barriers / 阅读 / 详情

create user 用户名 identified by 密码 default tablesp

2023-06-08 09:32:03
TAG: ate nt abl dent
共2条回复
snjk
create USER 用户名 IDENTIFIED BY 密码 DEFAULT TABLESPACE ASSP TEMPORARY TABLESPACE TEMP PROFILE DEFAULT ACCOUNT UNLOCK;
北境漫步

语法错误

相关推荐

ASSP和ASIC有什么区别?

ASIC应用专用集成电路,关于三层交换机的ASIC(Application Specific Integrated Circuit)是专用集成电路。目前,在集成电路界ASIC被认为是一种为专门目的而设计的集成电路。是指应特定用户要求和特定电子系统的需要而设计、制造的集成电路。ASIC的特点是面向特定用户的需求,ASIC在批量生产时与通用集成电路相比具有体积更小、功耗更低、可靠性提高、性能提高、保密性增强、成本降低等优点。ASIC分为全定制和半定制。全定制设计需要设计者完成所有电路的设计,因此需要大量人力物力,灵活性好但开发效率低下。如果设计较为理想,全定制能够比半定制的ASIC芯片运行速度更快。半定制使用库里的标准逻辑单元(Standard Cell),设计时可以从标准逻辑单元库中选择SSI(门电路)、MSI(如加法器、比较器等)、数据通路(如ALU、存储器、总线等)、存储器甚至系统级模块(如乘法器、微控制器等)和IP核,这些逻辑单元已经布局完毕,而且设计得较为可靠,设计者可以较方便地完成系统设计。现代ASIC常包含整个32-bit处理器,类似ROM、RAM、EEPROM、Flash的存储单元和其他模块. 这样的ASIC常被称为SoC(片上系统)。FPGA是ASIC的近亲,一般通过原理图、VHDL对数字系统建模,运用EDA软件仿真、综合,生成基于一些标准库的网络表,配置到芯片即可使用。它与ASIC的区别是用户不需要介入芯片的布局布线和工艺问题,而且可以随时改变其逻辑功能,使用灵活。
2023-06-07 23:24:022

ASSP是哪几个字母的简称

ASIC是(Application Specific Integrated Circuits 专用集成电路)专门为单个客户定制,ASSP是指(Application Specific Standard Parts专用标准部分),这是为特定使用设计而可以提供给多个用户的芯片。
2023-06-07 23:24:091

外国男人对中国女人说:call me assp是什么意思

他的名字叫 assp他是让你 叫他assp
2023-06-07 23:24:152

在入职之前,自身一定要掌握的英文缩略词都有什么?

比如ceo.coo.cfo.cio.hr.这些必须要掌握住,因为这些是最基本的用语。平时谈判的时候会用得到。
2023-06-07 23:24:234

意法半导体详细资料大全

意法半导体(ST)集团于1987年成立,是由义大利的SGS微电子公司和法国Thomson半导体公司合并而成。1998年5月,SGS-THOMSON Microelectronics将公司名称改为意法半导体有限公司。意法半导体是世界最大的半导体公司之一,2006年全年收入98.5亿美元,2007年前半年公司收入46.9亿美元。 基本介绍 公司名称 :意法半导体集团 外文名称 :STMicroelectronics 总部地点 :瑞士 成立时间 :1988年6月 经营范围 :半导体等 简称 :ST 公司概况,产品阵容,研发制造,跨国联盟,卓越原则,基本情况,产品范围,专用产品,片上系统,定制晶片,标准产品,微控制器,安全IC,存储器,分立器件,标准产品,存储器,智慧型电源,标准器件,分立器件,RF,实时时钟,ST联盟,ST大学,大学简介,课程,中国联合, 公司概况 意法公司销售收入在半导体工业第七大高速增长市场之间分布均衡(五大市场占2007年销售收入的百分比):通信(35%),消费(17%),计算机(16%),汽车(16%),工业(16%)。据最新的工业统计数据,意法半导体(STMicroelectronics)是全球第五大半导体厂商,在很多市场居世界领先水平。例如,意法半导体是世界第一大专用模拟晶片和电源转换晶片制造商,世界第一大工业半导体和机顶盒晶片供应商,而且在分立器件、手机相机模组和车用积体电路领域居世界前列。 产品阵容 以多媒体套用一体化和电源解决方案的市场领导者为目标,意法半导体拥有世界上最强大的产品阵容,既有智慧财产权含量较高的专用产品,也有多领域的创新产品,例如分立器件、高性能微控制器、安全型智慧卡晶片、微机电系统(MEMS)器件。 在移动多媒体、机顶盒和计算机外设等要求严格的套用领域,意法半导体是利用平台式设计方法开发复杂IC的开拓者,并不断对这种设计方法进行改进。意法半导体拥有比例均衡的产品组合,能够满足所有微电子用户的需求。全球战略客户的系统级晶片(SoC)项目均指定意法半导体为首选合作伙伴,同时公司还为本地企业提供全程支持,以满足本地客户对通用器件和解决方案的需求。 意法半导体已经公布了与英特尔和Francisco Partners合资成立一个独立的半导体公司的合作意向,名为Numonyx的新公司将主要提供消费电子和工业设备用非易失存储器解决方案。 研发制造 自创办以来,意法半导体在研发的投入上从未动摇过,被公认为半导体工业最具创新力的公司之一。制造工艺包括先进的CMOS逻辑(包括嵌入式存储器的衍生产品)、混合信号、模拟和功率制造工艺。在先进的CMOS领域,意法半导体将与IBM联盟合作开发下一代制造工艺,包括32nm 和 22nm CMOS工艺开发、设计实现技术和针对300mm晶圆制造的先进研究,此外,意法半导体和IBM还将利用位于法国Crolles的300mm生产设施开发高附加值的CMOS衍生系统级晶片技术。 意法半导体在全球拥有一个巨大的晶圆前后工序制造网路(前工序指晶圆制造,后工序指组装、封装和测试)。公司正在向轻资金密集型制造战略转型,最近公布了关闭一些旧工厂的停产计画。目前,意法半导体的主要晶圆制造厂位于义大利的Agrate Brianza和Catania、法国的Crolles、Rousset和Tours、美国的Phoenix和Carrollton,以及新加坡。位于中国、马来西亚、马尔它、摩洛哥和新加坡的高效封装测试厂为这些先进的晶圆厂提供强有力的后工序保障。 跨国联盟 意法半导体发展了一个全球战略联盟网路,包括与大客户合作开发产品、与客户和半导体厂商合作开发技术、与主要供应商合作开发设备和CAD工具。此外,意法半导体还与全球名牌大学和知名研究机构开展各种研究项目,通过学术研究促进工业研发活动。意法半导体还担纲MEDEA+等欧洲先进技术研究计画和ENIAC(欧洲纳米技术计画顾问委员会)等工业计画。 卓越原则 意法半导体是世界上第一个认识到环境责任重要性的国际半导体公司之一,早在上个世纪90年代就开始公司的环境责任行动,此后,在环境问题上取得了令人嘱目的进步,例如,在1994年到2006年间,每个生产单位能耗降低47%,CO2排放量降低61%。此外,意法半导体远远走在了现有法规的前面,在制造过程中几乎完全摒弃了铅、镉和汞等有害物质。自1991年起,在质量、公司管理、社会问题和环保等公司责任方面,各地区公司因为表现卓越而荣获100多项奖励。 基本情况 意法半导体(ST)公司成立于1987年,是义大利SGS半导体公司和法国汤姆逊半导体合并后的新企业,从成立之初至今,ST的增长速度超过了半导体工业的整体增长速度。自1999年起,ST始终是世界十大半导体公司之一。 整个集团共有员工近50,000名,拥有16个先进的研发机构、39个设计和套用中心、15主要制造厂,并在36个国家设有78个销售办事处。 公司总部设在瑞士日内瓦,同时也是欧洲区以及新兴市场的总部;公司的美国总部设在德克萨斯州达拉斯市的卡罗顿;亚太区总部设在新加坡;日本的业务则以东京为总部;大中国区总部设在上海,负责香港、大陆和台湾三个地区的业务。 自1994年12月8日首次完成公开发行股票以来,意法半导体已经在纽约证券交易所(交易代码:STM)和泛欧巴黎证券交易所挂牌上市,1998年6月,又在义大利米兰证券交易所上市。意法半导体拥有近9亿股公开发行股票,其中约71.1%的股票是在各证券交易所公开交易的。另外有27.5%的股票由意法半导体控股II B.V.有限公司持有,其股东为Finmeanica和CDP组成的义大利Finmeanica财团和Areva及法国电信组成的法国财团;剩余1.4%的库藏股由意法半导体公司持有。 产品范围 意法半导体是业内半导体产品线最广的厂商之一,从分立二极体与电晶体到复杂的片上系统(SoC)器件,再到包括参考设计、套用软体、制造工具与规范的完整的平台解决方案,其主要产品类型有3000多种,。意法半导体是各工业领域的主要供应商,拥有多种的先进技术、智慧财产权(IP)资源与世界级制造工艺。 半导体产品大体上可分为两类:专用产品和标准产品。专用产品从半导体制造商以及用户和第三方整合了数量众多的专有IP,这些使其区别于市场上的其他产品,例如: 片上系统(SoC)产品 定制与半定制电路 专用标准产品(ASSP),如:无线套用处理器、机顶盒晶片及汽车IC 微控制器 智慧卡IC 专用存储器 专用分立器件 (ASDu2122) 一旦客户在套用中使用了专用产品,如果不修改硬体和软体设计,通常就不能进行产品替换。 相反,标准产品是实现某种特定的常用功能的器件,这些器件一般由几个供应商提供。通常,制造商推出的标准产品可以被其他制造商的同类产品所取代,供应商间的差别主要在于成本与客户服务上。然而,一旦套用设计被冻结,标准器件在性能最佳化方面也将变成唯一的器件。 标准产品包括: 分立器件,如电晶体、二极体与晶闸管 功率电晶体,如MOSFET、Bipolar与IGBT 模拟电路构建模组,如运算放大器、比较器、稳压器与电压参考电路 标准逻辑功能与接口 众多存储器产品,如标准或串列NOR快闪记忆体、NAND快闪记忆体、EPROM/EEPROM及非易失性RAM 射频分立器件及IC 自成立时起,意法半导体就成功的实现了在市场开拓方面的平衡,将差分化的专用产品(这些产品通常不容易受到市场周期的影响)与传统的标准产品(这些产品要求较少的研发投入和生产资本密集度)相结合。意法半导体多样化的产品系列避免了对通用产品或专用产品的过分依赖。 专用产品 片上系统 专用产品系列中最复杂的就是SoC器件,该器件在单个晶片上集成了完整的系统。很多情况下,这意味着整个套用的集成,也就是说器件整合了除存储器、无源元件与显示器等无需集成的组件外的所有电子电路。然而,通常在单个晶片上集成整个系统并不是最经济的解决方案,因此SoC这个术语也用于指那些集成了大部分系统的晶片。 SoC技术拓展了半导体行业在一个给定的矽片上持续增加电晶体数目的能力。然而它还涉及很多其他因素,包括系统知识、软体技术、架构创新、设计、验证、调试及测试方法。随着半导体器件在电子设备中的普及其对设备性能、价格、开发时间的重要影响,设备制造商对半导体供应商提供的完整平台解决方案的依赖性也越来越高。如今,半导体供应商可以给客户提供完整地解决方案,包括定制的参考设计、完整的软体包(含有底层驱动软体、嵌入式作业系统以及中间件和套用软体)。 很多SoC产品仅使用CMOS技术就可以制造,但完整的SoC制造技术要求具有将COMS、bipolar、非易失性存储器、功率DMOS及微型机电系统(MEMS)之类的基础技术整合到面向系统的技术(这种技术整合了两种或更多的基础技术)中的能力。多年来,意法半导体一直是开发与采用这些面向系统的技术领域的全球领导者。 SoC器件通常集成一个或多个处理器核,意法半导体为客户提供了世界上最广泛的处理器核,包括主要用于无线与汽车套用的基于32位高性能ARM和基于PowerPC的产品。意法半导体在处理器核技术上采用了开放式方法,旨在为客户提供最合适的处理器核,而不论它是专利的、联合开发的或是第三方授权的。 定制晶片 定制与半定制IC都是为特殊用户而设计的,但它们的设计与制造方法不同。半定制晶片是包含了一系列电路单元的通用晶片,这些单元能够以多种方式实现互连,从而实现想要的功能。而定制晶片则是从零开始设计的。一些客户更喜欢设计自己的晶片(特别是包含了珍贵的IP的晶片)并根据成本、产能分配及先前的业务关系等标准,与晶片制造商达成契约制造。而其他一些客户则更愿意与晶片供应商就设计和制造这两方面达成协定,因此,这儿存在着一系列中间关系。 意法半导体提供了一系列利用世界级制造机械、无与伦比的半导体工艺技术,广泛而深入的IP系列和领先的设计方法的定制与半定制服务。这些成功案例就是采用复杂晶片,推动了大型项目,如美国的XM数字卫星无线电服务与为电子行业的各部分的战略伙伴而提供的领先的解决方案。 标准产品 ASSP(专用标准产品)是为在特殊套用中使用而设计的积体电路。实例包括数字机顶盒晶片、CMOS成像IC、电机控制电路与无线套用处理器。与为单用户的特殊套用而设计的定制IC不同,ASSP是为众多用户通用的特殊套用而设计的。很多ASSP是在与特殊客户密切合作的基础上开发出来的,即使相应器件可能会在开放市场上提供。通过以这种方式与客户合作,意法半导体能够保证其开发的产品与技术能很好地与不断变化的工业需求相匹配。 意法半导体的产品系列包括多种类型的ASSP,针对无线通信与网路、数字消费类、电脑外设、汽车、工业及智慧卡等的主要增长业务套用进行了最佳化。通过提供晶片组与完整的参考平台、公认的软体包与开发套件,公司使得其用户能够快速而经济地开发并区分其产品。 意法半导体的ASSP,包括从移动成像到多媒体处理,再到功率管理和手提式及网路连线的各种套用,满足了广泛的电信套用需求。公司提供了用于广泛的数字消费类套用的元器件,特别侧重于机顶盒、数位电视与数位相机等套用。 在电脑外设领域中,意法半导体主要集中在数据存储、列印、可视显示器、PC主机板的电源管理和电源。广泛的意法半导体ASSP功率/复杂的数字汽车系统,如引擎控制、汽车安全设备、车门模组及车载信息娱乐系统等。公司还提供用于工厂自动化系统的工业IC、用于照明和电池充电的晶片、或电源器件以及用于高级智慧卡套用的晶片。 微控制器 意法半导体的微控制器提供了各类套用,从那些首先要求成本最低的套用到需要强大实时性能与高级语言支持的套用。意法半导体全面的产品系列包含了功能强大的带有标准通信接口的8位通用快闪记忆体微控制器,如USB、CAN、LIN、UART、I2C及SPI;专用8位微控制器,可用于无刷电机控制、低噪音模组转换器(LNB)、智慧卡读卡器、USB接口的快闪记忆体驱动器和可程式系统存储器(PSM),此存储器在单晶片上集成了存储器,微控制器和可程式逻辑单元;16位的工控标准器件和基于高性能32位ARM核心的快闪记忆体控制器,具有卓越的低功耗特性及高级通信外设(包括乙太网、USB与CAN)。 意法半导体专用的微控制器解决方案有助于加速新兴的低数据率无线网路的开发,如实时定位系统(RTLS)和用于远程监视和控制的Zigbee平台。 安全IC 意法半导体为智慧卡和委托产品套用领域,连同广泛的高速产品系列、可共同使用的片上作业系统(SoC)解决方案提供了完整的安全微控制器和存储器。产品用于各类智慧卡套用,从最简单的电话卡到要求最严格的SIM与Pay-TV卡。安全性一直是意法半导体的一项专门技术,多项正式的安全证明、标准化的成员资格、意法半导体安全IC产品在许多领域(包括银行、IT安全性、电子 *** 、公共运输和移动通信)的成功套用有力的证明了这一点。 存储器 虽然众多存储器产品是标准产品,但意法半导体利用其在非易失性存储器技术领域的优势及其与领先用户间稳固的关系,开发出了各种专用EEPROM和快闪记忆体。与领先的OEM合作,意法半导体开发出了针对手机、汽车引擎控制、PC BIOS、机顶盒与硬碟驱动器之类的特殊套用进行了最佳化的创新产品。 分立器件 ASD产品基于在矽片晶元的顶端与底端实现的垂直或水平双极型架构。ASDu2122 技术使得意法半导体能为市场带来各类产品,这些产品可处理大双向电流、保持高电压,并可在单晶片中集成各类分立元件。ASD技术是通用保护元器件、ESD保护器件、EMI滤波器与具有内置过压保护的AC开关的理想解决方案。随着近期工艺的升级,ASD技术允许在单晶片中集成多个分立元器件和无源元件(如电阻、电容与电感),从而产生了IPAD系列(集成无源与有源器件)。ASD的主要套用领域是无线与固定线路通信、家电、PC及外设。 标准产品 存储器 意法半导体为领先套用提供了业内最广泛的存储解决方案。意法半导体是非易失性存储器的主要供应商,包括:NOR和NAND 快闪记忆体。 快闪记忆体组合了高密度及电可擦除性。它们普遍套用于各种数字套用中,如手机、数位相机、数位电视、机顶盒、汽车引擎控制等,这些套用需要在系统可程式能力,并需要即使在没有电源的情况下也要保留数据。 作为全球三大NOR快闪记忆体供应商之一,意法半导体提供了两种主要的快闪记忆体类型:NOR及NAND。NOR快闪记忆体架构提供快速读取性能,是在手机和其他电子器件中进行代码存储与直接片上执行的理想之选。然而,对于高密度数据存储,NAND快闪记忆体较高的密度与编程吞吐量使其成为首选。 意法半导体的非易失性存储器系列还包括EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、串列快闪记忆体及非易失性RAM(Random Aess Memory)。 其他意法半导体的存储器产品还包含多种RFID IC。跟所有标准器件一样,成本与客户服务是供应商之间的主要差异,而意法半导体正在全力最佳化这两个方面。 对于既需要快速代码读取又需要高密度的套用(如现今的多功能手机),意法半导体同样提供了先进的多晶片解决方案,在单晶片封装内组合了不同类型的存储器。 智慧型电源 意法半导体的电源器件满足了对于整合了信号处理部件(模拟和/或数字)和电动促动器的功率解决方案不断增长的需求。此设计能力不仅提供了独有的经济优势,同时还提供了稳定性、电磁性能和降低空音与重量等方面的提高。智慧型电源作为一个专业术语,包括了多种横向及纵向的技术,这些技术在在汽车市场尤其起到至关重要的作用。 VIPower(垂直智慧型电源)是众多专利智慧型电源技术的总称,这些技术中,分立的电源结构现模拟和数字控制及诊断电流相结合,从而使器件可以将分立技术的强劲性与电流的控制与诊断功能相结合。意法半导体的BCD(双极-CMOS-DMOS)生产技术结合了双极、CMOS和DMOS工艺,允许集成越来越多的系统基本功能,如电压稳压器、通信接口以及一个单独元件中的多负载驱动器。 标准器件 意法半导体标准线性器件与逻辑IC由广泛的知名标准器件及针对高度集成、空间有限的套用创新的专用器件组成。产品范围包括逻辑功能、接口、运算放大器、比较器、低功耗音频放大器、通信电路(高速模拟、红外线与RF)、功率管理器件、稳压器与参考电路、微处理器复位与监视器、模拟与数字开关、功率开关、VFD驱动器及高亮度LED驱动器。 分立器件 意法半导体是世界领先的分立功率器件供应商之一,产品范围包含MOSFET (包括运用创新的MDmeshTM第二代技术的器件)、双极电晶体、IGBT、肖特基与超快速恢复双极工艺二极体、三端双向可控矽开关及保护器件。此外,意法半导体的专利IPAD(集成有源和无源器件)技术,允许在单个晶片中整合多个有源和无源元件 RF 意法半导体的RF产品包括可以用于ISM(工业科学和医疗),手机基站之类的套用中的功率RF电晶体。 实时时钟 意法半导体提供了完整的低功耗实时时钟(RTC)产品线,从输入级产品到具有微处理器监视功能、SRAM、非易失性特性与通用减少检测管教实现的高级数据保护的高端RTC。嵌入式软体校准每个月的精度误差仅为2秒。 ST联盟 战略联盟和行业合作 自诞生以来,意法半导体公司成了创建战略联盟的先锋,并在发展与用户、供应商、竞争者、大学、研究机构和欧洲研究项目的关系方面得到了大家的公认。战略联盟和行业合作对于在半导体行业中取得成功变得越来越重要。 意法半导体公司(STMicroelectronics)已经跟包括Alcatel、Bosch、Hewlett-Packard、Marelli、Nokia、Nortel、Pioneer、Seagate、Siemens VDO、Thomson和Western Digital等在内的用户成立了几个战略联盟。用户联盟为意法半导体公司提供了宝贵的系统和套用专长及进入主要产品市场的途径,同时使得它的用户能够分担产品开发的风险,而且还能使用意法半导体公司的工艺技术和生产设施。意法半导体公司现在正在积极利用其丰富的经验和技术来扩展其面向美国、欧洲和亚洲顶级OEM的用户联盟的数量。 在继续在激烈的销售竞争中打拼的同时,与其它半导体行业制造商合作使得意法半导体公司能够增加其对高昂的研究与开发以及生产资源的投资,从而实现技术开发的互利互惠。 意法半导体公司是无线技术领域内的常胜将军,2002年与Texas Instruments合作制定和推广无线套用处理器接口的开放式标准。该创新现已扩展到更多公司,并且以MIPI联盟(创始成员有ST、ARM、Nokia和Texas Instruments)著称。联盟现在拥有超过92个成员,合作成为移动行业的领袖,其目标是制定和推广移动套用处理器接口的开放式标准。 非易失性存储器是意法半导体公司的一个战略产品部门。在该领域中,意法半导体公司已与Hynix合作了4年,联合开发了NAND Flash技术和产品。至于NOR Flash,其已与Intel就无线套用的产品指标结成了战略联盟。并且,最近与Freescale签订协定,联合开发带有嵌入式Flash(采用90nm技术制造而成)的微控制器。 意法半导体公司还与领先供应商制定了联合开发计画,如Air Liquide、Applied Materials、ASM Lithography、Axalto、Canon、Hewlett-Packard、KLA-Tencor、LAM Research、MEMC、Teradyne和Wacker,以及包括Cadence、CoWare和Synopsys在内的领先电子设计自动化(EDA)工具制造商。 至于联合研究与开发计画,意法半导体公司还加入了欧洲合作研究计画,如MEDEA+(微电子技术及其套用领域高级合作研究与开发的泛欧计画)和ITEA2(欧洲发展信息技术,软体密集型系统和服务的高级竞争前研究与开发的战略性泛欧计画)。意法半导体公司还在最近创办的欧洲技术平台 - ENIAC(欧洲纳电子行动顾问委员会,用于提供纳电子的战略性研究方向)和ARTEMIS(嵌入式智慧型与系统先进研究和技术,其作用跟嵌入式系统类似) - 中起主导作用。并且,意法半导体公司还与全球众多大学合作,包括欧洲、美国和中国的大学以及主要研究机构,如CEA-Leti和IMEC。 至于制造业,1998年意法半导体公司在中国深圳建立了其后端组装和测试厂。该厂属于意法半导体公司与深圳市海达克实业有限公司(SHIC)共同组建的合资公司性质。2004年,意法半导体公司与Hynix签署并发表了合资协定,在中国无锡建立前端存储器制造厂。合资公司是公司间NAND Flash工艺/产品联合开发关系的延伸,拥有拟于2006年底投入生产的200-mm晶圆生产线和拟于2007年投入生产的300-mm晶圆生产线。 ST大学 大学简介 以管理和现场培训需求为基准,ST大学开发并部署了在企业范围内进行的战略型培训项目。ST大学与ST的各个培训机构密切合作,推出了用于满足ST和ST大学不断变化的培训需求的培训项目课程。 在ST大学培训目录中,只有一个培训项目是同时面向ST员工和外部工程师的。该技术课程的主要目的是发展微电子制造管理领域中的技术专长。 这个独特的项目是由意法半导体公司和法国2家知名工学院 - “L"Ecole Nationale Supérieure des Mines” de Saint-Etienne 与 “l"Ecole Centrale” Marseille - 合作推出的。它为在当今要求严苛的微电子行业中起着重要作用的工程师提供技术和管理技能。为了跟上微电子行业领先技术的步伐,ST大学每年都会在业内专家、学者和研究员的支持下对整个项目进行改进。ST大学发展并改善了理论课程与套用之间的关系,以及ST业内专家和ST供应商的参与。 课程 该项目分为2个主要部分: 第1部分:着重介绍下列3个领域的基础知识和套用课程: 器件和技术:物理特征工具和制造工艺步骤。 积体电路的开发:设计工具、测试和后端操作。 生产和管理工具:生产设备管理、生产技术、可靠性和质量系统。 第2部分:为期6个月的公司(主要是在ST)实习,着重学习和项目有关的特定科目。 中国联合 意法半导体(STMicroelectronics,简称ST)与中国第一汽车股份有限公司(一汽,FAW)宣布在汽车电子技术领域进行合作,同时在一汽技术中心成立一汽—意法半导体汽车电子联合实验室。联合实验室将面向先进的汽车电子技术方案,研发范围包括动力总成、底盘、安全系统、车身、汽车信息娱乐系统、新能源技术等。一汽将在其先进的汽车电子研发平台内引入意法半导体的微控制器(MCU)、专用标准产品(ASSP)和智慧型驱动晶片。 联合实验室的主要研发方向是先进的汽车电子套用。借助意法半导体的汽车电子研发经验、技术优势、产品(如意法半导体的PowerPC系列32位微控制器和发动机管理系统高集成晶片)、原型设计和技术支持,联合实验室将推动双方在汽车电子技术方面的合作研发,例如,ECU(发动机控制单元)、TCU(变速器控制单元)和EPS(电动助力转向系统),这些研发成果将增强一汽下一代汽车的市场竞争力。 一汽集团副总工程师兼技术中心主任李骏表示:“中国汽车销售量连续三年居全球首位,随着消费者对汽车安全性和舒适度越来越关注,汽车电子市场也在高速增长,中国是一个巨大的汽车半导体市场。一汽与意法半导体建立联合实验室,有助于推动双方的深入合作,提升一汽汽车电子的核心竞争力,促进汽车电子产品的自主创新能力。” 意法半导体大中国与南亚区汽车产品部市场与套用经理Edoardo Merli表示:“我们非常高兴能够与中国领先的汽车OEM厂商一汽合作。意法半导体作为2011年中国排名第一[1]、全球第三[2]的汽车晶片供应商,在动力总成、车身、安全、信息娱乐和车载多媒体方面具有很大的优势,这种优势得到了中国汽车厂商的认可。我们相信,双方的合作也将加强意法半导体在中国汽车电子业的领先地位。”
2023-06-07 23:25:251

层型(典型剖面)(Stratotype)

1.6.1 层型定义指一个已命名的地层单位或地层界线的原始或后来被指定作为对比标准的地层剖面或界线。在一套(或段)特定的岩层序列内,层型代表其中一个特定的地层间隔,或一个特定的点,它构成了定义和识别该地层单位或所确定的地层界线的标准。这个特定的地层间隔就是地层单位的单位层型(unit-stratotype);这个特定点位就是界线层型点(boundary-stratotype point)(见图1.6.1b)。1.6.2 单位层型主要用于岩石地层单位或区域年代地层单位,说明成层地层单位的典型剖面,用做该单位定义和特征说明的参考标准,对于出露状况良好的完整的成层地层单位,其单位层型的上、下界线分别由界线层型定义(见图1.6.1a)。单位层型有如下5种:正层型(Holostratotype):原作者在提出地层单位或界线时所指定的原始层型。副层型(Parastratotype):原作者在使用原定义解释正层型时所用的补充层型。图1.6.1a-岩石地层单位(B组)的单位层型和界线层型;b-年代地层单位的界线层型,岩石层序中的界线层型点确定了B阶的下界选层型(Lectostratotype):命名地层单位时没有指定层型,原作者或他人后来选择指定的层型。新层型(Neostratotype):因正层型被毁坏或无法接近而重新指定的一个层型。次层型(Hypostratotype):为扩展正副层型的概念或界线,在正、选、新层型所在地之外所建立的做参考用的层型。次层型也称参考剖面。参考剖面(Reference section)有时在定义或修订正式地层单位时非常重要。对于已被公认的但原先没有指定层型的地层单位,可以建立一个主参考剖面(principal reference section)(即《国际地层指南》,1994年第2版所指的选层型),对于已被毁坏或由于其他原因而无法接近的单位层型或界线层型,也可以建立一个主参考剖面(即《国际地层指南》,1994年第2版所指的新层型)。1.6.3 界线层型主要用于全球年代地层单位,构成两个年代地层单位之间界线的定义和识别标准。通常由国际权威机构批准,以全球界线层型剖面和层型点(Global Stratotype Section and Point,即GSSP)表示。如果为了更好地理解在不同的相或古地理背景下的单位或界线,而需要一些参考剖面及参考点时,可以定义一个辅助层型(auxiliary stratotype)或为全球层型剖面和点位(GSSP)定义一个辅助层型剖面和层型点(Auxiliary Stratotype Section and Point,即ASSP)。该辅助层型点从属于全球界线层型剖面和点(GSSP)。此外,由一个以上分开在不同剖面上的地层间隔联合组成的单位层型称为复合层型(Composite-stratotype)。构成复合层型的任一间隔称做组分层型(Component-stratotype)。
2023-06-07 23:25:321

原型验证平台,什么是原型验证平台

原型=prototype验证=verify在ASIC或其它ASSP芯片的开发过程中,直接流片的成本很高,通常采用的方法是先将逻辑设计进行综合、布局、布线,在FPGA平台进行验证,而FPGA具有可编程的特点,可以反复修改逻辑设计,直至达到满意的结果,避免多次流片造成的高成本/高风险;
2023-06-07 23:25:411

