包含某种真理,决不可能是偶然的巧合。然而他又清醒地认识到,即使人们承认这个公式的准确性和可行性,也远远不够,这仅仅具有形式上的意义,他还无法解释这个公式的内涵。
2023-02-15 02:56:291

维恩,瑞利金斯,普朗克公式都是怎么推导的啊?

这几个公式最初都不是推导的,是根据实验数据总结出来的经验公式。 后来随着热力学和统计物理理论以及量子理论的不断完善,可以推导了,你可以查阅一下相关文献。
2023-02-15 02:56:502

物理学上空的两朵“乌云”

物理学上空的两朵“乌云”热力学泰斗开尔文男爵威廉·汤姆森,在物理学完善里传统力学三大体系(经典力学、经典电动力学、经典热力学),在一个演讲中说“在已经基本建成的物理学大厦中,后辈物理学家只要做一些零碎的修补工作就行了……但是,在物理学晴朗的天空的远处,还有两朵小小的令人不安的乌云” 这便是当时两个物理学上还未解决的难题。它们分别是: 一、光的传播应该是有一种叫“以太”的介质; 二、黑体辐射实验结果,与理论预测不一致。然后正是这两朵小小的乌云,动摇了传统物理学的地基,甚至开启了物理学冰山之下的探索——量子力学。这两朵乌云,开启了两个分支 一、麦克尔-莫雷实验为了证实以太存在,但却发现光的传播不需要介质,且光速不变。后来爱因斯坦以此为基础,提出相对论。二、黑体,即它不反射别的光,它发出的均来之它自身的光,太阳、烧红的烙铁、黑暗中的人体,这些都可近似为黑体。黑体发出的光是由它热量导致的,也就是热辐射。 物理学未能找到理论去解释黑体的发光曲线,普朗克通过拼凑公式的方法,找到了符合的“普朗克黑体公式”——E=hf, 其中f为频率,h为普朗克常数——h=6.626x10^(-34)焦耳•秒有了公式,如何去解释呢。普朗克通过研究,发现公式成立,得假设能量为不连续的,即能量具有一个最小单位——量子。爱因斯坦在此基础上,发表了一篇《关于光的产生和转变的一个启发性观点》,提出了“光电效应”,获得诺贝尔奖——频率更高的光线,其单个量子所含能量更高。低频光的量子能量不足,无法在“光打金属”的实验中激发出电子。也就是光也是以量子形式来吸收能量,没有连续性,不能累积。这个世界是由一个个量子组成,但是为什么在宏观的我们感受不到?因为量子足够小,就如同一台无比高清的电视机,通过一个个光点组成,远看就能形成连续的画面。
2023-02-15 02:57:111

电子自旋磁矩的普朗克公式

普朗克提出的关于黑体辐射能量密度ρ(、WT)与辐射频率及系统热力学温度T之间关系的公式,Wρ(,T)W3=8πh1W(1)c3ehkTGE-1式中k为玻耳兹曼常量,c为真空中光速.到19世纪末,关于黑体辐射...更多
2023-02-15 02:57:321

普朗克常数公式

普朗克常数公式h=6.63×10^-34。普朗克常数记为h,是一个物理常数,用以描述量子大小。在量子力学中占有重要的角色,马克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和试验结果是相符。这样的一份能量叫做能量子,每一份能量子等于hν,ν为辐射电磁波的频率,h为一常量,叫为普朗克常数。
2023-02-15 02:58:541

普朗克常量公式

普朗克常量:h=6.62606896(33)×10^(-34)J·s。普朗克常数记为h,是一个物理常数,用以描述量子大小。在量子力学中占有重要的角色,马克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和试验结果是相符。量子(quantum)是现代物理的重要概念。即一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。量子一词来自拉丁语quantus,意为“有多少”,代表“相当数量的某物质”,它最早是由德国物理学家M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍,从而很好地解释了黑体辐射的实验现象。
2023-02-15 02:59:151

