量子计算机原理

阅读 / 问答 / 标签

量子计算机原理

量子计算机原理是一种使用量子逻辑进行通用计算的装置。量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统,量子计算机的变换包括所有可能的正变换。量子特性在提高运算速度、确保信息安全、增大信息容量和提高检测精度等方面可能突破现有经典信息系统的极限。量子客体的波粒两象性迫使人们不得不引入波函数来描述量子客体的状态,著名物理学家费曼曾指出:量子力学的精妙之处在于引入几率幅的概念。事实上,量子世界的千奇百怪的特性正是起源于这个量子态,而关于量子理论的长期激烈争论的焦点也在这个量子态。按照量子力学理论,EPR粒子对处在所谓的纠缠态上,这个量子态最大地违背Bell不等式,有着奇特的性质:我们无法单独地确定某个粒子处在什么量子态上,这个态给出的唯一信息是两个粒子之间的关联这类整体的特性,实验上已成功地制备这类纠缠态。自发参量下转换的非线性光学过程所产生的孪生光子对就是在频域、方向、偏振上形成纠缠的EPR对,采用腔量子电动力学方法也已制备出原子纠缠态。

量子计算机原理

量子计算机原理是一种使用量子逻辑进行通用计算的装置。量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统,量子计算机的变换包括所有可能的正变换。量子特性在提高运算速度、确保信息安全、增大信息容量和提高检测精度等方面可能突破现有经典信息系统的极限。量子客体的波粒两象性迫使人们不得不引入波函数来描述量子客体的状态,著名物理学家费曼曾指出:量子力学的精妙之处在于引入几率幅的概念。事实上,量子世界的千奇百怪的特性正是起源于这个量子态,而关于量子理论的长期激烈争论的焦点也在这个量子态。按照量子力学理论, EPR粒子对处在所谓的纠缠态上,这个量子态最大地违背 Bell不等式,有着奇特的性质:我们无法单独地确定某个粒子处在什么量子态上,这个态给出的唯一信息是两个粒子之间的关联这类整体的特性,实验上已成功地制备这类纠缠态。自发参量下转换的非线性光学过程所产生的孪生光子对就是在频域、方向、偏振上形成纠缠的 EPR对,采用腔量子电动力学方法也已制备出原子纠缠态。

量子计算机原理是什么 量子计算机是怎么工作的

1、量子计算机就是用量子比特代替原来的普通比特。 2、从物理层面上来看,量子计算机不是基于普通的晶体管,而是使用自旋方向受控的粒子(比如质子核磁共振)或者偏振方向受控的光子(学校实验大多用这个)等等作为载体。当然从理论上来看任何一个多能级系统都可以作为量子比特的载体。 3、从计算原理上来看,量子计算机的输入态既可以是离散的本征态(如传统的计算机一样),也可以是叠加态(几种不同状态的几率叠加),对信息的操作从传统的“和”,“或”,“与”等逻辑运算扩展到任何幺正变换,输出也可以是叠加态或某个本征态。所以量子计算机会更加灵活,并能实现并行计算。

光量子计算机原理和组成部分是什么?

光子计算机是一种由光信号进行数字运算、逻辑操作、信息存贮和处理的新型计算机。它由激光器、光学反射镜、透镜、滤波器等光学元件和设备构成,随着现代光学与计算机技术、微电子技术相结合,在不久的将来,光子计算机将成为人类普遍的工具。