音频流简介及详细资料

研究背景 简介 一直以来,音频数据本身仅仅是一连串非语义符号表示的不透明二进制流,缺乏对声音类型结构化组织和高层语义的描述,给音频信号的深入处理和分析工作带来了诸多困难,使自动语音识别(Automatic Speech Recognition,ASR)和基于内容的音频检索(Content-Based Audio Retrieval,CBAR)等套用受到了极大限制。如何从连续音频流信号中提取音频类型的结构化信息,将其按语音、音乐和环境音等不同的声学类型切分成类别单一的音频片段,标注出各音频片段的分界点位置和类型信息,即连续音频流分类,是解决音频信息深度处理、分析和检索等问题的关键技术和基础前提,同时也是辅助视频信号自动切分和分类的强有力的工具,有着广泛的套用前景。 结构化信息 连续音频流分类给出的音频类型结构化信息,是建立音频资料库索引、实现底层结构单元向高层语义结构单元关联的基础。CBAR技术通常要分析音频流的结构和语义,从不同类型的音频信号中提取高层语义信息,如对语音部分抽取关键字,建立它们的结构化的组织和索引,使"无序"的音频流变得"有序",以便于用户的检索和浏览。可见,如果不知道音频流的所包含的声音类别和及其位置信息,高层语义的提取根本无从谈起。 相关介绍 连续音频流分类技术可以作为视频镜头自动分割和分类的有效的辅助工具。由于受技术发展的限制,单独依靠现有的图像和视频处理技术还不能使计算机"理解"视频的内容,视频镜头切分精确度也不高,不能对故事单元进行基于内容的分类。如果利用连续音频流分类技术将视频流所对应的音频进行切分,利用较实用的语音识别技术对其中的语音部分进行语音识别,利用已经比较成熟的全文检索技术对语音识别结果进行处理,提取文本摘要,则可以较好地解决这些问题。音视频编辑领域的知识和一些基本规则告诉我们,如果视频流所对应的音频类型没有发生变化,其对应的视频可以不进行分割处理。因此通过对音频流恰当的切分,可以大大提高视频的分割效率和准确率。 此外,连续流音频流分类技术还可以用在音频内容理解(Audio Content Understanding)、音频监测(Audio Surveillance)和音频场景分析(Audio Scene Analysis)等领域。总之,音频数据自身的特点和现有技术的制约,使得对音频流的进一步处理受到了限制,而连续音频流分类技术可以很好解决这一问题,为音频流结构化和音频信息深度分析和利用提供了坚实的基础。 分类技术 利用连续音频流分类技术可以为ASR提供单一的语音片段,是现有语音识别系统走向实际套用的先决条件之一。现有的连续语音识别系统对输入语音信号的要求近乎苛刻,一般不仅不能包含诸如音乐、环境音等其它种类的声音,而且要有较高的信噪比。ASR则要求对现实生活中的音频流如广播新闻,影视、会议、演讲等录音进行自动转录(Transcribe),生成包含语义内容、位置和其它信息的"抄本"(Transcription)。我们知道,以上列举出的这些音频流通常由语音和其它类型的声音连线而成,如果不对其预先分段并去除非语音部分,必定会对语音识别系统的性能产生严重的影响。 流媒体 定义 流媒体就是指在网路上使用流式传输技术的连续时基媒体,是通过网路传输的音频、视频或多媒体档案。关键是流式传输技术,流式传输主要指通过网路传送媒体(如视频、音频)的技术总称,其特定含义为通过网路将影音节目传送到PC单机。 实现流式传输分两种方法:实时流式传输方式(Realtime streaming)和顺序流式传输方式(progressive streaming)。 常用格式 网路上常见的流格式音频的格式主要有美国Realneork公司的*.RA格式和微软公司的*.WMA格式,另外还有一个多用于专业领域的美国苹果公司*.MOV格式,在这三种格式中,MOV格式的音质是最好的,特别是MIDI方面,支持GS和GM两种音色,播放效果要明显的强于Windows media player,下面就给大家详细的介绍这几种格式的特点: RealAudio格式 这是美国RealNeork公司的一个元老级的产品,也是目前网上最流行的流式媒体技术。许多Inter的音乐台、视频点播站点都采用它。RealMedia其中包含RealAudio(声音档案)、RealVideo(视频档案)和RealFlash(矢量动画)这三类档案。 QuickTime 格式 QuickTime与RealMedia一样,完合兼容于苹果机与PC机。在同样网速和档案大小的情况下,它的音像品质是最好的。它由三个不同部分所组成:QuickTime Movie(电影)档案格式,QuickTime媒体抽象层、QuickTime内置媒体服务系统。 Windows Media Audio格式 WMA(Windows Media Audio)是来自于微软的重量级选手,它的前身是微软公司的Netshow,后台强硬,也是为数众多Windows使用者最为熟悉的,它的核心技术是ASF(Advanced Streaming Format,高级流格式)。ASF格式支持任意的压缩/解压缩编码方式,并可以使用任何一种底层网路传输协定,具有很大的灵活性,比较MPEG之类的压缩标准增加了控制命令脚本的功能,它以减少数据流量但保持档案质量的方法来实现流式多媒体内容发布。 网路上风行的FLASH虽然是矢量动画技术,可是它一样的可以包含声音信息,也支持流式传输,高品质FLASH的SWF格式档案声音更加出众,而且档案体积更小,也有使用这种技术做的音乐网站,在欣赏的时候需要你安装一个FLASH的外挂程式,以2013年的网路速度而言,区区几百KB的FLASH外挂程式一会儿的工夫就可以安装完成,然后你就可以欣赏SWF格式的音乐了。 流媒体传输协定 在浏览器中,我们常见的地址是以:和ftp:开头的。Web伺服器也可以通过协定来处理流式媒体档案,然而Web伺服器本身的设计并不能有效率地传送串流媒体档案。 串流媒体必须占用一个不间断地封包串流,而且会长时间地与伺服器保持连线状态,如果有太多访客同时上线观看,效能便会大打折扣。为了解决这个问题,流格式媒体档案有它自己的一套协定。 1、即时串流通讯协定(Real Time Streaming Protocol,RTSP):是RealNeorks公司协助建立的一个用来传送串流媒体的开放网页标准。虽然它必须使用一种称为RealServer的特殊伺服器,然而RTSP能够提升流式媒体影片的品质,改善传送效率以及提供更佳的高流量处理功能。如果你的ISP具备了RealServer服务,那么建议你使用RealServer而不要使用Web伺服器来传送串流媒体档案。 2、MMS(Media Server protocol,MMS):这是微软定义的一种流格式传输协定。 3、实时传输协定(Theater Server protocol,RTP):这是用于Inter上针对多媒体数据流的一种传输协定。RTP被定义为在一对一或一对多的传输情况下工作,其目的是提供时间信息和实现流同步,通俗的说也就是网路上的WEB伺服器。 4、资源预订协定(ResourceReserveProtocol,RSVP),由于音频和视频数据流比传统数据对网路的延时更敏感,要在网路中传输高质量的音频、视频信息,除频宽要求之外,还需其他更多的条件。RSVP是正在开发的Inter上的资源预订协定,使用RSVP预留一部分网路资源(即频宽)。 这些协定代替了和ftp,而是像mms:61.139.25.41/quake,以MMS或RTSP等开头。 播放器 以上三种格式各有各的播放器,它们分别是RealPlayer、QuickTime Player和Windows Media Player。 1、RealPlayer Real格式具有很高的压缩比和良好的压缩传输能力,特别适合网路上播放或是线上直播方式,在视频流媒体格式中RM格式是素质最差的,可是档案也是最小的,低速网用户(非ADSL和宽频网用户)也可以很轻松地线上欣赏视频节目。RealPlay播放器使用也非常方便,系统的资源占用在其他二者之间,是低配置用户的最好选择。凭著ReaNeorks公司优秀的技术,它已占领了半数以上的网上流式视音频点播市场。 2、QuickTime Player QuickTime Player可以通过Inter提供实时的数位化信息流、工作流与档案回放功能。QuickTime档案的素质极高,缺点是档案个头比较大,当然,高清晰、高质量的画面往往就意味着更大尺寸的档案,更多的传输时间。正因如此,在网路上QuickTime只能用做一些多媒体广告、产品演示、高清晰度影片等需要高清晰表现画面的视频节目上。在网路速度不流畅的地方观看起来有些吃力,而且QuickTime Player的系统资源占用较高,要求你的机器配置较好才能胜任,最好是拥有快速CPU和更大容量的记忆体的高性能电脑。 现在QuickTime PLAYER的最新版本是5.0,注意,QuickTime Player播放器可不是免费的,大家可以到苹果公司的主页上去下载。 3、Windows Media Player WMA的播放器使用Windows自带的Windows Media Player就可以了,WMA格式音乐的一大特点不需要额外的播放器,你在"开始-程式-附属档案-娱乐"中就可以找到它的身影。其制作、发布和播放软体也与Windows NT/2000/9x集成在一起,更加强大的是Windows Media增加了著作权保护功能,可以限制播放时间、播放次数甚至于作业系统等,这对于被盗版搅得焦头乱额的音像出版商们可是一大福音。WindowsMedia档案比起RealMedia档案大些,线上播放状态下比QuichTime可以获得更快、更流畅的效果。 流函式 音频流函式是用来用来播放大到不能放在常规 SAMPLE 结构里的数字音乐用的, 也因为这些档案太大而你想每次载入需要数据的一部分,或者是你想做些聪明的活, 比如产生飞行的波形。 AUDIOSTREAM *play_audio_stream(int len,bits,stereo,freq,vol,pan); 这个函式创建一个新的音频流然后开始播放。 长度是每个传输缓冲(采样声音的) 的大小, 它至少要有 2K: 大点的缓冲更经济些, 需要更少的更新, 但是在你提供数据和它实际播放之间,有更多的等待。 bits 参数必须是 8 或 16, freq 是数据的采样频率, vol 和 pan 值使用和常规采样声音播放例程相同的 0-255 范围. 如果一但开始播放了,你想调整音调,音量,或音频流的 pan 值, 你可以使用常规的 voice_*() 函式, 以 stream->voice 作为参数。采样声音数据永远是无符号格式,立体声波形由交替左/右采样组成。 void s_audio_stream(AUDIOSTREAM *stream); 当一个音频流不再需要时撤销它. void *get_audio_stream_buffer(AUDIOSTREAM *stream); 当音频流正在播放时, 你必须以有规律的间隙调用这个函式 来提供采样声音数据的下一个缓冲 (缓冲区越小, 它就必须被更频繁的调用). 如果返回 NULL, 音频流还有许多要播放, 因此你不必去做什么。 如果返回了值, 它就是下一个缓冲将被播放的位置, 你应当将合适数量的采样声音 (无论你在创建流时指定了多少) 载入到 那个地址, 比如你使用 fread() 从磁碟档案里载入。 在用数据填充完缓冲区后, 调用 free_audio_stream_buffer() 来只是新的数据已经有效了. 注意这个函式不能在时钟句柄里调用。 void free_audio_stream_buffer(AUDIOSTREAM *stream); 在 get_audio_stream_buffer() 后调用这个函式, 返回一个非 NULL 地址, 来指示你已经载入一块新的采样声音到那个地址, 数据就准备被播放了。 音频流 在2007年拉斯维加斯国际消费电子展(CES)期间,意法半导体(ST)现场演示了采用蓝牙接口、红外线接口和Sound Terminal技术的实际便携套用。Sound Terminal未来产品包括集成这些接口和其它接口的ASSP(专用标准产品)。 "Sound Terminal"是ST提出的一个数字音频流概念,其目的是把高音质、低功耗和低制造成本带到人气很旺的高速增长的套用领域,如平板电视机、无线产品和个人音响系统。单封装解决方案的高集成度,结合从声源到扬声器的纯数字流处理能力,为设计低成本、高效能、外观紧凑的音响系统提供了可能。 Sound Terminal产品家族的初期产品包括一系列高音质音频的单片系统,例如:已经上市的用于大功率(20-80W)、中等功率(10-20W)和小功率(低于 1.5W) 的STA326和STA323 ,这些产品单片集成了数字音频处理器、数字放大器控制器和一个DDX数字功率输出级。 STA326的功率输出可以驱动2个30W声道或1个60W的声道,通过数字控制,很容易把该产品配置成几个不同的输出模式;该产品有多种处理和均衡选项,包括每声道最多4个可程式28位二阶滤波器和低/高音控制。各种听音条件预设模式可以缩短软体开发时间,简化产品设计过程。 因为是全数字流,放大链中的信号处理无需模数转换器,所以这是一个保证整体音频质量的低成本解决方案,信噪比(SNR)高达100dB,宽动态范围。Sound Terminal晶片原型已经开发成功,采用ST具有自主智慧财产权的数字调制技术(FFX)的放大器是一个以便携为目标套用的产品实例,该晶片的放大效率高达94%,在当前市场上居最高水平;能够为便携系统提供"不发热的音频功率",有助于大幅度延长电池使用时间,而且还大幅度降低了散热器的尺寸,为先进的产品设计提供了可能。 内置数字处理功能特别有助于提高音质,按照特定的音频套用定制功能;例如,随着平板电视机设计变得更薄,扬声器变得更小,机箱声学特性越来越不理想,修正音频信号是十分重要的。 此外,数字流技术非常适合与采用散射红外线、蓝牙无线2.0EDR(增强数据速率)、WiFi和UWB(超级宽频)技术的无线扬声器和无线耳机的音频接口整合。
2023-06-07 23:25:471

谁有手机电路图元器件英文缩写?只要手机的,谢谢!比如:射频收发核心电路射频即Radio Frequency,通常缩

手机"VIB"电路能安插其它元件吗比如窃听定位
2023-06-07 23:25:552

意法半导体是哪里的

哇塞
2023-06-07 23:26:133

基带芯片为什么处理数字中频信号

因为专用芯片(ASSP)缺乏相应的灵活性。基带芯片处理数字中频信号是因为因为专用芯片(ASSP)缺乏相应的灵活性,能够很好的协调处理能力和灵活性之间的矛盾,基带芯片是用来合成即将发射的基带信号,或对接收到的基带信号进行解码。
2023-06-07 23:26:201

ST芯片是哪个国家品牌

意法半导体(ST)集团于1987年6月成立,是由意大利的SGS微电子公司和法国Thomson半导体公司合并而成。百度搜索 “意法半导体是哪国的牌子” 其他网友回答的很全面
2023-06-07 23:26:294

视频处理的影响

多数消费类视频产品是以解压过程中和解压后所采用的视频处理技术以及算法来区分的。一些视频处理技术可能会采用不同于下面所列举的方式来实现,而且下列技术在不同的应用场合可能有不同的名称。 为了创造一个成功的数字视频产品,你需要选择合适的处理器。听起来简单,当然,实际上并不简单。其中的一个大问题是,有太多的处理器款式供你选择:通用CPU,FPGA,DSP,可配置处理器,固定功能芯片以及其它类型的处理器等。令问题更加复杂的是,数字视频是一个迅速发展的领域,标准不断发展和变化。因此,在数字视频领域,处理器适应变化的能力比在其它应用中显得更加重要,但是,这种灵活性通常是以降低效率为代价的。选择处理器的时候,难免要作一些折衷,但关键是要知道,如何选择处理器,才不至于使产品的成功打折扣。 由于有这么多的处理器供你选择,实际上不可能挨个都看一遍——甚至无法详细了解各个主要大类,可以采用分级方法:利用对你来说最重要的筛选标准先排除不适合的候选者。进行初选时普遍采用的标准包括:* 速度。数字视频任务,像许多其它类型的信号处理任务一样,都要求处理器承担沉重的计算任务。针对目标应用,仔细分析处理器是否具有足够的速度,最好使用BDTI Video Benchmarks等面向视频的测试基准。* 价格。虽然芯片价格很重要,但每通道成本或者总体系统成本可能更加重要。* 能源效率。在多数情况下,评估能源效率比功耗更有意义,因为能源使用情况决定着电池寿命。* 灵活性。有些种类的处理器比其它种类的处理器更加灵活,可以适应未来产品特点的变化,或者允许现场升级,如增加对新压缩算法的支持。但是,一般来说,处理器灵活性越高,其成本和能源使用效率越低。* 开发工具质量。处理器是否拥有用于支持信号处理应用(或者更进一步,视频应用)开发的工具,可能对于开发时间产生重大影响,并进而影响产品上市时间。* 与早期处理器型号的兼容性。如果你期望重复使用早期产品所用的软件,这点通常很重要。* 供应商路线图。供应商的产品路线图,是否非常符合你的后续产品开发计划?在你的产品寿命期内,处理器能否得到支持或者升级?* 以芯片或者可授权内核形式销售。有些处理器是作为封装好的现成芯片出售的;有些是作为可授权知识产权出售的――通常被称为可授权内核,用于制造定制芯片。本文所讨论的多数处理器种类都既包括封装式芯片,也包括可授权内核。各类处理器优劣重点介绍数字视频所普遍采用的六类处理器:固定功能引擎,专用标准产品(ASSP),媒体处理器,DSP,嵌入式RISC处理器和FPGA。这些范围覆盖了最专业的和最灵活的产品,讨论各类处理器的优劣,并对每类中的一个具体产品进行分析。首先谈谈固定功能引擎。它采用硬布线处理器结构,以获得最大效率;它们不使用指令流,不可以编程。硬布线逻辑牺牲了灵活性,以换取非凡的处理速度、能源效率,而且经常能够取得成本效益。采用固定功能引擎可以简化系统设计和测试。由于固定功能引擎不可编程,产品开发人员就不必学习编程工具,也不必集成多个软件模块。而且他们不需要考虑,处理器所执行的多个任务是否可能以其不希望的方式相互影响,是否会干扰系统的实时特点等问题。固定功能引擎一般以可授权知识产权(IP)的方式提供,以便于集成到定制芯片之中。采用这种形式,固定功能引擎最适合于手机等大批量应用。固定功能引擎有时也可以芯片的形式提供。固定功能视频芯片,如MPEG-2解码器芯片,能够以较低的成本给现有产品增加功能,特别是当产品具有能够处理需求控制和用户接口功能的主机处理器的时候。比如Hantro公司的5150 MPEG-4视频解码器,这是以IP形式出售的固定功能引擎的例子。该引擎准备用作协处理器,附属于一个通用处理器,后者处理一些MPEG-4解码所需要的要求不太高的子任务。固定功能硬件的主要缺点是缺乏灵活性。由于它不可编程,产品开发人员就不能很容易地修改固定功能硬件,使其支持新标准或者不同的功能。这点很令人关切,因为许多视频应用目前来看仍然不够成熟,标准和功能变化很快。因此,固定功能引擎经常被用作专用标准产品的一部分,下面就说一说ASSP。专用标准产品(ASSP)是集成度很高的专用芯片。可以与专用集成电路(ASIC)作一番比较。ASIC是由系统公司设计的,并用于它们自己的产品之中。而ASSP是由芯片公司设计的,作为现成的芯片提供给多家系统开发商。由于开发一种复杂芯片又费钱又耗时,ASSP通常用于已达到大批量的已定型产品,或者预计会有较高的批量的产品。比如卓然公司的Vaddis 5R,是面向DVD录像机中音频和视频处理的高度专业化的芯片。所需要的关键算法都已确定:最突出的是MPEG-2视频压缩与解压缩。然Vaddis 5R包含两个RISC处理器,但它在执行计算量最大的任务时使用固定功能硬件加速器,如MPEG-2视频解码和彩色空间转换。出于上述原因,Vaddis 5R (和其它类似的ASSP)也具有固定功能引擎的优缺点:拥有良好的性能和能源效率,但灵活性有限。灵活性有限,意味着系统设计人员在设计产品时,使其产品与采用同样ASSP的其它产品容易雷同。它还意味着,系统设计人员高度依赖芯片供应商的路线图,因为需要新款芯片支持显著不同的功能。还有一种是主要依赖可编程处理器执行繁重视频任务的ASSP,为获得灵活性而牺牲了能源效率和成本效率。这类ASSP通常与视频解码器和硬件驱动器等关键软件相捆绑,使系统开发人员不必从事许多低级软件的开发工作。但是,与采用基于固定功能硬件的ASSP相比,仍可能需要在软件开发和集成方面花费很大的精力。媒体处理器在专业化/灵活性方面处于ASSP与数字信号处理器(DSP)之间。媒体处理器针对与音频和视频处理相关的任务进行了优化,不象DSP那样面向广泛的信号处理任务进行优化。媒体处理器通常要采用多个处理器,包括一个类似于DSP的主处理引擎、两个或三个专用协处理器,以及音频与视频专用外设。飞利浦的PNX1500就是一款媒体处理器。像典型的媒体处理器一样,PNX1500基于一个功能强大的、高度并行的处理器内核,该内核在执行视频处理任务时具有较高的效率。PNX1500还包含几个固定功能硬件加速器和专用外设器件,这也是典型的媒体处理器的特点。主处理器内核处理压缩等复杂的视频任务,系统设计人员可以对该内核进行编程。与卓然公司的Vaddis 5R类似, PNX1500非常适合于MPEG-2解码。但与卓然的ASSP不同的是,PNX1500具有足够的灵活性,可以与H.264等其它视频压缩标准一同使用。当然,这种灵活性也是有代价的:与固定功能硬件相比,软件视频解码器的能源与成本效率通常较低。 由于媒体处理器采用多个不同的处理器,与其它可编程处理器相比,给软件开发造成极大的困难。例如,为了执行一项特定的视频任务,一般必须给两个或更多的处理单元编程,并对它们加以协调。为了帮助弥补这个缺点,媒体处理器供应商经常提供优化的软件构件库。媒体处理器供应商通常强调在开发软件时使用C或C++,不推荐或支持汇编语言。之所以强调用高级语言开发软件,是为了使程序员不需面对处理器架构方面的许多复杂问题。但不足之处是,程序员必须依赖编译器来生成有效代码,而这不总是现实的。开发人员可能需要投入很大的精力,手工调整其高级语言代码,以获得最佳性能。数字信号处理器(DSP)是为一系列信号处理应用所设计。与媒体处理器相比,DSP所采用的规格不太偏重于视频处理,而且并行性较低。为了弥补并行性较低的弱点,在给定的应用中,DSP的指令执行速度通常必须高于媒体处理器。较高的指令速度可能导致系统设计复杂化,并增加能耗。另一方面,与嵌入RISC处理器(下面将会说到)相比,DSP在处理视频任务时需要的时钟速度较低。DSP的关键优势在于其灵活性和强大的应用开发工具。
2023-06-07 23:26:591

SOC和ASIC有啥区别(帮忙具体解释下)

ASIC一般指芯片,而SOC指系统级,可以由芯片搭建。一般不去区分二者,一般区分ASIC和FPGA两个实现大方向
2023-06-07 23:27:134

IP行业是做什么的?

IP(IntellectualProperty)就是常说的知识产权。美国Dataquest咨询公司将半导体产业的IP定义为用于ASIC、ASSP、PLD等当中,并且是预先设计好的电路功能模块。IP、固IP和硬IP。x0dx0ax0dx0a软IP用计算机高级语言的形式描述功能块的行为,但是并不涉及用什么电路和电路元件实现这些行为。软IP的最终产品基本上与通常的应用软件大同小异,开发过程与应用软件也十分相象,只是所需的开发软、硬件环境,尤其工具软件要昂贵很多。软IP的设计周期短,设计投入少,由于不涉及物理实现,为后续设计留有很大的发挥空间,增大了IP的灵活性和适应性。当然软IP的一个不可避免的弱点是:会有一定比例的后续工序无法适应软IP设计,从而造成一定程度的软IP修正。x0dx0ax0dx0a固IP是完成了综合的功能块,有较大的设计深度,以网表的形式提交客户使用。如果客户与固IP使用同一个生产线的单元库,IP的成功率会比较高。x0dx0ax0dx0a硬IP提供设计的最终阶段产品:掩膜。随着设计深度的提高,后续工序所需要做的事情就越少,当然,灵活性也就越少。不同的客户可以根据自己的需要订购不同的IP产品。
2023-06-07 23:27:331

语音信号处理和图像信号处理哪个好

语音信号处理http://baike.baidu.com/view/3062256.html?wtp=tt数字信号处理http://baike.baidu.com/view/162096.html当然是图像好点咯美国已完成称为GA的数字高清晰度电视的标准制定及其进入实用的时间表,欧洲则在开发独立的数字电视方案,并制定了数字电视广播DVB的标准。这一切都是以数字电视信源编码的一系列技术与标准的成熟为基础的。信源编码作为数字电视系统的核心构成部分,直接决定了数字电视的基本格式及其信号编码效率,决定了数字电视最终如何在实际的系统中实现。 一.数字电视的信源编码 一个完整的数字电视系统包括数字电视信号的产生、处理、传输、接收和重现等诸多环节。数字电视信号在进入传输通道前的处理过程一般如图1所示: 电视信号在获取后经过的第一个处理环节就是信源编码。信源编码是通过压缩编码来去掉信号源中的冗余成分,以达到压缩码率和带宽,实现信号有效传输的目的。信道编码是通过按一定规则重新排列信号码元或加入辅助码的办法来防止码元在传输过程中出错,并进行检错和纠错,以保证信号的可靠传输。信道编码后的基带信号经过调制,可送入各类通道中进行传输。目前数字电视可能的传输通道包括卫星,地面无线传输和有线传输等。 将低成本FPGA用于视频和图像处理FPGA已经存在了十几年的时间,在传统概念中,FPGA价格昂贵,设计门槛较高,多用于通信和高端工业控制领域。最近几年,低成本FPGA不断推陈出新。半导体工艺的进步不仅带来FPGA成本的降低,还使其性能显著提升,同时不断集成一些新的硬件资源,比如内嵌DSP块、内嵌RAM块、锁相环(PLL)、高速外部存储器接口(DDR/DDR2)、高速LVDS接口等。在ALTERA公司90nm的Cyclone II FPGA内部,还可以集成一种软处理器Nios II及其外设,它是目前FPGA中应用最为广泛的软处理器系统。作为一个平台,FPGA显然已经非常适合于高性能低成本的视频和图像应用。它可以帮助用户灵活定制系统,缩短产品研发和更新换代的周期,使用户紧跟技术和市场发展潮流。本文首先将回顾视频和图像处理的应用领域、视频处理流程、发展趋势,以及设计者必须应对的挑战。然后,对FPGA内部的资源和算法实现进行简单介绍。随后,本文将介绍Altera公司及其合作伙伴在视频图像应用领域提供给用户的解决方案。最后给出设计视频图像处理系统的工具和流程。技术与挑战视频和图像处理技术的应用非常广 泛,主要包括数字电视广播、消费类电子、汽车电子、视频监控、医学成像,以及文档影像处理等领域。一个典型的视频处理系统包括:视频采集、预处理、压缩、信号发送和接收、解压缩、后处理,最后到显示控制部分,驱动显示设备。在视频处理系统的所有组成模块中,都有FPGA成功应用的案例。视频和图像处理技术可谓日新月异,研究人员对于视频图像和人眼感官的研究从来就没有停止过,新需求不断催生技术革新和新标准,主要体现在以下几个方面:从标清(SD)到高清(HD),分辨率越来越高,需要实时处理的数据量越来越大;视频和图像压缩技术日趋复杂,如MPEG-4第2部分,H.264 AVC,JPEG2000等;对视频系统智能的要求提高,如智能拍摄、运动检测、对象识别、多通道、画中画、透明叠加效果等;消费者欣赏能力的提高,希望图像更稳定、更清晰、色彩更艳丽、亮度更符合人眼的感官需求。虽然技术难度不断增大,成本和上市时间依然是视频和图像应用系统设计中两个重点考虑因素。同时,产品差异化和自主知识产权也是一些有想法的中国公司追求的目标。如果单纯使用现成的专用视频图像处理芯片(ASSP),根本无法设计出具有自主知识产权的产品,无法体现产品的差异化。而且,使用ASSP很难做到灵活、易升级、以及紧跟技术发展的潮流。厂商自己开发ASIC的周期又太长,前期投入太大,风险很高,无法保证投资回报,也无法保持技术领先。目前,就算功能最为强大的单片DSP处理器也不能实时压缩(H.264)高清视频。而使用DSP阵列的成本让人难以接受,同时多片DSP处理器将带来系统分割和调试的困难,增加系统的不稳定性,增加PCB成本。如果使用单片FPGA,或采用FPGA加DSP处理器协同工作的方案,这些困难均可迎刃而解。总之,使用FPGA技术可以帮助用户在保证合理成本的前提下,开发高性能的产品。利用FPGA的可灵活升级性,用户可以满足千变万化的市场需求,使自己的产品迅速推陈出新,紧跟业界发展趋势,做出有自己特色、自主知识产权的产品,始终保持产品的差异化和领先性。
2023-06-07 23:27:481

