光合作用的原理

阅读 / 问答 / 标签

叶绿素光合作用的原理

你想明白到什么级别

叶绿体进行光合作用的原理()

有光和色素,还有相应的酶!你的问题有点模糊

一氧化碳参与光合作用的原理

一氧化碳遇氧气,产出二氧化碳,二氧化碳又产生一氧化碳

光合作用的原理是什么?

总反应式:CO2+H2O( 光照、酶、 叶绿体)==(CH2O)+O2   (CH2O)表示糖类有关化学方程式光反应:物质变化:H2O→2H+ 1/2O2(水的光解)   NADP+ + 2e- + H+ → NADPH   能量变化:ADP+Pi+光能→ATP   暗反应:物质变化:CO2+C5化合物→2C3化合物(二氧化碳的固定)   2C3化合物+4NADPH+ATP→(CH2O)+ C5化合物+H2O(有机物的生成或称为C3的还原)  能量变化:ATP→ADP+PI(耗能)   能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成)

跪求生物高中必修1(二)光合作用的原理和应用(二)_B6DC种子下载,好东西大家分享

生物高中必修1(二)光合作用的原理和应用(二)_B6DC种子下载地址:核实后记得采纳!!

教案光合作用的原理和应用的教案怎么写

写教案的具体内容包括以下十项:一.课题(说明本课名称)二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)三.课型(说明属新授课,还是复习课)四.课时(说明属第几课时)五.教学重点(说明本课所必须解决的关键性问题)六.教学难点(说明本课的学习时易产生困难和障碍的知识点)七.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)九.板书设计(说明上课时准备写在黑板上的内容)十.教具(或称教具准备,说明辅助教学手段使用的工具)在教案书写过程中,教学过程是关键,它包括以下几个步骤:(一)导入新课1.设计新颖活泼,精当概括。3.提问那些学生,需用多少时间等。(二)讲授新课1.针对不同教学内容,选择不同的教学方法.。(三)巩固练习1.练习设计精巧,有层次、有坡度、有密度。(四)归纳小结(五)作业安排布置那些内容,要考虑知识拓展性、能力性。

高中生物 必修1 光合作用的原理和应用

1.水的光解 ATP和NADPH的产生2. ATP NADPH ADP Pi NADP+3. C5 还原性糖4. 类囊体薄膜 叶绿体基质5. 第五题没看明白你要干什么

请问光合作用的原理是什么?

绿色植物利用太阳的光能,同化二氧化碳(CO2)和水(H2O)制造有机物质并释放氧气的过程,称为光合作用。光合作用所产生的有机物主要是碳水化合物,并释放出能量。

根据光合作用的原理,下列措施有助于提高农作物产量的是

答案D绿色植物的光合作用是绿色植物通过叶绿体,利用光能,把二氧化碳和水转变成贮存能量的有机物,并释放出氧气的过程,为了提高农作物的产量,就要充分的利用光能.合理密植、兼作套种充分的利用光能的重要措施.综上所述A、B、C选项错误,只有选项D正确.故选:D

光合作用的过程 光合作用的原理介绍

1、光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。 2、根据现代的资料,整个光合作用大致可分为下列3大步骤: (1)原初反应,包括光能的吸收、传递和转换; (2)电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH); (3)碳同化,把活跃的化学能转变为稳定的化学能(固定CO2,形成糖类)。 3、在介绍光合作用反应过程前,对光合作用过程中涉及的光合色素及光系统进行一定的了解是必要的。

请问光合作用的原理是什么?

简单的说就是吸收二氧化碳,释放氧气。望采纳谢谢

光合作用的原理是什么

光合作用(Photosynthesis),即光能合成作用,是指含有叶绿体绿色植物和某些细菌,在可见光的照射下,经过光反应和碳反应(旧称暗反应),利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。同时也有将光能转变为有机物中化学能的能量转化过程。光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳-氧平衡的重要媒介。光合作用可分为产氧光合作用(oxygenic photosynthesis)和不产氧光合作用(anoxygenic photosynthesis)。是绿色植物、和某些细菌利用叶绿素,在可见光的照射下,将二氧化碳和水转化为有机物(主要是淀粉),并释放出氧气的生化过程。对于生物界的几乎所有生物来说,这个过程是他们赖以生存的关键,而地球上的碳氧循环,光合作用是必不可少的。

