惠更斯原理

阅读 / 问答 / 标签

一列叙述符合物理学史实的是(  )A.惠更斯总结了许多有关波的实验现象后提出著名的惠更斯原理,并用

A、惠更斯总结了许多有关波的实验现象后提出著名的惠更斯原理,并很好的解释了波的反射和折射现象,故A正确;B、托马斯?杨通过对光的干涉现象的研究,证实了光的波动性,并没有否定光的直线传播,故B错误;C、麦克斯韦提出了电磁场理论,赫兹用实验证实了电磁波的存在,故C错误;D、爱因斯坦提出了狭义相对论的两条基本原理,故D错误.故选A.

请问惠更斯原理以及波的折射,反射。高考常考吗?

不常考

根据惠更斯原理是不是一束光在放射面就是个子波源。这样子不就是说反射光沿任意方向了?

不是的,严格地说,是放射面上每一点都是一个子波源,反射光的方向由这些所有的子波源的包络面的法线方向决定。注意这个包络面,是和所有子波源的放射面相切的一个球面。

惠更斯原理是什么

惠更斯原理是指球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。扩展资料:惠更斯-菲涅耳原理能够正确地解释与计算波的传播。基尔霍夫衍射公式给衍射提供了一个严格的数学基础,这基础是建立于波动方程和格林第二恒等式。从基尔霍夫衍射公式,可以推导出惠更斯-菲涅耳原理。菲涅耳在惠更斯-菲涅耳原理里凭空提出的假定,在这推导过程中,会自然地表现出来。假设有两个相邻房间A、B,这两个房间之间有一扇敞开的房门。当声音从房间A的角落里发出时,则处于房间B的人所听到的这声音有如是位于门口的波源传播而来的。对于房间B的人而言,位于门口的空气振动是声音的波源。光波对于狭缝或孔径的衍射也可以用这方式处理,但直观上并不明显,因为可见光的波长很短,因此很难观测到这种效应。参考资料:百度百科—惠更斯原理

用惠更斯原理解释光的折射,为什么B’M和B’N是反射和折射后的波前?

u2026u2026

惠更斯原理怎么推反射定律

根据光波的惠更斯原理可以证明光的反射定律。

波的反射用惠更斯原理求证时,平行的入射波后到达介质时,反射波的波前的半径为什么依次减小

因为到达反射点的时间依次推迟。

物理惠更斯原理题。

惠更斯原理定性的绘出波绕过障碍物传播的情况?

嗯,只要障碍物的长度小于等于波长,波的传播就不会受到影响,波可以通过障碍物继续向前传播。谢谢,希望能对您有帮助。

惠更斯原理解释衍射现象 为什么缝宽了衍射现象不明显

缝宽了则向周围衍射的波(缝边缘的点向边缘外衍射的波前)的能量与直行的波(成直线的那个包络面)的能量相比较小,所以说不明显。

怎样用惠更斯原理解释波的反射和波的折射

如图,a、b、c是入射波的波线,a"、b"、c"是反射波的波线AB、A"B"分别是入射波中abc、反射波中a"b"c"包络成的波面由于波从B传播到B"所用的时间与波从A传播到A"所用的时间是一样的,而波在同种介质中的波速相同,故B"B=AA"AB、A"B"分别与入射波线、反射波线垂直故Rt△AB"B≌Rt△B"AA",所以∠A"AB"=∠BB"A入射角i和反射角i"分别为∠BB"和∠A"AB"的余角,所以i"=i也就是说,在波的反射中,反射角等于入射角只要根据惠更斯原理画出折射前后的波阵面就可以了.如图,一束平行光照射到两种介质的交界面上,直线AC是折射前的波阵面,A"C"是折射后的波阵面.因为是平行光,波阵面与光的行进方向是垂直的,所以CC"垂直于AC,AA"垂直于A"C",因此角CAC"等于入射角i1,角AC"A"等于折射角i2,所以AA"=AC"sin i2, CC"=AC"sin i1在同一段时间里,A点的光走到A",C点的光走到C",所以这两段路程的比等于光速的比,即CC"/AA"=v1/v2.又因为AA"=AC"sini2, CC"=AC"sini1,所以sin i1/sin i2=v1/v2是常数.这就证明了折射定律.

惠更斯原理怎么判断周期与重力加速度的关系

1位粉丝惠更斯原理怎么判断周期与重力加速度的关系根据单摆周期公式 T=2π√L/g 对同一单摆、重力加速度越大、周期越小;重力加速度越小、周期越大

如何用惠更斯原理解释波反射折射

在波的传播过程中,总可以找到同位相各点的几何位置,这些点的轨迹是一个等位相面,叫做波面。惠更斯曾提出次波的假设来阐述波的传播现象,建立了惠更斯原理.惠更斯原理可表述如下:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面。

惠更斯引入什么概念提出惠更斯原理

次波相干叠加概念。惠更斯原理是指球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。由于惠更斯原理的次波假设不涉及波的时空周期特性——波长,振幅和相位,虽然能说明波在障碍物后面拐弯偏离直线传播的现象,但实际上,光的衍射现象要细微的多,例如还有明暗相间的条纹出现,表明各点的振幅大小不等,对此惠更斯原理就无能为力了。因此必须能够定量计算光所到达的空间范围内任何一点的振幅,才能更精确地解释衍射现象。