SOT23-5封装的 AAF33为什么芯片?那位大哥知道,谢谢。

我来说说吧:1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以 代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸 点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。 封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不 用担心QFP 那样的引脚变形问题。 该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可 能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有 一些LSI 厂家正在开发500 引脚的BGA。 BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为, 由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。 美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为 GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫)以 防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中采用 此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。 3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有 玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中心 距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗 口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1.5~ 2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、 0.4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded chip carrier) 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。 带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为 QFJ、QFJ-G(见QFJ)。 8、COB(chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基 板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆 盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片 焊技术。 9、DFP(dual flat package) 双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。 10、DIC(dual in-line ceramic package) 陶瓷DIP(含玻璃密封)的别称(见DIP). 11、DIL(dual in-line) DIP 的别称(见DIP)。欧洲半导体厂家多用此名称。 12、DIP(dual in-line package) 双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。 DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。 引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm 和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。但多数情况下并不加区分, 只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP 也称为cerdip(见cerdip)。 13、DSO(dual small out-lint) 双侧引脚小外形封装。SOP 的别称(见SOP)。部分半导体厂家采用此名称。 14、DICP(dual tape carrier package) 双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于利 用的是TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为定制品。 另外,0.5mm 厚的存储器LSI 簿形封装正处于开发阶段。在日本,按照EIAJ(日本电子机械工 业)会标准规定,将DICP 命名为DTP。 15、DIP(dual tape carrier package) 同上。日本电子机械工业会标准对DTCP 的命名(见DTCP)。 16、FP(flat package) 扁平封装。表面贴装型封装之一。QFP 或SOP(见QFP 和SOP)的别称。部分半导体厂家采 用此名称。 17、flip-chip 倒焊芯片。裸芯片封装技术之一,在LSI 芯片的电极区制作好金属凸点,然后把金属凸点 与印刷基板上的电极区进行压焊连接。封装的占有面积基本上与芯片尺寸相同。是所有封装技 术中体积最小、最薄的一种。 但如果基板的热膨胀系数与LSI 芯片不同,就会在接合处产生反应,从而影响连接的可靠 性。因此必须用树脂来加固LSI 芯片,并使用热膨胀系数基本相同的基板材料。 18、FQFP(fine pitch quad flat package) 小引脚中心距QFP。通常指引脚中心距小于0.65mm 的QFP(见QFP)。部分导导体厂家采 用此名称。 19、CPAC(globe top pad array carrier) 美国Motorola 公司对BGA 的别称(见BGA)。 20、CQFP(quad fiat package with guard ring) 带保护环的四侧引脚扁平封装。塑料QFP 之一,引脚用树脂保护环掩蔽,以防止弯曲变形。 在把LSI 组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(L 形状)。这种封装 在美国Motorola 公司已批量生产。引脚中心距0.5mm,引脚数最多为208 左右。 21、H-(with heat sink) 表示带散热器的标记。例如,HSOP 表示带散热器的SOP。 22、pin grid array(surface mount type) 表面贴装型PGA。通常PGA 为插装型封装,引脚长约3.4mm。表面贴装型PGA 在封装的 底面有陈列状的引脚,其长度从1.5mm 到2.0mm。贴装采用与印刷基板碰焊的方法,因而也称 为碰焊PGA。因为引脚中心距只有1.27mm,比插装型PGA 小一半,所以封装本体可制作得不 怎么大,而引脚数比插装型多(250~528),是大规模逻辑LSI 用的封装。封装的基材有多层陶 瓷基板和玻璃环氧树脂印刷基数。以多层陶瓷基材制作封装已经实用化。 23、JLCC(J-leaded chip carrier) J 形引脚芯片载体。指带窗口CLCC 和带窗口的陶瓷QFJ 的别称(见CLCC 和QFJ)。部分半 导体厂家采用的名称。 24、LCC(Leadless chip carrier) 无引脚芯片载体。指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。是高 速和高频IC 用封装,也称为陶瓷QFN 或QFN-C(见QFN)。 25、LGA(land grid array) 触点陈列封装。即在底面制作有阵列状态坦电极触点的封装。装配时插入插座即可。现已 实用的有227 触点(1.27mm 中心距)和447 触点(2.54mm 中心距)的陶瓷LGA,应用于高速逻辑 LSI 电路。 LGA 与QFP 相比,能够以比较小的封装容纳更多的输入输出引脚。另外,由于引线的阻抗 小,对于高速LSI 是很适用的。但由于插座制作复杂,成本高,现在基本上不怎么使用。预计 今后对其需求会有所增加。 26、LOC(lead on chip) 芯片上引线封装。LSI 封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片的 中心附近制作有凸焊点,用引线缝合进行电气连接。与原来把引线框架布置在芯片侧面附近的 结构相比,在相同大小的封装中容纳的芯片达1mm 左右宽度。 27、LQFP(low profile quad flat package) 薄型QFP。指封装本体厚度为1.4mm 的QFP,是日本电子机械工业会根据制定的新QFP 外形规格所用的名称。 28、L-QUAD 陶瓷QFP 之一。封装基板用氮化铝,基导热率比氧化铝高7~8 倍,具有较好的散热性。 封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本。是为逻辑LSI 开发的一种封装, 在自然空冷条件下可容许W3的功率。现已开发出了208 引脚(0.5mm 中心距)和160 引脚(0.65mm 中心距)的LSI 逻辑用封装,并于1993 年10 月开始投入批量生产。 29、MCM(multi-chip module) 多芯片组件。将多块半导体裸芯片组装在一块布线基板上的一种封装。根据基板材料可分 为MCM-L,MCM-C 和MCM-D 三大类。 MCM-L 是使用通常的玻璃环氧树脂多层印刷基板的组件。布线密度不怎么高,成本较低。 MCM-C 是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使 用多层陶瓷基板的厚膜混合IC 类似。两者无明显差别。布线密度高于MCM-L。 MCM-D 是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或Si、Al 作为基板的组件。 布线密谋在三种组件中是最高的,但成本也高。 30、MFP(mini flat package) 小形扁平封装。塑料SOP 或SSOP 的别称(见SOP 和SSOP)。部分半导体厂家采用的名称。 31、MQFP(metric quad flat package) 按照JEDEC(美国联合电子设备委员会)标准对QFP 进行的一种分类。指引脚中心距为 0.65mm、本体厚度为3.8mm~2.0mm 的标准QFP(见QFP)。 32、MQUAD(metal quad) 美国Olin 公司开发的一种QFP 封装。基板与封盖均采用铝材,用粘合剂密封。在自然空冷 条件下可容许2.5W~2.8W 的功率。日本新光电气工业公司于1993 年获得特许开始生产。 33、MSP(mini square package) QFI 的别称(见QFI),在开发初期多称为MSP。QFI 是日本电子机械工业会规定的名称。 34、OPMAC(over molded pad array carrier) 模压树脂密封凸点陈列载体。美国Motorola 公司对模压树脂密封BGA 采用的名称(见 BGA)。 35、P-(plastic) 表示塑料封装的记号。如PDIP 表示塑料DIP。 36、PAC(pad array carrier) 凸点陈列载体,BGA 的别称(见BGA)。 37、PCLP(printed circuit board leadless package) 印刷电路板无引线封装。日本富士通公司对塑料QFN(塑料LCC)采用的名称(见QFN)。引 脚中心距有0.55mm 和0.4mm 两种规格。目前正处于开发阶段。 38、PFPF(plastic flat package) 塑料扁平封装。塑料QFP 的别称(见QFP)。部分LSI 厂家采用的名称。 39、PGA(pin grid array) 陈列引脚封装。插装型封装之一,其底面的垂直引脚呈陈列状排列。封装基材基本上都采 用多层陶瓷基板。在未专门表示出材料名称的情况下,多数为陶瓷PGA,用于高速大规模逻辑 LSI 电路。成本较高。引脚中心距通常为2.54mm,引脚数从64 到447 左右。 了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替。也有64~256 引脚的塑料PGA。 另外,还有一种引脚中心距为1.27mm 的短引脚表面贴装型PGA(碰焊PGA)。(见表面贴装 型PGA)。 40、piggy back 驮载封装。指配有插座的陶瓷封装,形关与DIP、QFP、QFN 相似。在开发带有微机的设 备时用于评价程序确认操作。例如,将EPROM 插入插座进行调试。这种封装基本上都是定制 品,市场上不怎么流通。 41、PLCC(plastic leaded chip carrier) 带引线的塑料芯片载体。表面贴装型封装之一。引脚从封装的四个侧面引出,呈丁字形, 是塑料制品。美国德克萨斯仪器公司首先在64k 位DRAM 和256kDRAM 中采用,现在已经普 及用于逻辑LSI、DLD(或程逻辑器件)等电路。引脚中心距1.27mm,引脚数从18 到84。 J 形引脚不易变形,比QFP 容易操作,但焊接后的外观检查较为困难。 PLCC 与LCC(也称QFN)相似。以前,两者的区别仅在于前者用塑料,后者用陶瓷。但现 在已经出现用陶瓷制作的J 形引脚封装和用塑料制作的无引脚封装(标记为塑料LCC、PCLP、P -LCC 等),已经无法分辨。为此,日本电子机械工业会于1988 年决定,把从四侧引出J 形引 脚的封装称为QFJ,把在四侧带有电极凸点的封装称为QFN(见QFJ 和QFN)。 42、P-LCC(plastic teadless chip carrier)(plastic leaded chip currier) 有时候是塑料QFJ 的别称,有时候是QFN(塑料LCC)的别称(见QFJ 和QFN)。部分 LSI 厂家用PLCC 表示带引线封装,用P-LCC 表示无引线封装,以示区别。 43、QFH(quad flat high package) 四侧引脚厚体扁平封装。塑料QFP 的一种,为了防止封装本体断裂,QFP 本体制作得 较厚(见QFP)。部分半导体厂家采用的名称。 44、QFI(quad flat I-leaded packgac) 四侧I 形引脚扁平封装。表面贴装型封装之一。引脚从封装四个侧面引出,向下呈I 字。 也称为MSP(见MSP)。贴装与印刷基板进行碰焊连接。由于引脚无突出部分,贴装占有面积小 于QFP。 日立制作所为视频模拟IC 开发并使用了这种封装。此外,日本的Motorola 公司的PLL IC 也采用了此种封装。引脚中心距1.27mm,引脚数从18 于68。 45、QFJ(quad flat J-leaded package) 四侧J 形引脚扁平封装。表面贴装封装之一。引脚从封装四个侧面引出,向下呈J 字形。 是日本电子机械工业会规定的名称。引脚中心距1.27mm。 材料有塑料和陶瓷两种。塑料QFJ 多数情况称为PLCC(见PLCC),用于微机、门陈列、 DRAM、ASSP、OTP 等电路。引脚数从18 至84。 陶瓷QFJ 也称为CLCC、JLCC(见CLCC)。带窗口的封装用于紫外线擦除型EPROM 以及 带有EPROM 的微机芯片电路。引脚数从32 至84。 46、QFN(quad flat non-leaded package) 四侧无引脚扁平封装。表面贴装型封装之一。现在多称为LCC。QFN 是日本电子机械工业 会规定的名称。封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度比QFP 低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电极触点 难于作到QFP 的引脚那样多,一般从14 到100 左右。 材料有陶瓷和塑料两种。当有LCC 标记时基本上都是陶瓷QFN。电极触点中心距1.27mm。 塑料QFN 是以玻璃环氧树脂印刷基板基材的一种低成本封装。电极触点中心距除1.27mm 外, 还有0.65mm 和0.5mm 两种。这种封装也称为塑料LCC、PCLC、P-LCC 等。 47、QFP(quad flat package) 四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。基材有陶 瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时,多数情 况为塑料QFP。塑料QFP 是最普及的多引脚LSI 封装。不仅用于微处理器,门陈列等数字逻辑LSI 电路,而且也用于VTR 信号处理、音响信号处理等模拟LSI 电路。引脚中心距有1.0mm、0.8mm、 0.65mm、0.5mm、0.4mm、0.3mm 等多种规格。0.65mm 中心距规格中最多引脚数为304。 日本将引脚中心距小于0.65mm 的QFP 称为QFP(FP)。但现在日本电子机械工业会对QFP 的外形规格进行了重新评价。在引脚中心距上不加区别,而是根据封装本体厚度分为 QFP(2.0mm~3.6mm 厚)、LQFP(1.4mm 厚)和TQFP(1.0mm 厚)三种。 另外,有的LSI 厂家把引脚中心距为0.5mm 的QFP 专门称为收缩型QFP 或SQFP、VQFP。 但有的厂家把引脚中心距为0.65mm 及0.4mm 的QFP 也称为SQFP,至使名称稍有一些混乱。 QFP 的缺点是,当引脚中心距小于0.65mm 时,引脚容易弯曲。为了防止引脚变形,现已 出现了几种改进的QFP 品种。如封装的四个角带有树指缓冲垫的BQFP(见BQFP);带树脂保护 环覆盖引脚前端的GQFP(见GQFP);在封装本体里设置测试凸点、放在防止引脚变形的专用夹 具里就可进行测试的TPQFP(见TPQFP)。 在逻辑LSI 方面,不少开发品和高可靠品都封装在多层陶瓷QFP 里。引脚中心距最小为 0.4mm、引脚数最多为348 的产品也已问世。此外,也有用玻璃密封的陶瓷QFP(见Gerqad)。 48、QFP(FP)(QFP fine pitch) 小中心距QFP。日本电子机械工业会标准所规定的名称。指引脚中心距为0.55mm、0.4mm、 0.3mm 等小于0.65mm 的QFP(见QFP)。 49、QIC(quad in-line ceramic package) 陶瓷QFP 的别称。部分半导体厂家采用的名称(见QFP、Cerquad)。 50、QIP(quad in-line plastic package) 塑料QFP 的别称。部分半导体厂家采用的名称(见QFP)。 51、QTCP(quad tape carrier package) 四侧引脚带载封装。TCP 封装之一,在绝缘带上形成引脚并从封装四个侧面引出。是利用 TAB 技术的薄型封装(见TAB、TCP)。 52、QTP(quad tape carrier package) 四侧引脚带载封装。日本电子机械工业会于1993 年4 月对QTCP 所制定的外形规格所用的 名称(见TCP)。 53、QUIL(quad in-line) QUIP 的别称(见QUIP)。 54、QUIP(quad in-line package) 四列引脚直插式封装。引脚从封装两个侧面引出,每隔一根交错向下弯曲成四列。引脚中 心距1.27mm,当插入印刷基板时,插入中心距就变成2.5mm。因此可用于标准印刷线路板。是 比标准DIP 更小的一种封装。日本电气公司在台式计算机和家电产品等的微机芯片中采用了些 种封装。材料有陶瓷和塑料两种。引脚数64。 55、SDIP (shrink dual in-line package) 收缩型DIP。插装型封装之一,形状与DIP 相同,但引脚中心距(1.778mm)小于DIP(2.54mm), 因而得此称呼。引脚数从14 到90。也有称为SH-DIP 的。材料有陶瓷和塑料两种。 56、SH-DIP(shrink dual in-line package) 同SDIP。部分半导体厂家采用的名称。 57、SIL(single in-line) SIP 的别称(见SIP)。欧洲半导体厂家多采用SIL 这个名称。 58、SIMM(single in-line memory module) 单列存贮器组件。只在印刷基板的一个侧面附近配有电极的存贮器组件。通常指插入插座 的组件。标准SIMM 有中心距为2.54mm 的30 电极和中心距为1.27mm 的72 电极两种规格。 在印刷基板的单面或双面装有用SOJ 封装的1 兆位及4 兆位DRAM 的SIMM 已经在个人 计算机、工作站等设备中获得广泛应用。至少有30~40%的DRAM 都装配在SIMM 里。 59、SIP(single in-line package) 单列直插式封装。引脚从封装一个侧面引出,排列成一条直线。当装配到印刷基板上时封 装呈侧立状。引脚中心距通常为2.54mm,引脚数从2 至23,多数为定制产品。封装的形状各 异。也有的把形状与ZIP 相同的封装称为SIP。 60、SK-DIP(skinny dual in-line package) DIP 的一种。指宽度为7.62mm、引脚中心距为2.54mm 的窄体DIP。通常统称为DIP(见 DIP)。 61、SL-DIP(slim dual in-line package) DIP 的一种。指宽度为10.16mm,引脚中心距为2.54mm 的窄体DIP。通常统称为DIP。 62、SMD(surface mount devices) 表面贴装器件。偶而,有的半导体厂家把SOP 归为SMD(见SOP)。 63、SO(small out-line) SOP 的别称。世界上很多半导体厂家都采用此别称。(见SOP)。 64、SOI(small out-line I-leaded package) I 形引脚小外型封装。表面贴装型封装之一。引脚从封装双侧引出向下呈I 字形,中心距 1.27mm。贴装占有面积小于SOP。日立公司在模拟IC(电机驱动用IC)中采用了此封装。引脚数 26。 65、SOIC(small out-line integrated circuit) SOP 的别称(见SOP)。国外有许多半导体厂家采用此名称。 66、SOJ(Small Out-Line J-Leaded Package) J 形引脚小外型封装。表面贴装型封装之一。引脚从封装两侧引出向下呈J 字形,故此得名。 通常为塑料制品,多数用于DRAM 和SRAM 等存储器LSI 电路,但绝大部分是DRAM。用SOJ 封装的DRAM 器件很多都装配在SIMM 上。引脚中心距1.27mm,引脚数从20 至40(见SIMM)。 67、SQL(Small Out-Line L-leaded package) 按照JEDEC(美国联合电子设备工程委员会)标准对SOP 所采用的名称(见SOP)。 68、SONF(Small Out-Line Non-Fin) 无散热片的SOP。与通常的SOP 相同。为了在功率IC 封装中表示无散热片的区别,有意 增添了NF(non-fin)标记。部分半导体厂家采用的名称(见SOP)。 69、SOF(small Out-Line package) 小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有塑料 和陶瓷两种。另外也叫SOL 和DFP。 SOP 除了用于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不 超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8~44。 另外,引脚中心距小于1.27mm 的SOP 也称为SSOP;装配高度不到1.27mm 的SOP 也称为 TSOP(见SSOP、TSOP)。还有一种带有散热片的SOP。 70、SOW (Small Outline Package(Wide-Jype)) 宽体SOP。部分半导体厂家采用的名称。
2023-06-07 23:27:561

请高人解释一下集成电路设计中 可编程逻辑器件设计(PLD)和现场可编程逻辑阵列设计(FPGA)和两者的区别

你好,PLD是基于可编程与或阵列的结构,采用的是乘积项原理。其下载方式称为编程。总体看是PROM-PAL-PLA-GAL-PLD-CPLD这样发展来的。而FPGA是基于SRAM构成门阵列的结构,采用的是查找表原理。其下载方式称为配置。
2023-06-07 23:28:152

谁知道IC封装so,soj,sop的区别在哪里?

分类: 电脑/网络 >> 硬件 问题描述: 谁知道IC封装so,soj,sop的区别在哪里? 比如so-14,soj-14和sop-14封装的区别在哪里?谢谢指点 解析: 1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用 以 代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也 称为凸 点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。 封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不 用担心QFP 那样的引脚变形问题。 该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有 可 能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在 也有 一些LSI 厂家正在开发500 引脚的BGA。 BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为 , 由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。 美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为 GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以 防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中 采用 此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。 3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有 玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中 心 距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗 口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1. 5~ 2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、 0.5mm、 0.4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded chip carrier) 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形 。 带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为 QFJ、QFJ-G(见QFJ)。 8、COB(chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与 基 板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用 树脂覆 盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和 倒片 焊技术。 9、DFP(dual flat package) 双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。 10、DIC(dual in-line ceramic package) 陶瓷DIP(含玻璃密封)的别称(见DIP). 11、DIL(dual in-line) DIP 的别称(见DIP)。欧洲半导体厂家多用此名称。 12、DIP(dual in-line package) 双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种 。 DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。 引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm 和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。但多数情况下并不加 区分, 只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP 也称为cerdip(见cerdip)。 13、DSO(dual *** all out-lint) 双侧引脚小外形封装。SOP 的别称(见SOP)。部分半导体厂家采用此名称。 14、DICP(dual tape carrier package) 双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于 利 用的是TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为 定制品。 另外,0.5mm 厚的存储器LSI 簿形封装正处于开发阶段。在日本,按照EIAJ(日本电子机 械工 业)会标准规定,将DICP 命名为DTP。 15、DIP(dual tape carrier package) 同上。日本电子机械工业会标准对DTCP 的命名(见DTCP)。 16、FP(flat package) 扁平封装。表面贴装型封装之一。QFP 或SOP(见QFP 和SOP)的别称。部分半导体厂家采 用此名称。 17、flip-chip 倒焊芯片。裸芯片封装技术之一,在LSI 芯片的电极区制作好金属凸点,然后把金属凸 点 与印刷基板上的电极区进行压焊连接。封装的占有面积基本上与芯片尺寸相同。是所有 封装技 术中体积最小、最薄的一种。 但如果基板的热膨胀系数与LSI 芯片不同,就会在接合处产生反应,从而影响连接的可 靠 性。因此必须用树脂来加固LSI 芯片,并使用热膨胀系数基本相同的基板材料。 18、FQFP(fine pitch quad flat package) 小引脚中心距QFP。通常指引脚中心距小于0.65mm 的QFP(见QFP)。部分导导体厂家采 用此名称。 19、CPAC(globe top pad array carrier) 美国Motorola 公司对BGA 的别称(见BGA)。 20、CQFP(quad fiat package with guard ring) 带保护环的四侧引脚扁平封装。塑料QFP 之一,引脚用树脂保护环掩蔽,以防止弯曲变 形。 在把LSI 组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(L 形状)。 这种封装 在美国Motorola 公司已批量生产。引脚中心距0.5mm,引脚数最多为208 左右。 21、H-(with heat sink) 表示带散热器的标记。例如,HSOP 表示带散热器的SOP。 22、pin grid array(surface mount type) 表面贴装型PGA。通常PGA 为插装型封装,引脚长约3.4mm。表面贴装型PGA 在封装的 底面有陈列状的引脚,其长度从1.5mm 到2.0mm。贴装采用与印刷基板碰焊的方法,因而 也称 为碰焊PGA。因为引脚中心距只有1.27mm,比插装型PGA 小一半,所以封装本体可制作得 不 怎么大,而引脚数比插装型多(250~528),是大规模逻辑LSI 用的封装。封装的基材有 多层陶 瓷基板和玻璃环氧树脂印刷基数。以多层陶瓷基材制作封装已经实用化。 23、JLCC(J-leaded chip carrier) J 形引脚芯片载体。指带窗口CLCC 和带窗口的陶瓷QFJ 的别称(见CLCC 和QFJ)。部分半 导体厂家采用的名称。 24、LCC(Leadless chip carrier) 无引脚芯片载体。指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。是 高 速和高频IC 用封装,也称为陶瓷QFN 或QFN-C(见QFN)。 25、LGA(land grid array) 触点陈列封装。即在底面制作有阵列状态坦电极触点的封装。装配时插入插座即可。现 已 实用的有227 触点(1.27mm 中心距)和447 触点(2.54mm 中心距)的陶瓷LGA,应用于高速 逻辑 LSI 电路。 LGA 与QFP 相比,能够以比较小的封装容纳更多的输入输出引脚。另外,由于引线的阻 抗 小,对于高速LSI 是很适用的。但由于插座制作复杂,成本高,现在基本上不怎么使用 。预计 今后对其需求会有所增加。 26、LOC(lead on chip) 芯片上引线封装。LSI 封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片 的 中心附近制作有凸焊点,用引线缝合进行电气连接。与原来把引线框架布置在芯片侧面 附近的 结构相比,在相同大小的封装中容纳的芯片达1mm 左右宽度。 27、LQFP(low profile quad flat package) 薄型QFP。指封装本体厚度为1.4mm 的QFP,是日本电子机械工业会根据制定的新QFP 外形规格所用的名称。 28、L-QUAD 陶瓷QFP 之一。封装基板用氮化铝,基导热率比氧化铝高7~8 倍,具有较好的散热性。 封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本。是为逻辑LSI 开发的一种 封装, 在自然空冷条件下可容许W3的功率。现已开发出了208 引脚(0.5mm 中心距)和160 引脚 (0.65mm 中心距)的LSI 逻辑用封装,并于1993 年10 月开始投入批量生产。 29、MCM(multi-chip module) 多芯片组件。将多块半导体裸芯片组装在一块布线基板上的一种封装。根据基板材料可 分 为MCM-L,MCM-C 和MCM-D 三大类。 MCM-L 是使用通常的玻璃环氧树脂多层印刷基板的组件。布线密度不怎么高,成本较低 。 MCM-C 是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使 用多层陶瓷基板的厚膜混合IC 类似。两者无明显差别。布线密度高于MCM-L。 MCM-D 是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或Si、Al 作为基板的组 件。 布线密谋在三种组件中是最高的,但成本也高。 30、MFP(mini flat package) 小形扁平封装。塑料SOP 或SSOP 的别称(见SOP 和SSOP)。部分半导体厂家采用的名称。 31、MQFP(metric quad flat package) 按照JEDEC(美国联合电子设备委员会)标准对QFP 进行的一种分类。指引脚中心距为 0.65mm、本体厚度为3.8mm~2.0mm 的标准QFP(见QFP)。 32、MQUAD(metal quad) 美国Olin 公司开发的一种QFP 封装。基板与封盖均采用铝材,用粘合剂密封。在自然空 冷 条件下可容许2.5W~2.8W 的功率。日本新光电气工业公司于1993 年获得特许开始生产 。 33、MSP(mini square package) QFI 的别称(见QFI),在开发初期多称为MSP。QFI 是日本电子机械工业会规定的名称。 34、OPMAC(over molded pad array carrier) 模压树脂密封凸点陈列载体。美国Motorola 公司对模压树脂密封BGA 采用的名称(见 BGA)。 35、P-(plastic) 表示塑料封装的记号。如PDIP 表示塑料DIP。 36、PAC(pad array carrier) 凸点陈列载体,BGA 的别称(见BGA)。 37、PCLP(printed circuit board leadless package) 印刷电路板无引线封装。日本富士通公司对塑料QFN(塑料LCC)采用的名称(见QFN)。引 脚中心距有0.55mm 和0.4mm 两种规格。目前正处于开发阶段。 38、PFPF(plastic flat package) 塑料扁平封装。塑料QFP 的别称(见QFP)。部分LSI 厂家采用的名称。 39、PGA(pin grid array) 陈列引脚封装。插装型封装之一,其底面的垂直引脚呈陈列状排列。封装基材基本上都 采 用多层陶瓷基板。在未专门表示出材料名称的情况下,多数为陶瓷PGA,用于高速大规模 逻辑 LSI 电路。成本较高。引脚中心距通常为2.54mm,引脚数从64 到447 左右。 了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替。也有64~256 引脚的塑料PG A。 另外,还有一种引脚中心距为1.27mm 的短引脚表面贴装型PGA(碰焊PGA)。(见表面贴装 型PGA)。 40、piggy back 驮载封装。指配有插座的陶瓷封装,形关与DIP、QFP、QFN 相似。在开发带有微机的设 备时用于评价程序确认操作。例如,将EPROM 插入插座进行调试。这种封装基本上都是 定制 品,市场上不怎么流通。 41、PLCC(plastic leaded chip carrier) 带引线的塑料芯片载体。表面贴装型封装之一。引脚从封装的四个侧面引出,呈丁字形 , 是塑料制品。美国德克萨斯仪器公司首先在64k 位DRAM 和256kDRAM 中采用,现在已经 普 及用于逻辑LSI、DLD(或程逻辑器件)等电路。引脚中心距1.27mm,引脚数从18 到84。 J 形引脚不易变形,比QFP 容易操作,但焊接后的外观检查较为困难。 PLCC 与LCC(也称QFN)相似。以前,两者的区别仅在于前者用塑料,后者用陶瓷。但现 在已经出现用陶瓷制作的J 形引脚封装和用塑料制作的无引脚封装(标记为塑料LCC、PC LP、P -LCC 等),已经无法分辨。为此,日本电子机械工业会于1988 年决定,把从四侧引出 J 形引 脚的封装称为QFJ,把在四侧带有电极凸点的封装称为QFN(见QFJ 和QFN)。 42、P-LCC(plastic teadless chip carrier)(plastic leaded chip currier) 有时候是塑料QFJ 的别称,有时候是QFN(塑料LCC)的别称(见QFJ 和QFN)。部分 LSI 厂家用PLCC 表示带引线封装,用P-LCC 表示无引线封装,以示区别。 43、QFH(quad flat high package) 四侧引脚厚体扁平封装。塑料QFP 的一种,为了防止封装本体断裂,QFP 本体制作得 较厚(见QFP)。部分半导体厂家采用的名称。 44、QFI(quad flat I-leaded packgac) 四侧I 形引脚扁平封装。表面贴装型封装之一。引脚从封装四个侧面引出,向下呈I 字 。 也称为MSP(见MSP)。贴装与印刷基板进行碰焊连接。由于引脚无突出部分,贴装占有面 积小 于QFP。 日立制作所为视频模拟IC 开发并使用了这种封装。此外,日本的Motorola 公司的PLL IC 也采用了此种封装。引脚中心距1.27mm,引脚数从18 于68。 45、QFJ(quad flat J-leaded package) 四侧J 形引脚扁平封装。表面贴装封装之一。引脚从封装四个侧面引出,向下呈J 字形 。 是日本电子机械工业会规定的名称。引脚中心距1.27mm。 材料有塑料和陶瓷两种。塑料QFJ 多数情况称为PLCC(见PLCC),用于微机、门陈列、 DRAM、ASSP、OTP 等电路。引脚数从18 至84。 陶瓷QFJ 也称为CLCC、JLCC(见CLCC)。带窗口的封装用于紫外线擦除型EPROM 以及 带有EPROM 的微机芯片电路。引脚数从32 至84。 46、QFN(quad flat non-leaded package) 四侧无引脚扁平封装。表面贴装型封装之一。现在多称为LCC。QFN 是日本电子机械工业 会规定的名称。封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度 比QFP 低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电 极触点 难于作到QFP 的引脚那样多,一般从14 到100 左右。 材料有陶瓷和塑料两种。当有LCC 标记时基本上都是陶瓷QFN。电极触点中心距1.27mm。 塑料QFN 是以玻璃环氧树脂印刷基板基材的一种低成本封装。电极触点中心距除1.27mm 外, 还有0.65mm 和0.5mm 两种。这种封装也称为塑料LCC、PCLC、P-LCC 等。 47、QFP(quad flat package) 四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。基材有 陶 瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时, 多数情 况为塑料QFP。塑料QFP 是最普及的多引脚LSI 封装。不仅用于微处理器,门陈列等数字 逻辑LSI 电路,而且也用于VTR 信号处理、音响信号处理等模拟LSI 电路。引脚中心距 有1.0mm、0.8mm、 0.65mm、0.5mm、0.4mm、0.3mm 等多种规格。0.65mm 中心距规格中最多引脚数为304。 日本将引脚中心距小于0.65mm 的QFP 称为QFP(FP)。但现在日本电子机械工业会对QFP 的外形规格进行了重新评价。在引脚中心距上不加区别,而是根据封装本体厚度分为 QFP(2.0mm~3.6mm 厚)、LQFP(1.4mm 厚)和TQFP(1.0mm 厚)三种。 另外,有的LSI 厂家把引脚中心距为0.5mm 的QFP 专门称为收缩型QFP 或SQFP、VQFP。 但有的厂家把引脚中心距为0.65mm 及0.4mm 的QFP 也称为SQFP,至使名称稍有一些混乱 。 QFP 的缺点是,当引脚中心距小于0.65mm 时,引脚容易弯曲。为了防止引脚变形,现已 出现了几种改进的QFP 品种。如封装的四个角带有树指缓冲垫的BQFP(见BQFP);带树脂 保护 环覆盖引脚前端的GQFP(见GQFP);在封装本体里设置测试凸点、放在防止引脚变形的专 用夹 具里就可进行测试的TPQFP(见TPQFP)。 在逻辑LSI 方面,不少开发品和高可靠品都封装在多层陶瓷QFP 里。引脚中心距最小为 0.4mm、引脚数最多为348 的产品也已问世。此外,也有用玻璃密封的陶瓷QFP(见Gerqa d)。 48、QFP(FP)(QFP fine pitch) 小中心距QFP。日本电子机械工业会标准所规定的名称。指引脚中心距为0.55mm、0.4mm 、 0.3mm 等小于0.65mm 的QFP(见QFP)。 49、QIC(quad in-line ceramic package) 陶瓷QFP 的别称。部分半导体厂家采用的名称(见QFP、Cerquad)。 50、QIP(quad in-line plastic package) 塑料QFP 的别称。部分半导体厂家采用的名称(见QFP)。 51、QTCP(quad tape carrier package) 四侧引脚带载封装。TCP 封装之一,在绝缘带上形成引脚并从封装四个侧面引出。是利 用 TAB 技术的薄型封装(见TAB、TCP)。 52、QTP(quad tape carrier package) 四侧引脚带载封装。日本电子机械工业会于1993 年4 月对QTCP 所制定的外形规格所用 的 名称(见TCP)。 53、QUIL(quad in-line) QUIP 的别称(见QUIP)。 54、QUIP(quad in-line package) 四列引脚直插式封装。引脚从封装两个侧面引出,每隔一根交错向下弯曲成四列。引脚 中 心距1.27mm,当插入印刷基板时,插入中心距就变成2.5mm。因此可用于标准印刷线路板 。是 比标准DIP 更小的一种封装。日本电气公司在台式计算机和家电产品等的微机芯片中采 用了些 种封装。材料有陶瓷和塑料两种。引脚数64。 55、SDIP (shrink dual in-line package) 收缩型DIP。插装型封装之一,形状与DIP 相同,但引脚中心距(1.778mm)小于DIP(2.54 mm), 因而得此称呼。引脚数从14 到90。也有称为SH-DIP 的。材料有陶瓷和塑料两种。 56、SH-DIP(shrink dual in-line package) 同SDIP。部分半导体厂家采用的名称。 57、SIL(single in-line) SIP 的别称(见SIP)。欧洲半导体厂家多采用SIL 这个名称。 58、SIMM(single in-line memory module) 单列存贮器组件。只在印刷基板的一个侧面附近配有电极的存贮器组件。通常指插入插 座 的组件。标准SIMM 有中心距为2.54mm 的30 电极和中心距为1.27mm 的72 电极两种规格 。 在印刷基板的单面或双面装有用SOJ 封装的1 兆位及4 兆位DRAM 的SIMM 已经在个人 计算机、工作站等设备中获得广泛应用。至少有30~40%的DRAM 都装配在SIMM 里。 59、SIP(single in-line package) 单列直插式封装。引脚从封装一个侧面引出,排列成一条直线。当装配到印刷基板上时 封 装呈侧立状。引脚中心距通常为2.54mm,引脚数从2 至23,多数为定制产品。封装的形 状各 异。也有的把形状与ZIP 相同的封装称为SIP。 60、SK-DIP(skinny dual in-line package) DIP 的一种。指宽度为7.62mm、引脚中心距为2.54mm 的窄体DIP。通常统称为DIP(见 DIP)。 61、SL-DIP(slim dual in-line package) DIP 的一种。指宽度为10.16mm,引脚中心距为2.54mm 的窄体DIP。通常统称为DIP。 62、SMD(surface mount devices) 表面贴装器件。偶而,有的半导体厂家把SOP 归为SMD(见SOP)。 63、SO( *** all out-line) SOP 的别称。世界上很多半导体厂家都采用此别称。(见SOP)。 64、SOI( *** all out-line I-leaded package) I 形引脚小外型封装。表面贴装型封装之一。引脚从封装双侧引出向下呈I 字形,中心 距 1.27mm。贴装占有面积小于SOP。日立公司在模拟IC(电机驱动用IC)中采用了此封装。引 脚数 26。 65、SOIC( *** all out-line integrated circuit) SOP 的别称(见SOP)。国外有许多半导体厂家采用此名称。 66、SOJ(Small Out-Line J-Leaded Package) J 形引脚小外型封装。表面贴装型封装之一。引脚从封装两侧引出向下呈J 字形,故此 得名。 通常为塑料制品,多数用于DRAM 和SRAM 等存储器LSI 电路,但绝大部分是DRAM。用SO J 封装的DRAM 器件很多都装配在SIMM 上。引脚中心距1.27mm,引脚数从20 至40(见SIMM )。 67、SQL(Small Out-Line L-leaded package) 按照JEDEC(美国联合电子设备工程委员会)标准对SOP 所采用的名称(见SOP)。 68、SONF(Small Out-Line Non-Fin) 无散热片的SOP。与通常的SOP 相同。为了在功率IC 封装中表示无散热片的区别,有意 增添了NF(non-fin)标记。部分半导体厂家采用的名称(见SOP)。 69、SOF( *** all Out-Line package) 小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有 塑料 和陶瓷两种。另外也叫SOL 和DFP。 SOP 除了用于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不 超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8 ~44。 另外,引脚中心距小于1.27mm 的SOP 也称为SSOP;装配高度不到1.27mm 的SOP 也称为 TSOP(见SSOP、TSOP)。还有一种带有散热片的SOP。 70、SOW (Small Outline Package(Wide-Jype)) 宽体SOP。部分半导体厂家采用的名称。
2023-06-07 23:28:211

学习FPJA要学习些什么,就业前景怎么样?