植物进行光合作用的原理

光合作用(Photosynthesis),即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,经过光反应和暗反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光合作用(Photosynthesis)是绿色植物利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而在地球上的碳氧循环,光合作用是必不可少的。生物的生命活动都需要消耗能量,这些能量来自生物体内糖类、脂类和蛋白质等有机物的氧化分解。生 物体内的有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或其他产物,并且释放出能量的总过程,叫吸作用(又叫生物氧化)。呼吸作用,是生物体细胞把有机物氧化分解并产生能量的化学过程,又称为细胞呼吸(Cellular respiration)。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作用。真核细胞中,线粒体是与呼吸作用最有关联的胞器,呼吸作用的几个关键性步骤都在其中进行。呼吸作用是一种酶促氧化反应。虽名为氧化反应,不论有无氧气参与,都可称作呼吸作用(这是因为在化学上,有电子转移的反应过程,皆可称为氧化)。有氧气参与时的呼吸作用,称之为有氧呼吸;没氧气参与的反应,则称为无氧呼吸。同样多的有机化合物,进行无氧呼吸时,其产生的能量,比进行有氧呼吸时要少。有氧呼吸与无氧呼吸是细胞内不同的反应,与生物体没直接关系。即使是呼吸氧气的生物,其细胞内,也可以进行无氧呼吸。呼吸作用的目的,是透过释放食物里之能量,以制造三磷酸腺苷(ATP),即细胞最主要的直接能量供应者。呼吸作用的过程,可以比拟为氢与氧的燃烧,但两者间最大分别是:呼吸作用透过一连串的反应步骤,一步步使食物中的能量放出,而非像燃烧般的一次性释放。在呼吸作用中,三大营养物质:碳水化合物、蛋白质和脂质的基本组成单位──葡萄糖、氨基酸和脂肪酸,被分解成更小的分子,透过数个步骤,将能量转移到还原性氢(化合价为+1的氢)中。最后经过一连串的电子传递链,氢被氧化生成水;原本贮存在其中的能量,则转移到ATP分子上,供生命活动使用。有氧呼吸的全过程,可以分为三个阶段:第一个阶段(称为糖酵解),一个分子的葡萄糖分解成两个分子的丙酮酸,在分解的过程中产生少量的氢(用[H]表示),同时释放出少量的能量。这个阶段是在细胞质基质中进行的;第二个阶段(称为三羧酸循环或柠檬酸循环),丙酮酸经过一系列的反应,分解成二氧化碳和氢,同时释放出少量的能量。这个阶段是在线粒体基质中进行的;第三个阶段(呼吸电子传递链),前两个阶段产生的氢,经过一系列的反应,与氧结合而形成水,同时释放出大量的能量。这个阶段是在线粒体内膜中进行的。以上三个阶段中的各个化学反应是由不同的酶来催化的。在生物体内,1mol的葡萄糖在彻底氧化分解以后,共释放出2870kJ的能量,其中有977kJ左右的能量储存在ATP中(38个ATP),其余的能量都以热能的形式散失了。生物进行呼吸作用的主要形式是有氧呼吸。那么,生物在无氧条件下能不能进行呼吸作用呢?科学家通过研究发现,生物体内的细胞在无氧条件下能够进行另一类型的呼吸作用——无氧呼吸。无氧呼吸一般是指细胞在无氧条件下,通过酶的催化作用,把葡萄糖等有机物质分解成为不彻底的氧化产物,同时释放出少量能量的过程。这个过程对于高等植物、高等动物和人来说,称为无氧呼吸。如果用于微生物(如乳酸菌、酵母菌),则习惯上称为发酵。细胞进行无氧呼吸的场所是细胞质基质。苹果储藏久了,为什么会有酒味?高等植物在水淹的情况下,可以进行短时间的无氧呼吸,将葡萄糖分解为酒精和二氧化碳,并且释放出少量的能量,以适应缺氧的环境条件。高等动物和人体在剧烈运动时,尽管呼吸运动和血液循环都大大加强了,但是仍然不能满足骨骼肌对氧的需要,这时骨骼肌内就会出现无氧呼吸。高等动物和人体的无氧呼吸产生乳酸。此外,还有一些高等植物的某些器官在进行无氧呼吸时也可以产生乳酸,如马铃薯块茎、甜菜块根等。无氧呼吸的全过程,可以分为两个阶段:第一个阶段与有氧呼吸的第一个阶段完全相同;第二个阶段是丙酮酸在不同酶的催化下,分解成酒精和二氧化碳,或者转化成乳酸。以上两个阶段中的各个化学反应是由不同的酶来催化的。在无氧呼吸中,葡萄糖氧化分解时所释放出的能量,比有氧呼吸释放出的要少得多。例如,1mol的葡萄糖在分解成乳酸以后,共放出196.65kJ的能量,其中有61.08kJ的能量储存在ATP中(2个ATP),其余的能量都以热能的形式散失了。植物有氧呼吸过程中,中间产物丙酮酸必须进入线粒体才能被分解成CO2对生物体来说,呼吸作用具有非常重要的生理意义,这主要表现在以下两个方面:第一,呼吸作用能为生物体的生命活动提供能量。呼吸作用释放出来的能量,一部分转变为热能而散失,另一部分储存在ATP中。当ATP在酶的作用下分解时,就把储存的能量释放出来,用于生物体的各项生命活动,如细胞的分裂,植株的生长,矿质元素的吸收,肌肉的收缩,神经冲动的传导等。第二,呼吸过程能为体内其他化合物的合成提供原料。在呼吸过程中所产生的一些中间产物,可以成为合成体内一些重要化合物的原料。例如,葡萄糖分解时的中间产物丙酮酸是合成氨基酸的原料。