用惠更斯原理解释隔墙有耳

惠更斯原理解释“隔墙有耳”:一般的墙声阻抗太大了,声波大部分被反射了。惠更斯原理是指球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面,其核心思想是介质中任一处的波动状态是由各处的波动决定的。球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。传播性质:光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。由于惠更斯原理的次波假设不涉及波的时空周期特性——波长,振幅和位相,虽然能说明波在障碍物后面拐弯偏离直线传播的现象,但实际上,光的衍射现象要细微的多,例如还有明暗相间的条纹出现,表明各点的振幅大小不等,对此惠更斯原理就无能为力了。因此必须能够定量计算光所到达的空间范围内任何一点的振幅,才能更精确地解释衍射现象。

在研究衍射时,惠更斯引入了什么概念提出惠更斯原理

在研究衍射时,惠更斯引入了次波相干叠加概念提出惠更斯原理。球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级。波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。扩展资料由于惠更斯原理的次波假设不涉及波的时空周期特性——波长,振幅和位相,虽然能说明波在障碍物后面拐弯偏离直线传播的现象,但实际上,光的衍射现象要细微的多,例如还有明暗相间的条纹出现,表明各点的振幅大小不等,对此惠更斯原理就无能为力了。因此必须能够定量计算光所到达的空间范围内任何一点的振幅,才能更精确地解释衍射现象。静电位西分布的广义惠更斯原理:在静电场中,一旦离开导体边界的电位分布,它总有构成圆(或球)的倾向。众所周知,静电位在导体边界其等位线必须与边界吻合。然而一离开边界,它就有圆(或球)的倾向.因为圆(或球)才是真正电位分布的自由态。有时实在因边界所限,它也尽可能在椭圆(或椭球)之间挣扎,力争获得本身的自由。

惠更斯原理如何解释光沿直线传播?

激光是人工产生的相干光,它的亮度高能量大,平行度非常好,可用于精准测距,测速。

用惠更斯原理证明波的反射与折射定律

反射定律:a、b、c是入射波的波线,a"、b"、c"是反射波的波线AB、A"B"分别是入射波中abc、反射波中a"b"c"包络成的波面由于波从B传播到B"所用的时间与波从A传播到A"所用的时间是一样的,而波在同种介质中的波速相同。故B"B=AA"AB、A"B"分别与入射波线、反射波线垂直故Rt△AB"B≌Rt△B"AA",所以∠A"AB"=∠BB"A入射角i和反射角i"分别为∠BB"和∠A"AB"的余角,所以i"=i。在波的反射中,反射角等于入射角。折射定律:一束平行光照射到两种介质的交界面上,直线AC是折射前的波阵面,A"C"是折射后的波阵面.因为是平行光,波阵面与光的行进方向是垂直的,所以CC"垂直于AC,AA"垂直于A"C",因此角CAC"等于入射角i1,角AC"A"等于折射角i2,所以AA"=AC"sin i2, CC"=AC"sin i1。在同一段时间里,A点的光走到A",C点的光走到C",所以这两段路程的比等于光速的比,即CC"/AA"=v1/v2.又因为AA"=AC"sini2, CC"=AC"sini1,所以sin i1/sin i2=v1/v2是常数。扩展资料:菲涅耳在惠更斯原理的基础上,补充了描述次波的基本特征——相位和振幅的定量表示式,并增加了“次波相干叠加”的原理,从而发展成为惠更斯—菲涅耳原理。这个原理的内容表述如下:面积元dS所发出的各次波的振幅和相位满足下面四个假设:1、在波动理论中,波面是一个等相位面。因而可以认为dS面上各点所发出的所有次波都有相同的初位相(可令其为零)。2、次波在P点处所引起的振动的振幅与r成反比。 这相当于表明次波是球面波。3、从面元dS所发次波在P处的振幅正比于dS的面积,且与倾角θ有关,其中θ为dS的法线N与dS到P点的连线r之间的夹角,即从dS发出的次波到达P点时的振幅随θ的增大而减小(倾斜因数)。4、次波在P点处的位相,由光程nr决定。参考资料来源:百度百科-惠更斯原理

惠更斯原理揭示了新波面形成的过程

惠更斯原理是指球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。面积元dS所发出的各次波的振幅和相位满足下面四个假设:1、在波动理论中,波面是一个等相位面。因而可以认为dS面上各点所发出的所有次波都有相同的初相位(可令其为零)。2、次波在P点处所引起的振动的振幅与r成反比。 这相当于表明次波是球面波。3、从面元dS所发次波在P处的振幅正比于dS的面积,且与倾角θ有关,其中θ为dS的法线N与dS到P点的连线r之间的夹角,即从dS发出的次波到达P点时的振幅随θ的增大而减小(倾斜因数)。4、次波在P点处的相位,由光程nr决定。