量子计算机原理详解和极化码基础原理

量子计算机原理 量子计算机的核心部分在于离子电磁阱作用,通过核磁共振给通电的离子电磁阱热浴使原子能级中的量子位对齐形成离散能级谱,而晶格中的原子、离子经过光学谐振腔作用使原子、离子进行受激辐射组成量子线路,随后因在超导环境中的低熵状态下使量子不易流失从而利于纠错。那为什么量子计算机存在“1和“0”同时占有一个位置(叠加态),先从环绕原子的电子说起,一个原子基态的一条轨道上只存在互为相反方向运动的两个电子,这就是同一条轨道同时存在“0”和“1”两个电子的原因。而量子线路原理,激发态与基态能够互为交换电子是因为光学谐振腔中的激光辐射使基态与激发态中的电子轨道发生弹性跃迁或互换,同时也可使原子之间的电子云发生偏振。而量子线路中的电子能级跃迁或互换的规律被称为互换闸,一个能级电子的旋转规律被称为旋转闸。离子电磁阱中的原子量子位元能级的不同是线性的,代表着有多少能级相当于多少几何空间,最外层包裹一直到最里层称为几何空间数学图形。而在低温超导环境的超导元器件中,由于它的晶格原子能级电子在极低温的环境因超导迈斯纳效应原子周围的磁矩吸引力变强了,有效的防止了量子去相干性的发生,有效的控制了量子围绕原子的规则,并利于纠错码纠错。如何运用纠错码原理纠错量子码,一个能级的所有电子对是有限的,而能级的层数也是有限的,我们以每个能级的电子对个数分为两部分,一部分能级的总电子对数分为奇数码,另一部分能级的总电子对数分为偶数码,这是纵向分部。而横向分布则为所有能级中每个能级的一个电子对与所有能级的各电子对互相连接,所有能级的每个能级的每个电子对一部分为奇数码,另一部分为偶数码。当其中一个电子对消失后这行这列就少了一个0和1叠加数,而如果是电子对中的一个电子退相干,那么剩下一个电子必然会找到其他电子形成电子对,然而始终会少一个0或1,这样也就方便查询。而为了使大量晶格中的离子电磁阱连接,需要用到激光器和激光干涉仪以及分光镜,作用于连接所有的离子电磁陷阱。极化码原理 极化码原理,在信道中分为0和1信道,极化码通常以0或1两端极化无限分类,趋向于末端1的传输信息比特,趋向于末端0的传输于冻结比特,信息比特是通过N个子信道无限信道分解,分解的子信道一端向1的信道中无限组合称为传输新信息的信道。另一端N个子信道分解无限趋于0的称为冻结信道它包含相互已存在的信息。通过以极化码的形式编码,在极化码编码完成后开始解码,极化码在香农信道中更接近极限,趋于冻结信道传输于表面知识,趋于信息信道传输内部消息,通常组合信道在趋于1时通过滤波功能使信道频率完美接近无噪声,另一端则无限分解直到0,所有趋于0的子信道会被自动删除,所以不用提供滤波功能。我们先使信息比特做CRC寄存器检验列出信息比特序列,再使信息比特进行极化码编码,完成编码后极化码通过SCL编译时,SCL选择了极化码多条有效路径并进行路径保留(实际上极化码有效路径只有一条)通过CRC寄存器检验路径与之前CRC检验信息比特序列之间以商的形式对比(等于完全相同0的商)以对比的检验码和有效信息比特同时发送给接收方在解码时由于信道中其他的赫兹波频(闪电)对正常信道产生干扰造成的误差率影响了有效信息比特产生了错误传输,就可以通过检验码对信息比特进行反复纠错,以重新自动传送有效信息比特来达到正确解码。

量子计算机原理是什么 量子计算机是怎么工作的

1、量子计算机就是用量子比特代替原来的普通比特。 2、从物理层面上来看,量子计算机不是基于普通的晶体管,而是使用自旋方向受控的粒子(比如质子核磁共振)或者偏振方向受控的光子(学校实验大多用这个)等等作为载体。当然从理论上来看任何一个多能级系统都可以作为量子比特的载体。 3、从计算原理上来看,量子计算机的输入态既可以是离散的本征态(如传统的计算机一样),也可以是叠加态(几种不同状态的几率叠加),对信息的操作从传统的“和”,“或”,“与”等逻辑运算扩展到任何幺正变换,输出也可以是叠加态或某个本征态。所以量子计算机会更加灵活,并能实现并行计算。

量子计算机原理

量子计算的原理就是将量子力学系统中量子态进行演化结果。量子计算机的基本原理还是冯诺伊曼体系结构,量子计算机依然是分为两个主要单元,计算单元和存储单元。量子计算机和现在的电子计算机最大的不同在于其使用的存储单元,量子计算机用来存储数据的东西叫“量子比特”。量子计算机量子客体的波粒两象性迫使人们不得不引入波函数(量子态)来描述量子客体的状态,著名物理学家费曼曾指出:量子力学的精妙之处在于引入几率幅(即量子态)的概念。事实上,量子世界的千奇百怪的特性正是起源于这个量子态,而关于量子理论的长期激烈争论的焦点也在这个量子态。事实上,按照量子力学理论, EPR粒子对处在所谓的纠缠态上,这个量子态最大地违背 Bell不等式,有着奇特的性质:我们无法单独地确定某个粒子处在什么量子态上,这个态给出的唯一信息是两个粒子之间的关联这类整体的特性,实验上已成功地制备这类纠缠态。以上内容参考:百度百科——量子计算机