光合作用的原理是什么?

光合作用的原理光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。.其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。.光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。

光合作用的原理是什么?

光能转为化学能

光合作用的原理

光合作用即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,经过光反应和暗反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取,植物就是所谓的自养生物的一种。对于绿色植物来说,在阳光充足的白天,它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉等能源物质,同时释放氧气。

光合作用的原理是什么?

光合作用(Photosynthesis)是植物、藻类和某些细菌利用叶绿素,在可见光的照射下,将二氧化碳和水转化为葡萄糖,并释放出氧气的生化过程

光合作用的原理

光合作用的原理是依靠其他的方式来进行对营养的摄取,植物就是所谓的自养生物的一种。对于绿色植物来说,在阳光充足的白天(在光照强度太强的时候植物的气孔会关闭,导致光合作用强度减弱),它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。 光合作用反应过程 光反应阶段:光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段。光反应阶段的化学反应是在叶绿体内的类囊体上进行的。 暗反应阶段:光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。 光合作用的重要意义:光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。因此,光合作用对于人类和整个生物界都具有非常重要的意义。

光合作用的原理是什么?

光合作用原理至今未明,属于量子范围,人类目前理解不了量子范围的东西

光合作用的原理和应用ppt

光合作用的原理和应用1、1771年,普利斯特利的实验结论:植物能够更新空气。2、1779年,英格豪斯的实验证明:光照 是进行光合作用的必要条件。1785年:科学家发现,光合作用消耗CO2和H2O,释放O2.1845年:科学家指出,光合作用把光能转化成化学能储存起来。Question:化学能储存在哪里呢?3、1864年,萨克斯的实验结论植物叶片在光合作用下产生 淀粉。4、1941年,鲁宾和卡门的实验证明:光合作用产生的O2来自于H2O5、1946年,卡尔文实验探究二氧化碳的碳在光合作用中转化成有机物中碳的途径,这一途径称为卡尔文循环。卡尔文获得1961年诺贝尔奖。光合作用的概念光合作用是指绿色植物通过叶绿体利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。◆ 化学反应式比较光合作用中光反应和暗反应的主要区别光合作用的探究过程1. 反应式2. 概念总结光合作用的过程光反应阶段和暗反应阶段

高中生物 必修1 光合作用的原理和应用

(1)色素吸收的光能,有二方面的作用,即用于传递光能(叶绿素b)和激发色素中的电子(叶绿素a)。。从没听过这样的问题。。PS:直接参与光合作用的色素只有叶绿素a,b吸收的光主要传递给a后被利用。类胡萝卜素吸收的光也传递给a,也具有保护功能即在强光下吸收并耗散多余的光能。(2)光反应和暗反应的联系:光反应为暗反应提供ATP和NADPH;暗反应为光反应提供ADP、P(磷酸)和NADP+(3)C3化合物的二个去向是形成葡萄糖极其他化合物和RuBP(C5)(4)在叶绿体中,ATP是在类囊体膜上生成,又在叶绿体基质中被消耗的(5)光合作用中能量的转换途径:光能电能NADPHT和ATP中活跃的化学能有机物中稳定的化学能(这样写是可以的~~~~~~~)光合作用中C原子的转移途径:看书上卡尔文循环吧。就是哪CO2+C5变成俩C3然后又变成C5还有糖这样的循环不会要求太高的吧光合作用中H原子的转移途径:H2O(CH2O)光合作用中H好像就是光反应H2O变成H+然后经过ATP合成酶时搞出格ATP然后去和NADP+在2e-作用下形成NADPH然后就把C3还原了。大概来说也就是进道糖里面去了。

关于光合作用的原理?