关于惠更斯原理

那是惠更斯原理的缺陷,实际上并不存在倒退波。

关于惠更斯原理

惠更斯(Huygens)原理:波面上的每一点(面元)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。

简述惠更斯原理

惠更斯原理是指球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面,其核心思想是介质中任一处的波动状态是由各处的波动决定的。惠更斯原理简介:球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。由于惠更斯原理的次波假设不涉及波的时空周期特性——波长,振幅和位相,虽然能说明波在障碍物后面拐弯偏离直线传播的现象,但实际上,光的衍射现象要细微的多,例如还有明暗相间的条纹出现,表明各点的振幅大小不等,对此惠更斯原理就无能为力了。因此必须能够定量计算光所到达的空间范围内任何一点的振幅,才能更精确地解释衍射现象。惠更斯原理的改进:菲涅耳对惠更斯原理的改进。菲涅耳在惠更斯原理的基础上,补充了描述次波的基本特征——相位和振幅的定量表示式,并增加了“次波相干叠加”的原理,从而发展成为惠更斯——菲涅耳原理。这个原理的内容表述如下:面积元dS所发出的各次波的振幅和位相满足下面四个假设:(1)在波动理论中,波面是一个等位相面。因而可以认为dS面上各点所发出的所有次波都有相同的初位相(可令其为零)。(2)次波在P点处所引起的振动的振幅与r成反比。这相当于表明次波是球面波。(3)从面元dS所发次波在P处的振幅正比于dS的面积,且与倾角θ有关,其中θ为dS的法线N与dS到P点的连线r之间的夹角,即从dS发出的次波到达P点时的振幅随θ的增大而减小(倾斜因数)。(4)次波在P点处的位相,由光程nr决定。

惠更斯原理是什么?

惠更斯原理是指球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。由于惠更斯原理的次波假设不涉及波的时空周期特性——波长,振幅和位相,虽然能说明波在障碍物后面拐弯偏离直线传播的现象,但实际上,光的衍射现象要细微的多,例如还有明暗相间的条纹出现,表明各点的振幅大小不等,对此惠更斯原理就无能为力了。因此必须能够定量计算光所到达的空间范围内任何一点的振幅,才能更精确地解释衍射现象。扩展资料:广义惠更斯原理:1、静电位分布静电位西分布的广义惠更斯原理:在静电场中,一旦离开导体边界的电位分布,它总有构成圆(或球)的倾向。众所周知,静电位在导体边界其等位线必须与边界吻合。然而一离开边界,它就有圆(或球)的倾向.因为圆(或球)才是真正电位分布的自由态。有时实在因边界所限,它也尽可能在椭圆(或椭球)之间挣扎,力争获得本身的自由。2、静电荷分布静电荷Q分布广义惠更斯原理:在任意导体盘上的面电荷分布有圆的倾向,对于凸图形盘,它的电心应处于圆心最大展开内切圆的圆心。特别对于三角形盘,此即为内接切圆心。注意到某些凸图形相同半径的内接圆不唯一。这时应取一个几何上较对称的内切圆心作为电心。例如平行四边形,它的内切圆不唯一.我们将取对称内切圆心O作为电心。在任意图形中,以最大展开内切圆心O作为电心,使其可保证在未接触边界时有最充分的圆分布可能。这正是电荷分布的本质或自由态,也是广义惠更斯原理的精华。参考资料:百度百科-惠更斯原理

惠更斯原理是什么意思?

惠更斯原理即光波动原理。惠更斯原理认为:对于任何一种波,从波源发射的子波中,其波面上的任何一点都可以作为子波的波源,各个子波波源波面的包洛面就是下一个新的波面。他认为每个发光体的微粒把脉冲传给邻近一种弥漫媒质(“以太”)微粒,每个受激微粒都变成一个球形子波的中心.他从弹性碰撞理论出发,认为这样一群微粒虽然本身并不前进,但能同时传播向四面八方行进的脉冲,因而光束彼此交而不相互影响,并在此基础上用作图法解释了光的反射、折射等现象。其表述为:某一时刻t,波源发出的波扰动传播到了波面,上每一面元可以认为是波的波源,由面元发出的子波向各个方向传播,在以后的时刻t"形成子波波面,在各向同性的均匀媒质中,子波面是半径为uΔt的球面,u为波速,△t=t"-t,这些子波面的包洛面就是t"时刻总扰动的波面。

惠更斯原理是什么?

惠更斯原理是指球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。扩展资料:惠更斯-菲涅耳原理能够正确地解释与计算波的传播。基尔霍夫衍射公式给衍射提供了一个严格的数学基础,这基础是建立于波动方程和格林第二恒等式。从基尔霍夫衍射公式,可以推导出惠更斯-菲涅耳原理。菲涅耳在惠更斯-菲涅耳原理里凭空提出的假定,在这推导过程中,会自然地表现出来。假设有两个相邻房间A、B,这两个房间之间有一扇敞开的房门。当声音从房间A的角落里发出时,则处于房间B的人所听到的这声音有如是位于门口的波源传播而来的。对于房间B的人而言,位于门口的空气振动是声音的波源。光波对于狭缝或孔径的衍射也可以用这方式处理,但直观上并不明显,因为可见光的波长很短,因此很难观测到这种效应。参考资料:百度百科—惠更斯原理

关于惠更斯原理,下列说法中正确的是(  )A.在波的传播过程中,介质中所有参与振动的质点都可以看作

A、波的传播过程中介质各质点的振动都可以看作一个波源,这就是惠更斯原理,故A正确,B错误;C、子波是为了解释波动现象而假想出来的波,故C错误,D正确;故选:AD.

