基坑工程

阅读 / 问答 / 标签

基坑工程安全手册?

一、施工方案基坑工程应编制专项施工方案专项施工方案应按规定审核、审批设置要求:1、开挖深度超过3m(含3m)或虽未超过3m但地质条件和周边环境复杂的基坑土方开挖、支护、降水工程,应单独编制专项施工方案。(建质[2009]87号附件一)2、基坑工程施工前应根据《危险性较大的分部分项工程安全管理办法>(建质(2009) 87号)13号)文件规定,由施工企业技术部门组织本单位施工技术、安全、质量等部门的专业技术人员进行审核,经审核通过的,由施工企业技术负责人签字,加盖单位法人公章后报监理企业,由项目总监理工程师审核签字并加盖执业资格注册章。(建质【2009】87号第八条)基坑维护超过一定规模条件的基坑工程专项施工方案应按规定组织专家论证设置要求:1、开挖深度超过5m(含5m)的基坑(槽)的土方开挖、支护、降水工程。(建质[2009]87号附件二)2、开挖深度虽未超过5m,但地质条件、周围环境和地下管线复杂,或影响毗邻建筑(构筑)物安全的基坑(槽)的土方开挖、支护、降水工程。土方开挖、支护、降水工程。(建质[2009]87号附件二)基坑周边环境或施工条件发生变化,专项施工方案应重新进行审核、审批设置要求:基坑支护结构受到周边环境、开挖深度改变等影响较大,需改变原施工方案的,专项施工方案应重新进行审核、审批。基坑防护二、基坑支护人工开挖的狭窄基槽,开挖深度较大或存在边坡塌方危险应采取支护措施钢支撑支护设置要求:1、开挖深度较大或存在边坡塌方危险应按(JGJ120-2012)中表3.3.2的适用条件选用放坡、悬臂式排桩支护结构等。2、在基础沟槽开挖过程中,随时观察支护的变化情况,若有明显的倾覆或隆起状态,立即在倾覆或隆起的部位增加对称支撑。自然放坡的坡率应符合专项施工方案和规范要求设置要求:1、严格按设计及施工方案内容,对不同土质,按不同放坡率进行放坡。2、下列边坡不应采用坡率法(GB50330-2002第12.1.2条)①放坡开挖对拟建或相邻建(构)筑物有不利影响的边坡;②地下水发育的边坡;③稳定性差的边坡3、放坡坡率允许值。(GB50330-2002表12.2.1)基坑支护结构应符合设计要求地下连续墙支护排桩-锚索支护实物图钢支撑支护基坑支撑混凝土支撑设置要求:1、支护结构形式严格按设计及施工方案内容进行施工;2、支护结构类型及适用范围。支护结构水平位移达到设计报警值应采取有效控制措施土方反压设置要求:1、基坑工程监测报警值应符合基坑工程设计的限值、地下主体结构设计要求以及监测对象的控制要求。基坑工程监测报警值由基坑工程设计方确定。(GB 50497-2009第8.0.1条)2、基坑工程监测报警值应以监测项目的累计变化量和变化速率值两个值控制。(GB 50497-2009第8.0.2条)3、因围护墙施工、基坑开挖以及降水引起的基坑内外地层位移应按下列条件控制:(GB 50497-2009第8.0.3条)①不得导致基坑的失稳;②不得影响地下结构的尺寸、形状和地下工程的正常施工;③对周边已有建(构)筑物引起的变形不得超过相关技术规范的要求;④不得影响周边道路、地下管线等正常使用;⑤满足特殊环境的技术要求。4、基坑及支护结构监测报警值应根据监测项目、支护结构的特点和基坑等级确定。三、降排水基坑开挖深度范围内有地下水应采取有效的降排水措施设置要求:1、基坑降水可采用管井、真空井点、喷射井点等方法,并宜按表7.3.1的适用条件选用。(JGJ120-2012第7.3.1条)2、基坑内的设计降水水位应低于基坑底面0.5m。当主体结构的电梯井、集水井等部位使基坑局部加深时,应按其深度考虑设计降水水位或对其另行采取局部地下水控制措施。3、用截水结合坑外减压降水的地下水控制方法时,尚应规定降水井水位的最大降深值。各降水井井位应沿基坑周边以一定间距形成闭合状。当地下水流速较小时,降水井宜等间距布置;当地下水流速较大时,在地下水补给方向宜适当减小降水井间距。对宽度较小的狭长形基坑,降水井也可在基坑一侧布置。(JGJ120-2012第7.3.3条)基坑边沿周围地面应设置符合规范要求的排水沟放坡开挖对坡顶、坡面、坡脚应采取降排水措施基坑底四周应设排水沟和集水井,并及时排除积水排水沟效果图设置要求:1、地下排水措施宜根据边坡水文地质和工程地质条件选择,可选用大口径管井、水平排水管或排水截槽等。当排水管在地下水位以上时,应采取措施防止渗漏。(GB50330—2002第3.5.3条)2、边坡工程应设泄水孔。对岩质边坡,其泄水孔宜优先设置于裂隙发育、渗水严重的部位。边坡坡脚、分级平台和支护结构前应设排水沟。当潜在破裂面渗水严重时,泄水孔宜深入至潜在滑裂面内。(GB50330—2002第3.5.4条)3、对坑底汇水、基坑周边地表汇水及降水井抽出的地下水,可采用明沟排水;对坑底以下的渗出的地下水,可采用盲沟排水;当地下室底板与支护结构间不能设置明沟时,也可采用盲沟排水。(JGJ120-2012第7.4.1条)4、明沟和盲沟坡度不宜小于0.3%。采用明沟排水时,沟底应采取防渗措施。采用盲沟排出坑底渗出的地下水时,其构造、填充料及其密实度应满足主体结构的要求。(JGJ120-2012第7.4.3条)5、沿排水沟宜每隔30m~50m设置一口集水井;集水井的净截面尺寸应根据排水流量确定。集水井应采取防渗措施。(JGJ120-2012第7.4.4条)6、基坑坡面渗水宜采用渗水部位插入导水管排出。导水管的间距、直径及长度应根据渗水量及渗水土层的特性确定。(JGJ120-2012第7.4.5条)7、采用管道排水时,排水管道的直径应根据排水量确定。排水管的坡度不宜小于0.5%。排水管道材料可选用钢管、PVC管。排水管道上宜设置清淤孔,清淤孔的间距不宜大于10m。(JGJ120-2012第7.4.6条)四、基坑开挖支护结构必须达到设计要求的强度后才能开挖下层土方土方开挖设置要求:1、当支护结构构件强度达到开挖阶段的设计强度时,方可向下开挖;对采用预应力锚杆的支护结构,应在施加预加力后,方可开挖下层土方;对土钉墙,应在土钉、喷射混凝土面层的养护时间大于2天后,方可开挖下层土方。(JGJ120-2012第8.1.1条)2、当基坑开挖面上方的锚杆、土钉、支撑未达到设计要求时,严禁向下超挖土方。(JGJ120-2012第8.1.3条)3、施工过程中,严禁设备或重物碰撞支撑、腰梁、锚杆等基坑支护结构,亦不得在支护结构上放置或悬挂重物。(JGJ180-2009第6.3.2条)严格按设计和施工方案的要求分层、分段开挖且均衡开挖设置要求:1、应按支护结构设计规定的施工顺序和开挖深度分层开挖.(JGJ120-2012第8.1.1条)2、开挖至锚杆、土钉施工作业面时,开挖面与锚杆、土钉的高差不宜大于500mm. (JGJ120-2012第8.1.1条)3、软土基坑开挖尚应符合下列规定(JGJ120-2012第8.1.2条)①应按分层、分段、对称、均衡、适时的原则开挖;②当主体结构采用桩基础且基础桩已施工完成时,应根据开挖面下软土的性状,限制每层开挖厚度;③对采用内支撑的支护结构,宜采用开槽方法浇筑混凝土支撑或安装钢支撑;开挖到支撑作业面后,应及时进行支撑的施工;④对重力式水泥土墙,沿水泥土墙方向应分区段开挖,每一开挖区段的长度不宜大于40m。4、基坑土方应严格按照开挖方案分区分层开挖,控制分区开挖面积、分层开挖深度和开挖速度,及时设置锚杆或支撑,从各个方面控制时间和空间对基坑变形的影响。5、基坑土方开挖应按设计和施工方案要求分层、分段、均衡开挖,并贯彻先锚固(支撑)后开挖、边开挖边监测、边开挖边防护的原则。严禁超深挖土。(JGJ180-2009第6.1.3条)基坑开挖过程中应采取措施防止碰撞支护结构、工程桩或扰动基底原状土。专业人员旁站指挥,确保开挖不碰撞支护结构设置要求:1、施工过程应结合现场的施工环境,选择合适的开挖机械进行土方开挖。