光合作用(Photosynthesis),即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,经过光反应和暗反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,将光能转化成化学能储存在有机物中,并释放出氧气(或氢气)的生化过程。光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光合作用原理光反应1水的光解:2H2O→4[H]+O2(为暗反应提供氢)2.ATP的形成:ADP+Pi+光能—→ATP(为暗反应提供能量)暗反应1.CO2的固定:CO2+C5→2C32.C3化合物的还原:2C3+[H]+ATP→(CH2O)+C5光合作用:发生范围(绿色植物)、场所(叶绿体)、能量来源(光能)、原料(二氧化碳和水)、产物(储存能量的有机物和氧气)。光合作用是指绿色植物利用光能,把二氧化碳和水合成为贮存了能量的有机物,同时释放出氧气的过程。a、由强光变成弱光时,产生的[H]、ATP数量减少,此时C3还原过程减弱,而CO2仍在短时间内被一定程度的固定,因而C3含量上升,C5含量下降,(CH2O)的合成率也降低。b、CO2浓度降低时,CO2固定减弱,因而产生的C3数量减少,C5的消耗量降低,而细胞的C3仍被还原,同时再生,因而此时,C3含量降低,C5含量上升。植物光合作用过程:二氧化碳+水→有机物(储存着能量)+氧气

光合作用的原理

  光合作用的原理:绿色植物在光照的条件下,通过体内的叶绿体可以将二氧化碳和水转化成储存着能量的有机物。在光合作用的过程中,绿色植物会产生如碳水化合物或糖类等有机物,同时释放出氧气。   光合作用的意义   光合作用可以将太阳能转变为化学能,储存在所形成的有机化合物中。光合作用可以吸收二氧化碳,将无机物变成有机物。 地球上的自养植物同化的碳素,40%是由浮游植物同化的,余下60%是由陆生植物同化的。光合作用有助于维持大气中的碳氧平衡,光合作用一方面为有氧呼吸提供了条件,另一方面,逐渐形成了大气表层的臭氧层。   叶绿体是什么   叶绿体是高等植物和一些藻类所特有的能量转换器。为绿色植物进行光合作用的场所,存在于高等植物叶肉、幼茎的一些细胞内,藻类细胞中也含有。

植物进行光合作用的原理是什么?

光合作用的过程如下:光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳同化,把活跃的化学能转变为稳定的化学能(固定CO2,形成糖类)。在介绍光合作用反应过程前,对光合作用过程中涉及的光合色素及光系统进行一定的了解是必要的。拓展:光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。

光合作用的原理是什么?

光合作用的原理是依靠其他的方式来进行对营养的摄取,植物就是所谓的自养生物的一种。对于绿色植物来说,在阳光充足的白天(在光照强度太强的时候植物的气孔会关闭,导致光合作用强度减弱),它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉等物质,同时释放氧气。光合作用将太阳能转化为ATP中活跃的化学能再转化为有机物中稳定的化学能的过程。扩展资料从叶绿素a吸收光能开始,就发生了电子的移动,形成了电子传递链,有了电子传递链,才能使得ATP合成酶将ADP和磷酸合成ATP。因此,它的能量转化过程为:光能→电能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(淀粉等糖类的合成)注意:光反应只有在光照条件下进行,而只要在满足碳反应条件的情况下碳反应都可以进行。也就是说碳反应不一定要在黑暗条件下进行。光合作用的基因可能同源,但演化并非是一条从简至繁的直线。科学家罗伯持·布来肯细普曾在《科学》杂志上发表报告说,我们知道这个光合作用演化来自大约25亿年前的细菌,但光合作用发展史非常不好追踪,且光合微生物的多样性令人迷惑,虽然有一些线索可以将它们联系在一起,但还是不清楚它们之间的关系。为此,布来肯细普等人通过分析五种细菌的基因组来解决部分的问题。他们的结果显示,光合作用的演化并非是一条从简至繁的直线,而是不同的演化路线的合并,靠的是基因的水平转移,即从一个物种转移到另一个物种上。通过基因在不同物种间的“旅行”从而使光合作用从细菌传到了海藻,再到植物。