请问惠更斯原理中包络面的含义

我们书上没说“包络面”,现在都说“波前”就是以这个波面上的所有点作为波源(所谓子波)在画波面,所有波面呼出来就是总的

惠更斯原理里面的一道题说:同一振源的不同波面上的质点的振动情况可能相同,为什么是错误的?

由惠更斯原理可知,同一振源发出的波为球面波,向外传播的过程中能量发散,故振动能量依次减小,振幅减小,则振动情况不同了。(振动情况相同指的是质点振动的频率、周期、振幅、速度、位移、相位等完全相同哈)

惠更斯原理能计算波速吗?

  可以向后传播,但是振幅会比向前的小。要用到菲涅耳衍射积分式,菲涅耳衍射积分式可以用来计算光波在近场区域的传播。  菲涅耳衍射积分式:      惠更斯(Huygens)原理:  球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级 波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。  光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。  由于惠更斯原理的次波假设不涉及波的时空周期特性——波长,振幅和位相,虽然能说明波在障碍物后面拐弯偏离直线传播的现象,但实际上,光的衍射现象要细微的多,例如还有明暗相间的条纹出现,表明各点的振幅大小不等,对此惠更斯原理就无能为力了。因此必须能够定量计算光所到达的空间范围内任何一点的振幅,才能更精确地解释衍射现象。

惠更斯原理的改进

菲涅耳对惠更斯原理的改进菲涅耳在惠更斯原理的基础上,补充了描述次波的基本特征——相位和振幅的定量表示式,并增加了“次波相干叠加”的原理,从而发展成为惠更斯——菲涅耳原理。这个原理的内容表述如下:面积元dS所发出的各次波的振幅和位相满足下面四个假设:(1)在波动理论中,波面是一个等位相面。因而可以认为dS面上各点所发出的所有次波都有相同的初位相(可令其为零)。(2)次波在P点处所引起的振动的振幅与r成反比。 这相当于表明次波是球面波。(3)从面元dS所发次波在P处的振幅正比于dS的面积,且与倾角θ有关,其中θ为dS的法线N与dS到P点的连线r之间的夹角,即从dS发出的次波到达P点时的振幅随θ的增大而减小(倾斜因数)。(4)次波在P点处的位相,由光程nr决定。

在惠更斯原理中,不能解释倒退波。请问什么是倒退波?简单解释倒退波现象

你好-是这样的:惠更斯原理即空间上波的每一个点都可以视为新的波源向四周发出波,但这样一来就会有与平面波整体前进方向相反的波出现,我们称这些与波整体传播方向相反的波为倒退波,因为倒退波的在实际观测中不存在,因此惠更斯原理是有局限性的

惠更斯原理是否适用于空气中的声波?你是否期望声波也服从和光波一样的反射定律和折射定律?

惠更斯原理是关于波面传播的理论,对任何波动过程它都是适用的.不论是机械波或电磁波,只要知道某一时刻的波面,都可以用惠更斯作图法求出下一时刻的波面.由此可以导出波的反射定律和折射定律,既适用于光波,也适用于声波.所不同的是,声波是机械波,不能在真空中传播.因此,对声波来讲,只有“相对折射率”的概念,而无“绝对折射率”的概念.这是不同于光波的.

"用惠更斯原理解释波的反射和折射"图是怎么作出来的

如图,就拿反射的光线(绿色实线)来说吧,先由波阵面垂直于光线传播方向画出反射时的波阵面(绿色虚线),画出波阵面以后,由惠更斯原理,这个波阵面的波源是由之前的球面波的波面构成的,于是我们就找几个点,画出其球面(绿色半圆),使其与波阵面(绿色虚线)相切。这样就画出了上面这个图。

惠更斯原理解释光的折射率与波长的关系

惠更斯原理直接解释的是波(包括光波)的入射角、折射角 与 速度的关系,而 速度 = 频率 *波长,考虑波的频率在传播时不变,速度 正比于 波长。

惠更斯原理为什么光应该沿着球传播

惠更斯原理 在波的传播过程中,总可以找到同位相各点的几何位置,这些点的轨迹是一个等位相面,叫做波面。惠更斯曾提出次波的假设来阐述波的传播现象,建立了惠更斯原理.惠更斯原理可表述如下:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面。 光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。

惠更斯原理可以解释波的传播方向

A、根据惠更斯原理,我们可以知道,介质中任意波面上的各点,都可以看做发射子波的波源,其后任意时刻,这些子波在波前进方向的包络面就是新的波面,A正确,B错误; C、惠更斯原理可以解释球面波的传播,也可以解释平面波的传播,B错误;若知道某时刻一列波的某个波面的位置,还必须要知道波速,利用惠更斯原理可以得到下一时刻这个波的位置,从而确定波的传播方向,故C错误; D、惠更斯原理只能解释波的传播方向,不能解释波的强度,所以无法说明衍射现象和狭缝或障碍物的大小关系,也无法解释波的反射与折射等相关现象,故D错误. 故选:A.

惠更斯原理子波是为什么是球面

根据所学物理知识得知,惠更斯原理为在静电场中,子波一旦离开导体边界的电位分布,它总有构成圆(或球)的倾向。静电位在导体边界其等位线必须与边界吻合。子波一离开边界,它就有圆(或球)的倾向,因为圆(或球)才是真正电位分布的自由态。所以惠更斯原理子波是球面。

如何用惠更斯原理推证,光线反射角等于入射角?请给出具体数学证明过...