学习 FPGA 应学什么---------------------------------------------------------------------------不仅仅学习, 更关注现实中的应用FPGA 真正强大的地方在于它的快速的并行处理数据能力, 这也是它与单片机、ARM、DSP 的很大的区别。所以她能进行高速的数据采样和处理,也只有在通信和视频处理等领域才能发挥它的强大功能,IC 设计方面也只是用它来作为设计验证的平台而已(个人观点)。关于 NIOS,我个人觉得它并不是很好用,SOPC 在实际应用中很少用到,实用性比不上单片机和 ARM,使用起来远远比不上 ARM 和单片机方便,因为关于 ARM、单片机的应用和支持实在太丰富了,而用 FPGA 仅仅作为 NIOS 的平台,那他的代价实在是太高,起码到目前为止,NIOS 取代不了 ARM 和单片机。NIOS、ARM、单片机都是基于 C 语言编程,如果你打算花时间去学 NIOS(那也只是学习而已) 我建议你花更多的时间去学习 ARM 或单片机, 因为 ARM或单片机更实用,更有“钱途” 。要弄清楚 C 语言和 Verilog 语言的本质区别言归正传,学习 FPGA 到底应关注哪些方面呢?本开发板让你感觉到是在真正的进行 FPGA 的学习和设计,而不是把 FPGA当作一个单片机来学习,不仅仅是用它来控制 LED,如此现实用处也不大。本开发板会让你体验到 FPGA 设计和 matlab 结合是多么有趣,设计 FIR 滤波器、CIC 滤波器、DDC/DUC、DDS 等,而这些正是现实的工作岗位所应该具备的能力,让 FPGA 真正的发挥它应有的强大功能。学习 FPGA 要有电路的思想, 而用 NIOS 编辑 C 语言完全不用考虑硬件电路(这是 C 语言的特点), 所以学习 FPGA 时不用偏离了数字电路的核心思想:逻辑设计,而不是 C 语言设计,同时要了解 FPGA 的内部电路结构。逻辑设计:就是用 verilog HDL 或者 VHDL 来设计要求的逻辑功能,通过综合软件把代码综合成逻辑电路。同步设计: “数字电路中,时钟是整个电路最重要、最特殊的信号。系统内大部分器件的动作都是在时钟的跳变沿上进行, 这就要求时钟信号时延差要非常小, 否则就可能造成时序逻辑状态出错;时钟信号通常是负载最重的信号, 所以要合理分配负载。 出于这样的考虑在 FPGA 这类可编程器件内部一般都设有数量不等的专门用于系统时钟驱动的全局时钟网络。 这类网络的特点是: 一、 负载能力特别强, 任何一个全局时钟驱动线都可以驱动芯片内部的触发器; 二是时延差特别小; 三是时钟信号波形畸变小, 工作可靠性好。 同步设计时, 全局时钟输入一般都接在器件的时钟端, 否则会使其性能受到影响。 若系统需要多个系统, 则最好由一个时钟源从 FPGA 时钟管脚输入, 才从同 FPGA 的 PLL 分频或倍频得到多个时钟。时序约束: 这是学习 FPGA 的高级功能了, 在设计高速的电路时, 这个功能常常会被用到,要使 quartus 综合出高速而稳定的 FPGA 电路,必须对高速接口和 FPGA 内部的电路进行时序约束。基本的时序约束:1. 核心频率约束2. 核心频率约束+时序例外约束3. 核心频率约束+时序例外约束+I/O 约束这些约束在通信系统的设计者通常会用到,当然还有更详细的约束方法,大家可以参考光盘 CD1 中的时序约束部分。养成好的编码风格: 编码风格的养成要有一定的编码基础的, 不然看很多别人写的关于编码风的文章你也看不懂, 也不能正确的执行, 等有了一定 FPGA 基础之后, 再去审视自己的编码风格和别人建议的编码风格, 才最终形成一个成熟的编码风格。 编码风格多种多样, 不同的编码风格应用的领域不一样, 有的编码风格适用于通信领域,有的编码风格适用于 ASIC 设计。学习 FPGA 的前景:学习 FPGA 的前景FPGA 从诞生以来经历了从配角到主角的转变,FPGA 主要用于取代复杂的逻辑电路, 现在重点强调平台概念, 当集成数字信号处理器、 嵌入式处理器、 高速串行和其它高端技术后, 从而被应用到更多的领域, 正因为其飞速的发展, 让更多学FPGA 的人看到了希望,其广阔的前景正是我们选择的原因之一。(1)广阔的发展前景据市场调研公司 Gartner Dataquest 预测, 2010 年 FPGA 和其它可编程逻辑器件(PLD)市将从 2005 年的 32 亿美元增长到 67 亿美元, 未来还将有不断增长的趋势。FPGA 及 PLD 产业发展的最大机遇是替代 ASIC 和专用标准产品(ASSP),由 ASIC和 ASSP 构成的数字逻辑市场规模大约为 350 亿美元。 由于用户可以迅速地对 PLD 进行编程,按照需求实现特殊功能,与 ASIC 和 ASSP 相比,PLD 在灵活性、开发成本、产品快速上市方面更具优势,所以未来FPGA 将会是一个非常有前景的行业。 由于 FPGA 结构的特殊性,可以重复编程,开发周期较短,越来越受到人们的青睐,它的特点也更接近 ASIC,ASIC 比 FPGA 最大的优势是低成本,但是 FPGA 的价格现在也越来越低,例如,Actel 的 Nano 系列更是打破了 FPGA 的价格屏障,提供超过 50 种低于 1 美金的 FPGA,在一定程度上已经可以与 ASIC 相抗衡。根据当前发展的趋势, 未来的 FPGA 势必将会取代大部分 ASIC 的市场, 虽然根据摩尔定律(Moore"s Law): 每 18 至 24 个月能在相同的单位面积内多集成一倍的晶体管数目, 也就意味着每 18 至 24 个月后芯片成本将减半, 但这只是指裸晶(Die)的成本,并不表示整个芯片的成本减半,这是由于晶圆制造前端的掩膜(Mask)成本、 晶圆制造后端的封装(也称为: 构装、 包装)成本、 人力成本等都不会随摩尔定律而变化, 反而芯片的成本有上升的趋势, 所以过去许多中、 小用量的芯片无法用先进的工艺来生产,对此不是持续使用旧工艺来制造,或是必须改用 FPGA 芯片来生产……未来的趋势告诉我们,FPGA 将成为 21 世纪最重要的高科技产业之一,特别是国内的 FPGA 市场,更是一个“未完全开垦的处女地”,抓住现在的机遇也就意味着为我们的将来提供更强大的竞争力。(2)更多的就业机会虽然 FPGA 市场的广阔, 但是 FPGA 的技术人员却极度地缺乏, 很多高校仍然未重视 FPGA 技术的教学, 导致学生毕业后连什么是 FPGA, 什么是Verilog 都不知道,失去了很多的就业机会。广州周立功单片机发展有限公司三年来跑遍了全国 22个城市, 每次宣讲会场里场外都站满了人, 每个学生都渴望寻找一份好工作的心情由此可见一斑,但通过考试发现懂 FPGA 和 Verilog 的学生却寥寥无几,尽管我们每年都对招聘 FPGA 人才寄予了很大的希望,但每次都失望而归,深深地体会到招聘 FPGA 开发工程师困难重重。由此可见在应届毕业生中熟练掌握 FPGA 的学生已经属于稀缺资源了,然而企业为培养 FPGA 开发工程师无不付出沉重的代价,所以对于在校电类专业的学生来说,这是打造个人差异化竞争力的大好机会,事实上只要掌握 FPGA 就能够找到一份薪水更好的工作。 我们公司每次在考核员工时, 往往都会特别关注这些“特殊员工”,一般来说这些员工的薪水都会比其它岗位高 500 元,这就是学习 FPGA 的就业优势,但是很多人不曾完全意识到掌握 FPGA 技术的重要性。当前受金融危机的影响,对学生的就业更是巨大的考验,据教育部的统计,2008 年全国普通高校毕业生达 559 万人, 比 2007 年增加 64 万人, 2009 年高校毕业生规模达到 611 万人, 比 2008 年增加 52 万人, 如此多的大学生面临着就业的问题, 如果个人不具备一定的优势, 必将淹没在人海茫茫的潮流中而找不到理想的工作,而学习 FPGA 则可以帮助学生多一技之长,大大提高就业的机会。(3)更大的技术发展空间我们知道半导体一直是国内比较薄弱的产业,与国外相比相差甚远,大部分 IC都来自欧美地区,国内拥有自主知识产权的 IC 技术不多,多半需要引进国外先进的IC 设计技术。但是自 2000 年以来,中国大陆的 IC 设计企业如雨后春笋般迅速涌现,企业数量 5 年增加了 4 倍多,2005 年已经达到 500 多家,销售收入过亿元人民币的设计企业达到 17 家,其中两家超过 5 亿元的销售规模。概括地讲, 中国的 IC 设计公司可以分为 4 类, 第一类是国有 IC 设计公司, 一般是承担政府研发任务的研究所转制后成立的; 第二类是由系统厂商的设计部门独立出来的 IC 设计公司;第三类是民营 IC 设计公司,以海归型为主;最后一类是外资 IC 设计公司。由此可见 IC 设计也是未来发展的一个重点方向,将会是国家大力扶持的产业之一, 而 IC 的设计人员必须掌握 FPGA 的技术, 在芯片流片之前都是通过FPGA 来进行前期设计验证的,与 FPGA 使用同样的设计语言,只是在后端的设计中才用到 IC 设计方面的特定技术,而 IC 设计人员必定是懂得 FPGA 设计的人,因此掌握 FPGA 技术是通往 IC 设计殿堂的必经之路
2023-06-07 23:28:301

SMSC公司中文名字是什么

Standard Microsystems Corp.(美商史恩希股份有限公司,SMSC)
2023-06-07 23:28:372

求高人指点下RSC-164芯片

应用于消费类电子产品上的交互式语音集成芯片(RSC-100/164T,RSC-300/364,RSC4XX)是一种高性能、低成本的8位MCU,所有这类芯片内部集成有ADC、DAC、ROM(除了RSC-100/300)、RAM和麦克风的预放大电路,并拥有以下多种功能:与说话者无关/有关的语音识别、语音确认(PASSWORD)、语音和音乐合成,录音和回放、快速数字拨号(只有RSC-300/364)、持续监听。 产品线有两种通用目的的微处理器(RSC系列) 1. RSC-100/164T—低成本的版本(只支持4.0版本技术) 2. RSC-300/364(支持最新版本的6.0版本技术),它有更快的响应时间、先进和附加的技术(包括数字拨号,固定单词触发,同时产生数字记录和识别模板) 3. RSC-164/364产品的特性 a) 有64k内置ROM的8位微处理器; b) 集成有A/D和D/A转换器; c) DAC或PWM(Pulse Width Modulation); d) 可实现DTMF 拨号; e) 音源的AGC功能; f) 16个通用I/O端口; g) 片上有输出放大器; h) 省电模式-最小的功耗(小于5UA)。 RSC-300/364产品特性 RSC-300/364是专门为消费类电子产品应用而设计的,拥有高度集成和高识别率的系统化芯片。RSC-300/364有额外的SDAM和硬件加速器去支持SENSORY的最新技术(5.0以上)。这种特别设计的8位微处理器在拥有灵活的编程时支持一系列语音技术:与说话者无关/有关的识别、语音和音乐的合成、语音确认、语音提示、持续监听、快速数字拨号、录音和回放。RSC-300/364允许在片上存储最多6个与说话者有关的短句。RSC-300与RSC-364的区别就是少一个64K的ROM,根据封装和版本的不同,RSC-300/364的价格在2.2~3.9美元之间。 RSC-4x产品特性 RSC-4x是Sensory INC.第4代的语音识别产品,它具有所有RSC-300/364的所有特性之外,还增加了不少功能。RSC-4x支持Sensory Speechu2122 7技术,改进的算法使识别准确率得到提高。新增的T2SI技术使得制作SI模版节省了时间和资金投入。在语音合成算法上也作了改进,“SXu2122”压缩技术使得语音的压缩率可以达到3K-8K bps(bits-per-second),是原来的1/10-1/4,大大减少了存储空间,节约了成本。RSC-4x有三种型号,RSC-4000不含程序存储空间,RSC-4128 内部含128K程序存储空间,RSC-4256内部含256K程序存储空间,供用户灵活选用。 VOICE DAILER特性(ASSP) VOICE DAILER364是为了增加语音拨号而设计的,它可应用在非手持的车载电话、手持电话、PDA、答录机和其它个人电子设备。使用者只需说出名字便可拨出相关的电话;VOICE DAILER-364芯片可管理一整套电话目录,包括名字、电话号码和语音识别模板。 SENSORY技术 与说话者有关的语音识别 (Speaker Dependent, SD) 在识别时,每个识别词语需要使用者训练两次来创建语音模板,一个模板需要占用128个字节的 存储量。由于练习的原因,一般把需识别的词汇量限制在60个以内,但超过100个也是完全可以的。通过正常设计, SENSORY的SD技术能达到99%的准确率。 与说话者无关的语音识别 (Speaker Independent, SI) ——不需要训练 SI技术是为一种指定的语系而设计的(如英语、汉语、德语),它最多能识别14条命令(识别数量由ROM的容量决定)。通过正常设计,SENSORY的SI技术能达到97%的准确率 语音确认 (Speaker Verification, SV) 同SD技术有点相似,SV能辨别出现在的一句话与原来说的是否相同。使用者可以训练1~4级密码(密码级数越多越安全)来开启设备。误识率大概在1~6%。根据环境、使用者数量、要求的安全程度的不同可设定五级训练难度。 语音自适应技术 (Speaker Adaptive, SA) 对于单用户来说,SA通过一段时间对环境和说话者声音的适应,改进相关的语音模板,从而提高识别准确率。 持续监听 (Continuous Listening, CL) 持续监听技术不需按键便可对某个特别、非连续的命令(在这之前需要静音)产生响应, SENSORY提供SI和SD两种持续监听技术。 WORD SPOTTING ——在一句话中响应某个指定词语。 WORD SPOTTING是持续监听的升级版本,它可以从正常的谈话中“捕捉”并响应某个关键词语,这种技术提供了更为自然、友好的人机界面。 快速数字拨号 (Fast Digit) ——输入电话号码和数字串 快速数字拨号采用了优化的识别算法来实现快速数字串输入,这种技术对语音拨号应用是非常理想的,辟如用在手持通信设备、个人拨号器,手机、非手持设备。 录音和回放 (Record & Playback) ——压缩的数字声音再现。 SENSORY的交互式语音处理器可以14Kbit/s的数据率来存储声音在外置的RAM上。它可用在答录机、变音器、手持录音设备上。根据回放的质量和数量要求,也可以改变片上的压缩率。录音过程中出现完全静音时,微处理器会自动去掉静音这一段来改善声音质量,节约存储空间。 语音合成 (Speech Synthesis) ——创建一个自然的使用界面。 语音效果合成是通过在片上的微处理器读取ROM上的数据实现的。SENSORY合成技术使用了时域技术来压缩语音,使数据率在10kbit/s以下,另外使用了加强的ADPCM算法来回放声音。语音合成技术降低了对手工指令的依赖,使人机界面更为友好。 音乐合成 (Music Synthesis) SENSORY的音乐合成技术能产生四首模拟乐曲,用户也可用一种乐器的声音和音阶来自定义乐库。合成技术不同于数字录音,一首2~3分钟的歌曲只需5KB的片外存储容量,在电话机的应用中,这种功能还可以产生DTMF音,使RSC微处理器实现直接拨号功能。 产品控制 ——完全的系统芯片解决方法。 RSC语音处理器可单独工作或作为协处理器来实现语音功能,通常,它是一个复杂系统的核心:它可提供可变长度的指令,传输率达到4MIPS 、两个计时器、外部存储器接口、DAC和PWM输出,麦克风预放大器、16个I/O端口等。
2023-06-07 23:28:441

盘点未来3年极具潜力的5大半导体黑马,国产MCU芯片需求旺盛

半导体MCU是指微控制器,俗称单片机,一般可以分为芯片级芯片和系统级芯片,将CPU、存储、电源管理、I/O接口等功能集成在一起的是芯片级芯片,一般仅可运行由汇编语言等低级语言编制的简单系统。 目前MCU按照位数分为4位、8位、16位、32位、64位等,位数越高性能越强,32位MCU为目前主流。 截至5月比亚迪半导体车规级MCU量产装车突破1000万颗,公司车规级与工业级MCU芯片至今累计出货已突破20亿颗,国产MCU在 汽车 领域应用持续提升。 在 汽车 行业“缺芯”大潮中, MCU芯片是受影响最严重的芯片, 目前,全球半导体产能供不应求,业界普遍预计,产能短缺将持续至2022年或2023年。 例如成立于1980年的联电(UMC)半导体设备交货期一般已达14-18个月,其投资产能已规划至2023年,MCU需求旺盛,紧缺状态下价格继续上行,相关公司有望受益。 老俞盘点未来3年极具潜力的5大半导体黑马如下: 兆易创新: 公司在通用MCU 领域一直保持技术创新性和市场先进性,目前也在积极布局超低功耗市场,传统车身控制、新能源 汽车 新应用等 汽车 MCU 市场,高性能工业控制、多媒体控制等市场。 公司的核心产品线为FLASH、32位通用型MCU及智能人机交互传感器芯片及整体解决方案,公司产品以“高性能、低功耗”著称。 目前公司MCU 全球市占率仍较低,考虑到公司32 位产品优势及全球供需趋紧,我们认为公司MCU 业务有望打开更大的市场空间。 东软载波: 公司已形成以芯片设计为源头,能源互联网与智能化应用两翼齐飞的产业格局,在完成智能制造的基础上,构建了跨越发展的3+1模式。 公司拥有独特而完整的MCU-SOC芯片设计平台,主要提供8位、32位MCU,公司MCU产品主要应用于白色家电、消费电子、工业控制、工业以太网、电机控制、仪器仪表、电池管理、 健康 医疗电子等领域, 汽车 电子也有一定应用。 公司已构建全面满足物联网需求的芯片产品组合,MCU芯片持续更新迭代,并先发布局Wi-Fi芯片、锂电池管理芯片,老俞认为将受益于集成电路国产替代加速、物联网终端设备放量。 北京君正: CPU+存储器双龙头,拥有全球领先的32位嵌入式CPU技术和低功耗技术。 公司 收购ISSI 后已形成“CPU+存储+模拟布局”, 公司整合ISSI 的效果开始在报表正常显现,随着公司在车载存储和模拟芯片领域的持续加码, 未来有望持续受益于下游需求爆发。 公司目前拓展海外市场,ISSI 也可以借助北京君正在国内市场的渠道资源,实现国内的市场拓展,形成“海外+国内”并进的市场布局,强化公司的行业竞争力。 紫光国微: 公司作为中国特种IC、安全IC、FPGA三大赛道龙头企业 , 旗下的子公司紫光同芯主要提供8位、16位的MCU,产品应用于智能家电。 公司布局车载控制器芯片,有望打破国外厂商在该领域的垄断,抢占车载芯片国产化发展先机,目前公司车联网应用相关的安全芯片已经开始进入试用阶段,车载控制芯片正在紧密开发过程中, 推动车载芯片关键技术和产业落地进程。 公司通过长期耕耘建立了显著的渠道优势、品牌优势和先发优势,并持续通过研发提升技术能力构筑高竞争壁垒,更能享受到下游行业的高景气红利,行业地位进一步增强。 士兰微: 国内半导体领先企业,是国内产品线最为齐全的半导体IDM 厂商, MCU是公司重要产品线之一,公司目前收入中约30%来自MCU/逻辑器件。 公司MCU 主要分为8 位、32 位、可编程ASSP,其中32 位MCU 也已推出多款,公司MCU 搭配IPM 模块销售,形成整套方案,解决客户需求的同时增厚公司营收体量。 此外,公司电控类MCU产品持续在工业变频、工业UPS、光伏逆变、新能源车、物联网等众多领域得到广泛的应用。 投资,从来都是赚认知范围内的钱,好赛道好公司还需要好价格 。
2023-06-07 23:28:511

fpga原型验证为什么薪酬很高

对于FPGA设计人才的需求缺口巨大。fpga原型验证薪酬很高,是因为中国对于FPGA设计人才的需求缺口巨大,FPGA设计人才的薪水也是行业内最高的。fpga原型验证用于通过将RTL移植到现场可编程门阵列(FPGA)来验证专门应用的集成电路(ASIC),专用标准产品(ASSP)和片上系统(SoC)的功能和性能。
2023-06-07 23:28:581

嵌入式系统和DSP的区别和联系?

单片机:就是一个带有小型CPU的一个芯片,先在已经加了很多的RAM(相当与电脑的内存) FLASH(相当与电脑的硬盘),他可以实现一些小型的智能控制。比如说银行的自动感应门。有的就是用单片机设计的。在家用电器中也有很多,他的应用范围那时相当的很广。系列也分很多。特点;灵活性那时相当高!PLC:即可编程控制器(Programmable logic Controller,是指以计算机技术为基础的新型工业控制装置。(你在百度上面打上PLC,然后搜索百科类的那的很详细。我就不废话了)说明的是PLC其实也是单片机做的,只是特殊的单片机专用的一类芯片),主要特点;稳定性高。缺点:价格高;DSP:类似与单片机,但是不同,他的运算速度是相当的快呀!主要用与速度的运算,压缩,解码,编码,等大量数据处理的场合。前景很好。嘿嘿!特点:运算速度快!嵌入式系统:说明的范围就更大了。上面说的总的来说就是嵌入式系统,或者说其中的一部分。想你电脑的打印机,一些外设都可以叫嵌入世系统。但是现在说嵌入式系统一般会联想到ARM芯片。这是一个32位的“单片机”,我一直这么叫他。嘿嘿!内核设计的很经典,现在用他的学习他的人很多。价格也在岁时间的推移慢慢降低,据说现在最低的在$1左右。PC机:这个东西一般说的是个人电脑,我不是很清楚不是个人电脑的其他解释,只知道在PLC起初的时候也叫PC 单为了和个人电脑区别,该成PLC的了。PLC是产品级的,就是一个盒子似的,外面有很多的接线口,可编程。直接使用的。一般用在工业上。单片机和DSP ARM都是芯片级的。需要做PCB板子然后焊接在包装上市,成为商品后是不可编程的。
2023-06-07 23:29:086

什么叫集成电路、集成模块?

一、概述 集成电路(integrated circuit,港台称之为积体电路)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。 集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 它在电路中用字母“IC”(也有用文字符号“N”等)表示。[编辑本段]二、集成电路的分类 (一)按功能结构分类 集成电路按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大类。 模拟集成电路又称线性电路,用来产生、放大和处理各种模拟信号(指幅度随时间边疆变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),其输入信号和输出信号成比例关系。而数字集成电路用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号。例如VCD、DVD重放的音频信号和视频信号)。 (二)按制作工艺分类 集成电路按制作工艺可分为半导体集成电路和薄膜集成电路。 膜集成电路又分类厚膜集成电路和薄膜集成电路。 (三)按集成度高低分类 集成电路按集成度高低的不同可分为小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路、特大规模集成电路和巨大规模集成电路。 (四)按导电类型不同分类 集成电路按导电类型可分为双极型集成电路和单极型集成电路,他们都是数字集成电路. 双极型集成电路的制作工艺复杂,功耗较大,代表集成电路有TTL、ECL、HTL、LST-TL、STTL等类型。单极型集成电路的制作工艺简单,功耗也较低,易于制成大规模集成电路,代表集成电路有CMOS、NMOS、PMOS等类型。 (五)按用途分类 集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。 1.电视机用集成电路包括行、场扫描集成电路、中放集成电路、伴音集成电路、彩色解码集成电路、AV/TV转换集成电路、开关电源集成电路、遥控集成电路、丽音解码集成电路、画中画处理集成电路、微处理器(CPU)集成电路、存储器集成电路等。 2.音响用集成电路包括AM/FM高中频电路、立体声解码电路、音频前置放大电路、音频运算放大集成电路、音频功率放大集成电路、环绕声处理集成电路、电平驱动集成电路,电子音量控制集成电路、延时混响集成电路、电子开关集成电路等。 3.影碟机用集成电路有系统控制集成电路、视频编码集成电路、MPEG解码集成电路、音频信号处理集成电路、音响效果集成电路、RF信号处理集成电路、数字信号处理集成电路、伺服集成电路、电动机驱动集成电路等。 4.录像机用集成电路有系统控制集成电路、伺服集成电路、驱动集成电路、音频处理集成电路、视频处理集成电路。 (六)按应用领域分 集成电路按应用领域可分为标准通用集成电路和专用集成电路。 (七)按外形分 集成电路按外形可分为圆形(金属外壳晶体管封装型,一般适合用于大功率)、扁平型(稳定性好,体积小)和双列直插型.[编辑本段]三、集成电路发展简史 1.世界集成电路的发展历史 1947年:贝尔实验室肖克莱等人发明了晶体管,这是微电子技术发展中第一个里程碑; 1950年:结型晶体管诞生; 1950年: R Ohl和肖特莱发明了离子注入工艺; 1951年:场效应晶体管发明; 1956年:C S Fuller发明了扩散工艺; 1958年:仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史; 1960年:H H Loor和E Castellani发明了光刻工艺; 1962年:美国RCA公司研制出MOS场效应晶体管; 1963年:F.M.Wanlass和C.T.Sah首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺; 1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍; 1966年:美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列(50门); 1967年:应用材料公司(Applied Materials)成立,现已成为全球最大的半导体设备制造公司; 1971年:Intel推出1kb动态随机存储器(DRAM),标志着大规模集成电路出现; 1971年:全球第一个微处理器4004由Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明; 1974年:RCA公司推出第一个CMOS微处理器1802; 1976年:16kb DRAM和4kb SRAM问世; 1978年:64kb动态随机存储器诞生,不足0.5平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路(VLSI)时代的来临; 1979年:Intel推出5MHz 8088微处理器,之后,IBM基于8088推出全球第一台PC; 1981年:256kb DRAM和64kb CMOS SRAM问世; 1984年:日本宣布推出1Mb DRAM和256kb SRAM; 1985年:80386微处理器问世,20MHz; 1988年:16M DRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路(ULSI)阶段; 1989年:1Mb DRAM进入市场; 1989年:486微处理器推出,25MHz,1μm工艺,后来50MHz芯片采用 0.8μm工艺; 1992年:64M位随机存储器问世; 1993年:66MHz奔腾处理器推出,采用0.6μm工艺; 1995年:Pentium Pro, 133MHz,采用0.6-0.35μm工艺; 1997年:300MHz奔腾Ⅱ问世,采用0.25μm工艺; 1999年:奔腾Ⅲ问世,450MHz,采用0.25μm工艺,后采用0.18μm工艺; 2000年: 1Gb RAM投放市场; 2000年:奔腾4问世,1.5GHz,采用0.18μm工艺; 2001年:Intel宣布2001年下半年采用0.13μm工艺。 2.我国集成电路的发展历史 我国集成电路产业诞生于六十年代,共经历了三个发展阶段: 1965年-1978年:以计算机和军工配套为目标,以开发逻辑电路为主要产 品,初步建立集成电路工业基础及相关设备、仪器、材料的配套条件; 1978年-1990年:主要引进美国二手设备,改善集成电路装备水平,在“治散治乱”的同时,以消费类整机作为配套重点,较好地解决了彩电集成电路的国产化; 1990年-2000年:以908工程、909工程为重点,以CAD为突破口,抓好科技攻关和北方科研开发基地的建设,为信息产业服务,集成电路行业取得了新的发展。[编辑本段]四、集成电路的封装种类 1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用 以 代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也 称为凸 点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。 封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不 用担心QFP 那样的引脚变形问题。 该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有 可 能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在 也有 一些LSI 厂家正在开发500 引脚的BGA。 BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为 , 由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。 美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为 GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以 防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中 采用 此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。 4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有 玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中 心 距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗 口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1. 5~ 2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、 0.5mm、 0.4mm 等多种规格。引脚数从32 到368。 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形 。 带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为 QFJ、QFJ-G(见QFJ)。 8、COB(chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与 基 板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用 树脂覆 盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和 倒片 焊技术。 9、DFP(dual flat package) 双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。 10、DIC(dual in-line ceramic package) 陶瓷DIP(含玻璃密封)的别称(见DIP). 11、DIL(dual in-line) DIP 的别称(见DIP)。欧洲半导体厂家多用此名称。 12、DIP(dual in-line package) 双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种 。 DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。 引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm 和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。但多数情况下并不加 区分, 只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP 也称为cerdip(见cerdip)。 13、DSO(dual small out-lint) 双侧引脚小外形封装。SOP 的别称(见SOP)。部分半导体厂家采用此名称。 14、DICP(dual tape carrier package) 双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于 利 用的是TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为 定制品。 另外,0.5mm 厚的存储器LSI 簿形封装正处于开发阶段。在日本,按照EIAJ(日本电子机 械工 业)会标准规定,将DICP 命名为DTP。 15、DIP(dual tape carrier package) 同上。日本电子机械工业会标准对DTCP 的命名(见DTCP)。 16、FP(flat package) 扁平封装。表面贴装型封装之一。QFP 或SOP(见QFP 和SOP)的别称。部分半导体厂家采 用此名称。 17、flip-chip 倒焊芯片。裸芯片封装技术之一,在LSI 芯片的电极区制作好金属凸点,然后把金属凸 点 与印刷基板上的电极区进行压焊连接。封装的占有面积基本上与芯片尺寸相同。是所有 封装技 术中体积最小、最薄的一种。 但如果基板的热膨胀系数与LSI 芯片不同,就会在接合处产生反应,从而影响连接的可 靠 性。因此必须用树脂来加固LSI 芯片,并使用热膨胀系数基本相同的基板材料。 18、FQFP(fine pitch quad flat package) 小引脚中心距QFP。通常指引脚中心距小于0.65mm 的QFP(见QFP)。部分导导体厂家采 用此名称。 19、CPAC(globe top pad array carrier) 美国Motorola 公司对BGA 的别称(见BGA)。 20、CQFP(quad fiat package with guard ring) 带保护环的四侧引脚扁平封装。塑料QFP 之一,引脚用树脂保护环掩蔽,以防止弯曲变 形。 在把LSI 组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(L 形状)。 这种封装 在美国Motorola 公司已批量生产。引脚中心距0.5mm,引脚数最多为208 左右。 21、H-(with heat sink) 表示带散热器的标记。例如,HSOP 表示带散热器的SOP。 22、pin grid array(surface mount type) 表面贴装型PGA。通常PGA 为插装型封装,引脚长约3.4mm。表面贴装型PGA 在封装的 底面有陈列状的引脚,其长度从1.5mm 到2.0mm。贴装采用与印刷基板碰焊的方法,因而 也称 为碰焊PGA。因为引脚中心距只有1.27mm,比插装型PGA 小一半,所以封装本体可制作得 不 怎么大,而引脚数比插装型多(250~528),是大规模逻辑LSI 用的封装。封装的基材有 多层陶 瓷基板和玻璃环氧树脂印刷基数。以多层陶瓷基材制作封装已经实用化。 23、JLCC(J-leaded chip carrier) J 形引脚芯片载体。指带窗口CLCC 和带窗口的陶瓷QFJ 的别称(见CLCC 和QFJ)。部分半 导体厂家采用的名称。 24、LCC(Leadless chip carrier) 无引脚芯片载体。指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。是 高 速和高频IC 用封装,也称为陶瓷QFN 或QFN-C(见QFN)。 25、LGA(land grid array) 触点陈列封装。即在底面制作有阵列状态坦电极触点的封装。装配时插入插座即可。现 已 实用的有227 触点(1.27mm 中心距)和447 触点(2.54mm 中心距)的陶瓷LGA,应用于高速 逻辑 LSI 电路。 LGA 与QFP 相比,能够以比较小的封装容纳更多的输入输出引脚。另外,由于引线的阻 抗 小,对于高速LSI 是很适用的。但由于插座制作复杂,成本高,现在基本上不怎么使用 。预计 今后对其需求会有所增加。 26、LOC(lead on chip) 芯片上引线封装。LSI 封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片 的 中心附近制作有凸焊点,用引线缝合进行电气连接。与原来把引线框架布置在芯片侧面 附近的 结构相比,在相同大小的封装中容纳的芯片达1mm 左右宽度。 27、LQFP(low profile quad flat package) 薄型QFP。指封装本体厚度为1.4mm 的QFP,是日本电子机械工业会根据制定的新QFP 外形规格所用的名称。 28、L-QUAD 陶瓷QFP 之一。封装基板用氮化铝,基导热率比氧化铝高7~8 倍,具有较好的散热性。 封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本。是为逻辑LSI 开发的一种 封装, 在自然空冷条件下可容许W3的功率。现已开发出了208 引脚(0.5mm 中心距)和160 引脚 (0.65mm 中心距)的LSI 逻辑用封装,并于1993 年10 月开始投入批量生产。 29、MCM(multi-chip module) 多芯片组件。将多块半导体裸芯片组装在一块布线基板上的一种封装。根据基板材料可 分 为MCM-L,MCM-C 和MCM-D 三大类。 MCM-L 是使用通常的玻璃环氧树脂多层印刷基板的组件。布线密度不怎么高,成本较低 。 MCM-C 是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使 用多层陶瓷基板的厚膜混合IC 类似。两者无明显差别。布线密度高于MCM-L。 MCM-D 是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或Si、Al 作为基板的组 件。 布线密谋在三种组件中是最高的,但成本也高。 30、MFP(mini flat package) 小形扁平封装。塑料SOP 或SSOP 的别称(见SOP 和SSOP)。部分半导体厂家采用的名称。 31、MQFP(metric quad flat package) 按照JEDEC(美国联合电子设备委员会)标准对QFP 进行的一种分类。指引脚中心距为 0.65mm、本体厚度为3.8mm~2.0mm 的标准QFP(见QFP)。 32、MQUAD(metal quad) 美国Olin 公司开发的一种QFP 封装。基板与封盖均采用铝材,用粘合剂密封。在自然空 冷 条件下可容许2.5W~2.8W 的功率。日本新光电气工业公司于1993 年获得特许开始生产 。 33、MSP(mini square package) QFI 的别称(见QFI),在开发初期多称为MSP。QFI 是日本电子机械工业会规定的名称。 34、OPMAC(over molded pad array carrier) 模压树脂密封凸点陈列载体。美国Motorola 公司对模压树脂密封BGA 采用的名称(见 BGA)。 35、P-(plastic) 表示塑料封装的记号。如PDIP 表示塑料DIP。 36、PAC(pad array carrier) 凸点陈列载体,BGA 的别称(见BGA)。 37、PCLP(printed circuit board leadless package) 印刷电路板无引线封装。日本富士通公司对塑料QFN(塑料LCC)采用的名称(见QFN)。引 脚中心距有0.55mm 和0.4mm 两种规格。目前正处于开发阶段。 38、PFPF(plastic flat package) 塑料扁平封装。塑料QFP 的别称(见QFP)。部分LSI 厂家采用的名称。 39、PGA(pin grid array) 陈列引脚封装。插装型封装之一,其底面的垂直引脚呈陈列状排列。封装基材基本上都 采 用多层陶瓷基板。在未专门表示出材料名称的情况下,多数为陶瓷PGA,用于高速大规模 逻辑 LSI 电路。成本较高。引脚中心距通常为2.54mm,引脚数从64 到447 左右。 了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替。也有64~256 引脚的塑料PG A。 另外,还有一种引脚中心距为1.27mm 的短引脚表面贴装型PGA(碰焊PGA)。(见表面贴装 型PGA)。 40、piggy back 驮载封装。指配有插座的陶瓷封装,形关与DIP、QFP、QFN 相似。在开发带有微机的设 备时用于评价程序确认操作。例如,将EPROM 插入插座进行调试。这种封装基本上都是 定制 品,市场上不怎么流通。 41、PLCC(plastic leaded chip carrier) 带引线的塑料芯片载体。表面贴装型封装之一。引脚从封装的四个侧面引出,呈丁字形 , 是塑料制品。美国德克萨斯仪器公司首先在64k 位DRAM 和256kDRAM 中采用,现在已经 普 及用于逻辑LSI、DLD(或程逻辑器件)等电路。引脚中心距1.27mm,引脚数从18 到84。 J 形引脚不易变形,比QFP 容易操作,但焊接后的外观检查较为困难。 PLCC 与LCC(也称QFN)相似。以前,两者的区别仅在于前者用塑料,后者用陶瓷。但现 在已经出现用陶瓷制作的J 形引脚封装和用塑料制作的无引脚封装(标记为塑料LCC、PC LP、P -LCC 等),已经无法分辨。为此,日本电子机械工业会于1988 年决定,把从四侧引出 J 形引 脚的封装称为QFJ,把在四侧带有电极凸点的封装称为QFN(见QFJ 和QFN)。 42、P-LCC(plastic teadless chip carrier)(plastic leaded chip currier) 有时候是塑料QFJ 的别称,有时候是QFN(塑料LCC)的别称(见QFJ 和QFN)。部分 LSI 厂家用PLCC 表示带引线封装,用P-LCC 表示无引线封装,以示区别。 43、QFH(quad flat high package) 四侧引脚厚体扁平封装。塑料QFP 的一种,为了防止封装本体断裂,QFP 本体制作得 较厚(见QFP)。部分半导体厂家采用的名称。 44、QFI(quad flat I-leaded packgac) 四侧I 形引脚扁平封装。表面贴装型封装之一。引脚从封装四个侧面引出,向下呈I 字 。 也称为MSP(见MSP)。贴装与印刷基板进行碰焊连接。由于引脚无突出部分,贴装占有面 积小 于QFP。 日立制作所为视频模拟IC 开发并使用了这种封装。此外,日本的Motorola 公司的PLL IC 也采用了此种封装。引脚中心距1.27mm,引脚数从18 于68。 45、QFJ(quad flat J-leaded package) 四侧J 形引脚扁平封装。表面贴装封装之一。引脚从封装四个侧面引出,向下呈J 字形 。 是日本电子机械工业会规定的名称。引脚中心距1.27mm。 材料有塑料和陶瓷两种。塑料QFJ 多数情况称为PLCC(见PLCC),用于微机、门陈列、 DRAM、ASSP、OTP 等电路。引脚数从18 至84。 陶瓷QFJ 也称为CLCC、JLCC(见CLCC)。带窗口的封装用于紫外线擦除型EPROM 以及 带有EPROM 的微机芯片电路。引脚数从32 至84。 46、QFN(quad flat non-leaded package) 四侧无引脚扁平封装。表面贴装型封装之一。现在多称为LCC。QFN 是日本电子机械工业 会规定的名称。封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度 比QFP 低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电 极触点 难于作到QFP 的引脚那样多,一般从14 到100 左右。 材料有陶瓷和塑料两种。当有LCC 标记时基本上都是陶瓷QFN。电极触点中心距1.27mm。 塑料QFN 是以玻璃环氧树脂印刷基板基材的一种低成本封装。电极触点中心距除1.27mm 外, 还有0.65mm 和0.5mm 两种。这种封装也称为塑料LCC、PCLC、P-LCC 等。 47、QFP(quad flat package) 四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。基材有 陶 瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时, 多数情 况为塑料QFP。塑料QFP 是最普及的多引脚LSI 封装。不仅用于微处理器,门陈列等数字 逻辑LSI 电路,而且也用于VTR 信号处理、音响信号处理等模拟LSI 电路。引脚中心距 有1.0mm、0.8mm、 0.65mm、0.5mm、0.4mm、0.3mm 等多种规格。0.65mm 中心距规格中最多引脚数为304。 日本将引脚中心距小于0.65mm 的QFP 称为QFP(FP)。但现在日本电子机械工业会对QFP 的外形规格进行了重新评价。在引脚中心距上不加区别,而是根据封装本体厚度分为 QFP(2.0mm~3.6mm 厚)、LQFP(1.4mm 厚)和TQFP(1.0mm 厚)三种。 另外,有的LSI 厂家把引脚中心距为0.5mm 的QFP 专门称为收缩型QFP 或SQFP、VQFP。 但有的厂家把引脚中心距为0.65mm 及0.4mm 的QFP 也称为SQFP,至使名称稍有一些混乱 。 QFP 的缺点是,当引脚中心距小于0.65mm 时,引脚容易弯曲。为了防止引脚变形,现已 出现了几种改进的QFP 品种。如封装的四个角带有树指缓冲垫的BQFP(见BQFP);带树脂 保护 环覆盖引脚前端的GQFP(见GQFP);在封装本体里设置测试凸点、放在防止引脚变形的专 用夹 具里就可进行测试的TPQFP(见TPQFP)。 在逻辑LSI 方面,不少开发品和高可靠品都封装在多层陶瓷QFP 里。引脚中心距最小为 0.4mm、引脚数最多为348 的产品也已问世。此外,也有用玻璃密封的陶瓷QFP(见Gerqa d)。 48、QFP(FP)(QFP fine pitch) 小中心距QFP。日本电子机械工业会标准所规定的名称。指引脚中心距为0.55mm、0.4mm 、 0.3mm 等小于0.65mm 的QFP(见QFP)。 49、QIC(quad in-line ceramic package) 陶瓷QFP 的别称。部分半导体厂家采用的名称(见QFP、Cerquad)。 50、QIP(quad in-line plastic package) 塑料QFP 的别称。部分半导体厂家采用的名称(见QFP)。 51、QTCP(quad tape carrier package) 四侧引脚带载封装。TCP 封装之一,在绝缘带上形成引脚并从封装四个侧面引出。是利 用 TAB 技术的薄型封装(见TAB、TCP)。 52、QTP(quad tape carrier package) 四侧引脚带载封装。日本电子机械工业会于1993 年4 月对QTCP 所制定的外形规格所用 的 名称(见TCP)。 53、QUIL(quad in-line) QUIP 的别称(见QUIP)。 54、QUIP(quad in-line package) 四列引脚直插式封装。引脚从封装两个侧面引出,每隔一根交错向下弯曲成四列。引脚 中 心距1.27mm,当插入印刷基板时,插入中心距就变成2.5mm。因此可用于标准印刷线路板 。是 比标准DIP 更小的一种封装。日本电气公司在台式计算机和家电产品等的微机芯片中采 用了些 种封装。材料有陶瓷和塑料两种。引脚数64。 55、SDIP (shrink dual in-line package) 收缩型DIP。插装型封装之一,形状与DIP 相同,但引脚中心距(1.778mm)小于DIP(2.54 mm), 因而得此称呼。引脚数从14 到90。也有称为SH-DIP 的。材料有陶瓷和塑
2023-06-07 23:29:521

