雷达原理

阅读 / 问答 / 标签

紫外线灯雷达原理

原理如下:1、紫外线灯发射紫外线:紫外线灯是紫外线雷达的核心部件之一,能够发射出特定波长的紫外线。2、紫外线照射目标:紫外线灯发射的紫外线照射到目标物体上,目标物体吸收或反射紫外。3、接收反射信号:雷达接收器接收到目标物体反射的紫外线信号,并将其转化为电信号。4、信号处理:接收到的电信号经过放大、滤波、调制等处理,提取出目标物体的特征信息。5、目标识别和跟踪:通过对信号进行分析和处理,识别出目标物体,并进行跟踪。

测速雷达原理和频率

测速雷达深圳市麦数科技有限公司雷达测速主要是利用多普勒效应(dopplereffect)原理:当目标向雷达天线靠近时,反射信号频率将高于发射机频率;反之,当目标远离天线而去时,反射信号频率将低于发射机频率。如此即可借由频率的改变数值,计算出目标与雷达的相对速度。现已经广泛用于超速测试等行业。测速雷达的频率分为三种x频,k频及ka频其中又以ka频的频率最高(34.5ghz)频率越高,其接收的距离就越短

有没有谁学过雷达原理,利用频率测距离是怎么回事?什么原理,最好有公式推导。

波长乘以频率等于你的一般测距

雷达原理实验

雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。工作原理各种雷达的具体用途和结构不尽相同,但基本形式是一致的,包括:发射机、发射天线、接收机、接收天线,处理部分以及显示器。还有电源设备、数据录取设备、抗干扰设备等辅助设备。雷达所起的作用跟眼睛和耳朵相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。 事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各自的频率和波长不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)测量速度原理是雷达根据自身和目标之间有相对运动产生的频率多普勒效应。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。测量目标方位原理是利用天线的尖锐方位波束,通过测量仰角靠窄的仰角波束,从而根据仰角和距离就能计算出目标高度。测量距离原理是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成雷达与目标的精确距离。

雷达原理

雷达原理是雷达设备的发射机,通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息,如方位、高度等。 雷达原理的作用 利用这一原理,我们还可以测量速度、距离、位置等。比如雷达测距的原理,是利用发射脉冲与接收脉冲之间的时间差,乘以电磁波的传播速度,从而得到雷达与目标之间的精确距离。目标角位置的测量原理是利用天线的方向性,雷达天线将电磁能量汇集在窄波束内,当天线波束对准目标时,回波信号最强,根据接收回波最强时的天线波束指向,就可确定目标的方向。

雷达原理

超声波定位

什么是雷达原理?

雷达所起的作用和眼睛相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。 事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,传播的速度都是光速C,差别在于它们各自占据的波段不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。 测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。 测量目标方位是利用天线的尖锐方位波束测量。测量仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。 测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。

雷达原理是什么?

雷达所起的作用和眼睛相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。 事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,传播的速度都是光速C,差别在于它们各自占据的波段不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。 测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。 测量目标方位是利用天线的尖锐方位波束测量。测量仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。 测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。

雷达原理

  通过发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。   雷达分类:   1、按照雷达信号形式分类,有脉冲雷达、连续波雷达、脉部压缩雷达和频率捷变雷达等。   2、按照角跟踪方式分类,有单脉冲雷达、圆锥扫描雷达和隐蔽圆锥扫描雷达等。   3、按照目标测量的参数分类,有测高雷达、二坐标雷达、三坐标雷达和敌我识对雷达、多站雷达等。   4、按照雷达采用的技术和信号处理的方式有相参积累和非相参积累、动目标显示、动目标检测、脉冲多普勒雷达、合成孔径雷达、边扫描边跟踪雷达。   5、按照天线扫描方式分类,分为机械扫描雷达、相控阵雷达等。   6、按雷达频段分,可分为超视距雷达、微波雷达、毫米波雷达以及激光雷达等。

pubg分屏雷达原理

pubg分屏雷达原理答案如下:原理一是美版第一步首先是打开设置,原理二是欧版第二步然后进行下载更新重置版型团打卡taptap

请简述要提高雷达的探测距离,有哪些方法?(分别从发射机、接收机和天线角度进行说明) 《雷达原理》

发射机,提高发射功率,接收机,提高接收灵敏度,天线,降低VSWR。

求解雷达原理选择填空题两道

越大不相参

问几个雷达原理的问题?