普朗克公式的介绍

德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。
2023-02-15 02:59:361

普朗克常数和波长计算公式

普朗克常数和波长计算公式E=hv=hc/λ。E等于MC2是计算粒子的能量,任何物体均具有波粒二象性,当然对于光子表现最明显。所以你求光子能量上面两个都能用,但注意M是光子的相对论质量。因为这两个毫不相关,普朗克常数是电磁波中的一个常数,只能用于电磁领域,而声波是机械波,有他自己的一套描述公式。含义辐射场能量密度按频率的分布,式中T是热力学温度,k是玻耳兹曼常数。《辐射场能量密度按波长的分布曲线》表示辐射场能量密度随波长变化的曲线,它同实验结果完全一致。作为黑体的空腔内的辐射场,既可以分解为一系列单色平面波的叠加,又可看作是由光子组成的"气体"。光子的能量ε、动量p、波长λ和频率v之间遵从德布罗意关系ε=hv。
2023-02-15 02:59:571

求普朗克公式的计算公式

普朗克公式  BuBPlanck"s formula  德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式.19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在...
2023-02-15 03:00:381

普朗克公式 这个式子表明了什么

1、德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。 2、随着v的增加很快地趋近于零,也就是说在热平衡状态下,几乎不存在高频光子,这是因为高频光子的能量远大于kT,而腔壁发射这样高能量的光子的几率是极小的。普朗克公式在低频hv<<kt的极限条件下,过渡到瑞利-金斯公式,这正是以经典统计理论为基础的能量均分的结果。在瑞利-金斯公式中不出现普朗克常数h。可见,把h看作很小乃至零时,量子理论就过渡到经典理论。 p=""> </kt的极限条件下,过渡到瑞利-金斯公式,这正是以经典统计理论为基础的能量均分的结果。在瑞利-金斯公式中不出现普朗克常数h。可见,把h看作很小乃至零时,量子理论就过渡到经典理论。>
2023-02-15 03:00:591

求普朗克公式(要推理过程)

M bλ(T)=2πh(c^2)(λ^-5)*1/[e^(hc/λkT)-1] 1) 黑体是由带电谐振子组成(即把组成空腔壁的分子、原子的振动看做线性谐振子).这些谐振子辐射电磁波,并和周围的电磁场交换能量。 (2) 这些谐振子的能量不能连续变化,只能取一些分立值,这些分立值是最小能量ε的整数倍,即 ε,2ε,3ε,…,nε,… n为正整数,而且假设频率为ν的谐振子的最小能量为ε=hν称为能量子,h称为普朗克常数。
2023-02-15 03:01:201

普朗克公式的计算公式

普朗克公式  BuBPlanck"s formula  德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。  1900年普朗克获得一个和实验结果一致的纯粹经验公式,1901年他提出了能量量子化假设:辐射中心是带电的线性谐振子,它能够同周围的电磁场交换能量,谐振子的能量不连续,是一个量子能量的整数倍。  普朗克量子假设  1900年,普朗克从理论上推导出一个与实验符合得非常好的公式:  Mbλ(T)=2πh(c^2)(λ^-5)*1/[e^(hc/λkT)-1]  称为普朗克公式。h=6.63×10^-34称为普朗克常数 。  为推导出这个公式,普朗克作了如下两条假设:  (1)黑体是由带电谐振子组成(即把组成空腔壁的分子、原子的振动看做线性谐振子).这些谐振子辐射电磁波,并和周围的电磁场交换能量。  (2)这些谐振子的能量不能连续变化,只能取一些分立值,这些分立值是最小能量ε的整数倍,即�  ε,2ε,3ε,…,nε,… n为正整数,而且假设频率为ν的谐振子的最小能量为ε=hν称为能量子,h称为普朗克常数。
2023-02-15 03:01:452

普朗克公式的介绍

德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。
2023-02-15 03:02:101

普朗克公式

德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。
2023-02-15 03:02:521

普朗克公式,这个式子表明了什么?