2、在工程桩周边进行开挖时,宜适当在工程桩周边安装护栏或在合适的地方悬挂警示标志。3、注意开挖面的能见度,必要时,需安装照明灯具进行补光。夜间施工宜在作业区附近张贴反光标志。4、开挖过程,专业人员应旁站指挥,确保开挖过程不碰撞支护结构。测量人员需加强开挖面标高的监测,防止超挖。5、机械开挖时,应在基坑及坑壁留300~500mm厚土用人工挖掘修整;如有超挖现象,应保持原状,不得虚填,经验槽后进行处理。(DBJ/T15-20-97第14.1.5条)机械在软土场地作业,应采取铺设渣土、砂石等硬化措施软土场地,先采取有效措施防止机械下陷设置要求:在软土场地或淤泥上挖土,当机械不能正常行走和作业时,应对挖土机械行走路线用铺设渣土或砂石等方法进行硬化。(JGJ 180-2009第6.3.6条)五、坑边载荷基坑边堆置土、料具等荷载不得超过基坑支护设计允许要求施工机械与基坑边沿的安全距离必须符合设计要求机械、材料摆放示意图设置要求:1、在垂直的坑壁边,此安全距离还应适当加大,软土地区不宜在基坑边堆置弃土。 2、施工机具设备停放的位置必须平稳,大、中型施工机具距坑边距离应根据设备重量,基坑支撑情况,土质情况等,经计算确定。六、安全防护开挖深度2m及以上的基坑周边必须按规范要求设置防护栏杆,且防护栏杆设置必须符合规范要求安全防护栏设置要求:开挖深度超过2m的基坑周边必须安装防护栏杆。防护栏杆应符合下列规定:(JGJ180-2009第6.2.1条)1、防护栏杆高度不应低于1.2m;2、防护栏杆应由横杆及立杆组成;横杆应设2道~3道,下杆离地高度宜为0.3m~0.6m,上杆离地高度宜为1.0m~1.2m;立杆间距不宜大于2.0m,立杆离坡边距离宜大于0.5m;3、防护栏杆宜加挂密目安全网和挡脚板;安全网应自上而下封闭设置;挡脚板高度不应小于180mm,挡脚板下沿离地高度不应大于10mm;4、防护栏杆的材料要足够的强度,须安装牢固,上杆应能受任何方向大于1000N的外力。基坑内必须设置供施工人员上下的专用梯道,且梯道设置要符合规范要求安全通道安全通道降水井防护示意图设置要求:1、采用井点降水时,井口应设置防护盖板或围栏,警示标志应明显。停止降水后,应及时将井填实。(JGJ180-2009第 6.3.10条)2、注意保护井口,防止杂物掉入井内,经常检查排水管、沟,防止渗漏,冬季降水,应采取防冻措施。(JGJ/T111-98第8.2.3条)七、基坑监测★ 基坑开挖前应编制监测方案,并应明确监测项目、监测报警值、监测方法和监测点的布置、监测周期等内容。基坑开挖前应编制监测方案设置要求:1、建筑基坑工程监测应综合考虑基坑工程设计方案、建设场地的岩土工程条件、周边环境条件、施工方案等因素,制订合理的监测方案,精心组织和实施监测。2、基坑工程施工前,监测单位应编制监测方案,监测方案需经建设方、设计方、监理方等认可。3、监测方案应包括工程概况、监测目的和依据等内容。基坑开挖应明确监测项目设置要求:1、基坑工程的监测项目应与基坑工程设计、施工方案相匹配。2、一级基坑应测项目:边坡顶部水平位移、边坡顶部竖向位移、深层水平位移、立柱竖向位移、支撑内力、锚杆内力、地下水位、周边地表竖向位移、周边建筑水平竖向位移及倾斜、周边建筑地表裂缝、周边管线变形。(GB50497-2009第4.2.1条)3、基坑周边有地铁、隧道或其他对位移有特殊要求的建筑及设施时,监测项目应与有关单位协商确定。(GB50497-2009第4.2.2条)基坑监测应明确监测报警值设置要求:1、基坑工程监测必须确定监测报警值,监测报警值应满足基坑工程设计、地下结构设计以及周边环境中被保护对象的控制要求。(GB 50497—2009第8.0.1条)2、当出现特殊情况时,必须立即进行危险报警,并应对基坑支护结构和周边环境中的保护对象采取应急措施。(GB 50497—2009第8.0.7条)基坑监测应明确监测方法和监测点的布置设置要求:1、基坑工程监测点的布置应能反映监测对象的实际状态及其变化趋势,监测点应布置在内力及变形关键特征点上,并应满足监控要求。(GB 50497—2009第5.1.1)2、基坑工程监测点的布置应不妨碍监测对象的正常工作,并应减少对施工作业的不利影响。(GB 50497—2009第5.1.2条)3、基坑监测的选择应根据基坑类别、设计要求、场地条件、当地经验和方法适用性等因素综合确定,监测方法应合理易行。(GB 50497—2009第6.1.1条)边坡顶部水平位移监测边坡顶部竖向位移监测地面沉降观测点深层水平位移监测水位监测周围建筑地表裂缝监测锚索拉力监测基坑监测的时间间隔应根据施工进度确定,当监测结果变化速率较大时,应加密观测次数。设置要求:1、基坑工程监测频率的确定应满足能系统反映监测对象所测项目的重要变化过程而又不遗漏其变化时刻的要求。(GB50497-2009第7.0.1条)2、监测项目的监测频率应综合考虑基坑类别、基坑及地下工程的不同施工阶段以及周边环境、自然条件的变化和当地经验而确定。当监测值相对稳定时,可适当降低监测频率。对于应测项目,在无数据异常和事故征兆的情况下,开挖后现场仪器监测频率的确定可参表B.11.7。(GB50497-2009第7.0.3条)3、当出现下列情况之一时,应加强监测,提高监测频率。(GB50497-2009)7.0.4。1)监测数据达到报警值;2)监测数据变化较大或者速率加快;3)存在勘察未发现的不良地质;4)超深、超长开挖或未及时加撑等违反设计工况施工;5)基坑及周边大量积水、长时间连续降雨、市政管道出现泄漏;6)基坑附近地面荷载突然增大或超过设计限值;7)支护结构出现开裂;8)周边地面突发较大沉降或出现严重开裂;9)邻近的建筑突发较大沉降、不均匀沉降或出现严重开裂;10)基坑底部、侧壁出现管涌、渗漏或流砂等现象;11)基坑工程发生事故后重新组织施工;12)出现其他影响基坑及周边环境安全的异常情况。基坑开挖监测工程中,应根据设计要求提交阶段性监测报告。设置要求:1、基坑监测分析人员应具有较强的综合分析能力,能及时提供可靠的综合分析报告。(GB50497-2009第9.0.1条)2、阶段性报告应包括该监测阶段相应的工程、气象及周边环境概况,该监测阶段的监测项目及测点的布置图等内容。(GB50497-2009第9.0.11条)八、支撑拆除基坑支撑结构的拆除方式、拆除顺序应符合专项施工方案要求。设置要求:1、施工单位应全面了解拆除工程的图纸和资料,进行现场勘察,编制施工组织设计或安全专项施工方案。(JGJ147-2004第2.0.2条)2、作业人员必须配备劳动保护服务用品。(JGJ147-2004第4.5.3条)3、在拆除施工现场划定危险区域,设置警戒线和相关的安全标志,应派专人监管。(JGJ147-2004第4.5.4条)4、拆除前工程施工前,必须对施工作业人员进行书面安全技术交底。(JGJ147-2004第5.0.5条)5、 基坑支撑拆除主要采取人工拆除、机械拆除以及其他非常规拆除方式等,拆除按施工方案进行,拆除顺序应本着先施工的后拆除,后施工的先拆除的原则进行,即从下至上分层进行。机械拆除作业时,施工荷载不得大于支撑结构承载能力机械拆除设置要求:1、施工中必须由专人负责监测被拆除建筑的结构状态,做好记录。当发现有不稳定状态的趋势时,必须停止作业,采取有效措施,消除隐患。(JGJ147-2004第4.2.2条)2、拆除施工时,严禁超载作业或任意扩大使用范围。供机械设备使用的场地必须保证足够的承载力。(JGJ147-2004第4.2.3条)3、对较大尺寸的构件,必须采用起重机具及时吊离至安全地方。工程招标业主名录河北工程招标业主名录山西工程招标业主名录更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