雷达,它是一种高分辨率,能够探测到许多的东西,他主要就是靠他的无线电波来做的

雷达原理题(判断对错)5道

1.3.4对2.5.错由雷达方程算得的是理论数据,2.雷达在工作中还要考虑地形地貌和电磁环境等,这些都会对雷达的效能产生影响。5.雷达最大作用距离和最大可是距离不是一回事,比如某雷达最大探测半径≥150公里,如果在相对理想的环境下,最大可视距离可以达到170~180公里。

雷达原理

http://wenku.baidu.com/view/463a6804cc175527072208c3.html请查看此链接,介绍简单而详细,非常适合初学者的教案

扫地机用tof激光激光雷达原理好还是三角测距的好

行业认为,三角测距在短距离下精度会相对较高,缺点是受光照影响较大;TOF激光雷达抗强光干扰,使用场景更广泛,技术难度较高。目前国内普遍采用的是三角法激光雷达应用于扫地机器人,应用最多的是EAI激光雷达,你可以去对比下参数介绍。

4d毫米波雷达原理

4d毫米波雷达原理如下:在汽车智能化发展道路中,感知系统是至关重要的一环,理想的自动驾驶系统需要全天候、全覆盖、全目标、全工况的感知。当前的自动驾驶技术水平离理想目标还有较大差距,为了实现高阶自驾,需要在全频段上构建感知系统,有效融合各频段传感器的优势,为规划控制提供准确有效的信息。现阶段自动驾驶技术中,主要用到的传感器有摄像头、激光雷达和毫米波雷达。摄像头的光谱从可见光到红外光谱,是最接近人眼的传感器,有丰富的语义信息,在传感器中具有不可替代的作用,比如红绿灯识别、交通标识识别,都离不开摄像头的信息。激光雷达器件较为成熟,905nm波段广泛应用,能获得丰富的场景立体空间信息。从频谱可以看到,激光在频谱上和可见光较为接近,因此和可见光有着相似的粒子特性,容易受到恶劣天气的影响。而毫米波雷达波长为3.9mm附近,是这几种传感器中波长最长的传感器,全天候性能最好,且具备速度探测优势。摄像头和激光雷达由于有较为丰富的信息,前期的自动驾驶感知研究主要集中这两类传感器,毫米波由于分辨率不足导致其在使用上存在局限性。近年来,各大毫米波厂商在4D毫米波雷达上加大投入,在超宽带和大天线阵列两个方向上取得了一些进展,这使得4D毫米波的研究成为了自动驾驶研究的热点之一。4D毫米波雷达突破了传统雷达的局限性随着毫米波芯片技术的发展,应用于车载的毫米波雷达系统得到了大规模应用,然而传统雷达系统面临着以下缺陷:

无人驾驶汽车激光雷达原理?

激光雷达由发射系统、接收系统、信息处理三部分组成:激光器将电脉冲变成光脉冲发射出去,光接收机再把从目标反射回来的光脉冲还原成电脉冲,最后经过一系列算法来得出目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,可以探测、识别、分辨和跟踪目标。激光雷达在无人驾驶的两个核心作用:1.3D建模进行环境感知。通过激光扫描可以得到汽车周围环境的3D模型,运用相关算法比对上一帧和下一帧环境的变化可以较为容易的探测出周围的车辆和行人。2.SLAM加强定位。激光雷达另一大特性是同步建图(SLAM),实时得到的全局地图,通过与高精度地图中特征物的比对,可以实现导航及加强车辆的定位精度。