FPGA和ASIC哪个方向更有前途?

ASIC与FPGA比较谈专用集成电路(ASIC)采用硬接线的固定模式,而现场可编程门阵列 (FPGA)则采用可配置芯片的方法,二者差别迥异。可编程器件是目前的新生力量,混合技术也将在未来发挥作用。 与其他技术一样,有关ASIC技术过时的报道是不成熟的。新的ASIC产品的数目可能有大幅度下降,但其销售额仍然相当高,尤其是在亚太区。此外,采用混合式方法,如结构化ASIC,也为该技术注入了新的活力。同时,FPGA(和其他可编程逻辑器件)也在发挥作用,赢得了重要的大众市场,并从低端应用不断向上发展。 每种技术都有它的支持者。一般来说,ASIC用于大型项目,而对于需要快速投放市场且支持远程升级的小型项目,FPGA则更为适合。ASIC和FPGA供应商对这两种技术孰优孰劣不能达成共识,对适合的应用领域也持不同看法。上述技术及其衍生技术将可能在今后一段时间内长期存在。 Altera Corp的高密度FPGA高级总监David Greenfield指出,FPGA技术的主要优势仍是产品投放市场的时间较短。他说:“在目前新增的设计方案中,对FPGA的选择倾向超过ASIC。ASIC技术有其价值所在,它的性能、密度和单位容量都相当出色,不过随着FPGA的发展和ASIC的开发成本不断上升,将会导致ASIC的市场份额不断缩小。”在上述趋势之后发挥作用的,正是FPGA在性能、密度和制造成本上的发展。 Greenfield指出,高性能曾经是ASIC超出FPGA的优势,当时FPGA在性能和功能上都较逊色。随着芯片的制造工艺从180nm发展到130nm甚至90nm,上述情况发生了很大变化,现在FPGA的性能已经能够满足大多数应用的需要(要求最高的应用除外),而密度水平则达到逻辑设计的80%。他解释说:“某些系统设计师也认识到,ASIC的市场领域在于极高性能/密度的产品,这种市场领域风险非常大。NRE(非重复性工程设计)和开发成本对这种设备而言是最高的。” Altera指出,较早期的FPGA仅用于原型开发或低容量/低密度应用,现在该技术已经在消费电子产品中得到大规模使用,也在高密度应用中得到一定应用。Greenfield指出,最高密度的FPGA (90 nm)其单价仍明显高于ASIC。他说:“但是,即便就最高密度的应用而言,当综合考虑到开发和NRE成本等因素后,结果仍倾向于FPGA技术。” 德州仪器(TI)的ASIC工作以单元方式为主,为数量有限的大型客户服务。这些ASIC器件的平均门数量通常为工业标准ASIC的五倍,主要应用在高度复杂、高容量的应用中。这些应用都要求对商用的网络和电信技术有高度的差异化。 TI的ASIC通讯基础设施业务部门硅技术设计师John DiFilippo指出:“以单元方式进行ASIC开发,初始投资较高。但在高产情况下,ROI会大幅改善,因为其芯片较小,单位成本降低。在成品单价不太重要的情况下,或者是在产品上市时间较短,或初始投资较少的情况下,FPGA则是更好的选择。” DiFilippo认为TI的客户要求良好的性价比,而对FPGA和结构式ASIC而言这种要求都是难以实现的。FPGA和结构式ASIC更适于广阔的中间市场。他说:“FPGA和结构式ASIC适于低容量、寿命较短的应用,客户愿意在产品功能和性能方面有所牺牲,但要求仍能实现系统目标。” 不过,TI对两种竞争的技术都认同。TI为单元型ASIC设备推出新的特性,使其能够提供类似门阵列的灵活性,更短的循环实现,设备要求重新设计时还能实现更低的成本。TI还开发了“平台式”ASIC产品,在多条客户产品线上都能加以利用,并指出其能够降低单位系统的开发成本。 TI认为,单元型ASIC方法最适于以下情况: ■ 门和存储位的数量超过1千万;GE Fanuc Automation认为,FPGA的“真正优势”有两方面:一是能用可靠的标准部件迅速进行开发,而且可以方便地修改,以添加新的特性;二是能在开发期间或在产品生命期内修正错误。GE Fanuc高级工程师Richard Reed指出,与ASIC不同的是,FPGA作为内置标准还带有更多功能,如可测试性或JTAG接口,这可节约设计时间和成本。 FPGA加速了产品的推出。Reed指出:“大量采用标准部件,使得FPGA的价格相对于ASIC而言更具竞争性。对于生命周期较长和产量较大的应用,有时将设计转化为ASIC专用芯片则更为合适。” 在ASIC的优势方面,Reed指出,ASIC加电后可立即运行,就单位逻辑大小而言封装选择更多,还可包括某些模拟逻辑。与此相对比,FPGA加载配置进入存储器需要时间,因此不能立即工作。此外,FPGA的封装也较复杂。 成本/风险因素 Nallatech公司是FPGA计算系统和软硬件开发商,该公司承认ASIC就其设计所针对的特定功能类型和专门应用而言实现了“高性能水平”。但是,Nallatech系统应用工程师Craig Sanderson指出,如果采用ASIC来实现高性能处理功能(如工业模拟、建模或成像)的话,那就会造成“商业影响”。 图2:FPGA 成功的应用于工业产品,例如,NI 的CompactRIO 可重新配置的采集和控制系统中嵌入的FPGA 芯片起了重要作用。GE FANUC 的P A CSystems RX3i 控制器也应用了FPGA 技术。 Nallatech同样认为,FPGA避免了较高的NRE成本,也具有其他优势。FPGA的可重复编程性可实现更灵活的开发路径,降低风险和成本。与此相反,ASIC开发必须做到“首次肯定正确”。而FPGA的现场可重复编程性使开发人员能够用软件升级包通过在片上运行程序来修改芯片,而不是替换芯片。FPGA甚至可通过因特网进行远程升级。废弃控制(Obsolescence control)是指现有的FPGA应用设计作为新一代器件再编译的可用资源。 就许多应用而言,FPGA供应商都表示性能已与ASIC相当。Sanderson指出:“就高性能应用而言,FPGA提供了充足的资源,可实现与ASIC技术相当的功能,同时比标准处理器的性能高出很多。” 由于FPGA的可重复编程,因此应用程序可在实际硬件中进行调试和检测。Sanderson补充说:“就ASIC而言,所有检测都必须在进入物理实现ASIC硬件阶段之前仿真进行,如果到硬件阶段再发现问题就太晚了。” Gricha Raether是National Instruments (NI)的工业控制和分布式I/O产品经理,他指出ASIC和FPGA早期用于大规模应用,如机器制造和OEM型集成等,这有助于分摊传统上较高的开发成本。之所以成本较高,他认为是上述器件的开发周期较长且设计人员需要掌握大量的有关开发工具的专业知识,特别是ASIC的设计工作和制造步骤更是需时不菲。 FPGA产品设计完善,可以直接编程。他指出,就此而言,FPGA将逐渐替代实际的集成电路。由于FPGA具备可定制的灵活性,因此供应商可能收取更多费用。设计IC封装和印制电路板会带来更多成本,这对两种技术都一样,但ASIC尤其如此。 工业生命周期 Raether认为,FPGA对生命周期更长的工业产品也有利。这主要是由于该技术能根据新的版本进行方便的再编程,并可进行现场再编程。他说:“采用FPGA技术的设计人员应考虑到可能需要的扩展和修改,在选择FPGA门的数量大小时应预作准备。”这就要求在实现功能所需要的门阵列的数量和芯片编程实现的性能之间取得微妙的平衡,此外还要考虑到所需的“存储空间”。 Altera也认为,FPGA对生命周期更长的工业产品也“非常有利”,尽管这种产品随着时间的推移销售量会下降。Greenfield指出:“FPGA工艺不需要最低预订数量,寿命更长,这是令其独树一帜的重要原因。许多采用ASIC产品设计五年之久的工业客户现在都用FPGA来代替ASIC。”原因有很多,如ASIC要求最低预订数量,很不灵活; ASIC工艺技术已经过时,或者需要向无铅型芯片封装转换等。 工艺技术逐渐过时是芯片制造商必须面临的问题。Greenfield指出:“这一问题对ASIC公司而言尤其严重,因为他们的客户群非常有限,而且很可能在困境中难以抽身。” 软件工具的作用 开发FPGA解决方案相当复杂,要求有适当的软件工具。Nallatech的Sanderson指出,FPGA设计工具正在不断改进,特别是那些应用高级语言或接口进行应用开发的工具更是如此,如Mathworks提供的MatLab/Simulink。 他表示,高级语言对FPGA公司尤其重要,因为这种语言能将必需的应用功能打包进一个或多个FPGA器件。Sanderson指出,此前,这种功能必需在一个或多个DSP或微处理器上实现,而且还要加上一些固定功能的ASIC来实现连接。近似而又不相同的硅技术方法 ASIC 和FPGA 都是集成电路(IC),但又互有区别。专用集成电路(ASIC)如其名称所示,是专门满足某种电子产品或系列产品的特定应用需求的硬接线硅芯片,用于各种消费电子产品和工业产品中。 现场可编程门阵列(FPGA)是新兴的IC 技术,包括成千上万个逻辑单元,通过可编程开关连接起来,通过单元的逻辑互联来满足不同的设计要求。除了逻辑块之外,FPGA 的其他可编程元件为I/O 块(作为内部单线路和芯片外部引脚的接口)以及互联接口(将其他元件的I/O 信号路由至适当的网络)。可重复编程的功能是此类器件的最大优势。 结构式ASIC构成上述方法的中间地带,它用金属基层对众多应用共有的设计元素(逻辑单元、存储器、I/O等)进行预制造。针对特定应用的数据可在最终几个金属层中添加,这就大大减少了掩模层的数量,并将低了开发的预研成本。 设计人员面临的设计复杂性之一就是要在单一FPGA中实现多个功能块之间进行通讯。Nallatech公司的DimeTalk工具(目前仅适用于Nallatech硬件)据说可解决FPGA通讯系统开发的问题。 每种芯片技术都要求设计工具。Xilinx指出,由于FPGA设计流程的特点,FPGA用户不用考虑制造产量和亚微米问题,此外,FPGA还具有方便易用、低成本以及产品上市时间短等优点。Goetting补充说:“作为标准产品,FPGA推出时已经过全面测试,可以正常发挥作用,因为FPGA供应商已经解决了物理设计、验证和特性描述等问题。”Xilinx为逻辑、DSP和嵌入式处理器件提供集成设计和调试工具,此外还为第三方工具提供接口。 根据供应商的不同,对FPGA进行编程的软件在内容和增值特性(如编译和编辑工具)方面互有差异。NI的Raether强调指出,熟练使用上述工具要求多年的经验和培训。他说:“某些更高级工具正逐渐进入市场,不过需要很好地了解FPGA的内部机制才能使用好这些工具。”VHDL (极[高速]硬件描述语言)是最常用的开发语言。Raether表示,NI的LabView软件可将器件的内部运行机制完全抽象出来,它是目前唯一实现此功能的软件。该软件可通过图形化开发环境对可编程自动化控制器中的FPGA进行编程。 挑战混合解决方案 FPGA也面临着挑战。Xilinx指出,高密度芯片的静态功耗和尺寸限制就是FPGA的问题,因为可编程的芯片需要更多晶体管来执行逻辑功能。尽管FPGA工艺已经向新式的更小型工艺技术发展,但工艺级、电路级和架构级创新似乎日益受到功耗问题的约束。Goetting指出,举例来说,Xilinx通过采用三氧化物技术和集成式平台功能,将其90nm的Virtex-4系列产品的功耗相对于130nm的处理器降低了一半。 National Instruments的Raether指出,FPGA开发还面临着一些问题,如开发时间,行业规范的兼容性,以及在电路板和封装设计方面分配适当的开发资源。类似NI CompactRIO (见照片)的器件中集成了一块FPGA来帮助实现产品开发。 GE Fanuc的Reed对专用标准产品(ASSP)组件很感兴趣,这些组件衍生自不同的传统ASIC设计。GE Fanuc以可用的IP (知识产权)核用于FPGA,以提高其工作效率;厂商用相同的技术推出标准组件的诸多修改版,以适应众多较小的市场领域。Reed总结说:“我们可以推出嵌入式处理器,更好地搭配组合所需的功能,而且不必为我们不需要的功能付费,这是因为IP核可以重复使用,我们可将这些IP核快速搭配,制成标准组件。” 我们目前要解决的是“专用集成电路”和“可编程器件”之争。而最终解决方案是否是混合芯片技术,让我们拭目以待。 另可参考:http://www.dz51.cn/dvbbs/dispbbs.asp?boardid=7&id=191
2023-06-07 23:30:101

谁能告诉我IC封装的种类,代号和含义啊?

1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样的引脚变形问题。该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚的BGA。 BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC)。2、BQFP(quad flat PACkage with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫)以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。3、PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中心距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1.5~2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded Chip carrier) 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为QFJ、QFJ-G(见QFJ)。8、COB(Chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片焊技术。9、DFP(dual flat PACkage) 双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。10、DIC(dual in-line ceramic PACkage) 陶瓷DIP(含玻璃密封)的别称(见DIP).11、DIL(dual in-line) DIP 的别称(见DIP)。欧洲半导体厂家多用此名称。12、DIP(dual in-line PACkage) 双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。 DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。但多数情况下并不加区分,只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP 也称为Cerdip(见cerdip)。 13、DSO(dual small out-lint) 双侧引脚小外形封装。SOP 的别称(见SOP)。部分半导体厂家采用此名称。14、DICP(dual tape carrier PACkage) 双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于利用的是TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为定制品。另外,0.5mm 厚的存储器LSI 簿形封装正处于开发阶段。在日本,按照EIAJ(日本电子机械工业)会标准规定,将DICP 命名为DTP。 15、DIP(dual tape carrier PACkage) 同上。日本电子机械工业会标准对DTCP 的命名(见DTCP)。16、FP(flat PACkage) 扁平封装。表面贴装型封装之一。QFP 或SOP(见QFP 和SOP)的别称。部分半导体厂家采用此名称。 17、flip-Chip 倒焊芯片。裸芯片封装技术之一,在LSI 芯片的电极区制作好金属凸点,然后把金属凸点与印刷基板上的电极区进行压焊连接。封装的占有面积基本上与芯片尺寸相同。是所有封装技术中体积最小、最薄的一种。但如果基板的热膨胀系数与LSI 芯片不同,就会在接合处产生反应,从而影响连接的可靠性。因此必须用树脂来加固LSI 芯片,并使用热膨胀系数基本相同的基板材料。18、FQFP(fine pitch quad flat PACkage) 小引脚中心距QFP。通常指引脚中心距小于0.65mm 的QFP(见QFP)。部分导导体厂家采用此名称。19、CPAC(globe top pad array carrier) 美国Motorola 公司对BGA 的别称(见BGA)。20、CQFP(quad fiat PACkage with guard ring) 带保护环的四侧引脚扁平封装。塑料QFP 之一,引脚用树脂保护环掩蔽,以防止弯曲变形。在把LSI 组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(L 形状)。这种封装在美国Motorola 公司已批量生产。引脚中心距0.5mm,引脚数最多为208 左右。 21、H-(with heat sink) 表示带散热器的标记。例如,HSOP 表示带散热器的SOP。22、pin grid array(surface mount type) 表面贴装型PGA。通常PGA 为插装型封装,引脚长约3.4mm。表面贴装型PGA 在封装的底面有陈列状的引脚,其长度从1.5mm 到2.0mm。贴装采用与印刷基板碰焊的方法,因而也称为碰焊PGA。因为引脚中心距只有1.27mm,比插装型PGA 小一半,所以封装本体可制作得不怎么大,而引脚数比插装型多(250~528),是大规模逻辑LSI 用的封装。封装的基材有多层陶瓷基板和玻璃环氧树脂印刷基数。以多层陶瓷基材制作封装已经实用化。23、JLCC(J-leaded Chip carrier) J 形引脚芯片载体。指带窗口CLCC 和带窗口的陶瓷QFJ 的别称(见CLCC 和QFJ)。部分半导体厂家采用的名称。24、LCC(Leadless Chip carrier) 无引脚芯片载体。指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。是高速和高频IC 用封装,也称为陶瓷QFN 或QFN-C(见QFN)。25、LGA(land grid array) 触点陈列封装。即在底面制作有阵列状态坦电极触点的封装。装配时插入插座即可。现已实用的有227 触点(1.27mm 中心距)和447 触点(2.54mm 中心距)的陶瓷LGA,应用于高速逻辑LSI 电路。 LGA 与QFP 相比,能够以比较小的封装容纳更多的输入输出引脚。另外,由于引线的阻抗小,对于高速LSI 是很适用的。但由于插座制作复杂,成本高,现在基本上不怎么使用。预计今后对其需求会有所增加。26、LOC(lead on Chip) 芯片上引线封装。LSI 封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片的中心附近制作有凸焊点,用引线缝合进行电气连接。与原来把引线框架布置在芯片侧面附近的结构相比,在相同大小的封装中容纳的芯片达1mm 左右宽度。27、LQFP(low profile quad flat PACkage) 薄型QFP。指封装本体厚度为1.4mm 的QFP,是日本电子机械工业会根据制定的新QFP外形规格所用的名称。28、L-QUAD 陶瓷QFP 之一。封装基板用氮化铝,基导热率比氧化铝高7~8 倍,具有较好的散热性。封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本。是为逻辑LSI 开发的一种封装,在自然空冷条件下可容许W3的功率。现已开发出了208 引脚(0.5mm 中心距)和160 引脚(0.65mm中心距)的LSI 逻辑用封装,并于1993 年10 月开始投入批量生产。29、MCM(multi-Chip module) 多芯片组件。将多块半导体裸芯片组装在一块布线基板上的一种封装。根据基板材料可分为MCM-L,MCM-C 和MCM-D 三大类。 MCM-L 是使用通常的玻璃环氧树脂多层印刷基板的组件。布线密度不怎么高,成本较低。MCM-C 是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使用多层陶瓷基板的厚膜混合IC 类似。两者无明显差别。布线密度高于MCM-L。MCM-D 是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或Si、Al 作为基板的组件。布线密谋在三种组件中是最高的,但成本也高。30、MFP(mini flat PACkage) 小形扁平封装。塑料SOP 或SSOP 的别称(见SOP 和SSOP)。部分半导体厂家采用的名称。31、MQFP(metric quad flat PACkage) 按照JEDEC(美国联合电子设备委员会)标准对QFP 进行的一种分类。指引脚中心距为0.65mm、本体厚度为3.8mm~2.0mm 的标准QFP(见QFP)。32、MQUAD(metal quad) 美国Olin 公司开发的一种QFP 封装。基板与封盖均采用铝材,用粘合剂密封。在自然空冷条件下可容许2.5W~2.8W 的功率。日本新光电气工业公司于1993 年获得特许开始生产。33、MSP(mini square PACkage) QFI 的别称(见QFI),在开发初期多称为MSP。QFI 是日本电子机械工业会规定的名称。34、OPMAC(over molded pad array carrier) 模压树脂密封凸点陈列载体。美国Motorola 公司对模压树脂密封BGA 采用的名称(见BGA)。35、P-(plastic) 表示塑料封装的记号。如PDIP 表示塑料DIP。 36、PAC(pad array carrier) 凸点陈列载体,BGA 的别称(见BGA)。 37、PCLP(printed circuit board leadless PACkage) 印刷电路板无引线封装。日本富士通公司对塑料QFN(塑料LCC)采用的名称(见QFN)。引脚中心距有0.55mm 和0.4mm 两种规格。目前正处于开发阶段。38、PFPF(plastic flat PACkage) 塑料扁平封装。塑料QFP 的别称(见QFP)。部分LSI 厂家采用的名称。39、PGA(pin grid array) 陈列引脚封装。插装型封装之一,其底面的垂直引脚呈陈列状排列。封装基材基本上都采用多层陶瓷基板。在未专门表示出材料名称的情况下,多数为陶瓷PGA,用于高速大规模逻辑LSI 电路。成本较高。引脚中心距通常为2.54mm,引脚数从64 到447 左右。了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替。也有64~256 引脚的塑料PGA。另外,还有一种引脚中心距为1.27mm 的短引脚表面贴装型PGA(碰焊PGA)。(见表面贴装型PGA)。 40、piggy back 驮载封装。指配有插座的陶瓷封装,形关与DIP、QFP、QFN 相似。在开发带有微机的设备时用于评价程序确认操作。例如,将EPROM 插入插座进行调试。这种封装基本上都是定制品,市场上不怎么流通。41、PLCC(plastic leaded Chip carrier) 带引线的塑料芯片载体。表面贴装型封装之一。引脚从封装的四个侧面引出,呈丁字形,是塑料制品。美国德克萨斯仪器公司首先在64k 位DRAM 和256kDRAM 中采用,现在已经普及用于逻辑LSI、DLD(或程逻辑器件)等电路。引脚中心距1.27mm,引脚数从18 到84。J 形引脚不易变形,比QFP 容易操作,但焊接后的外观检查较为困难。PLCC 与LCC(也称QFN)相似。以前,两者的区别仅在于前者用塑料,后者用陶瓷。但现在已经出现用陶瓷制作的J 形引脚封装和用塑料制作的无引脚封装(标记为塑料LCC、PCLP、P-LCC 等),已经无法分辨。为此,日本电子机械工业会于1988 年决定,把从四侧引出J 形引脚的封装称为QFJ,把在四侧带有电极凸点的封装称为QFN(见QFJ 和QFN)。42、P-LCC(plastic teadless Chip carrier)(plastic leaded chip currier) 有时候是塑料QFJ 的别称,有时候是QFN(塑料LCC)的别称(见QFJ 和QFN)。部分 LSI 厂家用PLCC 表示带引线封装,用P-LCC 表示无引线封装,以示区别。43、QFH(quad flat high PACkage) 四侧引脚厚体扁平封装。塑料QFP 的一种,为了防止封装本体断裂,QFP 本体制作得较厚(见QFP)。部分半导体厂家采用的名称。44、QFI(quad flat I-leaded PACkgac) 四侧I 形引脚扁平封装。表面贴装型封装之一。引脚从封装四个侧面引出,向下呈I 字。也称为MSP(见MSP)。贴装与印刷基板进行碰焊连接。由于引脚无突出部分,贴装占有面积小于QFP。日立制作所为视频模拟IC 开发并使用了这种封装。此外,日本的Motorola 公司的PLL IC也采用了此种封装。引脚中心距1.27mm,引脚数从18 于68。 45、QFJ(quad flat J-leaded PACkage) 四侧J 形引脚扁平封装。表面贴装封装之一。引脚从封装四个侧面引出,向下呈J 字形。是日本电子机械工业会规定的名称。引脚中心距1.27mm。材料有塑料和陶瓷两种。塑料QFJ 多数情况称为PLCC(见PLCC),用于微机、门陈列、DRAM、ASSP、OTP 等电路。引脚数从18 至84。陶瓷QFJ 也称为CLCC、JLCC(见CLCC)。带窗口的封装用于紫外线擦除型EPROM 以及带有EPROM 的微机芯片电路。引脚数从32 至84。 46、QFN(quad flat non-leaded PACkage) 四侧无引脚扁平封装。表面贴装型封装之一。现在多称为LCC。QFN 是日本电子机械工业会规定的名称。封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度比QFP低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电极触点难于作到QFP 的引脚那样多,一般从14 到100 左右。材料有陶瓷和塑料两种。当有LCC 标记时基本上都是陶瓷QFN。电极触点中心距1.27mm。塑料QFN 是以玻璃环氧树脂印刷基板基材的一种低成本封装。电极触点中心距除1.27mm 外,还有0.65mm 和0.5mm 两种。这种封装也称为塑料LCC、PCLC、P-LCC 等。47、QFP(quad flat PACkage) 四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。基材有陶瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时,多数情况为塑料QFP。塑料QFP 是最普及的多引脚LSI 封装。不仅用于微处理器,门陈列等数字逻辑LSI 电路,而且也用于VTR 信号处理、音响信号处理等模拟LSI 电路。引脚中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm 等多种规格。0.65mm 中心距规格中最多引脚数为304。日本将引脚中心距小于0.65mm 的QFP 称为QFP(FP)。但现在日本电子机械工业会对QFP的外形规格进行了重新评价。在引脚中心距上不加区别,而是根据封装本体厚度分为QFP(2.0mm~3.6mm 厚)、LQFP(1.4mm 厚)和TQFP(1.0mm 厚)三种。 另外,有的LSI 厂家把引脚中心距为0.5mm 的QFP 专门称为收缩型QFP 或SQFP、VQFP。但有的厂家把引脚中心距为0.65mm 及0.4mm 的QFP 也称为SQFP,至使名称稍有一些混乱。 QFP 的缺点是,当引脚中心距小于0.65mm 时,引脚容易弯曲。为了防止引脚变形,现已出现了几种改进的QFP 品种。如封装的四个角带有树指缓冲垫的BQFP(见BQFP);带树脂保护环覆盖引脚前端的GQFP(见GQFP);在封装本体里设置测试凸点、放在防止引脚变形的专用夹具里就可进行测试的TPQFP(见TPQFP)。在逻辑LSI 方面,不少开发品和高可靠品都封装在多层陶瓷QFP 里。引脚中心距最小为0.4mm、引脚数最多为348 的产品也已问世。此外,也有用玻璃密封的陶瓷QFP(见Gerqad)。48、QFP(FP)(QFP fine pitch) 小中心距QFP。日本电子机械工业会标准所规定的名称。指引脚中心距为0.55mm、0.4mm、0.3mm 等小于0.65mm 的QFP(见QFP)。 49、QIC(quad in-line ceramic PACkage) 陶瓷QFP 的别称。部分半导体厂家采用的名称(见QFP、Cerquad)。50、QIP(quad in-line plastic PACkage) 塑料QFP 的别称。部分半导体厂家采用的名称(见QFP)。51、QTCP(quad tape carrier PACkage) 四侧引脚带载封装。TCP 封装之一,在绝缘带上形成引脚并从封装四个侧面引出。是利用TAB 技术的薄型封装(见TAB、TCP)。 52、QTP(quad tape carrier PACkage) 四侧引脚带载封装。日本电子机械工业会于1993 年4 月对QTCP 所制定的外形规格所用的名称(见TCP)。 53、QUIL(quad in-line) QUIP 的别称(见QUIP)。54、QUIP(quad in-line PACkage) 四列引脚直插式封装。引脚从封装两个侧面引出,每隔一根交错向下弯曲成四列。引脚中心距1.27mm,当插入印刷基板时,插入中心距就变成2.5mm。因此可用于标准印刷线路板。是比标准DIP 更小的一种封装。日本电气公司在台式计算机和家电产品等的微机芯片中采用了些种封装。材料有陶瓷和塑料两种。引脚数64。 55、SDIP (shrink dual in-line PACkage) 收缩型DIP。插装型封装之一,形状与DIP 相同,但引脚中心距(1.778mm)小于DIP(2.54mm),因而得此称呼。引脚数从14 到90。也有称为SH-DIP 的。材料有陶瓷和塑料两种。 56、SH-DIP(shrink dual in-line PACkage) 同SDIP。部分半导体厂家采用的名称。57、SIL(single in-line) SIP 的别称(见SIP)。欧洲半导体厂家多采用SIL 这个名称。 58、SIMM(single in-line memory module) 单列存贮器组件。只在印刷基板的一个侧面附近配有电极的存贮器组件。通常指插入插座的组件。标准SIMM 有中心距为2.54mm 的30 电极和中心距为1.27mm 的72 电极两种规格。在印刷基板的单面或双面装有用SOJ 封装的1 兆位及4 兆位DRAM 的SIMM 已经在个人计算机、工作站等设备中获得广泛应用。至少有30~40%的DRAM 都装配在SIMM 里。59、SIP(single in-line PACkage) 单列直插式封装。引脚从封装一个侧面引出,排列成一条直线。当装配到印刷基板上时封装呈侧立状。引脚中心距通常为2.54mm,引脚数从2 至23,多数为定制产品。封装的形状各异。也有的把形状与ZIP 相同的封装称为SIP。 60、SK-DIP(skinny dual in-line PACkage) DIP 的一种。指宽度为7.62mm、引脚中心距为2.54mm 的窄体DIP。通常统称为DIP(见DIP)。 61、SL-DIP(slim dual in-line PACkage) DIP 的一种。指宽度为10.16mm,引脚中心距为2.54mm 的窄体DIP。通常统称为DIP。62、SMD(surface mount devices) 表面贴装器件。偶而,有的半导体厂家把SOP 归为SMD(见SOP)。 63、SO(small out-line) SOP 的别称。世界上很多半导体厂家都采用此别称。(见SOP)。64、SOI(small out-line I-leaded PACkage) I 形引脚小外型封装。表面贴装型封装之一。引脚从封装双侧引出向下呈I 字形,中心距1.27mm。贴装占有面积小于SOP。日立公司在模拟IC(电机驱动用IC)中采用了此封装。引脚数26。65、SOIC(small out-line integrated circuit) SOP 的别称(见SOP)。国外有许多半导体厂家采用此名称。66、SOJ(Small Out-Line J-Leaded PACkage) J 形引脚小外型封装。表面贴装型封装之一。引脚从封装两侧引出向下呈J 字形,故此得名。通常为塑料制品,多数用于DRAM 和SRAM 等存储器LSI 电路,但绝大部分是DRAM。用SOJ封装的DRAM 器件很多都装配在SIMM 上。引脚中心距1.27mm,引脚数从20 至40(见SIMM)。 67、SQL(Small Out-Line L-leaded PACkage) 按照JEDEC(美国联合电子设备工程委员会)标准对SOP 所采用的名称(见SOP)。68、SONF(Small Out-Line Non-Fin) 无散热片的SOP。与通常的SOP 相同。为了在功率IC 封装中表示无散热片的区别,有意增添了NF(non-fin)标记。部分半导体厂家采用的名称(见SOP)。69、SOF(small Out-Line PACkage) 小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有塑料和陶瓷两种。另外也叫SOL 和DFP。 SOP 除了用于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8~44。另外,引脚中心距小于1.27mm 的SOP 也称为SSOP;装配高度不到1.27mm 的SOP 也称为TSOP(见SSOP、TSOP)。还有一种带有散热片的SOP。 70、SOW (Small Outline PACkage(Wide-Jype)) 宽体SOP。部分半导体厂家采用的名称。
2023-06-07 23:30:171