光合作用的原理和应用是什么

光反应条件:光照、光合色素、光反应酶。场所:叶绿体的类囊体薄膜。(色素)光合作用的发现:水(原料)+二氧化碳 (原料) 光(条件)&叶绿体(场所)=氧气(产物)+有机物(产物)过程:①水的光解:2H2O→4[H]+O2(在光和叶绿体中的色素的催化下)。

高中生物 必修1 光合作用的原理和应用

(1)色素吸收的光能,有二方面的作用,即用于传递光能(叶绿素b)和激发色素中的电子(叶绿素a)。。从没听过这样的问题。。PS:直接参与光合作用的色素只有叶绿素a,b吸收的光主要传递给a后被利用。类胡萝卜素吸收的光也传递给a,也具有保护功能即在强光下吸收并耗散多余的光能。(2)光反应和暗反应的联系:光反应为暗反应提供ATP和NADPH;暗反应为光反应提供ADP、P(磷酸)和NADP+(3)C3化合物的二个去向是形成葡萄糖极其他化合物和RuBP(C5)(4)在叶绿体中,ATP是在类囊体膜上生成,又在叶绿体基质中被消耗的(5)光合作用中能量的转换途径:光能电能NADPHT和ATP中活跃的化学能有机物中稳定的化学能(这样写是可以的~~~~~~~)光合作用中C原子的转移途径:看书上卡尔文循环吧。就是哪CO2+C5变成俩C3然后又变成C5还有糖这样的循环不会要求太高的吧光合作用中H原子的转移途径:H2O(CH2O)光合作用中H好像就是光反应H2O变成H+然后经过ATP合成酶时搞出格ATP然后去和NADP+在2e-作用下形成NADPH然后就把C3还原了。大概来说也就是进道糖里面去了。

光合作用的原理和应用知识点总结

光合作用的原理和应用知识点总结:1、光合作用的原理是依靠其他的方式来进行对营养的摄取,植物就是所谓的自养生物的一种。对于绿色植物来说,在阳光充足的白天(在光照强度太强的时候植物的气孔会关闭,导致光合作用强度减弱),它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程称为光合作用。2、光反应阶段:光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段。光反应阶段的化学反应是在叶绿体内的类囊体上进行的。3、暗反应阶段:光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。4、光合作用的重要意义:光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。因此,光合作用对于人类和整个生物界都具有非常重要的意义。

光合作用的原理和应用笔记

光合作用的原理和应用笔记如下:1、光合作用概念:绿色植物利用光提供的能量,在叶绿体中合成了淀粉等有机物,并且把光能转变成化学能,储存在有机物中,这个过程叫光合作用。2、光合作用实质:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物(如淀粉),并且释放出氧气的过程。3、光合作用意义:绿色植物通过光合作用制造的有机物,不仅满足了自身生长、发育、繁殖的需要,而且为生物圈中的其他生物提供了基本的食物来源、氧气来源、能量来源。4、绿色植物对有机物的利用:用来构建之物体;为植物的生命活动提供能量。5、呼吸作用的概念:细胞利用氧,将有机物分解成二氧化碳和水,并且将储存在有机物中的能量释放出来,供给生命活动的需要,这个过程叫呼吸作用。6、呼吸作用意义:呼吸作用释放出来的能量,一部分是植物进行各项生命活动(如:细胞***、吸收无机盐、运输有机物等)不可缺少的动力,一部分转变成热散发出去。总结:光合作用给植物提供能量,让绿色植物生存下来。植物通过它制造呼吸,以供氧气来维持生命。

光合作用的原理和应用是什么

1、光合作用: 光合作用是植物、藻类等生产者和某些细菌,利用光能,将二氧化碳、水或是硫化氢转化为碳水化合物。植物被称为食物链的生产者,因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取,在阳光充足的白天,它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。 2、光合作用原理: 光合作用的关键参与者是植物体内的叶绿体,叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉等能源物质,同时释放氧气。 3、反应条件:光照、光合色素、光反应酶。