串联电路总电压等于各串联部分电压之和u=u1+u2+……+un串联电路电流处处相等i=i1=i2=……=inr=u/i=(u1+u2+……+un)/i=u1/i+u2/i+……un/i=u1/i1+u2/i2+……+un/in=r1+r2+……+rn

惠更斯引入什么概念提出惠更斯原理

惠更斯引入“次波相干叠加”概念,提出惠更斯原理。这个原理主要描述了波的传播过程中,不同波前上的点能产生各自独立的次波,而合成波的强度是所有这些次波的叠加效果。

惠更斯原理推导

A、惠更斯原理是惠更斯提出的,不是由某些定律推导出来的,故A错误; B、惠更斯原理是惠更斯提出的,不是实验规律,故B错误; C、惠更斯原理描述了波在空间传播方向的规律,故C正确; D、惠更斯原理能解释波的传播方向,但不能对波的衍射明显程度作出解释,故D错误; 故选:C.

关于惠更斯原理的相关问题。

你的问题都集中在一个概念上:波粒二象性1惠更斯是波动学说的典型代表人物,他的惠更斯原理是用来支持波动学说的,或者说来解释衍射现象的,当然不会支持粒子学说,没法解释直线传播。2狭缝越宽,衍射现象越不明显,粒子现象越明显,衍射范围就越窄。3的说法勉强可以,发散主要源于波源振动的传播方向不单一,也可以是反射、折射、碰撞的结果4自然界里的确不存在纯粹的平行波,因为平行波的波源是无限大振动平面,这样的理想波源不存在,只能近似,不需要惠更斯原理。5什么叫单列波?惠更斯原理没有这个限制条件

请问惠更斯原理中包络面的含义 "此后每一时刻的子波波面的包络就是该时刻总的波动的波面"

你可以形象想象成有无数个子波,那么它们的最前端就会形成一个面,就是包络面,如果是水波的话,就会使一个圆了.

关于惠更斯原理

在波的传播过程中,总可以找到同位相各点的几何位置,这些点的轨迹是一个等位相面,叫做波面。惠更斯曾提出次波的假设来阐述波的传播现象,建立了惠更斯原理.惠更斯原理可表述如下:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面。光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。由于惠更斯原理的次波假设不涉及波的时空周期特性——波长,振幅和位相,虽然能说明波在障碍物后面拐弯偏离直线传播的现象,但实际上,光的衍射现象要细微的多,例如还有明暗相间的条纹出现,表明各点的振幅大小不等,对此惠更斯原理就无能为力了。因此必须能够定量计算光所到达的空间范围内任何一点的振幅,才能更精确地解释衍射现象。二、菲涅耳对惠更斯原理的改进菲涅耳在惠更斯原理的基础上,补充了描述次波的基本特征——位相和振幅的定量表示式,并增加了“次波相干叠加”的原理,从而发展成为惠更斯——菲涅耳原理。这个原理的内容表述如下:面积元dS所发出的各次波的振幅和位相满足下面四个假设:(1)在波动理论中,波面是一个等位相面。因而可以认为dS面上各点所发出的所有次波都有相同的初位相(可令其为零)。(2)次波在P点处所引起的振动的振幅与r成反比。这相当于表明次波是球面波。(3)从面元dS所发次波在P处的振幅正比于dS的面积,且与倾角θ有关,其中θ为dS的法线N与dS到P点的连线r之间的夹角,即从dS发出的次波到达P点时的振幅随θ的增大而减小(倾斜因数)。(4)次波在P点处的位相,由光程nr决定。根据以上的假设,可知面积元dS发出的次波在P点的合振动可表示为或如果波面上各点的振幅有一定的分布则面元dS发出次波到达P点的振幅与该面元上的振幅成正比,若分布函数为A(Q),则波面在P点所产生的振动为如果将波面上所有面积元在P点的作用加起来即可求得波面S在P点所产生的合振动或写成复数形式通过惠更斯—菲涅耳原理可以解释和描述光束通过各种形状的障碍物时所产生的衍射现象。本章我们来讨论几种几何形状特殊的开孔和障碍物所产生的衍射花样的光强分布。

惠更斯原理可以用来解释波的衍射现象。()

惠更斯原理可以用来解释波的衍射现象。() A.正确B.错误正确答案:A

在做单缝衍射实验中,将入射光由黄光换成绿光,衍射条纹间距变窄,谁可以用惠更斯原理解释一下。

要解释衍射现象实质上是要解决不同方向上的强度分布问题,但惠更斯原理并未涉及强度,也无波长概念,故仅靠惠更斯原理不能解决衍射问题。A.-J.菲涅耳弥补了惠更斯原理的不足之处,他保留了惠更斯的次波概念,补充了次波相干叠加的概念,认为光场中任一点的光振动是这些次波在该点相干叠加的结果。惠更斯-菲涅耳原理可表述如下:在光源S发出的波前Σ上,每个面元dΣ都可看成是发出球面次波的新波源,空间某点P的振动是所有这些次波在该点的相干叠加结果。

用惠更斯原理怎么解释光的折射现象

画出一个波面上的各个点发出的波面,由于光在不同介质中的速度不同,因而这些波面的包络面就和直线传播的不同,即发生了折射。

惠更斯原理是什么?