倒车雷达原理

倒车雷达的工作原理就是利用超声波信号,经倒车雷达主机内微电脑的控制,再从探头的发射与接收信号过程中,比对信号折返时间而计算出障碍物距离,然后由报警器发出不同的报警声。倒车雷达由超声波传感器、控制器和显示器等部分组成。能以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车、倒车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊的缺陷,提高驾驶的安全性。倒车雷达的组成部分:超声波传感器:主要功能是发出和接收超声波信号,然后将信号输入到主机里面,通过显示设备显示出来。控制器:对信号进行处理,计算出车体与障碍物之间的距离及方位。显示器或蜂鸣器:当传感器探知汽车距离障碍物的距离达到危险距离时,系统会通过显示器和蜂鸣器发出警报,提醒驾驶员。倒车雷达使用注意事项:倒车雷达的显示器装在后视镜上,它不停地提醒司机车距后面物体还有多少距离,到危险距离时,蜂鸣器就开始鸣叫,以鸣叫的间断/连续急促程度,提醒司机对障碍物的靠近,及时停车。挡位杆挂入倒挡时,倒车雷达自动开始工作,测距范围达0.2到1.8米左右,故在停车时,对司机很实用。

倒车雷达原理?

倒车雷达的主要作用是在倒车时,自动启动倒车雷达,无须回头便可知车后有无障碍物,使停车和倒车更容易、更安全。刚开始,倒车雷达只是宝马、奔驰等高档车型的专利,近两年,虽然一些新车型配置当中也多了倒车雷达,但更多的车型在这方面还是空缺,于是自行安装倒车雷达就成了一个新兴的装饰项目。由于高档车在出厂时几乎都配备有倒车雷达系统,所以购买倒车雷达自行安装的用户几乎都是中低档车的车主。倒车雷达的提示方式可分为液晶、语言和声音三种;接收方式有无线传输和有线传输两种。一般而言,倒车雷达的价位在200~2000元之间,但最为畅销的产品价位在700~800元。选择倒车雷达时,要注意以下4个细节:一是功能。功能较齐全的倒车雷达应该有距离显示、声响报警、区域警示和方位指示功能。二是性能。主要从探测范围、准确性、显示稳定性和捕捉目标速度上来考虑。三是款式。探头的颜色应与车身颜色相符;保险杠较宽的车型应安装较薄较大的探头产品。四是服务。建议大家选择保修期限2年以上的产品

汽车倒车雷达原理

倒车雷达现如今也是很火热的一个零配件了,很受人民群众的钟爱。倒车雷达能给买车人和汽车产生一定的安全系数,也可以给别人产生安全性,一旦泊车背后有一个小孩在玩乐,倒车雷达马上会警报的,也是特别好用、安全性的。下边简易说一下倒车雷达的基础知识吧倒车雷达介绍:倒车雷达全名叫“转向防碰雷达探测”,也叫“泊车辅助设备”,是汽车停车或是转向时的安全防护_助设备,由超声波感应器(别名探头)、控制板和显示屏(或无源蜂鸣器)等部份构成。能以响声或是更加直接的表明告之驾驶者周边障碍物的状况,消除了驾驶人员停车、转向和启动汽车时上下左右探望所造成的困惑,并协助驾驶人员排除了视线盲区和视线模糊的缺点,提升驾车的安全系数。检测原理倒车雷达是依据蜘蛛在夜晚里快速航行而不易与一切障碍物相碰的原理开发设计的。探头装在保险杠上,依据不一样价钱和知名品牌,探头有二、三、四、六、八、十、十二只不一,关键于前保险杠上安_。探头可以以较大水准120度竖直70度范畴辐射源,前后左右寻找总体目标。它最高的益处是能探寻到这些小于保险杆而驾驶员从后挡风玻璃无法看到的障碍物,并警报,如花圃、土路肩、蹲在车子玩乐的小孩子等。倒车雷达的显示屏装在倒车镜上,它不断地建议驾驶员车距判断后边物件也有是多少间距,到风险间距时,无源蜂鸣器就逐渐鸣叫声,以鸣叫声的中断/持续紧促水平,提示驾驶员对障碍物的挨近,立即泊车。档位杆挂进倒挡时,倒车雷达全自动开始工作,激光测距范畴达0.2到1.8米长,故在停机时,对驾驶员很好用。倒车雷达就等同于超声波探头,从总体上而言超声波探头能够分成两类:一是用电气设备方法造成超声波,其二是用设备方法造成超声波,由于现阶段比较常见的是压阻式超声波产生器,它有两个电芯片和一个共振板,当两方面另加差分信号,它的次数相当于压电式芯片的原有波动_率时,工作压力芯片可能产生共震,并推动共振板震动,将设备的能变为电子信号的这一全过程,这就变成超声波探头的工作中原理。为了更好地更好的科学研究超声波和运用起_,大家早已设计方案和生产制造出许多超声波发音器,超声波探头多方面应用在应用汽车倒车雷达上。这类原理用在一种非触碰无损检测技术上,用以激光测距而言其测算简易,便捷快速,便于保证实时处理,间距精确度做到工业生产适用的规定。倒车雷达用以激光测距上,在某一时时刻刻传出超声波数据信号,在碰到被测物件后的射回数据信号波,被倒车雷达接受到,得用在超声波数据信号从发送到接受雷达回波数据信号这一个_间而测算出在物质中的快速传播,这就可以测算出探头与被检测到的物件的间距。检测盲点尽管倒车雷达给大家提供许多便捷,但不可以太过依靠,由于雷达探测也是有盲点,在下面这几类状况下,雷达探测是不可能作出反映的:过度窄小的障碍物一般来说小于探头核心10~15cm下列的障碍物就会有也许被探头所忽略,并且障碍物间距停车位间距越近的,这一高宽比值也便会随着减少,危险因素也随着扩大。太细的障碍物因为雷达探测探头发送的超声波数据信号窄小,因而在检测偏细的障碍物是具有着很大的盲点,一些路面上用于隔绝车子的隔离桩,电杆上的悬索钢绳全是危险品。沟坎雷达探测是用于检测障碍物的,车子拥有沟坎,那_雷达探测是绝对不会作出反映的。根据上述有关倒车雷达的主要内容解读,想来买车人们都己经知道了吧。_有组装的还可以考量安_一下,尤其是新手倒车技术性不好的,能够尝试安_一个。为了更好地自己和别人安全性,能够装一个倒车雷达。据新闻报道掌握转向把小孩辗压的事情或是许多的,发生一定确保安全。百万购车补贴