ASSM 什么意思

相联存储器与军事相关的术语表 - 军事天地 - 有风...ASSM 相联存储器
2023-06-07 23:30:242

ssop封装和msop有什么区别?

SOP(smallOut-Linepackage) 小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L字形)。材料有塑料和陶瓷两种。另外也叫SOL和DFP。 SOP除了用于存储器LSI外,也广泛用于规模不太大的ASSP等电路。在输入输出端子不超过10~40的领域,SOP是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8~44。 另外,引脚中心距小于1.27mm的SOP也称为SSOP;装配高度不到1.27mm的SOP也称为TSOP。还有一种带有散热片的SOP。 MSOP,SOIC,TSSOP,DIP14,“扁平封装”、“圆形封装”、“大规模封装”和“黑胶封装”。SOP(smallOut-Linepackage) 小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L字形)。材料有塑料和陶瓷两种。另外也叫SOL和DFP。 SOP除了用于存储器LSI外,也广泛用于规模不太大的ASSP等电路。在输入输出端子不超过10~40的领域,SOP是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8~44。 另外,引脚中心距小于1.27mm的SOP也称为SSOP;装配高度不到1.27mm的SOP也称为TSOP。还有一种带有散热片的SOP。 MSOP,SOIC,TSSOP,DIP14,“扁平封装”、“圆形封装”、“大规模封装”和“黑胶封装”。
2023-06-07 23:30:331

为什么很多芯片封装都是SOP16,但是具体的大小尺寸(比如宽度)却常常不一样?采购清单到底应该怎么确定标

请问你需要购买电子元件吗?
2023-06-07 23:30:423

电子里的PLCC、DIP、MQFP、QFP、SSOP、TSSOP、SOP分别是什么意思?

这些表示器件的封装,通常表达了尺寸和引脚宽度。PLCC(plastic leaded chip carrier)带引线的塑料芯片载体。表面贴装型封装之一。引脚从封装的四个侧面引出,呈丁字形,是塑料制品。美国德克萨斯仪器公司首先在64k 位DRAM 和256kDRAM 中采用,现在已经普及用于逻辑LSI、DLD(或程逻辑器件)等电路。引脚中心距1.27mm,引脚数从18 到84。J 形引脚不易变形,比QFP 容易操作,但焊接后的外观检查较为困难。PLCC 与LCC(也称QFN)相似。以前,两者的区别仅在于前者用塑料,后者用陶瓷。但现在已经出现用陶瓷制作的J 形引脚封装和用塑料制作的无引脚封装(标记为塑料LCC、PCLP、P-LCC 等),已经无法分辨。为此,日本电子机械工业会于1988 年决定,把从四侧引出J 形引脚的封装称为QFJ,把在四侧带有电极凸点的封装称为QFN(见QFJ 和QFN)。DIP(dual tape carrierpackage)双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于利用的是TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为定制品。另外,0.5mm厚的存储器LSI 簿形封装正处于开发阶段。在日本,按照EIAJ(日本电子机械工业)会标准规定,将DICP 命名为DTP。MQFP(metric quad flatpackage)按照JEDEC(美国联合电子设备委员会)标准对QFP 进行的一种分类。指引脚中心距为0.65mm、本体厚度为3.8mm~2.0mm的标准QFP(见QFP)。QFP(quad flat package)四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。基材有陶瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时,多数情况为塑料QFP。塑料QFP 是最普及的多引脚LSI 封装。不仅用于微处理器,门陈列等数字逻辑LSI 电路,而且也用于VTR 信号处理、音响信号处理等模拟LSI 电路。引脚中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm等多种规格。0.65mm中心距规格中最多引脚数为304。日本将引脚中心距小于0.65mm的QFP 称为QFP(FP)。但现在日本电子机械工业会对QFP的外形规格进行了重新评价。在引脚中心距上不加区别,而是根据封装本体厚度分为QFP(2.0mm~3.6mm厚)、LQFP(1.4mm 厚)和TQFP(1.0mm厚)三种。另外,有的LSI 厂家把引脚中心距为0.5mm的QFP 专门称为收缩型QFP 或SQFP、VQFP。但有的厂家把引脚中心距为0.65mm及0.4mm的QFP 也称为SQFP,至使名称稍有一些混乱。QFP 的缺点是,当引脚中心距小于0.65mm时,引脚容易弯曲。为了防止引脚变形,现已出现了几种改进的QFP 品种。如封装的四个角带有树指缓冲垫的BQFP(见BQFP);带树脂保护环覆盖引脚前端的GQFP(见GQFP);在封装本体里设置测试凸点、放在防止引脚变形的专用夹具里就可进行测试的TPQFP(见TPQFP)。在逻辑LSI 方面,不少开发品和高可靠品都封装在多层陶瓷QFP 里。引脚中心距最小为0.4mm、引脚数最多为348 的产品也已问世。此外,也有用玻璃密封的陶瓷QFP(见Gerqad)。SOF(small Out-Linepackage)小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有塑料和陶瓷两种。另外也叫SOL 和DFP。SOP 除了用于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8~44。另外,引脚中心距小于1.27mm的SOP 也称为SSOP;装配高度不到1.27mm的SOP 也称为TSOP(见SSOP、TSOP)。还有一种带有散热片的SOP。
2023-06-07 23:30:561

谷子是什么东西

谷子是属禾本科的一种植物,一年生草本,果实去皮后俗称小米,古称稷、粟亦称粱。谷子叶片呈线状披针形或长披针形,长度在10到45厘米左右,宽度在5到33毫米左右,谷穗长约20-30厘米,小穗成簇的聚生在支梗长,小穗上长有刺毛,每一穗会结果实数百粒或是上千粒,谷穗成熟后会呈金黄色,呈卵圆形籽实,粒很小,直径大约0.1毫米,大多是黄色。谷子性喜高温,生育适温22~30度,海拔1000公尺以下均适合栽培,属于耐旱稳产作物。现广泛栽培于欧亚大陆的温带和热带,中国黄河中上游为主要栽培区。谷子广泛栽培于欧亚大陆的温带和热带,中国黄河中上游为主要栽培区,其他地区也有少量栽种。模式标本产于印度。种谷子要选择土质疏松,地势平坦,黑土层较厚,排水良好,土壤有机质含量高,合理轮作,把谷种播在上茬没有种过谷子的地块上。地块选好后,要细整地,整好地。谷子的两个亚种Setariaitalicassp.maximum和Setariaitalicassp.moharium,在这两个亚种内又分出德国粟、西伯利亚粟、金色奇粟、倭奴粟、匈牙利粟等类型。弗里尔和J.M.赫克托将粟分为6个类型。通常中国粟被列为大粟亚种的普通粟。形态分类上都以刺毛、穗形、子粒颜色等稳定性状为主要依据。中国将粟划分为东北平原、华北平原、黄土高原和内蒙古高原4个生态型。中国粟品种有穗粒大、分蘖性弱等特点,表明其栽培进化的程度较高。从欧美引入的品种往往分蘖力强、穗小、刺毛长,适于饲用。
2023-06-07 23:31:021

SOP是什么封装?

SOP(small Out-Line package)   小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有塑料和陶瓷两种。另外也叫SOL 和DFP。SOP 除了用于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8~44。另外,引脚中心距小于1.27mm 的SOP 也称为SSOP;装配高度不到1.27mm 的SOP 也称为TSOP(见SSOP、TSOP)。还有一种带有散热片的SOP。
2023-06-07 23:31:102

ams是什么牌子

AMS是个芯片供应商 比如主板南桥中用的AMS1117等都是由其提供
2023-06-07 23:31:183

请解释:ARM 网站提到的缩写 ASIC 和 ASSP

ASIC(Application Specific Integrated Circuit) 专用集成电路;ASSP(Application Specific Standard Parts) 专用标准产品,是为在特殊应用中使用而设计的集成电路
2023-06-07 23:31:361

asspfinanceservice 什么意思

assp finance serviceASSP的金融服务
2023-06-07 23:31:431

意法半导体简介及详细资料

公司概况 意法公司销售收入在半导体工业第七大高速增长市场之间分布均衡(五大市场占2007年销售收入的百分比):通信(35%),消费(17%),计算机(16%),汽车(16%),工业(16%)。据最新的工业统计数据,意法半导体(STMicroelectronics)是全球第五大半导体厂商,在很多市场居世界领先水平。例如,意法半导体是世界第一大专用模拟晶片和电源转换晶片制造商,世界第一大工业半导体和机顶盒晶片供应商,而且在分立器件、手机相机模组和车用积体电路领域居世界前列。 产品阵容 以多媒体套用一体化和电源解决方案的市场领导者为目标,意法半导体拥有世界上最强大的产品阵容,既有智慧财产权含量较高的专用产品,也有多领域的创新产品,例如分立器件、高性能微控制器、安全型智慧卡晶片、微机电系统(MEMS)器件。 在移动多媒体、机顶盒和计算机外设等要求严格的套用领域,意法半导体是利用平台式设计方法开发复杂IC的开拓者,并不断对这种设计方法进行改进。意法半导体拥有比例均衡的产品组合,能够满足所有微电子用户的需求。全球战略客户的系统级晶片(SoC)项目均指定意法半导体为首选合作伙伴,同时公司还为本地企业提供全程支持,以满足本地客户对通用器件和解决方案的需求。 意法半导体已经公布了与英特尔和Francisco Partners合资成立一个独立的半导体公司的合作意向,名为Numonyx的新公司将主要提供消费电子和工业设备用非易失存储器解决方案。 研发制造 自创办以来,意法半导体在研发的投入上从未动摇过,被公认为半导体工业最具创新力的公司之一。制造工艺包括先进的CMOS逻辑(包括嵌入式存储器的衍生产品)、混合信号、模拟和功率制造工艺。在先进的CMOS领域,意法半导体将与IBM联盟合作开发下一代制造工艺,包括32nm 和 22nm CMOS工艺开发、设计实现技术和针对300mm晶圆制造的先进研究,此外,意法半导体和IBM还将利用位于法国Crolles的300mm生产设施开发高附加值的CMOS衍生系统级晶片技术。 意法半导体在全球拥有一个巨大的晶圆前后工序制造网路(前工序指晶圆制造,后工序指组装、封装和测试)。公司正在向轻资金密集型制造战略转型,最近公布了关闭一些旧工厂的停产计画。目前,意法半导体的主要晶圆制造厂位于义大利的Agrate Brianza和Catania、法国的Crolles、Rousset和Tours、美国的Phoenix和Carrollton,以及新加坡。位于中国、马来西亚、马尔它、摩洛哥和新加坡的高效封装测试厂为这些先进的晶圆厂提供强有力的后工序保障。 跨国联盟 意法半导体发展了一个全球战略联盟网路,包括与大客户合作开发产品、与客户和半导体厂商合作开发技术、与主要供应商合作开发设备和CAD工具。此外,意法半导体还与全球名牌大学和知名研究机构开展各种研究项目,通过学术研究促进工业研发活动。意法半导体还担纲MEDEA+等欧洲先进技术研究计画和ENIAC(欧洲纳米技术计画顾问委员会)等工业计画。 卓越原则 意法半导体是世界上第一个认识到环境责任重要性的国际半导体公司之一,早在上个世纪90年代就开始公司的环境责任行动,此后,在环境问题上取得了令人嘱目的进步,例如,在1994年到2006年间,每个生产单位能耗降低47%,CO2排放量降低61%。此外,意法半导体远远走在了现有法规的前面,在制造过程中几乎完全摒弃了铅、镉和汞等有害物质。自1991年起,在质量、公司管理、社会问题和环保等公司责任方面,各地区公司因为表现卓越而荣获100多项奖励。 基本情况 意法半导体(ST)公司成立于1987年,是义大利SGS半导体公司和法国汤姆逊半导体合并后的新企业,从成立之初至今,ST的增长速度超过了半导体工业的整体增长速度。自1999年起,ST始终是世界十大半导体公司之一。 整个集团共有员工近50,000名,拥有16个先进的研发机构、39个设计和套用中心、15主要制造厂,并在36个国家设有78个销售办事处。 公司总部设在瑞士日内瓦,同时也是欧洲区以及新兴市场的总部;公司的美国总部设在德克萨斯州达拉斯市的卡罗顿;亚太区总部设在新加坡;日本的业务则以东京为总部;大中国区总部设在上海,负责香港、大陆和台湾三个地区的业务。 自1994年12月8日首次完成公开发行股票以来,意法半导体已经在纽约证券交易所(交易代码:STM)和泛欧巴黎证券交易所挂牌上市,1998年6月,又在义大利米兰证券交易所上市。意法半导体拥有近9亿股公开发行股票,其中约71.1%的股票是在各证券交易所公开交易的。另外有27.5%的股票由意法半导体控股II B.V.有限公司持有,其股东为Finmeanica和CDP组成的义大利Finmeanica财团和Areva及法国电信组成的法国财团;剩余1.4%的库藏股由意法半导体公司持有。 产品范围 意法半导体是业内半导体产品线最广的厂商之一,从分立二极体与电晶体到复杂的片上系统(SoC)器件,再到包括参考设计、套用软体、制造工具与规范的完整的平台解决方案,其主要产品类型有3000多种,。意法半导体是各工业领域的主要供应商,拥有多种的先进技术、智慧财产权(IP)资源与世界级制造工艺。 半导体产品大体上可分为两类:专用产品和标准产品。专用产品从半导体制造商以及用户和第三方整合了数量众多的专有IP,这些使其区别于市场上的其他产品,例如: 片上系统(SoC)产品 定制与半定制电路 专用标准产品(ASSP),如:无线套用处理器、机顶盒晶片及汽车IC 微控制器 智慧卡IC 专用存储器 专用分立器件 (ASDu2122) 一旦客户在套用中使用了专用产品,如果不修改硬体和软体设计,通常就不能进行产品替换。 相反,标准产品是实现某种特定的常用功能的器件,这些器件一般由几个供应商提供。通常,制造商推出的标准产品可以被其他制造商的同类产品所取代,供应商间的差别主要在于成本与客户服务上。然而,一旦套用设计被冻结,标准器件在性能最佳化方面也将变成唯一的器件。 标准产品包括: 分立器件,如电晶体、二极体与晶闸管 功率电晶体,如MOSFET、Bipolar与IGBT 模拟电路构建模组,如运算放大器、比较器、稳压器与电压参考电路 标准逻辑功能与接口 众多存储器产品,如标准或串列NOR快闪记忆体、NAND快闪记忆体、EPROM/EEPROM及非易失性RAM 射频分立器件及IC 自成立时起,意法半导体就成功的实现了在市场开拓方面的平衡,将差分化的专用产品(这些产品通常不容易受到市场周期的影响)与传统的标准产品(这些产品要求较少的研发投入和生产资本密集度)相结合。意法半导体多样化的产品系列避免了对通用产品或专用产品的过分依赖。 专用产品 片上系统 专用产品系列中最复杂的就是SoC器件,该器件在单个晶片上集成了完整的系统。很多情况下,这意味着整个套用的集成,也就是说器件整合了除存储器、无源元件与显示器等无需集成的组件外的所有电子电路。然而,通常在单个晶片上集成整个系统并不是最经济的解决方案,因此SoC这个术语也用于指那些集成了大部分系统的晶片。 SoC技术拓展了半导体行业在一个给定的矽片上持续增加电晶体数目的能力。然而它还涉及很多其他因素,包括系统知识、软体技术、架构创新、设计、验证、调试及测试方法。随着半导体器件在电子设备中的普及其对设备性能、价格、开发时间的重要影响,设备制造商对半导体供应商提供的完整平台解决方案的依赖性也越来越高。如今,半导体供应商可以给客户提供完整地解决方案,包括定制的参考设计、完整的软体包(含有底层驱动软体、嵌入式作业系统以及中间件和套用软体)。 很多SoC产品仅使用CMOS技术就可以制造,但完整的SoC制造技术要求具有将COMS、bipolar、非易失性存储器、功率DMOS及微型机电系统(MEMS)之类的基础技术整合到面向系统的技术(这种技术整合了两种或更多的基础技术)中的能力。多年来,意法半导体一直是开发与采用这些面向系统的技术领域的全球领导者。 SoC器件通常集成一个或多个处理器核,意法半导体为客户提供了世界上最广泛的处理器核,包括主要用于无线与汽车套用的基于32位高性能ARM和基于PowerPC的产品。意法半导体在处理器核技术上采用了开放式方法,旨在为客户提供最合适的处理器核,而不论它是专利的、联合开发的或是第三方授权的。 定制晶片 定制与半定制IC都是为特殊用户而设计的,但它们的设计与制造方法不同。半定制晶片是包含了一系列电路单元的通用晶片,这些单元能够以多种方式实现互连,从而实现想要的功能。而定制晶片则是从零开始设计的。一些客户更喜欢设计自己的晶片(特别是包含了珍贵的IP的晶片)并根据成本、产能分配及先前的业务关系等标准,与晶片制造商达成契约制造。而其他一些客户则更愿意与晶片供应商就设计和制造这两方面达成协定,因此,这儿存在着一系列中间关系。 意法半导体提供了一系列利用世界级制造机械、无与伦比的半导体工艺技术,广泛而深入的IP系列和领先的设计方法的定制与半定制服务。这些成功案例就是采用复杂晶片,推动了大型项目,如美国的XM数字卫星无线电服务与为电子行业的各部分的战略伙伴而提供的领先的解决方案。 标准产品 ASSP(专用标准产品)是为在特殊套用中使用而设计的积体电路。实例包括数字机顶盒晶片、CMOS成像IC、电机控制电路与无线套用处理器。与为单用户的特殊套用而设计的定制IC不同,ASSP是为众多用户通用的特殊套用而设计的。很多ASSP是在与特殊客户密切合作的基础上开发出来的,即使相应器件可能会在开放市场上提供。通过以这种方式与客户合作,意法半导体能够保证其开发的产品与技术能很好地与不断变化的工业需求相匹配。 意法半导体的产品系列包括多种类型的ASSP,针对无线通信与网路、数字消费类、电脑外设、汽车、工业及智慧卡等的主要增长业务套用进行了最佳化。通过提供晶片组与完整的参考平台、公认的软体包与开发套件,公司使得其用户能够快速而经济地开发并区分其产品。 意法半导体的ASSP,包括从移动成像到多媒体处理,再到功率管理和手提式及网路连线的各种套用,满足了广泛的电信套用需求。公司提供了用于广泛的数字消费类套用的元器件,特别侧重于机顶盒、数位电视与数位相机等套用。 在电脑外设领域中,意法半导体主要集中在数据存储、列印、可视显示器、PC主机板的电源管理和电源。广泛的意法半导体ASSP功率/复杂的数字汽车系统,如引擎控制、汽车安全设备、车门模组及车载信息娱乐系统等。公司还提供用于工厂自动化系统的工业IC、用于照明和电池充电的晶片、或电源器件以及用于高级智慧卡套用的晶片。 微控制器 意法半导体的微控制器提供了各类套用,从那些首先要求成本最低的套用到需要强大实时性能与高级语言支持的套用。意法半导体全面的产品系列包含了功能强大的带有标准通信接口的8位通用快闪记忆体微控制器,如USB、CAN、LIN、UART、I2C及SPI;专用8位微控制器,可用于无刷电机控制、低噪音模组转换器(LNB)、智慧卡读卡器、USB接口的快闪记忆体驱动器和可程式系统存储器(PSM),此存储器在单晶片上集成了存储器,微控制器和可程式逻辑单元;16位的工控标准器件和基于高性能32位ARM核心的快闪记忆体控制器,具有卓越的低功耗特性及高级通信外设(包括乙太网、USB与CAN)。 意法半导体专用的微控制器解决方案有助于加速新兴的低数据率无线网路的开发,如实时定位系统(RTLS)和用于远程监视和控制的Zigbee平台。 安全IC 意法半导体为智慧卡和委托产品套用领域,连同广泛的高速产品系列、可共同使用的片上作业系统(SoC)解决方案提供了完整的安全微控制器和存储器。产品用于各类智慧卡套用,从最简单的电话卡到要求最严格的SIM与Pay-TV卡。安全性一直是意法半导体的一项专门技术,多项正式的安全证明、标准化的成员资格、意法半导体安全IC产品在许多领域(包括银行、IT安全性、电子 *** 、公共运输和移动通信)的成功套用有力的证明了这一点。 存储器 虽然众多存储器产品是标准产品,但意法半导体利用其在非易失性存储器技术领域的优势及其与领先用户间稳固的关系,开发出了各种专用EEPROM和快闪记忆体。与领先的OEM合作,意法半导体开发出了针对手机、汽车引擎控制、PC BIOS、机顶盒与硬碟驱动器之类的特殊套用进行了最佳化的创新产品。 分立器件 ASD产品基于在矽片晶元的顶端与底端实现的垂直或水平双极型架构。ASDu2122 技术使得意法半导体能为市场带来各类产品,这些产品可处理大双向电流、保持高电压,并可在单晶片中集成各类分立元件。ASD技术是通用保护元器件、ESD保护器件、EMI滤波器与具有内置过压保护的AC开关的理想解决方案。随着近期工艺的升级,ASD技术允许在单晶片中集成多个分立元器件和无源元件(如电阻、电容与电感),从而产生了IPAD系列(集成无源与有源器件)。ASD的主要套用领域是无线与固定线路通信、家电、PC及外设。 标准产品 存储器 意法半导体为领先套用提供了业内最广泛的存储解决方案。意法半导体是非易失性存储器的主要供应商,包括:NOR和NAND 快闪记忆体。 快闪记忆体组合了高密度及电可擦除性。它们普遍套用于各种数字套用中,如手机、数位相机、数位电视、机顶盒、汽车引擎控制等,这些套用需要在系统可程式能力,并需要即使在没有电源的情况下也要保留数据。 作为全球三大NOR快闪记忆体供应商之一,意法半导体提供了两种主要的快闪记忆体类型:NOR及NAND。NOR快闪记忆体架构提供快速读取性能,是在手机和其他电子器件中进行代码存储与直接片上执行的理想之选。然而,对于高密度数据存储,NAND快闪记忆体较高的密度与编程吞吐量使其成为首选。 意法半导体的非易失性存储器系列还包括EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、串列快闪记忆体及非易失性RAM(Random Aess Memory)。 其他意法半导体的存储器产品还包含多种RFID IC。跟所有标准器件一样,成本与客户服务是供应商之间的主要差异,而意法半导体正在全力最佳化这两个方面。 对于既需要快速代码读取又需要高密度的套用(如现今的多功能手机),意法半导体同样提供了先进的多晶片解决方案,在单晶片封装内组合了不同类型的存储器。 智慧型电源 意法半导体的电源器件满足了对于整合了信号处理部件(模拟和/或数字)和电动促动器的功率解决方案不断增长的需求。此设计能力不仅提供了独有的经济优势,同时还提供了稳定性、电磁性能和降低空音与重量等方面的提高。智慧型电源作为一个专业术语,包括了多种横向及纵向的技术,这些技术在在汽车市场尤其起到至关重要的作用。 VIPower(垂直智慧型电源)是众多专利智慧型电源技术的总称,这些技术中,分立的电源结构现模拟和数字控制及诊断电流相结合,从而使器件可以将分立技术的强劲性与电流的控制与诊断功能相结合。意法半导体的BCD(双极-CMOS-DMOS)生产技术结合了双极、CMOS和DMOS工艺,允许集成越来越多的系统基本功能,如电压稳压器、通信接口以及一个单独元件中的多负载驱动器。 标准器件 意法半导体标准线性器件与逻辑IC由广泛的知名标准器件及针对高度集成、空间有限的套用创新的专用器件组成。产品范围包括逻辑功能、接口、运算放大器、比较器、低功耗音频放大器、通信电路(高速模拟、红外线与RF)、功率管理器件、稳压器与参考电路、微处理器复位与监视器、模拟与数字开关、功率开关、VFD驱动器及高亮度LED驱动器。 分立器件 意法半导体是世界领先的分立功率器件供应商之一,产品范围包含MOSFET (包括运用创新的MDmeshTM第二代技术的器件)、双极电晶体、IGBT、肖特基与超快速恢复双极工艺二极体、三端双向可控矽开关及保护器件。此外,意法半导体的专利IPAD(集成有源和无源器件)技术,允许在单个晶片中整合多个有源和无源元件 RF 意法半导体的RF产品包括可以用于ISM(工业科学和医疗),手机基站之类的套用中的功率RF电晶体。 实时时钟 意法半导体提供了完整的低功耗实时时钟(RTC)产品线,从输入级产品到具有微处理器监视功能、SRAM、非易失性特性与通用减少检测管教实现的高级数据保护的高端RTC。嵌入式软体校准每个月的精度误差仅为2秒。 所获荣誉 2020年5月13日,意法半导体名列2020福布斯全球企业2000强榜第822位。 ST联盟 战略联盟和行业合作 自诞生以来,意法半导体公司成了创建战略联盟的先锋,并在发展与用户、供应商、竞争者、大学、研究机构和欧洲研究项目的关系方面得到了大家的公认。战略联盟和行业合作对于在半导体行业中取得成功变得越来越重要。 意法半导体公司(STMicroelectronics)已经跟包括Alcatel、Bosch、Hewlett-Packard、Marelli、Nokia、Nortel、Pioneer、Seagate、Siemens VDO、Thomson和Western Digital等在内的用户成立了几个战略联盟。用户联盟为意法半导体公司提供了宝贵的系统和套用专长及进入主要产品市场的途径,同时使得它的用户能够分担产品开发的风险,而且还能使用意法半导体公司的工艺技术和生产设施。意法半导体公司现在正在积极利用其丰富的经验和技术来扩展其面向美国、欧洲和亚洲顶级OEM的用户联盟的数量。 在继续在激烈的销售竞争中打拼的同时,与其它半导体行业制造商合作使得意法半导体公司能够增加其对高昂的研究与开发以及生产资源的投资,从而实现技术开发的互利互惠。 意法半导体公司是无线技术领域内的常胜将军,2002年与Texas Instruments合作制定和推广无线套用处理器接口的开放式标准。该创新现已扩展到更多公司,并且以MIPI联盟(创始成员有ST、ARM、Nokia和Texas Instruments)著称。联盟现在拥有超过92个成员,合作成为移动行业的领袖,其目标是制定和推广移动套用处理器接口的开放式标准。 非易失性存储器是意法半导体公司的一个战略产品部门。在该领域中,意法半导体公司已与Hynix合作了4年,联合开发了NAND Flash技术和产品。至于NOR Flash,其已与Intel就无线套用的产品指标结成了战略联盟。并且,最近与Freescale签订协定,联合开发带有嵌入式Flash(采用90nm技术制造而成)的微控制器。 意法半导体公司还与领先供应商制定了联合开发计画,如Air Liquide、Applied Materials、ASM Lithography、Axalto、Canon、Hewlett-Packard、KLA-Tencor、LAM Research、MEMC、Teradyne和Wacker,以及包括Cadence、CoWare和Synopsys在内的领先电子设计自动化(EDA)工具制造商。 至于联合研究与开发计画,意法半导体公司还加入了欧洲合作研究计画,如MEDEA+(微电子技术及其套用领域高级合作研究与开发的泛欧计画)和ITEA2(欧洲发展信息技术,软体密集型系统和服务的高级竞争前研究与开发的战略性泛欧计画)。意法半导体公司还在最近创办的欧洲技术平台 - ENIAC(欧洲纳电子行动顾问委员会,用于提供纳电子的战略性研究方向)和ARTEMIS(嵌入式智慧型与系统先进研究和技术,其作用跟嵌入式系统类似) - 中起主导作用。并且,意法半导体公司还与全球众多大学合作,包括欧洲、美国和中国的大学以及主要研究机构,如CEA-Leti和IMEC。 至于制造业,1998年意法半导体公司在中国深圳建立了其后端组装和测试厂。该厂属于意法半导体公司与深圳市海达克实业有限公司(SHIC)共同组建的合资公司性质。2004年,意法半导体公司与Hynix签署并发表了合资协定,在中国无锡建立前端存储器制造厂。合资公司是公司间NAND Flash工艺/产品联合开发关系的延伸,拥有拟于2006年底投入生产的200-mm晶圆生产线和拟于2007年投入生产的300-mm晶圆生产线。 ST大学 大学简介 以管理和现场培训需求为基准,ST大学开发并部署了在企业范围内进行的战略型培训项目。ST大学与ST的各个培训机构密切合作,推出了用于满足ST和ST大学不断变化的培训需求的培训项目课程。 在ST大学培训目录中,只有一个培训项目是同时面向ST员工和外部工程师的。该技术课程的主要目的是发展微电子制造管理领域中的技术专长。 这个独特的项目是由意法半导体公司和法国2家知名工学院 - "L"Ecole Nationale Supérieure des Mines" de Saint-Etienne 与 "l"Ecole Centrale" Marseille - 合作推出的。它为在当今要求严苛的微电子行业中起着重要作用的工程师提供技术和管理技能。为了跟上微电子行业领先技术的步伐,ST大学每年都会在业内专家、学者和研究员的支持下对整个项目进行改进。ST大学发展并改善了理论课程与套用之间的关系,以及ST业内专家和ST供应商的参与。 课程 该项目分为2个主要部分: 第1部分:着重介绍下列3个领域的基础知识和套用课程: 器件和技术:物理特征工具和制造工艺步骤。 积体电路的开发:设计工具、测试和后端操作。 生产和管理工具:生产设备管理、生产技术、可靠性和质量系统。 第2部分:为期6个月的公司(主要是在ST)实习,着重学习和项目有关的特定科目。 中国联合 意法半导体(STMicroelectronics,简称ST)与中国第一汽车股份有限公司(一汽,FAW)宣布在汽车电子技术领域进行合作,同时在一汽技术中心成立一汽-意法半导体汽车电子联合实验室。联合实验室将面向先进的汽车电子技术方案,研发范围包括动力总成、底盘、安全系统、车身、汽车信息娱乐系统、新能源技术等。一汽将在其先进的汽车电子研发平台内引入意法半导体的微控制器(MCU)、专用标准产品(ASSP)和智慧型驱动晶片。 联合实验室的主要研发方向是先进的汽车电子套用。借助意法半导体的汽车电子研发经验、技术优势、产品(如意法半导体的PowerPC系列32位微控制器和发动机管理系统高集成晶片)、原型设计和技术支持,联合实验室将推动双方在汽车电子技术方面的合作研发,例如,ECU(发动机控制单元)、TCU(变速器控制单元)和EPS(电动助力转向系统),这些研发成果将增强一汽下一代汽车的市场竞争力。 一汽集团副总工程师兼技术中心主任李骏表示:"中国汽车销售量连续三年居全球首位,随着消费者对汽车安全性和舒适度越来越关注,汽车电子市场也在高速增长,中国是一个巨大的汽车半导体市场。一汽与意法半导体建立联合实验室,有助于推动双方的深入合作,提升一汽汽车电子的核心竞争力,促进汽车电子产品的自主创新能力。" 意法半导体大中国与南亚区汽车产品部市场与套用经理Edoardo Merli表示:"我们非常高兴能够与中国领先的汽车OEM厂商一汽合作。意法半导体作为2011年中国排名第一[1]、全球第三[2]的汽车晶片供应商,在动力总成、车身、安全、信息娱乐和车载多媒体方面具有很大的优势,这种优势得到了中国汽车厂商的认可。我们相信,双方的合作也将加强意法半导体在中国汽车电子业的领先地位。"
2023-06-07 23:31:501