惠更斯原理是:在波的传播过程中,波阵面上的每一点都是新的水波的中心,这些水波的包络就给出了波阵面的新位置。

惠更斯原理三个要点

惠更斯原理三个要点是波面、波线、惠更斯原理。1、波面波源引起的振动在介质中向各个方向传播,如果把某一时刻振动状态相同的点连接起来组成一个面,这个面就叫波面或波阵面。2、波线用来表示波的传播方向的跟各个波面垂直的线叫做波线。3、惠更斯原理介质中任一波面上的各点,都可以看做发射子波的波源,其后任意时刻,这些子波在波前进方向的包络面就是新的波面。惠更斯原理简介光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。由于惠更斯原理的次波假设不涉及波的时空周期特性——波长,振幅和位相,虽然能说明波在障碍物后面拐弯偏离直线传播的现象,但实际上,光的衍射现象要细微的多,例如还有明暗相间的条纹出现,表明各点的振幅大小不等,对此惠更斯原理就无能为力了。因此必须能够定量计算光所到达的空间范围内任何一点的振幅,才能更精确地解释衍射现象。

光的直线传播与惠更斯原理,我觉得挺矛盾的,求解惑啊!

光的波粒二象性,波动性和粒子性,在粒子性考虑时,光是沿直线传播的,但波动性原理时,并不是绝对的沿直线传播,而是以波的形式传播,因此会出现,光的衍射,光的干涉等不同的光学现象

惠更斯原理的三个要点

惠更斯原理的三个要点如下:波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。由于惠更斯原理的次波假设不涉及波的时空周期特性——波长,振幅和相位,虽然能说明波在障碍物后面拐弯偏离直线传播的现象,但实际上,光的衍射现象要细微的多,例如还有明暗相间的条纹出现,表明各点的振幅大小不等,对此惠更斯原理就无能为力了。因此必须能够定量计算光所到达的空间范围内任何一点的振幅,才能更精确地解释衍射现象。惠更斯-菲涅耳原理不是严格的理论产物,较大程度上是凭朴素的直觉而得到的,对倾斜因子无法给出具体的函数形式 ,菲涅尔只对它作了某种猜测:θ=0时倾斜因子为1,θ=90时下降到零(即假定无后退次波)。后来古斯塔夫·罗伯特·基尔霍夫(Gustav Robert Kirchhoff)和阿诺德·索末菲(Arnold Johannes Wilhelm Sommerfeld)根据一般的波动理论从理论上导出了与菲涅耳的公式十分接近的衍射公式,同时还给出倾斜因子F(θ)的具体函数形式。

惠更斯原理

惠更斯原理是指球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。由于惠更斯原理的次波假设不涉及波的时空周期特性——波长,振幅和位相,虽然能说明波在障碍物后面拐弯偏离直线传播的现象,但实际上,光的衍射现象要细微的多,例如还有明暗相间的条纹出现,表明各点的振幅大小不等,对此惠更斯原理就无能为力了。因此必须能够定量计算光所到达的空间范围内任何一点的振幅,才能更精确地解释衍射现象。局限性:惠更斯-菲涅耳原理不是严格的理论产物,较大程度上是凭朴素的直觉而得到的,对倾斜因子无法给出具体的函数形式,菲涅尔只对它作了某种猜测:θ=0时倾斜因子为1,θ=90时下降到零(即假定无后退次波)。后来古斯塔夫·罗伯特·基尔霍夫(Gustav Robert Kirchhoff)和阿诺德·索末菲(Arnold Johannes Wilhelm Sommerfeld)根据一般的波动理论从理论上导出了与菲涅耳的公式十分接近的衍射公式,同时还给出倾斜因子F(θ)的具体函数形式。

如何用惠更斯原理证明波的反射与折射定律

反射定律:a、b、c是入射波的波线,a"、b"、c"是反射波的波线AB、A"B"分别是入射波中abc、反射波中a"b"c"包络成的波面由于波从B传播到B"所用的时间与波从A传播到A"所用的时间是一样的,而波在同种介质中的波速相同。故B"B=AA"AB、A"B"分别与入射波线、反射波线垂直故Rt△AB"B≌Rt△B"AA",所以∠A"AB"=∠BB"A入射角i和反射角i"分别为∠BB"和∠A"AB"的余角,所以i"=i。在波的反射中,反射角等于入射角。折射定律:一束平行光照射到两种介质的交界面上,直线AC是折射前的波阵面,A"C"是折射后的波阵面.因为是平行光,波阵面与光的行进方向是垂直的,所以CC"垂直于AC,AA"垂直于A"C",因此角CAC"等于入射角i1,角AC"A"等于折射角i2,所以AA"=AC"sin i2, CC"=AC"sin i1。在同一段时间里,A点的光走到A",C点的光走到C",所以这两段路程的比等于光速的比,即CC"/AA"=v1/v2.又因为AA"=AC"sini2, CC"=AC"sini1,所以sin i1/sin i2=v1/v2是常数。扩展资料:菲涅耳在惠更斯原理的基础上,补充了描述次波的基本特征——相位和振幅的定量表示式,并增加了“次波相干叠加”的原理,从而发展成为惠更斯—菲涅耳原理。这个原理的内容表述如下:面积元dS所发出的各次波的振幅和相位满足下面四个假设:1、在波动理论中,波面是一个等相位面。因而可以认为dS面上各点所发出的所有次波都有相同的初位相(可令其为零)。2、次波在P点处所引起的振动的振幅与r成反比。 这相当于表明次波是球面波。3、从面元dS所发次波在P处的振幅正比于dS的面积,且与倾角θ有关,其中θ为dS的法线N与dS到P点的连线r之间的夹角,即从dS发出的次波到达P点时的振幅随θ的增大而减小(倾斜因数)。4、次波在P点处的位相,由光程nr决定。参考资料来源:百度百科-惠更斯原理