汽车倒车雷达原理

倒车雷达又称之为防撞击雷达探测,是最根本的泊车辅助系统软件。就现在市场上的再售车系看来,该作用基本上早已建立了全覆盖(在低配版薄上仅仅有后倒车雷达,而顶配版本号前后左右均配备有雷达探测检测)。那_倒车雷达的工作原理是啥?针对_有配备倒车雷达的汽车而言必须改装吗?倒车雷达的工作原理倒车雷达的工作原理十分的简易,它由超声波传感器、控制板和无源蜂鸣器三部份构成。工作中时,超声波传感器对外开放发送超声波,并在超声波碰撞路障后反射面回家,再度被超声波传感器接受,而控制板则依据超声波发送和返还的计算时间车子与阻碍物间的间距,最终根据无源蜂鸣器传出急喘的警报声音提示驾驶人员。倒车雷达必须装吗?倒车雷达做为最根本的泊车辅助系统软件,基本上涵盖了全部的车系,而假如车子时代较为悠久,_有配用倒车雷达,且对自身的开车技术并不是尤其安心得话,为了更好地驾驶的安全性,或是必须改装的。(假如车子_有配用倒车雷达得话,只有表明此车企为了更好地控制成本,早已做到逃避责任的心态了,而人们也确实_有需要为这类汽车企业付钱)百万购车补贴

倒车雷达原理

倒车雷达的工作原理就是利用超声波信号,经倒车雷达主机内微电脑的控制,再从探头的发射与接收信号过程中,比对信号折返时间而计算出障碍物距离,然后由报警器发出不同的报警声。倒车雷达由超声波传感器、控制器和显示器等部分组成。能以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车、倒车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊的缺陷,提高驾驶的安全性。倒车雷达的组成部分:超声波传感器:主要功能是发出和接收超声波信号,然后将信号输入到主机里面,通过显示设备显示出来。控制器:对信号进行处理,计算出车体与障碍物之间的距离及方位。显示器或蜂鸣器:当传感器探知汽车距离障碍物的距离达到危险距离时,系统会通过显示器和蜂鸣器发出警报,提醒驾驶员。倒车雷达使用注意事项:倒车雷达的显示器装在后视镜上,它不停地提醒司机车距后面物体还有多少距离,到危险距离时,蜂鸣器就开始鸣叫,以鸣叫的间断/连续急促程度,提醒司机对障碍物的靠近,及时停车。挡位杆挂入倒挡时,倒车雷达自动开始工作,测距范围达0.2到1.8米左右,故在停车时,对司机很实用。

雷达原理是什么?