建筑基坑工程监测技术规范监理旁站记录程序

沉降观测-数据--报告

根据《城市轨道交通工程监测技术规范》 GB 50911—2013 ,监测等级为一、二级的基坑工程选测项目为( ) 。

【答案】:CP202-204此题考核明挖法和盖挖法基坑支护结构和周围岩土体监测项目其中:√一应测项目,○一选测项目。故选择C

达到什么标准的基坑工程应该进行检测

1、是的,根据GB 50497-2009 《建筑基坑工程监测技术规范 》第3.0.3条规定:基坑施工前应由建设单位委托具备相应资质的第三方进行基坑监护检测。2、开挖深度大于等于5m、或开挖深度小于5m但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。3、基坑工程设计提出的对基坑工程监测的技术要求应包括监测项目、监测频率和监测报警值等。4、 监测工作宜按下列步骤进行: 1) 接受委托; 2) 现场踏勘,收集资料; 3)制定监测方案; 4)监测点设置与验收,设备、仪器校验和元器件标定;5 )现场监测; 6 )监测数据的处理、分析及信息反馈;7) 提交阶段性监测结果和报告; 8) 现场监测工作结束后,提交完整的监测资料。

建筑基坑工程监测技术规范实施手册的书本目录

1 制定标准的任务来源2 编制工作中所作的主要工作2.1 准备阶段2.2 征求意见阶段2.3 送审阶段2.4 报批阶段3 规范中的主要内容介绍4 强制性条文介绍5 标准中重点内容确定的依据及其成熟程度5.1 基坑工程监测的管理规定5.2 监测项目、监测报警值的确定5.3 监测方法的确定5.4 监测频率的确定6 标准实施后的经济效益和社会效益初步评价6.1 经济效益6.2 社会效益7 本标准尚需深入研究的有关问题7.1 开展对特殊土以及岩石基坑工程监测的研究7.2 进一步开展不同地质条件下监测报警值的研究7.3 进一步研究、总结基坑工程监测的新技术8 结语 1 国内外关于基坑工程监测的技术标准和管理规定的调研1.1 国外基坑工程监测标准及相关文献综述1.2 国内基坑工程监测相关标准的综述1.3 国内基坑工程管理规定的综述1.4 规范设计的基坑工程监测若干关键技术综述2 不同条件下基坑工程监测项目和监测报警值的研究2.1 调研背景、目的及意义2.2 调研方法2.3 调研对象2.4 调研内容2.5 调研结果2.6 现有规范规程及调研结果的比较2.7 小结参考文献3 不同条件下基坑工程监测频率的研究3.1 前言3.2 基坑工程监测的目的和特点3.3 确定监测频率的基本原则3.4 有关监测频率的规定与专家建议3.5 工程监测实践中常用的监测频率统计与分析3.6 监测频率的合理选择与动态调整3.7 结论参考文献4 现有基坑工程监测方法和监测仪器性能的调研4.1 基坑监测项目与监测方法4.2 基坑监测常用仪器与性能指标4.3 结论与建议参考文献 1 总则3 基本规定4 监测项目4.1 一般规定4.2 仪器监测4.3 巡视检查5 监测点布置5.1 一般规定5.2 基坑及支护结构5.3 基坑周边环境6 监测方法及精度要求6.1 一般规定6.2 水平位移监测6.3 竖向位移监测6.4 深层水平位移监测6.5 倾斜监测6.6 裂缝监测6.7 结构内力监测6.8 土压力监测6.9 孔隙水压力监测6.10 地下水位监测6.11 锚杆及土钉内力监测6.12 土体分层竖向位移监测7 监测频率8 监测报警9 数据处理与信息反馈 1 测量仪器简介1.1 经纬仪1.2 水准仪1.3 全站仪1.4 现代测量仪器1.5 专用测量仪器2 测量误差基本知识2.1 测量误差产生的原因2.2 测量误差的分类与处理原则2.3 偶然误差的特性2.4 评定精度的标准2.5 观测值算术平均值及精度评定2.6 误差传播定律3 变形测量3.1 一般规定3.2 水平位移监测3.3 建筑物沉降监测3.4 基坑回弹监测3.5 深层水平位移监测3.6 地下管线监测3.7 倾斜监测3.8 裂缝监测4 内力量测4.1 围护体系内力监测4.2 土压力监测4.3 孔隙水压力监测4.4 锚杆和土钉内力监测5 远程监控5.1 基坑工程自动化监测技术5.2 基坑工程远程监控技术参考文献 1 某基坑工程监测方案1.1 工程概况1.2 建设场地岩土工程条件及基坑周边环境状况1.3 监测目的和依据1.4 监测内容和项目1.5 基准点、监测点的布设与保护1.6 监测方法及精度1.7 监测期和监测频率1.8 监测报警值及异常情况下的监测措施1.9 监测数据处理与信息反馈1.10 监测人员的配备1.11 监测仪器设备及检定要求1.12作业安全及其他管理制度2 某基坑工监测报告2.1 当日报表2.2 阶段性报告2.3 总结报告 1 建设工程安全生产管理条例2 建筑工程预防坍塌事故弱冠规定3 危险性较大的部分分项工程安全管理办法4 上海市基坑工程管理规定5 山东省建筑边坡与深基坑工程管理规定(试行)6 武汉市深基坑支护工程管理规定7 湖北省深基坑工程招标投标实施办法8 深圳市深基坑工程管理规定

对于基坑监测的说法,哪项符合《建筑基坑工程监测技术规范》(GB 50497—2009)的要求?(  )

【答案】:D根据《建筑基坑工程监测技术规范》(GB 50497—2009)第5.2.13条,坑外水位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或在两者之间布置。A项,根据第5.2.5条,钢筋混凝土支撑的监测截面宜布置在支撑长度的1/3部位;B项,根据第5.2.4条,围护墙内力监测点应布置在受力、变形较大且有代表性的部位;C项,根据第5.2.6条,立柱的竖向位移监测点宜布置在基坑中部、多根支撑交汇处、施工栈桥下、地质条件复杂处的立柱上。

建筑基坑工程监测技术规程介绍?

《建筑基坑工程监测技术规程》是由中国计划出版社出版,由山东省建设厅编制的标准。相关部门对建筑基坑工程监测宣贯做什么规定呢?以下是中达咨询小编整理建筑基坑工程监测技术规程相关内容:《建筑基坑工程监测技术规程》基本概况:各省、自治区、直辖市住房和城乡建设厅(委、局),新疆生产建设兵团建设局,近年来因建筑基坑工程导致的重大安全事故和社会纠纷时有发生,为确保基坑及周边环境安全,由山东省住房和城乡建设厅组织有关单位和专家编制了国家标准《建筑基坑工程监测技术规范》(GB50497-2009)。该规范将于2009年9月1日起实施。为做好该规范的宣贯工作,经住房和城乡建设部标准定额司同意我厅组织该规范的宣贯工作,现将有关事宜通知如下:一、宣贯内容1、规范编制背景及编制工作介绍、规范实施的重要意义;2、开展的专题研究工作及重要技术问题说明;3、规范条文释义;4、基坑工程监测范例介绍。二、参加人员。各省市建委(建设厅、建设局)、工程建设标准管理、质量与安全监督、施工图审查中心、基坑工程安全专项评审有关人员;建设工程勘察、设计、施工、监理、监测和检测等单位的有关人员。更多关于标书代写制作,提升中标率,点击底部客服免费咨询。

建筑基坑工程监测技术规范最新版本是哪一年

建筑基坑工程监测技术规范最新版本是2020年。根据查询相关资料显示,2019年11月22日,《建筑基坑工程监测技术标准》发布。2020年6月1日,《建筑基坑工程监测技术标准》实施。

基坑工程施工过程中的监测应包括哪些

基坑工程监测报告应包括以下内容:1、该监测期相应的工程、气象及周边环境概况;2、该监测期的监测项目及测点的布置图;3、各项监测数据的整理、统计及监测成果的过程曲线;4、各监测项目监测值的变化分析、评价及发展预测;5、相关的设计和施工建议。

哪些基坑工程的监测方案应进行专门论证

深基坑的围护方案需要专家论证。国标是深五米。

基坑工程的岩土勘察应符合规定?

基坑工程的岩土勘察应符合哪些规定?1、勘探点范围应根据基坑开挖深度及场地的岩土工程条件确定;基坑外宜布置勘探点,其范围不宜小于基坑深度的1倍;当需要采用锚杆时,基坑外勘探点的范围不宜小于基坑深度的2倍;当基坑外无法布置勘探点时,应通过调查取得相关勘察资料并结合场地内的勘察资料进行综合分析;2、勘探点应沿基坑边布置,其间距宜取15m~25m;当场地存在软弱土层、暗沟或岩溶等复杂地质条件时,应加密勘探点并查明其分布和工程特性;3、基坑周边勘探孔的深度不宜小于基坑深度的2倍;基坑面以下存在软弱土层或承压含水层时,勘探孔深度应穿过软弱土层或承压含水层;4、应按现行国家标准《岩土工程勘察规范》GB50021的规定进行原位测试和室内试验并提出各层土的物理性质指标和力学参数;对主要土层和厚度大于3m的素填土,应按本规程第3.1.14条的规定进行抗剪强度试验并提出相应的抗剪强度指标;5、当有地下水时,应查明各含水层的埋深、厚度和分布,判断地下水类型、补给和排泄条件;有承压水时,应分层测量其水头高度;6、应对基坑开挖与支护结构使用期内地下水位的变化幅度进行分析;7、当基坑需要降水时,宜采用抽水试验测定各含水层的渗透系数与影响半径;勘察报告中应提出各含水层的渗透系数;8、当建筑地基勘察资料不能满足基坑支护设计与施工要求时,宜进行补充勘察。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

基坑工程岩土勘察的规定?