惠更斯原理的局限性

惠更斯-菲涅耳原理不是严格的理论产物,较大程度上是凭朴素的直觉而得到的,对倾斜因子无法给出具体的函数形式 ,菲涅尔只对它作了某种猜测:θ=0时倾斜因子为1,θ=90时下降到零(即假定无后退次波)。后来古斯塔夫·罗伯特·基尔霍夫(Gustav Robert Kirchhoff)和阿诺德·索末菲(Arnold Johannes Wilhelm Sommerfeld)根据一般的波动理论从理论上导出了与菲涅耳的公式十分接近的衍射公式,同时还给出倾斜因子F(θ)的具体函数形式。

波动方程的积分解与惠更斯原理

如果已知某一时刻的地震波场,能否求出任何时刻的地震波场?惠更斯(Huygens)从几何上首先回答了这一问题,然后菲涅尔(Fresnel)从物理上对它进行了补充。这就是惠更斯-菲涅尔原理。但是,他们都没有解决具体计算某一观测点处的波场问题。克希霍夫(Kirchoff)用积分方法求解波动方程,彻底地解决了这一问题。(一)惠更斯-菲涅尔原理惠更斯于1690年首先提出的这一原理的要点是:任何时刻波前面上的每一点都可以看作是一个新的点源;由它产生二次扰动,形成元波前;以后新波前的位置可以认为是该时刻各元波前的包络(图1-2-1)。图1-2-1 惠更斯原理示意图根据惠更斯原理可以从已知波前面的位置求出以后各时刻波前面的位置。由于它只给出了波传播的空间几何位置,没有涉及波到达该位置时的物理状态,因而对波传播的描述是不完善的。菲涅尔补充了惠更斯原理的不足。他认为,由波前面各点所形成的新扰动(二次扰动)在观测点上相互干涉叠加,其叠加结果是我们在该点观测到的总扰动。这就使得惠更斯原理具有了更明确的物理意义。如图1-2-2所示,假设Q是由点源M0 发出的任意时刻的波前面位置,其半径为r0;波前面上的任意小面元用dQ 表示;M 点是球面Q外的一点,它至dQ的距离为r,且用θ表示dQ的法线n与r的夹角。图1-2-2 惠更斯-菲涅尔原理和倾斜因子示意图如果由M0 点发出之球面谐波的振幅为A,角频率为ω,则由M0 点到达小面积单元dQ上的振动,按波动理论可写为地震波场与地震勘探如果用 表示角波数,且略去周期因子eiωt,则到达dQ的振动则为地震波场与地震勘探略去周期因子eiωt的原因是因为它只表示谐和振动的形状,而同能量(振幅)无关。根据惠更斯-菲涅尔原理,把波前面Q上的小面积元dQ看作二次振源,则在M点观测到的扰动可写为地震波场与地震勘探由整个波前面Q在M点形成的总扰动应为地震波场与地震勘探式中K(θ)是与夹角θ有关的因子,称为倾斜因子(见图1-2-2)。由下面将要介绍的克希霍夫积分公式可以证明K(θ)的严格表达式为地震波场与地震勘探式中λ为波长。(二)波动方程的克希霍夫积分解1883年德国学者克希霍夫用积分方法求解波动方程,解决了由以前时刻的波场值求取将来任一时刻任一观测点处波场值的问题。下面给出克希霍夫积分公式的具体形式,有关的推导可参看波动方程求解的相关著作。假设某一闭合面Q上各点(x,y,z)在任一时刻t的波场值(位移位)φ(x,y,z,t)及其导数已知,并且这些值是连续的(没有奇点),则可以利用这些波场值计算出闭合面Q内任一点M (x1,y1,z1)上在任一时刻t的波场值(位移位)φ(x1,y1,z1,t)地震波场与地震勘探式中各量的意义见图1-2-3:r表示由点M (x1,y1,z1)至Q面上各点(x,y,z)的距离,n表示Q面的外法线方向,v为介质中的波速。需要注意的是,这儿用方括号[]表示不是在时刻t而是在t1=t-r/v时刻的位移位及其导数,[φ]称为延迟位。由克希霍夫积分公式(1-2-23)式可以看出,欲求闭合面Q内任一点M (x1,y1,z1)在任一时刻t的波场值(位移位)φ(x1,y1,z1,t),需要利用闭合面Q上各点(x,y,z)在过去时刻t1 的波场值(位移位)φ(x,y,z,t1)及其空间导数和时间导数值。显然,克希霍夫积分公式(1-2-23)实际上是惠更斯-菲涅尔原理的解析叙述。如果将Q面看作为旧的波前面,则可以将它上面的每一点都看作是新的子波系统的源,它们发出的大量子波经过一段时间t1-t的运行,通过距离r,到达M点,全部这种子波在M点的叠加,就组成该点的扰动。由于子波需要运行一段距离r到达M点,故计算M点在t时刻的波场值(位移位)时,不能使用Q面上各点在t时刻的波场值(位移位),只能使用Q面上各点在过去时刻t1 的波场值(位移位)。另外,要注意的是,克希霍夫积分公式(1-2-23)具有比惠更斯-菲涅尔原理更深刻的内容。首先,Q面可以不是旧的波前面,而是任一封闭曲面,即计算M点在t时刻的波场值(位移位)时,用到的Q面上各点在过去时刻t1 的波场值(位移位)中的过去时刻t1,对于Q面上的不同点可以是不同的时刻,只要知道这些点到M点的距离,计算出其相应的延迟时间即可。其次,据克希霍夫积分公式(1-2-23),Q面上的各点可以看作是新的子波系统的源,计算M点的波场值(位移位)时,不仅仅用这些子波的延迟位进行叠加,还要使用其空间导数和时间导数值参与叠加,这在惠更斯-菲涅尔原理中是没有考虑的。由于克希霍夫积分公式(1-2-23)是由波动方程导出的,出现这一结果是必然的。克希霍夫积分公式不仅具有理论意义,而且在现代反射地震资料的数字处理中有其重要的现实意义。图1-2-3 克希霍夫积分公式中各量的意义示意图(三)泊松公式作为克希霍夫公式的特殊情况,假设封闭曲面Q是以r=vt为半径的球面,且M点位于此球面的中心(图1-2-4),则可以从一般的克希霍夫积分公式(1-2-23)出发导出计算球中心点M处的位移位公式,称为泊松(Poisson)公式。图1-2-4 泊松公式示意图据上述假定,有地震波场与地震勘探且地震波场与地震勘探被积函数中的第一、二项可写为地震波场与地震勘探故地震波场与地震勘探式中,方括号[ ]仍表示延迟位,假设球半径r=vt,且考虑到它同立体角Ω无关,则(1-2-25)式变为地震波场与地震勘探此即泊松公式。令地震波场与地震勘探则地震波场与地震勘探式中, 表示球面Q上[φ]及 的平均值。泊松公式说明,只要知道球面上的[φ]及 的平均值,就可以求得M点的解φ。