雷达所起的作用和眼睛相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。 事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,传播的速度都是光速C,差别在于它们各自占据的波段不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。测量目标方位是利用天线的尖锐方位波束测量。测量仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。

tof激光雷达原理是什么?专家请进

之前看到海伯森一篇文章上有介绍,说这个原理是激光器发射一个激光脉冲,并由计时器记录下出射的时间,回返光经接收器接收,并由计时器记录下回返的时间。两个时间相减即得到了光的“飞行时间”,而光速是一定的,因此在已知速度和时间后很容易就可以计算出距离。

三角测距激光雷达原理

激光雷达近几年越来越普及了,复杂的比如应用在无人驾驶汽车上,简单的比如用在扫地机上去。随着无人驾驶和服务机器人行业的发展,后续激光雷达的应用会更广泛。激光雷达之所以流行,主要是因为它能够精准的测距,那么它是如何实现这样的测距功能的呢? 主流的激光雷达主要是基于两种原理的,一种是三角测距法,一种是飞行时间(TOF)法。听名字可不要觉得很复杂,其实只需要高中知识,任何人都能看懂它的测距原理! 今天咱们就先讲讲三角测距法激光雷达。 典型的三角测距原理结构如下图: 激光器Laser以一定的角度beta射出一束激光,沿激光方向距离为d的物体反射激光。 接受激光的一般是个长条的CMOS(可以看成是一个长条形的摄像头),被物体反射的激光经过“小孔成像”被Imager(即CMOS)拍摄到。 焦距是f,物体离平面的垂直距离是q,激光器和焦点间的距离是s,过焦点平行于激光方向的虚线,它跟Imager的交点位置一般是预先知道的(确定好beta就知道了),物体激光反射后成像在Imager上的点位置离该处的距离为X。 从图中很容易看出来,q,d,beta组成的三角形跟X,f组成的三角形是相似三角形,于是有: 因为f,s,beta都是预先可以已知的量,唯一需要测量的就是X,因此,测出X就测出了d,即得到物体离激光器的距离了。 从图中可以轻易的看出,如果d的距离变短了,则X就会变大,d变大了,X就变小。从Imager测出X只要计算出得到的光斑的中心即可获得距离X。 上面讲解了如何根据三角测距原理进行单点测距,可是激光雷达是360°的,怎么才能变成激光雷达呢?将单点拿去旋转即可! 将激光器和成像器固定在一起,做成一个固定的装置,然后旋转,即可获得周围360°的扫描结果了。

激光雷达原理

激光雷达主要应用了激光测距的原理。激光雷达,也称光学雷达(LIght Detection And Ranging)是激光探测与测距系统的简称,它通过测定传感器发射器与目标物体之间的传播距离,分析目标物体表面的反射能量大小、反射波谱的幅度、频率和相位等信息,从而呈现出目标物精确的三维结构信息。激光雷达测距方法目前主要以飞行时间(time of flight)法为主,利用发射器发射的脉冲信号和接收器接受到的反射脉冲信号的时间间隔来计算和目标物体的距离。也有使用相干法,即为调频连续波(FMCW)激光雷达发射一束连续的光束,频率随时间稳定地发生变化。由于源光束的频率在不断变化,光束传输距离的差异会导致频率的差异,将回波信号与本振信号混频并经低通滤波后,得到的差频信号是光束往返时间的函数。调频连续波激光雷达不会受到其他激光雷达或太阳光的干扰且无测距盲区;还可以利用多普勒频移测量物体的速度和距离。调频延续波LiDAR概念并不新颖,但是面对的技术挑战不少,例如发射激光的线宽限制、线性调频脉冲的频率范围、线性脉冲频率变化的线性度,以及单个线性调频脉冲的可复制性等。