assq是什么意思

00000000000
2023-06-07 23:31:572

IP行业是什么行业

就是通信行业嘛,解决计算机网络问题的人!不过还是很少听到ip行业,一般为it行业和通信行业!谢谢,希望我的回答能给你帮助!
2023-06-07 23:32:062

ATMEL公司中文名称?

ATMEL(爱特梅尔)公司
2023-06-07 23:32:132

谁能跟我解释下,人们常说的“做FPGA原型验证”,这里的“原型验证”怎样讲?

原型=prototype验证=verify在ASIC或其它ASSP芯片的开发过程中,直接流片的成本很高,通常采用的方法是先将逻辑设计进行综合、布局、布线,在FPGA平台进行验证,而FPGA具有可编程的特点,可以反复修改逻辑设计,直至达到满意的结果,避免多次流片造成的高成本/高风险;
2023-06-07 23:32:211

IP行业是做什么的?

请按格式发帖
2023-06-07 23:32:465

IC封装术语的BQFP

2、BQFP(quad flat packagewith bumper)带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫)以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。3、碰焊PGA(butt joint pingrid array)表面贴装型PGA 的别称(见表面贴装型PGA)。4、C-(ceramic)表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。5、Cerdip用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中心距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。6、Cerquad表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1.5~2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm 等多种规格。引脚数从32 到368。7、CLCC(ceramic leaded chipcarrier)带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为QFJ、QFJ-G(见QFJ)。8、COB(chip on board)板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片焊技术。9、DFP(dual flat package)双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。10、DIC(dual in-line ceramicpackage)陶瓷DIP(含玻璃密封)的别称(见DIP).11、DIL(dual in-line)DIP 的别称(见DIP)。欧洲半导体厂家多用此名称。12、DIP(dual in-line package)双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm和10.16mm的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。但多数情况下并不加区分,只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP 也称为cerdip(见cerdip)。13、DSO(dual small out-lint)双侧引脚小外形封装。SOP 的别称(见SOP)。部分半导体厂家采用此名称。14、DICP(dual tape carrierpackage)双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于利用的是TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为定制品。另外,0.5mm厚的存储器LSI 簿形封装正处于开发阶段。在日本,按照EIAJ(日本电子机械工业)会标准规定,将DICP 命名为DTP。15、DIP(dual tape carrierpackage)同上。日本电子机械工业会标准对DTCP 的命名(见DTCP)。16、FP(flat package)扁平封装。表面贴装型封装之一。QFP 或SOP(见QFP 和SOP)的别称。部分半导体厂家采用此名称。17、flip-chip倒焊芯片。裸芯片封装技术之一,在LSI 芯片的电极区制作好金属凸点,然后把金属凸点与印刷基板上的电极区进行压焊连接。封装的占有面积基本上与芯片尺寸相同。是所有封装技术中体积最小、最薄的一种。但如果基板的热膨胀系数与LSI 芯片不同,就会在接合处产生反应,从而影响连接的可靠性。因此必须用树脂来加固LSI 芯片,并使用热膨胀系数基本相同的基板材料。18、FQFP(fine pitch quad flatpackage)小引脚中心距QFP。通常指引脚中心距小于0.65mm的QFP(见QFP)。部分导导体厂家采用此名称。19、CPAC(globe top pad arraycarrier)美国Motorola 公司对BGA 的别称(见BGA)。20、CQFP(quad fiat packagewith guard ring)带保护环的四侧引脚扁平封装。塑料QFP 之一,引脚用树脂保护环掩蔽,以防止弯曲变形。在把LSI 组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(L 形状)。这种封装在美国Motorola 公司已批量生产。引脚中心距0.5mm,引脚数最多为208 左右。21、H-(with heat sink)表示带散热器的标记。例如,HSOP 表示带散热器的SOP。22、pin grid array(surfacemount type)表面贴装型PGA。通常PGA 为插装型封装,引脚长约3.4mm。表面贴装型PGA 在封装的底面有陈列状的引脚,其长度从1.5mm到2.0mm。贴装采用与印刷基板碰焊的方法,因而也称为碰焊PGA。因为引脚中心距只有1.27mm,比插装型PGA 小一半,所以封装本体可制作得不怎么大,而引脚数比插装型多(250~528),是大规模逻辑LSI 用的封装。封装的基材有多层陶瓷基板和玻璃环氧树脂印刷基数。以多层陶瓷基材制作封装已经实用化。23、JLCC(J-leaded chipcarrier)J 形引脚芯片载体。指带窗口CLCC 和带窗口的陶瓷QFJ 的别称(见CLCC 和QFJ)。部分半导体厂家采用的名称。24、LCC(Leadless chip carrier)无引脚芯片载体。指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。是高速和高频IC 用封装,也称为陶瓷QFN 或QFN-C(见QFN)。25、LGA(land grid array)触点陈列封装。即在底面制作有阵列状态坦电极触点的封装。装配时插入插座即可。现已实用的有227 触点(1.27mm 中心距)和447 触点(2.54mm中心距)的陶瓷LGA,应用于高速逻辑LSI 电路。LGA 与QFP 相比,能够以比较小的封装容纳更多的输入输出引脚。另外,由于引线的阻抗小,对于高速LSI 是很适用的。但由于插座制作复杂,成本高,现在基本上不怎么使用。预计今后对其需求会有所增加。26、LOC(lead on chip)芯片上引线封装。LSI 封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片的中心附近制作有凸焊点,用引线缝合进行电气连接。与原来把引线框架布置在芯片侧面附近的结构相比,在相同大小的封装中容纳的芯片达1mm左右宽度。27、LQFP(low profile quad flatpackage)薄型QFP。指封装本体厚度为1.4mm的QFP,是日本电子机械工业会根据制定的新QFP外形规格所用的名称。28、L-QUAD陶瓷QFP 之一。封装基板用氮化铝,基导热率比氧化铝高7~8 倍,具有较好的散热性。封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本。是为逻辑LSI 开发的一种封装,在自然空冷条件下可容许W3的功率。现已开发出了208 引脚(0.5mm 中心距)和160 引脚(0.65mm中心距)的LSI 逻辑用封装,并于1993 年10 月开始投入批量生产。29、MCM(multi-chip module)多芯片组件。将多块半导体裸芯片组装在一块布线基板上的一种封装。根据基板材料可分为MCM-L,MCM-C 和MCM-D 三大类。MCM-L 是使用通常的玻璃环氧树脂多层印刷基板的组件。布线密度不怎么高,成本较低。MCM-C 是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使用多层陶瓷基板的厚膜混合IC 类似。两者无明显差别。布线密度高于MCM-L。MCM-D 是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或Si、Al 作为基板的组件。布线密谋在三种组件中是最高的,但成本也高。30、MFP(mini flat package)小形扁平封装。塑料SOP 或SSOP 的别称(见SOP 和SSOP)。部分半导体厂家采用的名称。31、MQFP(metric quad flatpackage)按照JEDEC(美国联合电子设备委员会)标准对QFP 进行的一种分类。指引脚中心距为0.65mm、本体厚度为3.8mm~2.0mm的标准QFP(见QFP)。32、MQUAD(metal quad)美国Olin 公司开发的一种QFP 封装。基板与封盖均采用铝材,用粘合剂密封。在自然空冷条件下可容许2.5W~2.8W 的功率。日本新光电气工业公司于1993 年获得特许开始生产。33、MSP(mini square package)QFI 的别称(见QFI),在开发初期多称为MSP。QFI 是日本电子机械工业会规定的名称。34、OPMAC(over molded padarray carrier)模压树脂密封凸点陈列载体。美国Motorola 公司对模压树脂密封BGA 采用的名称(见BGA)。35、P-(plastic)表示塑料封装的记号。如PDIP 表示塑料DIP。36、PAC(pad array carrier)凸点陈列载体,BGA 的别称(见BGA)。37、PCLP(printed circuit boardleadless package)印刷电路板无引线封装。日本富士通公司对塑料QFN(塑料LCC)采用的名称(见QFN)。引脚中心距有0.55mm和0.4mm两种规格。目前正处于开发阶段。38、PFPF(plastic flat package)塑料扁平封装。塑料QFP 的别称(见QFP)。部分LSI 厂家采用的名称。39、PGA(pin grid array)陈列引脚封装。插装型封装之一,其底面的垂直引脚呈陈列状排列。封装基材基本上都采用多层陶瓷基板。在未专门表示出材料名称的情况下,多数为陶瓷PGA,用于高速大规模逻辑LSI 电路。成本较高。引脚中心距通常为2.54mm,引脚数从64 到447 左右。了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替。也有64~256 引脚的塑料PGA。另外,还有一种引脚中心距为1.27mm的短引脚表面贴装型PGA(碰焊PGA)。(见表面贴装型PGA)。40、piggy back驮载封装。指配有插座的陶瓷封装,形关与DIP、QFP、QFN 相似。在开发带有微机的设备时用于评价程序确认操作。例如,将EPROM 插入插座进行调试。这种封装基本上都是定制品,市场上不怎么流通。41、PLCC(plastic leaded chip carrier)带引线的塑料芯片载体。表面贴装型封装之一。引脚从封装的四个侧面引出,呈丁字形,是塑料制品。美国德克萨斯仪器公司首先在64k 位DRAM 和256kDRAM 中采用,现在已经普及用于逻辑LSI、DLD(或程逻辑器件)等电路。引脚中心距1.27mm,引脚数从18 到84。J 形引脚不易变形,比QFP 容易操作,但焊接后的外观检查较为困难。PLCC 与LCC(也称QFN)相似。以前,两者的区别仅在于前者用塑料,后者用陶瓷。但现在已经出现用陶瓷制作的J 形引脚封装和用塑料制作的无引脚封装(标记为塑料LCC、PCLP、P-LCC 等),已经无法分辨。为此,日本电子机械工业会于1988 年决定,把从四侧引出J 形引脚的封装称为QFJ,把在四侧带有电极凸点的封装称为QFN(见QFJ 和QFN)。42、P-LCC(plastic Leadless chipcarrier)(plastic leaded chip currier)有时候是塑料QFJ 的别称,有时候是QFN(塑料LCC)的别称(见QFJ 和QFN)。部分LSI 厂家用PLCC 表示带引线封装,用P-LCC 表示无引线封装,以示区别。43、QFH(quad flat highpackage)四侧引脚厚体扁平封装。塑料QFP 的一种,为了防止封装本体断裂,QFP 本体制作得较厚(见QFP)。部分半导体厂家采用的名称。44、QFI(quad flat I-leadedpackgac)四侧I 形引脚扁平封装。表面贴装型封装之一。引脚从封装四个侧面引出,向下呈I 字。也称为MSP(见MSP)。贴装与印刷基板进行碰焊连接。由于引脚无突出部分,贴装占有面积小于QFP。日立制作所为视频模拟IC 开发并使用了这种封装。此外,日本的Motorola 公司的PLL IC也采用了此种封装。引脚中心距1.27mm,引脚数从18 于68。45、QFJ(quad flat J-leadedpackage)四侧J 形引脚扁平封装。表面贴装封装之一。引脚从封装四个侧面引出,向下呈J 字形。是日本电子机械工业会规定的名称。引脚中心距1.27mm。材料有塑料和陶瓷两种。塑料QFJ 多数情况称为PLCC(见PLCC),用于微机、门陈列、DRAM、ASSP、OTP 等电路。引脚数从18 至84。陶瓷QFJ 也称为CLCC、JLCC(见CLCC)。带窗口的封装用于紫外线擦除型EPROM 以及带有EPROM 的微机芯片电路。引脚数从32 至84。46、QFN(quad flat non-leadedpackage)四侧无引脚扁平封装。表面贴装型封装之一。现在多称为LCC。QFN 是日本电子机械工业会规定的名称。封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度比QFP低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电极触点难于作到QFP 的引脚那样多,一般从14 到100 左右。材料有陶瓷和塑料两种。当有LCC 标记时基本上都是陶瓷QFN。电极触点中心距1.27mm。塑料QFN 是以玻璃环氧树脂印刷基板基材的一种低成本封装。电极触点中心距除1.27mm外,还有0.65mm和0.5mm两种。这种封装也称为塑料LCC、PCLC、P-LCC 等。47、QFP(quad flat package)四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。基材有陶瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时,多数情况为塑料QFP。塑料QFP 是最普及的多引脚LSI 封装。不仅用于微处理器,门陈列等数字逻辑LSI 电路,而且也用于VTR 信号处理、音响信号处理等模拟LSI 电路。引脚中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm等多种规格。0.65mm中心距规格中最多引脚数为304。日本将引脚中心距小于0.65mm的QFP 称为QFP(FP)。但现在日本电子机械工业会对QFP的外形规格进行了重新评价。在引脚中心距上不加区别,而是根据封装本体厚度分为QFP(2.0mm~3.6mm厚)、LQFP(1.4mm 厚)和TQFP(1.0mm厚)三种。另外,有的LSI 厂家把引脚中心距为0.5mm的QFP 专门称为收缩型QFP 或SQFP、VQFP。但有的厂家把引脚中心距为0.65mm及0.4mm的QFP 也称为SQFP,至使名称稍有一些混乱。QFP 的缺点是,当引脚中心距小于0.65mm时,引脚容易弯曲。为了防止引脚变形,现已出现了几种改进的QFP 品种。如封装的四个角带有树指缓冲垫的BQFP(见BQFP);带树脂保护环覆盖引脚前端的GQFP(见GQFP);在封装本体里设置测试凸点、放在防止引脚变形的专用夹具里就可进行测试的TPQFP(见TPQFP)。在逻辑LSI 方面,不少开发品和高可靠品都封装在多层陶瓷QFP 里。引脚中心距最小为0.4mm、引脚数最多为348 的产品也已问世。此外,也有用玻璃密封的陶瓷QFP(见Gerqad)。48、QFP(FP)(QFP fine pitch)小中心距QFP。日本电子机械工业会标准所规定的名称。指引脚中心距为0.55mm、0.4mm、0.3mm 等小于0.65mm的QFP(见QFP)。49、QIC(quad in-line ceramicpackage)陶瓷QFP 的别称。部分半导体厂家采用的名称(见QFP、Cerquad)。50、QIP(quad in-line plasticpackage)塑料QFP 的别称。部分半导体厂家采用的名称(见QFP)。51、QTCP(quad tape carrierpackage)四侧引脚带载封装。TCP 封装之一,在绝缘带上形成引脚并从封装四个侧面引出。是利用TAB 技术的薄型封装(见TAB、TCP)。52、QTP(quad tape carrierpackage)四侧引脚带载封装。日本电子机械工业会于1993 年4 月对QTCP 所制定的外形规格所用的名称(见TCP)。53、QUIL(quad in-line)QUIP 的别称(见QUIP)。54、QUIP(quad in-line package)四列引脚直插式封装。引脚从封装两个侧面引出,每隔一根交错向下弯曲成四列。引脚中心距1.27mm,当插入印刷基板时,插入中心距就变成2.5mm。因此可用于标准印刷线路板。是比标准DIP 更小的一种封装。日本电气公司在台式计算机和家电产品等的微机芯片中采用了些种封装。材料有陶瓷和塑料两种。引脚数64。55、SDIP (shrink dual in-linepackage)收缩型DIP。插装型封装之一,形状与DIP 相同,但引脚中心距(1.778mm)小于DIP(2.54mm),因而得此称呼。引脚数从14 到90。也有称为SH-DIP 的。材料有陶瓷和塑料两种。56、SH-DIP(shrink dual in-linepackage)同SDIP。部分半导体厂家采用的名称.57、SIL(single in-line)SIP 的别称(见SIP)。欧洲半导体厂家多采用SIL 这个名称。58、SIMM(single in-line memorymodule)单列存贮器组件。只在印刷基板的一个侧面附近配有电极的存贮器组件。通常指插入插座的组件。标准SIMM 有中心距为2.54mm的30 电极和中心距为1.27mm的72 电极两种规格。在印刷基板的单面或双面装有用SOJ 封装的1 兆位及4 兆位DRAM 的SIMM 已经在个人计算机、工作站等设备中获得广泛应用。至少有30~40%的DRAM 都装配在SIMM 里。59、SIP(single in-linepackage)单列直插式封装。引脚从封装一个侧面引出,排列成一条直线。当装配到印刷基板上时封装呈侧立状。引脚中心距通常为2.54mm,引脚数从2 至23,多数为定制产品。封装的形状各异。也有的把形状与ZIP 相同的封装称为SIP。60、SK-DIP(skinny dual in-linepackage)DIP 的一种。指宽度为7.62mm、引脚中心距为2.54mm的窄体DIP。通常统称为DIP(见DIP)。61、SL-DIP(slim dual in-linepackage)DIP 的一种。指宽度为10.16mm,引脚中心距为2.54mm的窄体DIP。通常统称为DIP。62、SMD(surface mount devices)表面贴装器件。偶而,有的半导体厂家把SOP 归为SMD(见SOP)。63、SO(small out-line)SOP 的别称。世界上很多半导体厂家都采用此别称。(见SOP)。64、SOI(small out-lineI-leaded package)I 形引脚小外型封装。表面贴装型封装之一。引脚从封装双侧引出向下呈I 字形,中心距1.27mm。贴装占有面积小于SOP。日立公司在模拟IC(电机驱动用IC)中采用了此封装。引脚数26。65、SOIC(small out-lineintegrated circuit)SOP 的别称(见SOP)。国外有许多半导体厂家采用此名称。66、SOJ(Small Out-LineJ-Leaded Package)J 形引脚小外型封装。表面贴装型封装之一。引脚从封装两侧引出向下呈J 字形,故此得名。通常为塑料制品,多数用于DRAM 和SRAM 等存储器LSI 电路,但绝大部分是DRAM。用SOJ封装的DRAM 器件很多都装配在SIMM 上。引脚中心距1.27mm,引脚数从20 至40(见SIMM)。67、SQL(Small Out-LineL-leaded package)按照JEDEC(美国联合电子设备工程委员会)标准对SOP 所采用的名称(见SOP)。68、SONF(Small Out-LineNon-Fin)无散热片的SOP。与通常的SOP 相同。为了在功率IC 封装中表示无散热片的区别,有意增添了NF(non-fin)标记。部分半导体厂家采用的名称(见SOP)。69、SOF(small Out-Linepackage)小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有塑料和陶瓷两种。另外也叫SOL 和DFP。SOP 除了用于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8~44。另外,引脚中心距小于1.27mm的SOP 也称为SSOP;装配高度不到1.27mm的SOP 也称为TSOP(见SSOP、TSOP)。还有一种带有散热片的SOP。70、SOW (Small OutlinePackage(Wide-Jype))宽体SOP。部分半导体厂家采用的名称
2023-06-07 23:33:021

IP是做什么工作

通俗将就是电脑的门牌号码。具有唯一性。
2023-06-07 23:33:293

IP行业是做什么的?

  IP(Intellectual Property)就是常说的知识产权。美国Dataquest咨询公司将半导体产业的IP定义为用于ASIC、ASSP、PLD等当中,并且是预先设计好的电路功能模块。IP、固IP和硬IP。  软IP用计算机高级语言的形式描述功能块的行为,但是并不涉及用什么电路和电路元件实现这些行为。软IP的最终产品基本上与通常的应用软件大同小异,开发过程与应用软件也十分相象,只是所需的开发软、硬件环境,尤其工具软件要昂贵很多。软IP的设计周期短,设计投入少,由于不涉及物理实现,为后续设计留有很大的发挥空间,增大了IP的灵活性和适应性。当然软IP的一个不可避免的弱点是:会有一定比例的后续工序无法适应软IP设计,从而造成一定程度的软IP修正。  固IP是完成了综合的功能块,有较大的设计深度,以网表的形式提交客户使用。如果客户与固IP使用同一个生产线的单元库,IP的成功率会比较高。  硬IP提供设计的最终阶段产品:掩膜。随着设计深度的提高,后续工序所需要做的事情就越少,当然,灵活性也就越少。不同的客户可以根据自己的需要订购不同的IP产品。
2023-06-07 23:33:451

SSOP SOP DIP QFN,BGA,FPGA,等包封类型有什么区别?