惠更斯原理是什么?

时间最终将证明惠更斯是正确的,也许需要100或者1000年。很多人不理解空间特性,以太特性,所以当然也就无法理解惠更斯。惠更斯阐述的是光的本质特性,而现代人把空间传播的波性特性和物质属性混为一谈,这是导致问题的原因。一句话了解空间,这我们就不得不提出一个问题,空间的多米诺效应。所谓光的传播,本质就是空间的多米诺效应这是空间的属性,而不是光的属性。再严格讲其实粒子都不存在,所谓粒子是空间信息跃迁过程,其实也是空间特性,这和宇宙的诞的原因生密切相关。

惠更斯原理是什么?

惠更斯-菲涅耳原理Huygens-Fresnelprinciple是以波动理论解释光的传播规律的基本原理。它是在惠更斯原理(Huygensprinciple)的基础上发展而得的,是研究衍射现象的理论基础,可作为求解波(特别是光波)传播问题的一种近似方法,由荷兰物理学家克里斯蒂安·惠更斯(ChristiaanHuygens)在创立光的波动说时首先提出的。主要内容为:行进中的波阵面上任一点都可看作是新的次波源,而从波阵面上各点发出的许多次波所形成的包络面,就是原波面在一定时间内所传播到的新波面。  局限性:  惠更斯-菲涅耳原理不是严格的理论产物,较大程度上是凭朴素的直觉而得到的,对倾斜因子无法给出具体的函数形式,菲涅尔只对它作了某种猜测:θ=0时倾斜因子为1,θ=90时下降到零(即假定无后退次波)。后来古斯塔夫·罗伯特·基尔霍夫(GustavRobertKirchhoff)和阿诺德·索末菲(ArnoldJohannesWilhelmSommerfeld)根据一般的波动理论从理论上导出了与菲涅耳的公式十分接近的衍射公式,同时还给出倾斜因子F(θ)的具体函数形式。

惠更斯原理是什么?

惠更斯原理即光波动原理。惠更斯原理认为:对于任何一种波,从波源发射的子波中,其波面上的任何一点都可以作为子波的波源,各个子波波源波面的包洛面就是下一个新的波面。他认为每个发光体的微粒把脉冲传给邻近一种弥漫媒质(“以太”)微粒,每个受激微粒都变成一个球形子波的中心.他从弹性碰撞理论出发,认为这样一群微粒虽然本身并不前进,但能同时传播向四面八方行进的脉冲,因而光束彼此交而不相互影响,并在此基础上用作图法解释了光的反射、折射等现象。其表述为:某一时刻t,波源发出的波扰动传播到了波面,上每一面元可以认为是波的波源,由面元发出的子波向各个方向传播,在以后的时刻t"形成子波波面,在各向同性的均匀媒质中,子波面是半径为uΔt的球面,u为波速,△t=t"-t,这些子波面的包洛面就是t"时刻总扰动的波面。