1、德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。2、随着v的增加很快地趋近于零,也就是说在热平衡状态下,几乎不存在高频光子,这是因为高频光子的能量远大于kT,而腔壁发射这样高能量的光子的几率是极小的。普朗克公式在低频hv< 更多关于普朗克公式,这个式子表明了什么,进入:https://www.abcgonglue.com/ask/beecb31616092109.html?zd查看更多内容
2023-02-15 03:04:141

普朗克黑体辐射公式

 公式:电磁波波长和频率的关系为相关公式:1,普朗克定律有时写做能量密度频谱的形式:方米·赫兹)。对全频域积分可得到与频率无关的能量密度。一个黑体的辐射场可以被看作是光子气体,此时的能量密度可由气体的热力学参数决定。2,能量密度频谱也可写成波长的函数很多有关量子理论的大众科普读物,甚至某些物理学课本,在讨论普朗克黑体辐射定律的历史时都犯了严重的错误。尽管这些错误概念在四十多年前就已经被物理学史的研究者们指出,事实证明它们依然难以被消除。部分原因可能在于,普朗克最初量子化能量的动机并不是能用三言两语就能够道清的,这里面的原因在现代人看来相当复杂,因而不易被外人所理解。丹麦物理学家Helge Kragh曾发表过一篇文章清晰地阐述了这种错误是如何发生的。“紫外灾变”:在经典统计理论中,能量均分定理预言黑体辐射的强度在紫外区域会发散至无穷大,这和事实严重违背。首先是尽管普朗克给出了量子化的电磁波能量表达式,普朗克并没有将电磁波量子化,这在他1901年的论文以及这篇论文对他早先文献的引用中就可以看到。他还在他的著作《热辐射理论》(Theory of Heat Radiation)中平淡无奇地解释说量子化公式中的普朗克常数(现代量子力学中的基本常数)只是一个适用于赫兹振荡器的普通常数。真正从理论上提出光量子的第一人是于1905年成功解释光电效应的爱因斯坦,他假设电磁波本身就带有量子化的能量,携带这些量子化的能量的最小单位叫光量子。1924年萨特延德拉·纳特·玻色发展了光子的统计力学,从而在理论上推导了普朗克定律的表达式。另一错误概念是,普朗克发展这一定律的动机并不是试图解决“紫外灾变”。“紫外灾变”这一名称是保罗·埃伦费斯特于1911年提出的,从时间上看这比普朗克定律的提出要晚十年之久。紫外灾变是指将经典统计力学的能量均分定理应用于一个空腔中的黑体辐射(又叫做空室辐射或具空腔辐射)时,系统的总能量在紫外区域将变得发散并趋于无穷大,这显然与实际不符。普朗克本人从未认为能量均分定理永远成立,从而他根本没有觉察到在黑体辐射中有任何“灾变”存在——不过仅仅过了五年之后,这一问题随着爱因斯坦、瑞利勋爵和金斯爵士的发现而就变得尖锐起来。
2023-02-15 03:04:351

我想问一下普朗克公式,这个式子表明了什么?

1、德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。2、随着v的增加很快地趋近于零,也就是说在热平衡状态下,几乎不存在高频光子,这是因为高频光子的能量远大于kT,而腔壁发射这样高能量的光子的几率是极小的。普朗克公式在低频hv< 更多关于普朗克公式,这个式子表明了什么,进入:https://www.abcgonglue.com/ask/beecb31616092109.html?zd查看更多内容
2023-02-15 03:05:581

E=nhv 普朗克黑体辐射公式中的E表示什么东西的能量?

这个是光子的能量吧。黑体辐射中包含各种不同频率的光子,每种频率的光子的数量不同。
2023-02-15 03:07:052

普朗克长度是多少 用公式表示

普朗克长度l=gh/c3~10-35m=10E-33厘米(是约等于.)
2023-02-15 03:07:251