LZ好,1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用 以 代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也 称为凸 点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。 封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不 用担心QFP 那样的引脚变形问题。 该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有 可 能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在 也有 一些LSI 厂家正在开发500 引脚的BGA。 BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为 , 由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。 美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为 GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以 防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中 采用 此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。 3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有 玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中 心 距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗 口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1. 5~ 2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、 0.5mm、 0.4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded chip carrier) 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形 。 带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为 QFJ、QFJ-G(见QFJ)。 8、COB(chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与 基 板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用 树脂覆 盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和 倒片 焊技术。 9、DFP(dual flat package) 双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。 10、DIC(dual in-line ceramic package) 陶瓷DIP(含玻璃密封)的别称(见DIP). 11、DIL(dual in-line) DIP 的别称(见DIP)。欧洲半导体厂家多用此名称。 12、DIP(dual in-line package) 双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种 。 DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。 引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm 和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。但多数情况下并不加 区分, 只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP 也称为cerdip(见cerdip)。 13、DSO(dual small out-lint) 双侧引脚小外形封装。SOP 的别称(见SOP)。部分半导体厂家采用此名称。 14、DICP(dual tape carrier package) 双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于 利 用的是TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为 定制品。 另外,0.5mm 厚的存储器LSI 簿形封装正处于开发阶段。在日本,按照EIAJ(日本电子机 械工 业)会标准规定,将DICP 命名为DTP。 15、DIP(dual tape carrier package) 同上。日本电子机械工业会标准对DTCP 的命名(见DTCP)。 16、FP(flat package) 扁平封装。表面贴装型封装之一。QFP 或SOP(见QFP 和SOP)的别称。部分半导体厂家采 用此名称。 17、flip-chip 倒焊芯片。裸芯片封装技术之一,在LSI 芯片的电极区制作好金属凸点,然后把金属凸 点 与印刷基板上的电极区进行压焊连接。封装的占有面积基本上与芯片尺寸相同。是所有 封装技 术中体积最小、最薄的一种。 但如果基板的热膨胀系数与LSI 芯片不同,就会在接合处产生反应,从而影响连接的可 靠 性。因此必须用树脂来加固LSI 芯片,并使用热膨胀系数基本相同的基板材料。 18、FQFP(fine pitch quad flat package) 小引脚中心距QFP。通常指引脚中心距小于0.65mm 的QFP(见QFP)。部分导导体厂家采 用此名称。 19、CPAC(globe top pad array carrier) 美国Motorola 公司对BGA 的别称(见BGA)。 20、CQFP(quad fiat package with guard ring) 带保护环的四侧引脚扁平封装。塑料QFP 之一,引脚用树脂保护环掩蔽,以防止弯曲变 形。 在把LSI 组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(L 形状)。 这种封装 在美国Motorola 公司已批量生产。引脚中心距0.5mm,引脚数最多为208 左右。 21、H-(with heat sink) 表示带散热器的标记。例如,HSOP 表示带散热器的SOP。 22、pin grid array(surface mount type) 表面贴装型PGA。通常PGA 为插装型封装,引脚长约3.4mm。表面贴装型PGA 在封装的 底面有陈列状的引脚,其长度从1.5mm 到2.0mm。贴装采用与印刷基板碰焊的方法,因而 也称 为碰焊PGA。因为引脚中心距只有1.27mm,比插装型PGA 小一半,所以封装本体可制作得 不 怎么大,而引脚数比插装型多(250~528),是大规模逻辑LSI 用的封装。封装的基材有 多层陶 瓷基板和玻璃环氧树脂印刷基数。以多层陶瓷基材制作封装已经实用化。 23、JLCC(J-leaded chip carrier) J 形引脚芯片载体。指带窗口CLCC 和带窗口的陶瓷QFJ 的别称(见CLCC 和QFJ)。部分半 导体厂家采用的名称。 24、LCC(Leadless chip carrier) 无引脚芯片载体。指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。是 高 速和高频IC 用封装,也称为陶瓷QFN 或QFN-C(见QFN)。 25、LGA(land grid array) 触点陈列封装。即在底面制作有阵列状态坦电极触点的封装。装配时插入插座即可。现 已 实用的有227 触点(1.27mm 中心距)和447 触点(2.54mm 中心距)的陶瓷LGA,应用于高速 逻辑 LSI 电路。 LGA 与QFP 相比,能够以比较小的封装容纳更多的输入输出引脚。另外,由于引线的阻 抗 小,对于高速LSI 是很适用的。但由于插座制作复杂,成本高,现在基本上不怎么使用 。预计 今后对其需求会有所增加。 26、LOC(lead on chip) 芯片上引线封装。LSI 封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片 的 中心附近制作有凸焊点,用引线缝合进行电气连接。与原来把引线框架布置在芯片侧面 附近的 结构相比,在相同大小的封装中容纳的芯片达1mm 左右宽度。 27、LQFP(low profile quad flat package) 薄型QFP。指封装本体厚度为1.4mm 的QFP,是日本电子机械工业会根据制定的新QFP 外形规格所用的名称。 28、L-QUAD 陶瓷QFP 之一。封装基板用氮化铝,基导热率比氧化铝高7~8 倍,具有较好的散热性。 封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本。是为逻辑LSI 开发的一种 封装, 在自然空冷条件下可容许W3的功率。现已开发出了208 引脚(0.5mm 中心距)和160 引脚 (0.65mm 中心距)的LSI 逻辑用封装,并于1993 年10 月开始投入批量生产。 29、MCM(multi-chip module) 多芯片组件。将多块半导体裸芯片组装在一块布线基板上的一种封装。根据基板材料可 分 为MCM-L,MCM-C 和MCM-D 三大类。 MCM-L 是使用通常的玻璃环氧树脂多层印刷基板的组件。布线密度不怎么高,成本较低 。 MCM-C 是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使 用多层陶瓷基板的厚膜混合IC 类似。两者无明显差别。布线密度高于MCM-L。 MCM-D 是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或Si、Al 作为基板的组 件。 布线密谋在三种组件中是最高的,但成本也高。 30、MFP(mini flat package) 小形扁平封装。塑料SOP 或SSOP 的别称(见SOP 和SSOP)。部分半导体厂家采用的名称。 31、MQFP(metric quad flat package) 按照JEDEC(美国联合电子设备委员会)标准对QFP 进行的一种分类。指引脚中心距为 0.65mm、本体厚度为3.8mm~2.0mm 的标准QFP(见QFP)。 32、MQUAD(metal quad) 美国Olin 公司开发的一种QFP 封装。基板与封盖均采用铝材,用粘合剂密封。在自然空 冷 条件下可容许2.5W~2.8W 的功率。日本新光电气工业公司于1993 年获得特许开始生产 。 33、MSP(mini square package) QFI 的别称(见QFI),在开发初期多称为MSP。QFI 是日本电子机械工业会规定的名称。 34、OPMAC(over molded pad array carrier) 模压树脂密封凸点陈列载体。美国Motorola 公司对模压树脂密封BGA 采用的名称(见 BGA)。 35、P-(plastic) 表示塑料封装的记号。如PDIP 表示塑料DIP。 36、PAC(pad array carrier) 凸点陈列载体,BGA 的别称(见BGA)。 37、PCLP(printed circuit board leadless package) 印刷电路板无引线封装。日本富士通公司对塑料QFN(塑料LCC)采用的名称(见QFN)。引 脚中心距有0.55mm 和0.4mm 两种规格。目前正处于开发阶段。 38、PFPF(plastic flat package) 塑料扁平封装。塑料QFP 的别称(见QFP)。部分LSI 厂家采用的名称。 39、PGA(pin grid array) 陈列引脚封装。插装型封装之一,其底面的垂直引脚呈陈列状排列。封装基材基本上都 采 用多层陶瓷基板。在未专门表示出材料名称的情况下,多数为陶瓷PGA,用于高速大规模 逻辑 LSI 电路。成本较高。引脚中心距通常为2.54mm,引脚数从64 到447 左右。 了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替。也有64~256 引脚的塑料PG A。 另外,还有一种引脚中心距为1.27mm 的短引脚表面贴装型PGA(碰焊PGA)。(见表面贴装 型PGA)。 40、piggy back 驮载封装。指配有插座的陶瓷封装,形关与DIP、QFP、QFN 相似。在开发带有微机的设 备时用于评价程序确认操作。例如,将EPROM 插入插座进行调试。这种封装基本上都是 定制 品,市场上不怎么流通。 41、PLCC(plastic leaded chip carrier) 带引线的塑料芯片载体。表面贴装型封装之一。引脚从封装的四个侧面引出,呈丁字形 , 是塑料制品。美国德克萨斯仪器公司首先在64k 位DRAM 和256kDRAM 中采用,现在已经 普 及用于逻辑LSI、DLD(或程逻辑器件)等电路。引脚中心距1.27mm,引脚数从18 到84。 J 形引脚不易变形,比QFP 容易操作,但焊接后的外观检查较为困难。 PLCC 与LCC(也称QFN)相似。以前,两者的区别仅在于前者用塑料,后者用陶瓷。但现 在已经出现用陶瓷制作的J 形引脚封装和用塑料制作的无引脚封装(标记为塑料LCC、PC LP、P -LCC 等),已经无法分辨。为此,日本电子机械工业会于1988 年决定,把从四侧引出 J 形引 脚的封装称为QFJ,把在四侧带有电极凸点的封装称为QFN(见QFJ 和QFN)。 42、P-LCC(plastic teadless chip carrier)(plastic leaded chip currier) 有时候是塑料QFJ 的别称,有时候是QFN(塑料LCC)的别称(见QFJ 和QFN)。部分 LSI 厂家用PLCC 表示带引线封装,用P-LCC 表示无引线封装,以示区别。 43、QFH(quad flat high package) 四侧引脚厚体扁平封装。塑料QFP 的一种,为了防止封装本体断裂,QFP 本体制作得 较厚(见QFP)。部分半导体厂家采用的名称。 44、QFI(quad flat I-leaded packgac) 四侧I 形引脚扁平封装。表面贴装型封装之一。引脚从封装四个侧面引出,向下呈I 字 。 也称为MSP(见MSP)。贴装与印刷基板进行碰焊连接。由于引脚无突出部分,贴装占有面 积小 于QFP。 日立制作所为视频模拟IC 开发并使用了这种封装。此外,日本的Motorola 公司的PLL IC 也采用了此种封装。引脚中心距1.27mm,引脚数从18 于68。 45、QFJ(quad flat J-leaded package) 四侧J 形引脚扁平封装。表面贴装封装之一。引脚从封装四个侧面引出,向下呈J 字形 。 是日本电子机械工业会规定的名称。引脚中心距1.27mm。 材料有塑料和陶瓷两种。塑料QFJ 多数情况称为PLCC(见PLCC),用于微机、门陈列、 DRAM、ASSP、OTP 等电路。引脚数从18 至84。 陶瓷QFJ 也称为CLCC、JLCC(见CLCC)。带窗口的封装用于紫外线擦除型EPROM 以及 带有EPROM 的微机芯片电路。引脚数从32 至84。 46、QFN(quad flat non-leaded package) 四侧无引脚扁平封装。表面贴装型封装之一。现在多称为LCC。QFN 是日本电子机械工业 会规定的名称。封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度 比QFP 低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电 极触点 难于作到QFP 的引脚那样多,一般从14 到100 左右。 材料有陶瓷和塑料两种。当有LCC 标记时基本上都是陶瓷QFN。电极触点中心距1.27mm。 塑料QFN 是以玻璃环氧树脂印刷基板基材的一种低成本封装。电极触点中心距除1.27mm 外, 还有0.65mm 和0.5mm 两种。这种封装也称为塑料LCC、PCLC、P-LCC 等。 47、QFP(quad flat package) 四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。基材有 陶 瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时, 多数情 况为塑料QFP。塑料QFP 是最普及的多引脚LSI 封装。不仅用于微处理器,门陈列等数字 逻辑LSI 电路,而且也用于VTR 信号处理、音响信号处理等模拟LSI 电路。引脚中心距 有1.0mm、0.8mm、 0.65mm、0.5mm、0.4mm、0.3mm 等多种规格。0.65mm 中心距规格中最多引脚数为304。 日本将引脚中心距小于0.65mm 的QFP 称为QFP(FP)。但现在日本电子机械工业会对QFP 的外形规格进行了重新评价。在引脚中心距上不加区别,而是根据封装本体厚度分为 QFP(2.0mm~3.6mm 厚)、LQFP(1.4mm 厚)和TQFP(1.0mm 厚)三种。 另外,有的LSI 厂家把引脚中心距为0.5mm 的QFP 专门称为收缩型QFP 或SQFP、VQFP。 但有的厂家把引脚中心距为0.65mm 及0.4mm 的QFP 也称为SQFP,至使名称稍有一些混乱 。 QFP 的缺点是,当引脚中心距小于0.65mm 时,引脚容易弯曲。为了防止引脚变形,现已 出现了几种改进的QFP 品种。如封装的四个角带有树指缓冲垫的BQFP(见BQFP);带树脂 保护 环覆盖引脚前端的GQFP(见GQFP);在封装本体里设置测试凸点、放在防止引脚变形的专 用夹 具里就可进行测试的TPQFP(见TPQFP)。 在逻辑LSI 方面,不少开发品和高可靠品都封装在多层陶瓷QFP 里。引脚中心距最小为 0.4mm、引脚数最多为348 的产品也已问世。此外,也有用玻璃密封的陶瓷QFP(见Gerqa d)。 48、QFP(FP)(QFP fine pitch) 小中心距QFP。日本电子机械工业会标准所规定的名称。指引脚中心距为0.55mm、0.4mm 、 0.3mm 等小于0.65mm 的QFP(见QFP)。 49、QIC(quad in-line ceramic package) 陶瓷QFP 的别称。部分半导体厂家采用的名称(见QFP、Cerquad)。 50、QIP(quad in-line plastic package) 塑料QFP 的别称。部分半导体厂家采用的名称(见QFP)。 51、QTCP(quad tape carrier package) 四侧引脚带载封装。TCP 封装之一,在绝缘带上形成引脚并从封装四个侧面引出。是利 用 TAB 技术的薄型封装(见TAB、TCP)。 52、QTP(quad tape carrier package) 四侧引脚带载封装。日本电子机械工业会于1993 年4 月对QTCP 所制定的外形规格所用 的 名称(见TCP)。 53、QUIL(quad in-line) QUIP 的别称(见QUIP)。 54、QUIP(quad in-line package) 四列引脚直插式封装。引脚从封装两个侧面引出,每隔一根交错向下弯曲成四列。引脚 中 心距1.27mm,当插入印刷基板时,插入中心距就变成2.5mm。因此可用于标准印刷线路板 。是 比标准DIP 更小的一种封装。日本电气公司在台式计算机和家电产品等的微机芯片中采 用了些 种封装。材料有陶瓷和塑料两种。引脚数64。 55、SDIP (shrink dual in-line package) 收缩型DIP。插装型封装之一,形状与DIP 相同,但引脚中心距(1.778mm)小于DIP(2.54 mm), 因而得此称呼。引脚数从14 到90。也有称为SH-DIP 的。材料有陶瓷和塑料两种。 56、SH-DIP(shrink dual in-line package) 同SDIP。部分半导体厂家采用的名称。 57、SIL(single in-line) SIP 的别称(见SIP)。欧洲半导体厂家多采用SIL 这个名称。 58、SIMM(single in-line memory module) 单列存贮器组件。只在印刷基板的一个侧面附近配有电极的存贮器组件。通常指插入插 座 的组件。标准SIMM 有中心距为2.54mm 的30 电极和中心距为1.27mm 的72 电极两种规格 。 在印刷基板的单面或双面装有用SOJ 封装的1 兆位及4 兆位DRAM 的SIMM 已经在个人 计算机、工作站等设备中获得广泛应用。至少有30~40%的DRAM 都装配在SIMM 里。 59、SIP(single in-line package) 单列直插式封装。引脚从封装一个侧面引出,排列成一条直线。当装配到印刷基板上时 封 装呈侧立状。引脚中心距通常为2.54mm,引脚数从2 至23,多数为定制产品。封装的形 状各 异。也有的把形状与ZIP 相同的封装称为SIP。 60、SK-DIP(skinny dual in-line package) DIP 的一种。指宽度为7.62mm、引脚中心距为2.54mm 的窄体DIP。通常统称为DIP(见 DIP)。 61、SL-DIP(slim dual in-line package) DIP 的一种。指宽度为10.16mm,引脚中心距为2.54mm 的窄体DIP。通常统称为DIP。 62、SMD(surface mount devices) 表面贴装器件。偶而,有的半导体厂家把SOP 归为SMD(见SOP)。 63、SO(small out-line) SOP 的别称。世界上很多半导体厂家都采用此别称。(见SOP)。 64、SOI(small out-line I-leaded package) I 形引脚小外型封装。表面贴装型封装之一。引脚从封装双侧引出向下呈I 字形,中心 距 1.27mm。贴装占有面积小于SOP。日立公司在模拟IC(电机驱动用IC)中采用了此封装。引 脚数 26。 65、SOIC(small out-line integrated circuit) SOP 的别称(见SOP)。国外有许多半导体厂家采用此名称。 66、SOJ(Small Out-Line J-Leaded Package) J 形引脚小外型封装。表面贴装型封装之一。引脚从封装两侧引出向下呈J 字形,故此 得名。 通常为塑料制品,多数用于DRAM 和SRAM 等存储器LSI 电路,但绝大部分是DRAM。用SO J 封装的DRAM 器件很多都装配在SIMM 上。引脚中心距1.27mm,引脚数从20 至40(见SIMM )。 67、SQL(Small Out-Line L-leaded package) 按照JEDEC(美国联合电子设备工程委员会)标准对SOP 所采用的名称(见SOP)。 68、SONF(Small Out-Line Non-Fin) 无散热片的SOP。与通常的SOP 相同。为了在功率IC 封装中表示无散热片的区别,有意 增添了NF(non-fin)标记。部分半导体厂家采用的名称(见SOP)。 69、SOF(small Out-Line package) 小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有 塑料 和陶瓷两种。另外也叫SOL 和DFP。 SOP 除了用于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不 超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8 ~44。 另外,引脚中心距小于1.27mm 的SOP 也称为SSOP;装配高度不到1.27mm 的SOP 也称为 TSOP(见SSOP、TSOP)。还有一种带有散热片的SOP。 70、SOW (Small Outline Package(Wide-Jype)) 宽体SOP。部分半导体厂家采用的名称。 19269希望对你有帮助!
2023-06-07 23:33:541

封装有无高底的区别

芯片封装方式一览:  1、BGA(ball grid array)  球形触点陈列,表面贴装型封装之一.在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封.也称为凸点陈列载体(PAC).引脚可超过200,是多引脚LSI 用的一种封装.封装本体也可做得比QFP(四侧引脚扁平封装)小.例如,引脚中心距为1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方.而且BGA 不 用担心QFP 那样的引脚变形问题.该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及.最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225.现在也有一些LSI 厂家正在开发500 引脚的BGA.BGA 的问题是回流焊后的外观检查.现在尚不清楚是否有效的外观检查方法.有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理.美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC).  2、BQFP(quad flat package with bumper)  带缓冲垫的四侧引脚扁平封装.QFP 封装之一,在封装本体的四个角设置突起(缓冲垫)以防止在运送过程中引脚发生弯曲变形.美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装.引脚中心距0.635mm,引脚数从84 到196 左右(见QFP).  3、碰焊PGA(butt joint pin grid array)  表面贴装型PGA 的别称(见表面贴装型PGA).  4、C-(ceramic)  表示陶瓷封装的记号.例如,CDIP 表示的是陶瓷DIP.是在实际中经常使用的记号.  5、Cerdip  用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路.带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等.引脚中心距2.54mm,引脚数从8 到42.在日本,此封装表示为DIP-G(G 即玻璃密封的意思).  6、Cerquad  表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路.带有窗口的Cerquad 用于封装EPROM 电路.散热性比塑料QFP 好,在自然空冷条件下可容许1.5~ 2W 的功率.但封装成本比塑料QFP 高3~5 倍.引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm 等多种规格.引脚数从32 到368.  7、CLCC(ceramic leaded chip carrier)  带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形.  带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等.此封装也称为QFJ、QFJ-G(见QFJ).  8、COB(chip on board)  板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性.虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片焊技术.  9、DFP(dual flat package)  双侧引脚扁平封装.是SOP 的别称(见SOP).以前曾有此称法,现在已基本上不用.  10、DIC(dual in-line ceramic package)  陶瓷DIP(含玻璃密封)的别称(见DIP).  11、DIL(dual in-line)  DIP 的别称(见DIP).欧洲半导体厂家多用此名称.  12、DIP(dual in-line package)  双列直插式封装.插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种.DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等.引脚中心距2.54mm,引脚数从6 到64.封装宽度通常为15.2mm.有的把宽度为7.52mm和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP).但多数情况下并不加区分,只简单地统称为DIP.另外,用低熔点玻璃密封的陶瓷DIP 也称为cerdip(见cerdip).  13、DSO(dual small out-lint)  双侧引脚小外形封装.SOP 的别称(见SOP).部分半导体厂家采用此名称.  14、DICP(dual tape carrier package)  双侧引脚带载封装.TCP(带载封装)之一.引脚制作在绝缘带上并从封装两侧引出.由于利用的是TAB(自动带载焊接)技术,封装外形非常薄.常用于液晶显示驱动LSI,但多数为定制品.另外,0.5mm 厚的存储器LSI 簿形封装正处于开发阶段.在日本,按照EIAJ(日本电子机械工业)会标准规定,将DICP 命名为DTP.  15、DIP(dual tape carrier package)  同上.日本电子机械工业会标准对DTCP 的命名(见DTCP).  16、FP(flat package)  扁平封装.表面贴装型封装之一.QFP 或SOP(见QFP 和SOP)的别称.部分半导体厂家采用此名称.  17、flip-chip  倒焊芯片.裸芯片封装技术之一,在LSI 芯片的电极区制作好金属凸点,然后把金属凸点与印刷基板上的电极区进行压焊连接.封装的占有面积基本上与芯片尺寸相同.是所有封装技术中体积最小、最薄的一种.但如果基板的热膨胀系数与LSI 芯片不同,就会在接合处产生反应,从而影响连接的可靠性.因此必须用树脂来加固LSI 芯片,并使用热膨胀系数基本相同的基板材料.  18、FQFP(fine pitch quad flat package)  小引脚中心距QFP.通常指引脚中心距小于0.65mm 的QFP(见QFP).部分导导体厂家采用此名称.  19、CPAC(globe top pad array carrier)  美国Motorola 公司对BGA 的别称(见BGA).  20、CQFP(quad fiat package with guard ring)  带保护环的四侧引脚扁平封装.塑料QFP 之一,引脚用树脂保护环掩蔽,以防止弯曲变形.在把LSI 组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(L 形状).这种封装在美国Motorola 公司已批量生产.引脚中心距0.5mm,引脚数最多为208 左右.  21、H-(with heat sink)  表示带散热器的标记.例如,HSOP 表示带散热器的SOP.  22、pin grid array(surface mount type)  表面贴装型PGA.通常PGA 为插装型封装,引脚长约3.4mm.表面贴装型PGA 在封装的底面有陈列状的引脚,其长度从1.5mm 到2.0mm.贴装采用与印刷基板碰焊的方法,因而也称为碰焊PGA.因为引脚中心距只有1.27mm,比插装型PGA 小一半,所以封装本体可制作得不怎么大,而引脚数比插装型多(250~528),是大规模逻辑LSI 用的封装.封装的基材有多层陶瓷基板和玻璃环氧树脂印刷基数.以多层陶瓷基材制作封装已经实用化.  23、JLCC(J-leaded chip carrier)  J 形引脚芯片载体.指带窗口CLCC 和带窗口的陶瓷QFJ 的别称(见CLCC 和QFJ).部分半导体厂家采用的名称.  24、LCC(Leadless chip carrier)  无引脚芯片载体.指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装.是高速和高频IC 用封装,也称为陶瓷QFN 或QFN-C(见QFN).  25、LGA(land grid array)  触点陈列封装.即在底面制作有阵列状态坦电极触点的封装.装配时插入插座即可.现已实用的有227 触点(1.27mm 中心距)和447 触点(2.54mm 中心距)的陶瓷LGA,应用于高速逻辑LSI 电路.LGA 与QFP 相比,能够以比较小的封装容纳更多的输入输出引脚.另外,由于引线的阻抗小,对于高速LSI 是很适用的.但由于插座制作复杂,成本高,现在基本上不怎么使用.预计今后对其需求会有所增加.  26、LOC(lead on chip)  芯片上引线封装.LSI 封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片的中心附近制作有凸焊点,用引线缝合进行电气连接.与原来把引线框架布置在芯片侧面附近的结构相比,在相同大小的封装中容纳的芯片达1mm 左右宽度.  27、LQFP(low profile quad flat package)  薄型QFP.指封装本体厚度为1.4mm 的QFP,是日本电子机械工业会根据制定的新QFP外形规格所用的名称.  28、L-QUAD  陶瓷QFP 之一.封装基板用氮化铝,基导热率比氧化铝高7~8 倍,具有较好的散热性.封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本.是为逻辑LSI 开发的一种封装,在自然空冷条件下可容许W3的功率.现已开发出了208 引脚(0.5mm 中心距)和160 引脚(0.65mm中心距)的LSI 逻辑用封装,并于1993 年10 月开始投入批量生产.  29、MCM(multi-chip module)  多芯片组件.将多块半导体裸芯片组装在一块布线基板上的一种封装.根据基板材料可分为MCM-L,MCM-C 和MCM-D 三大类.MCM-L 是使用通常的玻璃环氧树脂多层印刷基板的组件.布线密度不怎么高,成本较低.MCM-C 是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使用多层陶瓷基板的厚膜混合IC 类似.两者无明显差别.布线密度高于MCM-L.MCM-D 是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或Si、Al 作为基板的组件.布线密谋在三种组件中是最高的,但成本也高.  30、MFP(mini flat package)  小形扁平封装.塑料SOP 或SSOP 的别称(见SOP 和SSOP).部分半导体厂家采用的名称.  31、MQFP(metric quad flat package)  按照JEDEC(美国联合电子设备委员会)标准对QFP 进行的一种分类.指引脚中心距为  0.65mm、本体厚度为3.8mm~2.0mm 的标准QFP(见QFP).  32、MQUAD(metal quad)  美国Olin 公司开发的一种QFP 封装.基板与封盖均采用铝材,用粘合剂密封.在自然空冷条件下可容许2.5W~2.8W 的功率.日本新光电气工业公司于1993 年获得特许开始生产.  33、MSP(mini square package)  QFI 的别称(见QFI),在开发初期多称为MSP.QFI 是日本电子机械工业会规定的名称.  34、OPMAC(over molded pad array carrier)  模压树脂密封凸点陈列载体.美国Motorola 公司对模压树脂密封BGA 采用的名称(见  BGA).  35、P-(plastic)  表示塑料封装的记号.如PDIP 表示塑料DIP.  36、PAC(pad array carrier)  凸点陈列载体,BGA 的别称(见BGA).  37、PCLP(printed circuit board leadless package)  印刷电路板无引线封装.日本富士通公司对塑料QFN(塑料LCC)采用的名称(见QFN).引脚中心距有0.55mm 和0.4mm 两种规格.目前正处于开发阶段.  38、PFPF(plastic flat package)  塑料扁平封装.塑料QFP 的别称(见QFP).部分LSI 厂家采用的名称.  39、PGA(pin grid array)  陈列引脚封装.插装型封装之一,其底面的垂直引脚呈陈列状排列.封装基材基本上都采用多层陶瓷基板.在未专门表示出材料名称的情况下,多数为陶瓷PGA,用于高速大规模逻辑LSI 电路.成本较高.引脚中心距通常为2.54mm,引脚数从64 到447 左右.了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替.也有64~256 引脚的塑料PGA.  另外,还有一种引脚中心距为1.27mm 的短引脚表面贴装型PGA(碰焊PGA).(见表面贴装  型PGA).  40、piggy back  驮载封装.指配有插座的陶瓷封装,形关与DIP、QFP、QFN 相似.在开发带有微机的设备时用于评价程序确认操作.例如,将EPROM 插入插座进行调试.这种封装基本上都是定制品,市场上不怎么流通.  41、PLCC(plastic leaded chip carrier)  带引线的塑料芯片载体.表面贴装型封装之一.引脚从封装的四个侧面引出,呈丁字形,  是塑料制品.美国德克萨斯仪器公司首先在64k 位DRAM 和256kDRAM 中采用,现在已经普及用于逻辑LSI、DLD(或程逻辑器件)等电路.引脚中心距1.27mm,引脚数从18 到84.  J 形引脚不易变形,比QFP 容易操作,但焊接后的外观检查较为困难.PLCC 与LCC(也称QFN)相似.以前,两者的区别仅在于前者用塑料,后者用陶瓷.但现在已经出现用陶瓷制作的J 形引脚封装和用塑料制作的无引脚封装(标记为塑料LCC、PCLP、P-LCC 等),已经无法分辨.为此,日本电子机械工业会于1988 年决定,把从四侧引出J 形引脚的封装称为QFJ,把在四侧带有电极凸点的封装称为QFN(见QFJ 和QFN).  42、P-LCC(plastic teadless chip carrier)(plastic leaded chip currier)  有时候是塑料QFJ 的别称,有时候是QFN(塑料LCC)的别称(见QFJ 和QFN).部分LSI 厂家用PLCC 表示带引线封装,用P-LCC 表示无引线封装,以示区别.  43、QFH(quad flat high package)  四侧引脚厚体扁平封装.塑料QFP 的一种,为了防止封装本体断裂,QFP 本体制作得 较厚(见QFP).部分半导体厂家采用的名称.  44、QFI(quad flat I-leaded packgac)  四侧I 形引脚扁平封装.表面贴装型封装之一.引脚从封装四个侧面引出,向下呈I 字.  也称为MSP(见MSP).贴装与印刷基板进行碰焊连接.由于引脚无突出部分,贴装占有面积小于QFP.日立制作所为视频模拟IC 开发并使用了这种封装.此外,日本的Motorola 公司的PLL IC也采用了此种封装.引脚中心距1.27mm,引脚数从18 于68.  45、QFJ(quad flat J-leaded package)  四侧J 形引脚扁平封装.表面贴装封装之一.引脚从封装四个侧面引出,向下呈J 字形.是日本电子机械工业会规定的名称.引脚中心距1.27mm.材料有塑料和陶瓷两种.塑料QFJ 多数情况称为PLCC(见PLCC),用于微机、门陈列、DRAM、ASSP、OTP 等电路.引脚数从18 至84.陶瓷QFJ 也称为CLCC、JLCC(见CLCC).带窗口的封装用于紫外线擦除型EPROM 以及带有EPROM 的微机芯片电路.引脚数从32 至84.  46、QFN(quad flat non-leaded package)  四侧无引脚扁平封装.表面贴装型封装之一.现在多称为LCC.QFN 是日本电子机械工业会规定的名称.封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度比QFP低.但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解.因此电极触点难于作到QFP 的引脚那样多,一般从14 到100 左右.材料有陶瓷和塑料两种.当有LCC 标记时基本上都是陶瓷QFN.电极触点中心距1.27mm.塑料QFN 是以玻璃环氧树脂印刷基板基材的一种低成本封装.电极触点中心距除1.27mm 外,还有0.65mm 和0.5mm 两种.这种封装也称为塑料LCC、PCLC、P-LCC 等.  47、QFP(quad flat package)  四侧引脚扁平封装.表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型.基材有陶瓷、金属和塑料三种.从数量上看,塑料封装占绝大部分.当没有特别表示出材料时,多数情况为塑料QFP.塑料QFP 是最普及的多引脚LSI 封装.不仅用于微处理器,门陈列等数字逻辑LSI 电路,而且也用于VTR 信号处理、音响信号处理等模拟LSI 电路.引脚中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm 等多种规格.0.65mm 中心距规格中最多引脚数为304.日本将引脚中心距小于0.65mm 的QFP 称为QFP(FP).但现在日本电子机械工业会对QFP的外形规格进行了重新评价.在引脚中心距上不加区别,而是根据封装本体厚度分为QFP(2.0mm~3.6mm 厚)、LQFP(1.4mm 厚)和TQFP(1.0mm 厚)三种.另外,有的LSI 厂家把引脚中心距为0.5mm 的QFP 专门称为收缩型QFP 或SQFP、VQFP.但有的厂家把引脚中心距为0.65mm 及0.4mm 的QFP 也称为SQFP,至使名称稍有一些混乱.QFP 的缺点是,当引脚中心距小于0.65mm 时,引脚容易弯曲.为了防止引脚变形,现已出现了几种改进的QFP 品种.如封装的四个角带有树指缓冲垫的BQFP(见BQFP);带树脂保护环覆盖引脚前端的GQFP(见GQFP);在封装本体里设置测试凸点、放在防止引脚变形的专用夹具里就可进行测试的TPQFP(见TPQFP).在逻辑LSI 方面,不少开发品和高可靠品都封装在多层陶瓷QFP 里.引脚中心距最小为0.4mm、引脚数最多为348 的产品也已问世.此外,也有用玻璃密封的陶瓷QFP(见Gerqad).  48、QFP(FP)(QFP fine pitch)  小中心距QFP.日本电子机械工业会标准所规定的名称.指引脚中心距为0.55mm、0.4mm、0.3mm 等小于0.65mm 的QFP(见QFP).  49、QIC(quad in-line ceramic package)  陶瓷QFP 的别称.部分半导体厂家采用的名称(见QFP、Cerquad).  50、QIP(quad in-line plastic package)  塑料QFP 的别称.部分半导体厂家采用的名称(见QFP).  51、QTCP(quad tape carrier package)  四侧引脚带载封装.TCP 封装之一,在绝缘带上形成引脚并从封装四个侧面引出.是利用TAB 技术的薄型封装(见TAB、TCP).  52、QTP(quad tape carrier package)  四侧引脚带载封装.日本电子机械工业会于1993 年4 月对QTCP 所制定的外形规格所用的名称(见TCP).  53、QUIL(quad in-line)  QUIP 的别称(见QUIP).  54、QUIP(quad in-line package)  四列引脚直插式封装.引脚从封装两个侧面引出,每隔一根交错向下弯曲成四列.引脚中心距1.27mm,当插入印刷基板时,插入中心距就变成2.5mm.因此可用于标准印刷线路板.是比标准DIP 更小的一种封装.日本电气公司在台式计算机和家电产品等的微机芯片中采用了些种封装.材料有陶瓷和塑料两种.引脚数64.  55、SDIP (shrink dual in-line package)  收缩型DIP.插装型封装之一,形状与DIP 相同,但引脚中心距(1.778mm)小于DIP(2.54mm),因而得此称呼.引脚数从14 到90.也有称为SH-DIP 的.材料有陶瓷和塑料两种.  56、SH-DIP(shrink dual in-line package)  同SDIP.部分半导体厂家采用的名称.  57、SIL(single in-line)  SIP 的别称(见SIP).欧洲半导体厂家多采用SIL 这个名称.  58、SIMM(single in-line memory module)  单列存贮器组件.只在印刷基板的一个侧面附近配有电极的存贮器组件.通常指插入插座的组件.标准SIMM 有中心距为2.54mm 的30 电极和中心距为1.27mm 的72 电极两种规格.在印刷基板的单面或双面装有用SOJ 封装的1 兆位及4 兆位DRAM 的SIMM 已经在个人计算机、工作站等设备中获得广泛应用.至少有30~40%的DRAM 都装配在SIMM 里.  59、SIP(single in-line package)  单列直插式封装.引脚从封装一个侧面引出,排列成一条直线.当装配到印刷基板上时封装呈侧立状.引脚中心距通常为2.54mm,引脚数从2 至23,多数为定制产品.封装的形状各异.也有的把形状与ZIP 相同的封装称为SIP.  60、SK-DIP(skinny dual in-line package)  DIP 的一种.指宽度为7.62mm、引脚中心距为2.54mm 的窄体DIP.通常统称为DIP(见  DIP).  61、SL-DIP(slim dual in-line package)  DIP 的一种.指宽度为10.16mm,引脚中心距为2.54mm 的窄体DIP.通常统称为DIP.  62、SMD(surface mount devices)  表面贴装器件.偶而,有的半导体厂家把SOP 归为SMD(见SOP).  63、SO(small out-line)  SOP 的别称.世界上很多半导体厂家都采用此别称.(见SOP).  64、SOI(small out-line I-leaded package)  I 形引脚小外型封装.表面贴装型封装之一.引脚从封装双侧引出向下呈I 字形,中心距1.27mm.贴装占有面积小于SOP.日立公司在模拟IC(电机驱动用IC)中采用了此封装.引脚数26.  65、SOIC(small out-line integrated circuit)  SOP 的别称(见SOP).国外有许多半导体厂家采用此名称.  66、SOJ(Small Out-Line J-Leaded Package)  J 形引脚小外型封装.表面贴装型封装之一.引脚从封装两侧引出向下呈J 字形,故此得名.通常为塑料制品,多数用于DRAM 和SRAM 等存储器LSI 电路,但绝大部分是DRAM.用SOJ封装的DRAM 器件很多都装配在SIMM 上.引脚中心距1.27mm,引脚数从20 至40(见SIMM).  
2023-06-07 23:34:011

硬核,软核,固核的区别是什么呀?

IP(Intellectual Property)就是常说的知识产权。美国Dataquest咨询公司将半导体产业的IP定义为用于ASIC、ASSP和PLD等当中,并且是预先设计好的电路模块。IP核模块有行为(Behavior)、结构(Structure)和物理(Physical)三级不同程度的设计,对应描述功能行为的不同分为三类,即软核(Soft IP Core)、完成结构描述的固核(Firm IP Core)和基于物理描述并经过工艺验证的硬核(Hard IP Core)。什么是软核? IP软核通常是用HDL文本形式提交给用户,它经过RTL级设计优化和功能验证,但其中不含有任何具体的物理信息。据此,用户可以综合出正确的门电路级设计网表,并可以进行后续的结构设计,具有很大的灵活性,借助于EDA综合工具可以很容易地与其他外部逻辑电路合成一体,根据各种不同半导体工艺,设计成具有不同性能的器件。软IP内核也称为虚拟组件(VC-Virtual Component)。什么是固核? IP固核的设计程度则是介于软核和硬核之间,除了完成软核所有的设计外,还完成了门级电路综合和时序仿真等设计环节。一般以门级电路网表的形式提供给用户。什么是硬核? IP硬核是基于半导体工艺的物理设计,已有固定的拓扑布局和具体工艺,并已经过工艺验证,具有可保证的性能。其提供给用户的形式是电路物理结构掩模版图和全套工艺文件,是可以拿来就用的全套技术。
2023-06-07 23:34:091

IP产业包括什么?

IP产业也就是知识产权。其实是英文IntellectualProperty的缩写,IP的形式可以多种多样,既可以是一个完整的故事,也可以是一个概念。知识产权,也称其为“知识所属权”,指“权利人对其智力劳动所创作的成果享有的财产权利”,一般只在有限时间内有效。/iknow-pic.cdn.bcebos.com/d1160924ab18972bb3dd59c4ebcd7b899f510adc"target="_blank"title="点击查看大图"class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/d1160924ab18972bb3dd59c4ebcd7b899f510adc?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="https://iknow-pic.cdn.bcebos.com/d1160924ab18972bb3dd59c4ebcd7b899f510adc"/>扩展资料:知识产权是指人们就其智力劳动成果所依法享有的专有权利,通常是国家赋予创造者对其智力成果在一定时期内享有的专有权或独占权(exclusiveright)。知识产权从本质上说是一种无形财产权,他的客体是智力成果或是知识产品,是一种无形财产或者一种没有形体的精神财富,是创造性的智力劳动所创造的劳动成果。它与房屋、汽车等有形财产一样,都受到国家法律的保护,都具有价值和使用价值。有些重大专利、驰名商标或作品的价值也远远高于房屋、汽车等有形财产。参考资料:/baike.baidu.com/item/%E7%9F%A5%E8%AF%86%E4%BA%A7%E6%9D%83/85044"target="_blank"title="百度百科-知识产权">百度百科-知识产权
2023-06-07 23:34:195