基坑工程的岩土勘察是如何规定的?有哪些技术要点?请看中达咨询编辑的文章。1、勘探点范围应根据基坑开挖深度及场地的岩土工程条件确定;基坑外宜布置勘探点,其范围不宜小于基坑深度的1倍;当需要采用锚杆时,基坑外勘探点的范围不宜小于基坑深度的2倍;当基坑外无法布置勘探点时,应通过调查取得相关勘察资料并结合场地内的勘察资料进行综合分析;2、勘探点应沿基坑边布置,其间距宜取15m~25m;当场地存在软弱土层、暗沟或岩溶等复杂地质条件时,应加密勘探点并查明其分布和工程特性;3、基坑周边勘探孔的深度不宜小于基坑深度的2倍;基坑面以下存在软弱土层或承压含水层时,勘探孔深度应穿过软弱土层或承压含水层;4、应按现行国家标准《岩土工程勘察规范》GB50021的规定进行原位测试和室内试验并提出各层土的物理性质指标和力学参数;对主要土层和厚度大于3m的素填土,应按本规程第3.1.14条的规定进行抗剪强度试验并提出相应的抗剪强度指标;5、当有地下水时,应查明各含水层的埋深、厚度和分布,判断地下水类型、补给和排泄条件;有承压水时,应分层测量其水头高度;6、应对基坑开挖与支护结构使用期内地下水位的变化幅度进行分析;7、当基坑需要降水时,宜采用抽水试验测定各含水层的渗透系数与影响半径;勘察报告中应提出各含水层的渗透系数;8、当建筑地基勘察资料不能满足基坑支护设计与施工要求时,宜进行补充勘察。查询更多建筑企业中标业绩、诚信信息、资质条件,马上一键查询结果,下载建设通app。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

基坑工程监测内容包括()。

【答案】:A、B、C2020版教材P215 该题主要考察的是:基坑工程检测,基坑工程检测包括支护结构监测和周围环境监测(坑外地形的变形监测)。

基坑变形控制设计应符合哪些规定,基坑工程

基坑工程设计应包括下列内容: 1 支护结构体系的方案和技术经济比较; 2 基坑支护体系的稳定性验算; 3 支护结构的强度、稳定和变形计算; 4 地下水控制设计; 5 对周边环境影响的控制设计; 6 基坑土方开挖方案; 7 基坑工程的监测要求。【条文说明】本条为强制性条文。本条规定了基坑支护结构设计的基本原则,为确保基坑支护结构设计的安全,在进行基坑支护结构设计时必须严格执行。基坑支护结构设计应从稳定、强度和变形等三个方面满足设计要求: 1 稳定:指基坑周围土体的稳定性,即不发生土体的滑动破坏,因渗流造成流砂、流土、管涌以及支护结构、支撑体系的失稳。 2 强度:支护结构,包括支撑体系或锚杆结构的强度应满足构件强度和稳定设计的要求。 3 变形:因基坑开挖造成的地层移动及地下水位变化引起的地面变形,不得超过基坑周围建筑物、地下设施的变形允许值,不得影响基坑工程基桩的安全或地下结构的施工。基坑工程施工过程中的监测应包括对支护结构和对周边环境的监测,并提出各项监测要求的报值。随基坑开挖,通过对支护结构桩、墙及其支撑系统的内力、变形的测试,掌握其工作性能和状态。通过对影响区域内的建筑物、地下管线的变形监测,了解基坑降水和开挖过程中对其影响的程度,做出在施工过程中基坑安全性的评价。本条文为基坑工程设计的基本要求,应严格执行。

下列基坑工程监测,属于支护结构监测的是( )。

【答案】:B2022教材P214-216支护结构监测包括:(1)对围护墙侧压力、弯曲应力和变形的监测;(2)对支撑(锚杆)轴力、弯曲应力的监测;(3)对腰梁(围檩)轴力、弯曲应力的监测;(4)对立柱沉降、抬起的监测等。

基坑工程支护结构监测内容是(  )。

【答案】:A支护结构监测包括: (1)对围护墙侧压力、弯曲应力和变形的监测; (2)对支撑(锚杆)轴力、弯曲应力的监测; (3)对腰梁(围檩)轴力、弯曲应力的监测; (4)对立柱沉降、抬起的监测等。 故选项B、C、D错误。

浅谈高层建筑基坑工程监测方法?

随着经济的发展,我国高层建筑逐渐增加,需要开挖基坑施工,因基坑工程不稳定造成的工程事故时有发生,现就基坑监测方案谈谈如下看法。以我市某大厦室外工程为例,该处拟建一地下停车场,基坑开挖深度7.60米,要求安全使用期限6个月。由于本工程周边环境复杂,管线较多,必须对该基坑进行沉降观测。1工程地质条件根据本地区工程地质报告,此场地土质从上至下共为8层,分别是:素填土;细砂;粉土;细砂;粉细砂;中砂;粉土;粉质粘土.2基坑监测项目、依据、方法及监测频度2.1监测项目2.1.1现场巡视:跟踪监测,掌握支护结构、坡顶堆载情况及边缘以外2倍开挖深度范围内的地表裂缝、建筑设施变化情况.2.1.2坡顶地表移位监测:及时采集基坑边坡顶点的垂直沉降和水平位移数据,分析其变化趋势,评价基坑工程的稳定性、安全性.2.1.3地下水位监测:通过监测,提供地下水位动态变化数据,对基坑和周边环境的安全性做出评价.2.1.4建筑物沉降观测:通过对基坑周边建筑物的沉降观测点进行高精度的高程测量,随时掌握基坑周边2H-3H(H为坑深)建筑物的沉降变化数据,达到对周边建筑物垂直沉降的有效监测.2.2监测方法2.2.1现场巡视自基坑开挖起,根据施工情况每日不定期进行,主要对支护结构情况、坡顶堆载、基坑周边裂缝、临时建筑及设施变化等方面进行肉眼现场巡视.2.2.2坡顶地表移监测2.2.2.1基准点和监测点的布设基坑开挖前设置基准点、变形监测点、并记录变形监测点初始值.基准点布设在工程影响范围外,一般距基坑周边不小于2H-3H(H为坑深),水准基点位直接利用沉降观测的基准点即可.水平位移监测基准点依据设计要求和施工现场情况布设在各边测点方向线的两侧,应埋设高约70cm,上顶15cm-15cm,中间嵌有中心标志的混凝土标石,本工程共需布设约8点.变形监测点布设在基坑坡顶冠梁沿平行于开挖边界方向,各测点埋设觊25mm钢筋,并砌砖墩台保护.本工程设计坡顶地表位移监测点8个,变形监测点具体位置,由设计单位给出.2.2.2.2监测方法基坑坡顶的沉降位移观测采用DS05水准仪配合铟瓦合金标尺光学测微法往返测定高差,根据基准点与变形监测点的相对位置关系布设成附合或闭合水准路线.水平位移可采用基准线法进行,将全站仪设于基准点上,用另一端基准点定向后,分别量取各观测点与基准点的垂直距离,即可得各观测点的水平位移值,各观测数据应测量到mm.2.2.3地下水位监测2.2.3.1点位布设在基坑止水帷幕外侧设置地下水位观测孔,依据规范和设计要求本工程拟布设地下水位监测点2个.监测点采用钻孔下管埋设,钻孔深度应大于基底深度2m以上(孔深约10m),设置觊50mm的硬性聚氯乙烯塑料管,管外钻孔用粗砂填实.2.2.3.2检测方法测试采用LY-2型水位仪观测,观测精度不低于5mm,至基坑工程回填完毕停止观测.2.2.4建筑物沉降观测2.2.4.1点位布设(1)要保证稳定、可靠、观测方便等诸多因素,标石应埋设在基岩层或压缩性较低的原状土层中,也可选择在稳定的物质上,顶部应加水准专用标志,在沉降观测前应对水准基点进行联测,使其成为一个严密统一的系统,在沉降观测过程中,宜每间隔1个月应对其联测一次.本次沉降观测拟设定水准基点3个,采用一等水准方法施测.(2)沉降观测点的布设:相邻建筑物沉降观测点的布设,要能全面反映建筑物地基变形特征并结合地质情况及建筑结构特点确定.点位宜在建筑物基础深度1.5-2.0倍距离为半径的范围内,由外墙附近向外由密到疏布设.按设计部门的设计方案执行,本工程根据设计要求设置建筑物沉降观测点2个.标志的埋设位置应避开入水管、窗台线、暖气片、暖水管、电器开关等有碍标志与观测的障碍物,并应视立尺需要离开墙(柱)面和地面一定距离,本次设计要求沉降观测点设置标高为高出建筑地面0.5米.沉降观测点的观测采用二等水准方法施测.2.2.4.2精度要求最终沉降量的观测中误差按以下规定确定:(1)绝对沉降的观测中误差为±1.0mm.(2)相对沉降、局部地基沉降以及膨胀土地基变形等的观测中误差,均不应超过其变形允许值的1/20.(3)建筑物整体变形的观测误差,不应超过允许垂直偏差的1/10.(4)结构段变形的观测中误差不应超过变形允许值的1/6.2.2.4.3观测方案沉降观测点预埋时观测,第一次观测结果作为本工程的原始标高,基坑开挖起进行全面观测,基坑回填完毕,停止观测.观测期间,如发现异常沉降时,应及时通知甲方,并会同设计、监理各方提出应急观测方案,并及时加密观测频度.2.2.4.4施测方法本次沉降观测水准基点的联测按一级水准测量进行,采用DS05级水准仪配合铟瓦合金标尺光学测微法往返测定高差.观测时,往测奇数站的观测顺序为后-前-前-后,偶数站的观测顺序为前-后-后-前;反测时,奇偶测站的观测顺序与往测偶奇测站的观测顺序相同.沉降观测点的观测按二级水准单程观测,采用DS05级水准仪配合铟瓦合金标尺光学测微法往返测定高差.实际进行中可根据水准基点与观测点之间的相对位置关系及楼体的具体位置将路线布设成附合或闭合路线.2.3监测标准(1)《建筑边坡工程技术规程》GB50330-2002.(2)《建筑变形测量规程》JGJ/T8-97.(3)《建筑基坑工程监测技术规范》DBJ14-024-2004.(4)《城市测量规范》CJJ8-99.(5)《国家一、二等水准测量规范》GB12897-91.(6)《建筑基坑支护技术规程》JGJ120-99.2.4监测频度自基坑开挖起进行监测,监测频度每两天一次,逢下雨、爆破、变形速率异常等特殊情况下应加密监测频度,基坑工程回填完毕可结束监测.坡顶地表位移监测、地下水位监测、周边建筑物沉降观测,基坑工程施工期间,每两天监测一次,并根据施工进度情况适当进行调整.监测工作量详见下表:3沉降观测的数据处理与预警措施3.1沉降观测的数据处理每周期观测后,应及时对观测资料进行整理,计算观测点的沉降量、沉降差以及本周期平均沉降量和沉降速度.3.1.1各类观测点观测成果的计算与分析应符合以下要求:(1)观测值中的系统误差应减小到最小程度;(2)合理处理随机误差,正确区分测量误差与变形信息;(3)各期观测成果的处理应建立在统一的基准上;(4)按网点的不同要求,合理估计观测成果精度,正确评定成果质量.3.1.2水准测量成果的最终整理沉降观测的外业观测数据做完成后,方可进行业内计算.内业计算在计算机上可采用《清华山维NASEW95测量控制网平差系统》对观测成果进行整体严密平差,并根据平差结果编制沉降观测成果表、p-t-s(载荷、时间、沉降量)曲线图.观测点预埋时进行第一次观测,其结果作为工程的原始标高.本工程自基坑开挖起进行监测,在基坑工程施工期间,依据设计和规范要求监测频度宜每两天一次.3.2预警措施3.2.1应根据周边建筑物位移的相关数据,及时计算各项限差,当限差超出设计和规范要求时,应及时向设计、监理、及甲方单位提交相关数据,并进行加密观测。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

深基坑工程的基坑监测施工单位是否应进行监测?