激光雷达原理

激光雷达主要应用了激光测距的原理。激光雷达,也称光学雷达(LIght Detection And Ranging)是激光探测与测距系统的简称,它通过测定传感器发射器与目标物体之间的传播距离,分析目标物体表面的反射能量大小、反射波谱的幅度、频率和相位等信息,从而呈现出目标物精确的三维结构信息。激光雷达测距方法目前主要以飞行时间(time of flight)法为主,利用发射器发射的脉冲信号和接收器接受到的反射脉冲信号的时间间隔来计算和目标物体的距离。也有使用相干法,即为调频连续波(FMCW)激光雷达发射一束连续的光束,频率随时间稳定地发生变化。由于源光束的频率在不断变化,光束传输距离的差异会导致频率的差异,将回波信号与本振信号混频并经低通滤波后,得到的差频信号是光束往返时间的函数。调频连续波激光雷达不会受到其他激光雷达或太阳光的干扰且无测距盲区;还可以利用多普勒频移测量物体的速度和距离。调频延续波LiDAR概念并不新颖,但是面对的技术挑战不少,例如发射激光的线宽限制、线性调频脉冲的频率范围、线性脉冲频率变化的线性度,以及单个线性调频脉冲的可复制性等。

雷达原理?雷达用的是什么波?

楼上说的不对,雷达用的可以是米波,也可以是分米波,也可以是厘米波,还可以是毫米波。

雷达原理

通过发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 通过发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达分类: 1、按照雷达信号形式分类,有脉冲雷达、连续波雷达、脉部压缩雷达和频率捷变雷达等。 2、按照角跟踪方式分类,有单脉冲雷达、圆锥扫描雷达和隐蔽圆锥扫描雷达等。 3、按照目标测量的参数分类,有测高雷达、二坐标雷达、三坐标雷达和敌我识对雷达、多站雷达等。 4、按照雷达采用的技术和信号处理的方式有相参积累和非相参积累、动目标显示、动目标检测、脉冲多普勒雷达、合成孔径雷达、边扫描边跟踪雷达。 5、按照天线扫描方式分类,分为机械扫描雷达、相控阵雷达等。 6、按雷达频段分,可分为超视距雷达、微波雷达、毫米波雷达以及激光雷达等。

全息矩阵雷达原理

雷达,将电磁能量以定向方式发设至空间之中,藉由接收空间内存在物体所反射之电波,可以计算出该物体之方向,高度及速度.并且可以探测物体的形状,以地面为目标的雷达可以探测地面的精确形状。 雷达是利用微波波段电磁波探测目标的电子设备。雷达是英文radar的音译,意为无线电检测和测距。雷达概念形成于20世纪初。雷达的工作原理,是设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。雷达分为连续波雷达和脉冲雷达两大类。脉冲雷达因容易实现精确测距,且接收回波是在发射脉冲休止期内,所以接收天线和发射天线可用同一副天线,因而在雷达发展中居主要地位。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。目标方位是利用天线的尖锐方位波束测量。仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。当雷达和目标之间有相对运动时,雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。其空间分辨力可达几米到几十米,且与距离无关。雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面显示了很好的应用潜力。 1922年美国泰勒和杨建议在两艘军舰上装备高频发射机和接收机以搜索敌舰。1924年英国阿普利顿和巴尼特通过电离层反射无线电波测量赛层的高度。美国布莱尔和杜夫用脉冲波来测量亥维塞层。1931年美国海军研究实验室利用拍频原理研制雷达,开始让发射机发射连续波,三年后改用脉冲波1935年法国古顿研制出用磁控管产生16厘米波长的撜习窖捌鲾,可以在雾天或黑夜发现其他船只。这是雷达和平利用的开始。1936年1月英国W.瓦特在索夫克海岸架起了英国第一个雷达站。英国空军又增设了五个,它们在第二次世界大战中发挥了重要作用。1937年美国第一个军舰雷达XAF试验成功。 1941年苏联最早在飞机上装备预警雷达。1943年美国麻省理工学院研制出机载雷达平面位置指示器,可将运动中的飞机柏摄下来,他胶发明了可同时分辨几十个目标的微波预警雷达。1947年美国贝尔电话实验室研制出线性调频脉冲雷达。50年代中期美国装备了超距预警雷达系统,可以探寻超音速飞机。不久又研制出脉冲多普勒雷达。 1959年美国通用电器公司研制出弹道导弹预警雷达系统,可发跟踪3000英里外,600英里高的导弹,预警时间为20分钟。 1964年美国装置了第一个空间轨道监视雷达,用于监视人造地球卫星或空间飞行器。1971年加拿大伊朱卡等3人发明全息矩阵雷达。与此同时,数字雷达技术在美国出现。 雷达按照用途可以分为军用雷达和民用雷达,军用雷达包括警戒雷达,制导雷达,敌我识别等;而民用雷达包括导航雷达,气象雷达,测速雷达等。 天气雷达是探测大气中气象变化的千里眼、顺风耳。天气雷达通过间歇性地向空中发射电磁波(脉冲),然后接收被气象目标散射回来的电磁波(回波),探测400多千米半径范围内气象目标的空间位置和特性,在灾害性天气,尤其是突发性的中小尺度灾害性天气的监测预警中发挥着重要的作用。