GB50497-2009 建筑基坑工程监测技术规范中要求3.0.3 基坑工程施工前,应由建设方委托具备相应资质的第三方对基坑工程实施现场监测。监测单位应编制监测方案。监测方案应经建设、设计、监理等单位认可,必要时还需与市政道路、地下管线、人防等有关部门协商一致后方可实施。

关于基坑工程监测技术?

岩土工程监测技术是怎样的?有哪些要求?请看中达咨询编辑的文章。工程建设中,要实现工程设计,就必须根据施工现场情况,收集信息,调整设计,解决设计与施工之间的矛盾,使工程项目在保证质量和安全的前提下在预算内如期完成。要做到这一点,施工信息化显得非常重要。施工信息化(或信息化施工)是以建筑业信息化为总目标,在施工过程涉及的各部门、各阶段中广泛应用信息技术,开发信息资源,促进施工技术和管理水平不断提高、施工生产效益显著增加的过程,它涉及建筑业管理、建筑设计和施工等一系列活动,是由设计、施工、监测、监理等方面组成的有机整体,它们相互依赖,相互支持,不可分割,缺一不可。1、基坑信息化施工中的监测技术1.1监测点的三维位移测量高程监测可采用独立高程系,用二等水准精度进行监测;平面位移监测常采用轴线投影法或小角度法等。1.2围护墙体侧向位移监测在地墙钢筋笼及钻孔灌注桩制作过程中埋入测斜管,长度同墙(桩)深,测斜管管径为70mm。测斜管内壁有二组互成90b的纵向导槽,导槽控制了测试方位。测试时,测斜仪探头沿导槽缓缓沉至孔底,经过一段时间恒温后,自下而上以一定间隔,逐段测出对应方向上的位移。同时用光学仪器测量管顶位移作为控制值。经过平差计算可得各深度的侧向位移值。1.3坑外土体侧向位移监测可在基坑外侧距地墙外边缘一定距离的位置(随工程情况而定)钻孔埋设测斜管,管径为70mm,长度超过墙深5m,埋设的主要目的是监测地墙底部的变形。埋设时采用5110钻头成孔,埋设70的专用监测PVC管,下管后用中砂密实,孔顶附近再填充泥球,以防止地表水的渗入,其原理与围护墙体侧向位移监测相同。1.4地墙钢筋应力监测由于某些基坑工程开挖深度较大,周边环境对变形要求很高,地墙较厚(1000mm或更多),必须在地墙钢筋笼内设置钢筋应力计以测得地墙内力变化情况。因塔楼区基坑呈圆形,每个地墙槽段呈折线型,因此应力计的设置要能分别监测地墙钢筋竖向和环向的内力变化情况。在地墙钢筋笼绑扎好放入基槽前,将应力计焊接在设计深度处的墙体主筋上,并将导线引出地面,同时作好保护措施避免地墙混凝土浇灌时被破坏(曹国金等,2002)。例如ZXY-Ⅱ型频率计实测振弦式钢筋应力计频率的变化,根据出厂时标定的频率-应力率定值,求得应力变化值:式中K为率定系数(kN/Hz2),F0为应力计初始频率(Hz),Fx为应力计测试频率(Hz),Rx为实测钢筋计的应力(MPa),S为应力计截面积(m2),圈梁、围檩及立柱桩的钢筋应力测试方法和原理相同。1.5地墙混凝土应力监测对地墙的钢筋受力状况和混凝土受力状况分别进行监控,可以确定两者的受力是否协调。在地墙钢筋笼,放入基槽前,将混凝土应变计安装在设计深度处的墙体上,并将导线引出地面。用ZXY-Ⅱ型频率计实测混凝土应变计频率变化,根据出厂时标定的频率-应变率定值,求得应变量变化值,从而推算出墙体混凝土应力。圈梁、围檩的混凝土应力测试方法和原理相同。1.6地墙墙侧土压力监测基坑开挖施工中,由于坑内土体卸载,导致墙体内外土压力失衡。对坑底以下地墙迎坑面一侧土压力的变化进行监测,可以有依据地控制开挖速率,以达到施工安全。用振弦式土压力计实测其频率的变化,根据出厂时标定的频率-压力率定值,求得土压力值。采用挂布法埋设。安装时,预先将缝有土应力计的帆布挂帘平铺在钢筋笼表面并与钢筋笼绑扎固定,挂帘随钢筋笼一起吊入槽内,在浇筑混凝土时,由于混凝土在挂帘的内侧,利用流态混凝土的侧向挤压力将挂帘连同土应力计一起压向土层,并迫使土应力计与土层垂直表面密贴。1.7坑外孔隙水压力监测基坑开挖及深井降水均会引起坑外孔隙水压力的下降,有必要对基坑外侧的孔隙水压孔口高程减磁环深度即得各磁环的初始高程。每次测得磁环高程与初始高程的差即为测点高程的累计变化量。1.9钢支撑轴力监测为了测定深基坑内钢支撑结构的实际受力情况与设计轴力的差异,防止围护结构的失稳破坏,须对支撑结构中受力较大的断面进行监测。被测断面埋入应变计,支撑受到外力作用后产生形变。其应变量通过振弦式频率计来测定。测试时,按预先标定的率定曲线,根据应变计频率推算出支撑轴向所受的力。2监测与分析以某大型建筑基坑附近的地下管线变形监加以说明和分析,该建筑塔楼为地上100多层,地下3层,地面高度490m,围护墙平面呈100m内径的园形布置,浅基坑开挖至标高-13m,本工程基坑保护等级为一级。该大型基坑工程按前面所述项目进行监测。2.1地下管线变形监测对离基坑最近10m的电力电缆、上水管、煤气管的沉降变化进行监测,在这些管线上共设立了40个监测点。按6个工况日期进行监测,即:①第一层土开挖,第一道围檩施工;②第二层土开挖,第二道围檩施工;③第三层、第三道;④第四层土开挖,浅基坑垫层施工;⑤深基坑施工完成;⑥塔楼区地下结构施工。并绘出各监测点工况结束时测向位图。为其中一个监测点的位移曲线图。力变化进行监测,了解地下水压力的变化情况,以达到施工安全。1.8基坑底土体回弹和坑外分层沉降基坑内外土体的高程动态变化,可在基坑开挖前测得各孔的高程及各测点(磁环)深度,浅基坑开挖后地下管线出现明显下降,基坑外深井降水,降水初期承压水位降深较小,对周边管线的沉降影响不明显,随着承压水位继续下降,其对周边管线影响不断增加。当承压水位降深增加约5.6m时,周边地下管线均产生了约4~5mm的沉降。随着基坑底板的浇筑、承压水位的逐渐恢复,管线也出现了缓慢回弹,回弹的速度要小于沉降速率。监测数据的分析为信息化施工的安排性和方案等提供了决策依据。2.2注浆施工控制根据设计,在裙房基坑进行底层深度开挖,要对道侧进行注浆加固,在这期间要进行管线沉降开挖。在第260次观测期间,注浆施工出现了速率过快和注浆孔位过于集中的问题,根据这一数据特征调整施工方案,然后再由监测验证方案调整的正确性和准确性,如此不断的反复操作。从261~273次测试数据可以确定曲线趋已于平缓,也就是说施工方案已经满足施工的安全条件,并在效率和安全之间达到了平衡,这种情况一直持续到注浆完毕。注浆完成后监测工作仍然进行,当监测数据显示沉降数据恢复日常增长水平,当沉降水平达到预期值后,施工项目宣告结束。3结语综上所述,笔者给出了基坑工程中监测的项目和技术方法,可供参考。以上由中达咨询搜集整理更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

基坑工程施工监测中周围环境监测包括哪些内容

主要是监测工地的扬尘和噪声,监测点设定在工地围墙外1米,高出墙面1米的地方

基坑工程周围环境监测的内容有(  )。

【答案】:A、B、C、D2021新教材P217页该题主要考察的是:支护结构周围环境监测,(1)支护结构监测包括:1)对围护墙侧压力、弯曲应力和变形的监测。2)对支撑(锚杆)轴力、弯曲应力的监测。3)对腰梁(围檩)轴力、弯曲应力的监测。4)对立柱沉降、抬起的监测等。(2)周围环境监测包括:1)坑外地形的变形监测。2)邻近建筑物的沉降和倾斜监测。3)地下管线的沉降和位移监测等。故选项E错误。

谈建筑工程中基坑工程的监测方法

谈建筑工程中基坑工程的监测方法   周围环境监测主要包括:邻近构筑物、地下管网、道路等设施变形的监测,浅析建筑工程中基坑工程的监测方法?   虽然人们在基坑开挖和基坑支护结构设计过程中,为了保证基坑的安全,通常都会采用了一系列的技术措施,但依然有很多基坑事故发生,事故发生主要表现为基坑大面积滑坡、支护体系崩溃、水平位移过大、支护结构过分倾斜、基坑周边土体变形过大、支护结构和被支护土体达到破坏状态、基坑底回弹或隆起过大、邻近建筑物倾斜或开裂甚至倒塌等等。当基坑工程事故发生,就会给国家和人民的生命财产安全带来巨大的损失,而且还会产生不良的社会影响。   1 监测目的   在深基坑开挖施工过程中,对建筑物、土体、道路、构筑物、地下管线等周围环境和支护结构的位移、应力、沉降、倾斜、开裂和对地下水位的动态变化、土层孔隙水压力变化等,借助仪器设备或其他一些手段进行综合监测,就是深基坑开挖监测。   在开挖前期,对土体变位动态等各种行为表现进行监测,通过大量岩土信息的提取,及时比较勘察出监测结果和预期设计的性状差别,分析评价原设计成果,对现行施工方案的合理性进行判断,有效预测下阶段施工中可能出现的新情况,此时可以借助修正岩土力学参数和反分析方法计算来完成预测。为了能为后期开挖方案和步骤提出有用的建议,就需要合理和优化组织施工提供可靠信息,从而能够及时预报施工过程中可能会出现的险情;当有异常情况发生时,应及时采取一定的工程措施,防止问题事故的发生,以确保工程安全。   2 监测内容   2.1 周围环境监测   周围环境监测主要包括:邻近构筑物、地下管网、道路等设施变形的监测,邻近建筑物的倾斜、裂缝和沉降发生时间、过程的监测,表层和深层土体水平位移、沉降的监测,坑底隆起监测,桩侧土压力测试,土层孔隙水压力测试,地下水位监测。具体监测项目的选定需要综合考虑工程地质和水文地质条件、周围建筑物及地下管线、施工连受和基坑工程安全等级情况。   2.2 支护体系监测   支护体系监测主要包括:支护结构沉降监测,支护结构倾斜监测,支护体系应力监测,支护结构顶部水平位移监测,支护体系受力监测,支护体系完整性及强度监测。   3 监测仪器   通常情况下,基坑的监测是需要借助一些设备的,一般使用的仪器主要包含以下几种:   3.1 测斜仪:该仪器主要用在支护结构、土体水平位移的观测中。   3.2 水准仪和经纬仪:该设备主要用在测量地下管线、支护结构、周围环境等方面的沉降和变位。   3.3 深层沉降标:用于量测支护结构后土体位移的变化,以判断支护结构的稳定状态。   3.4 土压力计:用于量测支护结构后土体的压力状态是主动、被动还是静止的,或测量支护结构后土体的压力的大小、变化情况等,来检验设计中的判断支护结构的位移情况和计算精确度。   3.5 孔隙水压力计:为了能够较为准确的判断坑外土体的`移动,可用该仪器来观测支护结构后孔隙水压力的变化情况。   3.6 水位计:为了检验降水效果就可以采用该仪器来量测支护结构后地下水位的变化情况。   3.7 钢筋应力计:为了判断支撑结构是否稳定,使用该设备来量测支撑结构的弯矩、轴力等。   3.8 温度计:温度对基坑有较大影响,为了能计算由温度变化引起的应力,则需要将温度计和钢筋应力计一起埋设在钢筋混凝土支撑中。   3.9 混凝土应变计:要计算相应支撑断面内的轴力,则需要采用混凝土应变计以测定支撑混凝土结构的应变。   3.10 低应变动测仪和超声波无损检测仪:用来检测支护结构的完整性和强度。   无论是哪种类型的监测仪器,在埋设前,都应从外观检验、防水性检验、压力率定和温度率定等几方面进行检验和率定。应变计、应力计、孔隙水压力计、土压力盒等各类传感器在埋设安装之前都应进行重复标定;水准仪、经纬仪、测斜仪等除须满足设计要求外,应每年由国家法定计量单位进行检验、校正,并出具合格证。论文联盟http://www.LWlM.cOm   由于监测仪器设备的工作环境大多在室外甚至地下,而且埋设好的元件不能置换,因此,选用时还应考虑其可靠性、坚固性、经济性以及测量原理和方法、精度和量程等方面的因素。   4 监测方法   施工前,应对周围建筑物和有关设施的现状、裂缝开展情况等进行调查,并作详细记录;也可拍照、摄像作为施工前的档案资料。对于同一工程,监测工作应固定观测人员和仪器,采用相同的观测方法和观测线路,在基本相同的情况下施测。   基准点应在施工前埋设,经观测确定其已稳定时方可投入使用;基准点一般不少于2个,并设在施工影响范围外,监测期间应定期联测以检验其稳定性。为了能有效确保其在整个施工期间都能够正常使用,在整个施工期内都应该采取一定的保护措施。   在施工之前,应进行不少于两次的初始观测。而在开挖期间则每天一般观测一次,在观测值相对稳定后则可适当降低观测频率。而当出现报警指标、观测值变化速率加快或者出现危险事故征兆时,则应增加观测次数。在布置观测点时,要充分考虑深埋测点,其不能影响结构的正常受力的同时也不能削弱结构的变形刚度和强度,通常情况下为了便于监测工作开始测量元件已进入稳定的工作状态时,深埋测点的埋设的提前量一般不少于30d。   5 支护结构顶部水平位移监测   观测点沿基坑周边布置,一般埋设于支护结构圈梁顶部,支撑顶部宜适当选择布点,观测点精度为2mm。在监测过程中,测点的布置和观测间隔需要遵循一些原则,通常原则如下:   5.1 一般当间隔达到10~15m时则可布设一个监测点;而在距周围建筑物较近处、基坑转折处等重要位置都应该适当加密布点。   5.2 在基坑开挖之初,只需每隔2~3d监测一次,然而随着开挖过程的不断加深,应适当增加观测次数,最好为1d一次观测,在发生较大位移时,则需要每天1~2次的观测。考虑到基坑开挖时,施工现场狭窄,测点常被阻挡等实际情况,在有条件的场地,可以采用视准线法比较方便。   6 支护结构倾斜监测   在监测支护结构倾斜时,通常采用测斜仪进行监测。由于支护结构受力特点、周围环境等因素的影响,需要在关键地方钻孔布设测斜管,并采用高精度测斜仪进行监测。根据支护结构在各开挖施工阶段倾斜变化情况,应该及时提供支护结构沿深度方向水平位移随时间变化的曲线,测量精度为1mm。   设置在支护结构的测斜点间距一般为20~30m,每边不宜少于2个。测斜管埋置深度一般是基坑的开挖深度的2倍,当埋设在支护墙内时,则应该同支护墙深度相同,当埋设在土内时,宜大于支护墙埋深5~10m。埋入的测斜管应保持竖直,并使一对定向槽垂直于基坑边。在测斜管放置于支护结构后,一般用中细砂回填支护结构与孔壁之问的孔隙,最好用膨胀土、水泥、水按1:1:6.25的比例混合回填。目前。工程中使用最多的是滑移式测斜仪,其一般测点间距是探头本身的长度相同,因而通常认为沿整个测斜孔量测结果是连续的,或者在基坑开挖过程中,及时在支护结构侧面布设测点并采用光学经纬仪观测支护结构倾斜。 ;

基坑工程现场监测的对象应包括

基坑监测主要包括:支护结构、相关 自然环境 、施工工况、地下水状况、基坑底部及周围土体、周围建(构)筑物、周围 地下管线 及地下设施、周围重要的道路、其它应监测的对象。基坑监测是基坑工程施工中的一个重要环节,是指在基坑开挖及地下工程施工过程中,对基坑岩土性状、支护结构变位和周围环境条件的变化,进行各种观察及分析工作,并将监测结果及时反馈,预测进一步施工后将导致的变形及稳定状态的发展,根据预测判定施工对周围环境造成影响的程度,来指导设计与施工,实现所谓信息化施工。

高层建筑深基坑工程变形监测质量及安全监理?