雷达原理

雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息。1.基本原理:雷达利用发射器发出一束电磁波,当该波遇到物体时会被反射回来。接收器记录下返回的电磁波,并根据返回波的特性来判断目标的距离、方位和速度。2.发射过程:雷达发射器通常使用一种称为脉冲调制的技术,将电磁波转换为脉冲信号。发射的脉冲信号会以一定频率和功率向外辐射。3.反射过程:当脉冲信号遇到目标物体时,会产生散射和反射现象。目标物体吸收部分能量,剩余的能量被反射回到雷达接收器。4.接收过程:雷达接收器接收到反射回来的信号,并将其转换为可处理的电信号。通过处理这些信号,可以获取目标物体的距离、方位和速度等信息。5.数据处理:接收到的信号经过滤波、放大、调制等处理,去除噪音和干扰。通过对信号的分析和处理,得出目标物体的特征和参数。6.显示结果:雷达系统根据处理后的数据,将目标物体的信息显示在雷达屏幕上。通常使用雷达图来表示目标物体的位置和运动情况。7.应用领域:雷达技术广泛应用于航空、海洋、环境监测、气象预报等领域。它不仅可以探测和追踪飞机、船只等目标,还可以用于测量大气参数和地形地貌。雷达原理是一种基于电磁波的主动探测技术,通过发射和接收电磁波来获取目标物体的相关信息。它已经成为现代科技中不可或缺的一部分,极大地推动了航空、导航、通信、天气预报等领域的发展。随着技术的不断进步,雷达系统的性能和应用正不断扩展和改进。

雷达原理是什么

雷达原理是什么呢?不知道的小伙伴来看看小编今天的分享吧!雷达测量速度和测量距离使用到的原理不同,测量速度原理:雷达根据自身和目标之间有相对运动产生的频率多普勒效应;测量距离原理:测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成雷达与目标的精确距离。1、测量速度原理:雷达根据自身和目标之间有相对运动产生的频率多普勒效应,雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。测量目标方位原理是利用天线的尖锐方位波束,通过测量仰角靠窄的仰角波束,从而根据仰角和距离就能计算出目标高度。2、测量距离原理:测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成雷达与目标的精确距离。雷达所起的作用跟眼睛和耳朵相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各自的频率和波长不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。雷达的分类:雷达的种类繁多,分类的方法也非常复杂。一般为军用雷达。通常可以按照雷达的用途分类,如预警雷达、搜索警戒雷达、引导指挥雷达、炮瞄雷达、测高雷达、战场监视雷达、机载雷达、无线电测高雷达、雷达引信、气象雷达、航行管制雷达、导航雷达以及防撞和敌我识别雷达等。1、按照雷达信号形式分类,有脉冲雷达、连续波雷达、脉部压缩雷达和频率捷变雷达等。2、按照角跟踪方式分类,有单脉冲雷达、圆锥扫描雷达和隐蔽圆锥扫描雷达等。3、按照目标测量的参数分类,有测高雷达、二坐标雷达、三坐标雷达和敌我识对雷达、多站雷达等。4、按照雷达采用的技术和信号处理的方式有相参积累和非相参积累、动目标显示、动目标检测、脉冲多普勒雷达、合成孔径雷达、边扫描边跟踪雷达。5、按照天线扫描方式分类,分为机械扫描雷达、相控阵雷达等。6、按雷达频段分,可分为超视距雷达、微波雷达、毫米波雷达以及激光雷达等。以上就是小编今天的分享了,希望可以帮助到大家。