高层建筑深基坑工程变形监测质量及安全监理具体内容是什么,下面中达咨询为大家解答。随着我国经济高速发展,高层建筑大量涌现,深基坑工程越来越多,地下室建筑工程深基坑在开挖和暴露期间的安全,对确保整个工程顺利施工和邻近建(构)筑物,及市政设施(道路、各种管线等)的正常使用和安全至关重要。而在深基坑开挖时,经常会发生坑底回弹,隆起以及外地面下沉等现象,甚至基坑失稳,支护结构倒坍等事故。这类事件在工程上已屡见不鲜,在软土地基中该类问题尤为严重。事故发生有多方面原因,既有岩土工程监测不完善,分析不准确,预报不及时的原因,也有监理监管不到位,发出错误的指令所造成,因而基坑工程监测监理日益显示其重要性。所以实行基坑工程变形监测全过程质量及安全的监理,有着十分重要的意义。下面结合广州国际商贸广场基坑工程变形监测工程与同行探讨。1 工程概况广州国际商贸广场工程,地处广州市中山三路与较场西路交汇西北繁华地段,由两幢超高层65层和28层塔楼及6层~9层裙楼组成,其中地下室4层,地下室底板设计标高为-13.9m(相对±0.00)。基坑设计采用人工挖孔桩和喷锚支护结构体系。基坑开挖深度为12.9m。基坑平面面积较大,形状呈L形,四周均为道路和高层建筑,场地周围分别埋设有电力、上水、煤气、雨水、电信等地下管线。如基坑施工稍有不慎,极易给周围环境造成影响和破坏。因此,需要对深基坑高层施工阶段各工序的质量及安全进行严格监控。业主委托广东建设工程监理有限公司监理。2 监测监理的依据为了使监理工作便于开始,首先收集国家、部、省、市建设主管部门转发关于基坑工程监测等方面的法律、法规和规定。具体有广州市建委转发《广州市深基坑工程管理暂行规定通知》;有关技术性文件:工程总平面图、地形图、与监测点布设有关的建筑物平面、立面、结构图以及规划部门提供的导线点、水准点;与本工程监测有关的施工组织设计;与本工程有关的工程地质、水文地质资料以及周围环境资料;国家标准:《工程测量规范》《城市工程测量规范》《精密工程测量规范》GBT等。并且由项目总监理工程师编写好的监理规划,完善项目监理实施细则,以后的监理工作就以此作为依据。3 协助业主委托施工单位委托施工单位进行监测是监测监理重要的一环。施工单位选择与否,直接关系到整个基坑安全是否有保证、可靠的信息。所以与甲方商讨,特别对几家有相应资质的监测单位进行考察、对比,并组织有关单位共同审查监测单位编写的监测方案。具体包括对监测项目、监测方法以及精度要求、监测点布设、观测周期、工序管理和记录制度及信息反馈等作出评价,预测并确定最优方案。重要的控制测量在实施前期还要求监测单位提交文字方案。内容包括控制方法、图形结构、操作方法及精度估算,监理工程师根据监测单位测量人员、设备及施测情况,结合设计要求及有关测量规范,最后选择有实力、信誉高的监测单位,使业主满意放心。4 事前控制1)本工程由于占地面积较大,基坑周边又是高层住宅、变电房以及商业区,因此在监测之前,监理工程师首先对施工场地的基坑四周的住宅、道路、变电房、构筑物进行调研,如是否有裂缝、倾斜等,并测绘出其裂缝的位置、长度、宽度,倾斜的方位、倾斜度等,然后作记录、拍照,并通知业主。对可能发生争议的基坑四周情况,比如较接近基坑北面的综合办公楼、南面的工厂大楼以及东南角变电房等,建议业主委托房屋鉴定和公正单位进行鉴定和公正,避免日后与屋主之间发生可能的争议。2)监测点、基点埋设控制。基点、监测点的埋设是监测前控制的关键一环。首先基点的埋设必须远离拟测基坑边坡周围,避开施工影响区。尤其这种供长期高精度施工测用的基点,必须牢固、可靠,可深式埋在新鲜的基岩面,或浅式埋设在沉降已稳定的建筑物(或构筑物)上,本工程施测单位起初没有提交埋点方案图,两个基点均埋在北面基坑周边不足3m的围墙处。由于围墙与基坑相隔较近,基坑与围墙发生整体位移、沉降,在观测过程中,施工单位没有准确测得基坑的位移和沉降量,后来经监理工程师发现后,指出问题的关键,最后建议基点埋设在远离基坑边坡且沉降较稳定的混凝土台阶处,满足基点埋设要求。3)监测仪器、设备的检查。通常基坑在倒坍滑坡之前段时间,水平位移、垂直沉降量较小,不容易发现,若水平位移、垂直沉降量超过警戒值时,再采取加固防范措施则为时已晚。所以监测所用的仪器必须是精度高的精密仪器。在审查时,监理工程师要特别注意仪器选型要与观测精度相适应,本工程基坑监测用的经纬仪建议用水平读数量小格值不小于1,一测回水平方向最大中误差为1.6,最后施测单位确定用T2级以上经纬仪并配红线测距仪测距。而沉降观测用N3型精密水准仪配铟钢水准尺。各种设备技术参数均满足或超过基坑监测精度要求。5 事中控制1)基坑水平位移监测。基坑变形监测包括水平位移观测和垂直沉降观测,监测过程中的监理主要是检查观测方法和技术指标是否符合要求。基坑变形监测的特点之一是工作繁琐且重复较大,因此在工程质量控制方面承担重要责任的测量工程师,把主要精力放在测量工作的重要环节上,以确保测量的准确性。测量监理工程师主要质量控制点是对施测单位布设的控制网的审核。就水平位移观测的方法可采用坐标法和轴线法。坐标法应布设观测控制网,其形式包括:三角网、导线网、边角网,采用轴线控制时,轴线两端应分别建立检校点。控制点宜采用强制归心的观测墩,监测网应根据监测方案精度要求进行估算优化。网的主要技术要求应满足工程测量规范的要求。根据水平位移监测网的主要技术要求,结合基坑场地的特点:四周均有高层建筑物,在基坑周边布设控制网显然是不可取的。而施测单位用三角网形式布网,控制点建立在高层建筑物楼顶,通视条件良好,便于观测,便于保存控制点,符合测量规定,也符合监理实施细则的原则。最后监理工程师经审核同意施测单位建立三角网形式,并对其布网作进一步优化。不但施工测量方便,监理复核也更直接明了。既保证精度,又提高工作效率。2)基坑垂直位移监测。垂直位移观测点应布设成监测网。监测控制网又布设成闭合水准环、结点符合水准路线。垂直位移监测网应满足工程测量规范的要求。沉降观测点的精度要求和观测方法。根据工程需要应满足工程测量规范的技术要求。3)监理工程师对成果的检校。测量工作重在检查,未经监理工程师检查、复核、签认的测量成果不得使用。首先监理工程师按监理规划(或细则)要求,督促施测单位做好自检工作,包括自测自检及不同班组之间互检工作,检查内容包括内、外业。除此之外,监理工程师对重要的测量成果实行单独复核,并且不同人员、设备换一种方法,换一个角度进行检查,事实证明至关重要,这样才能杜绝差错。同时,由于实行了单独复核制度,监理工程师对工程量的签认也就有理有据、准确可靠。在广州国际商贸广场基坑监测中,监理工程师对施测单位的平面、高程控制成果都有分阶段实施独立复核,确保控制成果的正确性。6 事后控制1)基坑每次监测完毕后,必须督促施测单位及时整理监测成果。监测成果是监测工作最为重要的信息,是监测后控制的关键环节。对每次监测成果的要求是:a.设计各种观测数据、采集记录、计算表格、监测成果汇总表、监测进度表、监测时间变形和变形曲线图,供监测和观测数据处理成果登记用。b.监测成果分析表式化、着重与警戒值比较和相关监测项目对比,变形发展趋势预测。c.设计监测成果信息流程和报警讯号紧急发送制度,以利有关各方及时了解监测动态和采取相应措施,避免工程事故和消除工程隐患。2)审查监测单位提交的监测结果。3)每月向业主提交监测监理月报,内容包括:监测进展情况和完成监测工作量,本月监测工作各受控内容的偏差情况和纠正偏差的措施、效果。4)编写监测监理总结报告。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

基坑工程周围环境监测的内容有()。

【答案】:A、B、C、D2020版教材P215(1)支护结构监测包括:1)对围护墙侧压力、弯曲应力和变形的监测。2)对支撑(锚杆)轴力、弯曲应力的监测。3)对腰梁(围檩)轴力、弯曲应力的监测。4)对立柱沉降、抬起的监测等。(2)周围环境监测包括:1)坑外地形的变形监测。2)邻近建筑物的沉降和倾斜监测。3)地下管线的沉降和位移监测等。

基坑工程安全专项方案编制应包括哪些内容

施工工艺流程二、污水的处理和排放管理措施五、工期安排三、减少扰民、防止粉尘、基坑重大危险源分析与应急救援预案应急救援部署一、爆破安全技术措施2目 录第一章编制依据一、人员安排五、安全管理措施三、方针和原则二、工作流程图三、现场卫生管理措施七、机械安排四、文明施工措施二、机械安全措施3、突发事件风险分析及预防四、井点降水施工应急方案五、土方工程施工应急方案六、应急救援措施十 文明施工及环境保护措施一、雨季施工措施第十二章附表及附图1、准备用于本工程的主要施工机械设备情况表2、监测点布置及监测方法5、基坑临边防护措施4施工用电安全措施5、施工机械的安全措施第八节基坑围护施工监测方案1、监测目的2、执行规范与标准3、设计文件及地质资料二、技术标准、文明施工目标第四章施工安排总体部署一、监测内容4、安全文明施工目标一、原材堆放管理措施四、监测频率7、半成品、安全施工目标二、降低环境污染及噪音措施三、成品、现场平面布置图第五章 施工工艺流程及施工要求一、保卫措施第十一章、季节性施工措施一、季节性的保证措施二、安全防护措施1、施工要求第六章主要分项工程施工方法及技术措施第七章 安全施工保证措施一、安全保证体系及职责二、总体施工顺序二、监测工作实施要求第九章、规范及规程第二章工程概况一、工程概况二、地质条件(二)、地层描述(三)、岩土的物理力学性质三、监测仪器6、水文概况第三章、运输车辆管理措施六

基坑工程环境影响控制

为了避免或减少基坑工程带来的环境问题,学者们从多个角度进行了研究,具体如下:(1)地面沉降预测避免地面沉降带来的环境问题,首先要对基坑工程引发的地面沉降量进行预测,以此指导基坑的设计、施工。基坑工程带来的地面沉降主要由两部分组成,基坑降水引发的地面沉降和基坑支护结构位移引发的地面沉降,其中前者对环境影响的半径更大,后者对基坑临近建(构)筑物、地下管线影响较大(蒋国盛,2000)。近年来,预测基坑降水引发地面沉降的研究成果较多,个别学者综合考虑了降水和支护结构对地面沉降的共同作用。GgambolatiG(1974)研究威尼斯的由多层含水层与弱透水层组成的地下水系统抽水引起的地面沉降问题时最早提出两步走的地面沉降预测模型,即水流模型和土体变形模型分别计算,该模型首先由概化的轴对称拟三维地下水流模型计算含水层中水头H的变化,根据含水层和弱透水层的水头H变化计算有效应力的变化,从而计算各土层的变形量,这些变形量之和即为地面沉降量。顾小芸等(1998)考虑三维渗流和一维次固结变形,均通过孔隙比和渗透系数之间的关系实现土体变形和渗流的耦合,提出了各自的地面沉降部分耦合模型。R.W.Lewis(1978)以Biot固结理论为基础提出完全耦合模型,并于1978年将其运用于威尼斯的地面沉降计算中,结果表明水头下降和地面沉降比两步计算较快地趋于稳定。周志芳(2004)在土层降水-固结过程中,考虑到渗透系数和贮水系数随土层物理力学参数的非线性变化,提出了深基坑降水与沉降的非线性耦合计算方法。骆祖江(2006)将地下水渗流场和土体应力场进行耦合,建立了深基坑降水与地面沉降变形的水土全耦合三维数学模型,并采用三维有限元数值分析方法,以上海市环球金融中心深基坑降水为例,模拟预测了基坑中心水位降至标高-23.4m时基坑周围地下水渗流场与地面沉降变形场的分布特征。结果表明,全耦合模型稳定性好,收敛速度快,能模拟复杂三维地质体和整个基坑降水工程的结构。王翠英(2006)通过比较大量深基坑降水地面沉降实测值与理论值,得出理论沉降修正系数,对类似地层的基坑降水工程预测沉降量具有实用价值。陈锦剑(2006)为预测基坑开挖及降水过程中周围土体的沉降,采用基于比奥固结理论的有限单元法在大型有限元软件中建立轴对称模型进行了分析。结果表明:该方法可以反映抽水引起的孔隙水压力变化及土体沉降变化规律,是种实用可行的方法。(2)基坑支护结构变形预测基坑支护结构变形预测的方法有以下五类:① 在基坑施工过程中,对监测数据进行实时统计分析,研究基坑变形发展趋势。利英博(2003)对广州某深基坑的变形位移进行了监测,并通过分析其发展趋势指导基坑施工。② 从基坑变形机理的角度,基于数值模拟的方法进行研究。任建喜(2007)以北京地铁奥运支线森林公园车站南基坑为工程背景,采用有限元法研究了影响地铁深基坑围护结构变形的主要因素,预测了围护结构的变形。李琳(2007)就杭州和上海软土地区46个成功深基坑的实测结果进行了研究和总结,分析了基坑开挖深度与最大侧移及其位置的关系。丁勇春(2008)通过对上海软土地区地铁车站基坑实测数据的分析,探讨了基坑围护结构变形、坑外土体变形及地表沉降的一般规律。侯永茂(2009)采用三维有限元分析方法研究得到了无支撑基坑变形的规律。王桂平(2009)针对软土地基基坑工程存在的“时空效应”特性,在杆系有限元法的基础上,综合考虑土体的时空效应作用,提出软土地区基坑支护结构内力和变形的工程实用计算方法。贾彩虹(2010)采用非稳定渗流-应力耦合的方法对基坑降水开挖过程中的变形问题进行数值模拟分析,计算了坑底开挖的隆起量和桩后地表沉降。③ 基于灰色理论进行研究。赵昌贵(2008)、胡冬(2009)用灰色系统预测理论建立了深基坑变形的非等时距GM(1,1)预测模型。闫韶兵(2006)应用等维GM(1,1)模型预测基坑变形,经过精度检验和残差修正,预测精度较高,编写了实用的MATLAB算法程序。④ 基于神经网络进行研究。贺志勇(2008)基于BP神经网络建立了深基坑变形预测模型。贾备(2009)将灰色理论和BP神经网络相结合,王江(2007)将混沌优化算法和BP神经网络相结合,李玉岐(2004)将修正权值和阀值时的学习速率和动量项变为可调参数,分别提出了改进BP神经网络。刘勇健(2004)将遗传算法与神经网络相结合建立了深基坑变形的实时预报模型。王万通(2008)将模糊控制理论与神经网络技术相结合,建立了一种基于模糊神经网络的深基坑施工变形预测模型。王宁(2009)将基坑变形影响因子构造为考虑开挖深度的瞬时变形影响因子和考虑蠕变效应的历史变形影响因子,利用径向基函数神经网络建立了深基坑变形的监测模型,可实现对后期开挖的深基坑变形的非线性预测。周先存(2009)基于多分支神经网络进行了深基坑变形多点预测研究。袁金荣(2001)在分析灰色系统与神经网络基本原理的基础上,结合前人研究成果和实例分析,认为灰色系统不宜用于地下连续墙水平位移的预测,神经网络是解决基坑变形预测的有效方法。⑤ 基于支持向量机进行研究。赵洪波(2005)较早的将支持向量机应用于预测深基坑变形,表达了深基坑变形与其影响因素之间的非线性映射关系,预测结果表明,利用支持向量机进行深基坑变形是可行的、有效的。徐洪钟(2008)应用最小二乘支持向量机回归建立了基坑位移与时间的关系模型。师旭超(2010)利用遗传算法来搜索支持向量机与核函数的参数,提出了深基坑变形预测的进化支持向量机方法,该方法避免了人为选择参数的盲目性,同时提高了支持向量机的推广预测能力。(3)选用合理的支护结构怎样选择支护结构,各地区的经验和地方规范要求不尽相同。但一般来讲,地下连续墙、带支撑(拉锚)的排桩、能用于不同安全等级和深度的基坑,其侧向位移小,有较好的稳定性;土钉墙、水泥土墙、悬臂排桩应用于安全等级不高、深度不大的基坑支护。通过支护结构优化设计,避免支护结构侧向位移带来的工程事故及环境问题。李大勇(2004)考虑了土体、围护结构与地下管线三者的耦合作用,采用三维有限元法分析了内撑式基坑工程开挖对地下管线的影响规律,得到了有价值的结论。施群(2007)在贴近地铁边缘的深基坑施工中,采用地下连续墙和建筑地下室外墙两墙合一的建筑结构,收到了良好的效果。曹文贵(2008)在深入研究基坑支护方案确定之影响因素基础上,确定出其主要影响因素及评价指标,并根据影响因素与评价指标的层次性和模糊性特点,建立了确定基坑支护方案的综合优化评价模型。李涛(2010)在合理选择支护结构的同时,认为应加强主动防护控制基坑引发环境问题方面的机理和方法研究,并以隔档墙为例介绍了主动防护技术的思路。(4)地下水控制工程实践表明,大大小小的工程事故大多与地下水有关,基坑工程常用地下水控制方法有截水帷幕、井点降水、明沟排水,通过选择地下水控制方法来控制过大的地面沉降、管涌。丁洲祥(2005)采用Biot固结理论分析了止水帷幕对基坑工程环境效应的影响,结果表明,深厚透水地基中增加竖向止水帷幕的深度并不能有效减小对周围环境的影响;漏水部位周围土体的渗流等势线较为密集,渗流速度较大,容易诱发扩大破坏;竖向封闭式止水帷幕漏水引起的坑边土体的沉降和地表土体的侧移相对较大,水位下降迅速。张莲花(2005)针对基坑工程中降水将不可避免对周围环境产生影响的事实,首次提出沉降变形控制的降水最优化问题的概念,这种考虑环境的因素进行优化降水设计的方法改变了过去仅从工程施工和安全的角度进行降水设计的传统观点,实际中取得了较好的效果。(5)基坑工程监测基坑工程中,对周边建筑物(管线)、支护结构的位移、沉降;土压力、孔隙水压力等进行监测,可以尽早发现危险的前兆,修改设计施工方案,采取必要的工程措施,防止工程事故和环境事故的发生。纪广强(2002)通过对南京某超高层建筑深基坑开挖监测结果进行分析,认为基坑地质条件较好且开挖满足支护系统安全稳定的条件时,仍可能对周围环境造成较大的影响。(6)施工管理资料表明,工程施工问题造成的基坑事故、环境破坏占事故总数的41.5%,因此对基坑施工进行严格的科学管理对减少基坑事故有重要意义。以上研究表明,基坑引发的地面沉降是造成环境影响的主要原因,为了降低其发生的概率和强度,可以从支护结构、地下水控制、施工监测、施工管理几个方面采取措施。这些措施的实行在现行国家标准、行业规范、地区规范等标准化文件中已有较多的体现。