温度控制系统

阅读 / 问答 / 标签

基于AT89C2051单片机的温度控制系统的设计

不难的设计,可是问题是为什么给你东西啊?

跪求51单片机温度控制系统开题报告以及论文

  摘要  本文主要介绍了基于PID控制理论的单片机温度的控制。控制器件使用单片机,单片机的应用有利于增加控制的灵活性,提高控制精度,减小控制部分的体积,是现代控制的主要硬件部分。  温度是工业控制对象的主要被控参数之一,如冶金,机械,食品,化工各类工业中广泛使用的各种加热炉,热处理炉,反应炉等。在过去多是采用常规的模拟调节器对温度进行控制,本文采用了单片微型机对温度实现自动控制。对不同的升温速率升温,再对某种仪器在不同升温状况下的特性进行检测,达到了较高的精度。  应用继电器自整定方法,可以快速整定PID参数,减少工人的工作量,计算出错的几率降低很多。所使用的时间也减少了很多,工作效率大大提高。并应用经验公式快速计算出相应的数值。  关键词: PID 单片机 继电器整定 温度控制  ABSTRACT  This text mainly introduced the controller of PID in industry produce the control of the temperature.The controller piece uses a machine, the application of a machine is advantageous to the vivid of the increment control, exaltation control accuracy, let up the control the physical volume of the part, is main hardware part of the modern control.  The temperature is a mainly industry controled object, such as metallurgy, machine, food, each kind of industry of chemical engineering in various heating stove of the extensive usage, the hot processing stove, reactor etc..At pass by mostly the emulation modulator adopt of the normal regulations carries on the control to the temperature, this literary grace uses a miniature machine to carry out the automatic control to the temperature.Carry on the examination towards heating the velocity to heat differently, again to a certain instrument under the condition that dissimilarity heat of characteristic, come to a the higher accuracy.  Using relay setting method, It can settle the parameter of PID quickly and reduce the worker"s workload, several rates that compute to come amiss lower many. The time also reduced a lot of, Work efficiency raises consumedly.Apply the empirical formula also to compute a number for correspond quickly  Keyword: PID Single-chip microcomputer Relay setting temperature control  绪论  温度是生产过程和科学实验中普遍而且重要的物理 参数。在工业生产过程中为了高效地进行生产,必须对生产工艺过程中的主要参数,如温度,压力,流量,速度等进行有效的控制。其中温度的控制在生产过程中占有相当大的比例。准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。本课题是结合生产实际和科研工作,运用PID算法对温度进行控制,以求达到较好的控制效果。  目前先进国家各种炉窑自动化水平较高,装备有完善的检测仪表和计算机控制系统。其计算机控制系统已采用集散系统和分布式系统的形式,大部分配有先进的控制算法,能够获得较好的工艺性能指标。单片微型计算机是随着超大规模集成电路的技术的发展而诞生的。由于它具有体积小,功能强,性价比高等优点,所以广泛应用于电子仪表,家用电器,节能装置,军事装置,机器人,工业控制等诸多领域,使产品小型化,智能化,既提高了产品的功能和质量又降低了成本,简化了设计。本文主要涉及MCS-51单片机在温度控制中的应用。应用单片机实现PID控制算法和PID参数的整定。  PID 控制是最早发展起来的控制策略之一, 由于其算法简单、鲁棒性好、可靠性高等优点, 被广泛应用于工业过程控制。当用计算机实现后, 数字 PID 控制器更显示出参数调整灵活、算法变化多样、简单方便的优点。随着生产的发展, 对控制的要求也越来越高, 随之发展出许多以计算机为基础的新型控制算法, 如自适应 PID 控制、模糊 PID 控制、智能 PID 控制等等。  1.PID 控制原理  模拟 PID 控制系统原理框图如图 1- 1所示, 系统由模拟 PID 控制器和受控对象组成。  PID 控制器根据给定值 r(t) 与实际输出值c(t) 构成的控制偏差:  (1-1 )  将偏差的比例(P)、积分( I) 和微分 (D ) 通过线性组合构成控制量, 对受控对象进行控制。其控制规律为:  (1- 2)  或写成传递函数形式:  (1- 3)  式中, 为比例系数, 为积分时间常数, 为微分时间常数。  简单说来, PID 控制器各校正环节的作用是这样的:  ●比例环节: 即时成比例地反应控制系统的偏差信号 , 偏差一旦产生, 控制器立即产生控制作用以减小误差。  ●积分环节: 主要用于消除静差, 提高系统的无差度, 积分作用的强弱取决于积分时间常  数 , 越大积分作用越弱, 反之则越强。  ● 微分环节: 能反应偏差信号的变化趋势(变化速率) , 并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号, 从而加快系统的动作速度, 减小调节时间。  2. PID控制规律及对系统稳定性的影响  控制器输出与偏差信号之间的函数关系称为控制规律。控制规律决定了控制器的特性。在控制器输出稳定之前,偏差 与输出之间的相互关系,称为控制器的动态特性。在控制器上施加恒定的偏差,经过一段时间,控制器的输出达到稳定,偏差 与输出 的相互关系称为控制器的静特性。控制器的输入与输出信号的相互关系如图所示。图中 为偏差信号,通常用测量值与给定值只差在全量程范围中所占的百分数来表示:

基于单片机的温度控制系统设计

第一章 绪论 1. 1 选题背景 防潮、防霉、防腐、防爆是仓库日常工作的重要内容,是衡量仓库管理质量的重要指标。它直接影响到储备物资的使用寿命和工作可靠性。为保证日常工作的顺利进行,首要问题是加强仓库内温度与湿度的监测工作。但传统的方法是用与湿度表、毛发湿度表、双金属式测量计和湿度试纸等测试器材,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。因此我们需要一种造价低廉、使用方便且测量准确的温湿度测量仪。1.2 设计过程及工艺要求 一、基本功能~ 检测温度、湿度~ 显示温度、湿度~ 过限报警 二、主要技术参数 ~ 温度检测范围 : -30℃-+50℃~ 测量精度 : 0.5℃~ 湿度检测范围 : 10%-100%RH~ 检测精度 : 1%RH~ 显示方式 : 温度:四位显示 湿度:四位显示~ 报警方式 : 三极管驱动的蜂鸣音报警 第二章 方案的比较和论证 当将单片机用作测控系统时,系统总要有被测信号懂得输入通道,由计算机拾取必要的输入信息。对于测量系统而言,如何准确获得被测信号是其核心任务;而对测控系统来讲,对被控对象状态的测试和对控制条件的监察也是不可缺少的环节。传感器是实现测量与控制的首要环节,是测控系统的关键部件,如果没有传感器对原始被测信号进行准确可靠的捕捉和转换,一切准确的测量和控制都将无法实现。工业生产过程的自动化测量和控制,几乎主要依靠各种传感器来检测和控制生产过程中的各种参量,使设备和系统正常运行在最佳状态,从而保证生产的高效率和高质量。2. 1温度传感器的选择 方案一:采用热电阻温度传感器。热电阻是利用导体的电阻随温度变化的特性制成的测温元件。现应用较多的有铂、铜、镍等热电阻。其主要的特点为精度高、测量范围大、便于远距离测量。铂的物理、化学性能极稳定,耐氧化能力强,易提纯,复制性好,工业性好,电阻率较高,因此,铂电阻用于工业检测中高精密测温和温度标准。缺点是价格贵,温度系数小,受到磁场影响大,在还原介质中易被玷污变脆。按IEC标准测温范围-200~650℃,百度电阻比W(100)=1.3850时,R0为100Ω和10Ω,其允许的测量误差A级为±(0.15℃+0.002 |t|),B级为±(0.3℃+0.005 |t|)。铜电阻的温度系数比铂电阻大,价格低,也易于提纯和加工;但其电阻率小,在腐蚀性介质中使用稳定性差。在工业中用于-50~180℃测温。 方案二:采用AD590,它的测温范围在-55℃~+150℃之间,而且精度高。M档在测温范围内非线形误差为±0.3℃。AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会损坏。使用可靠。它只需直流电源就能工作,而且,无需进行线性校正,所以使用也非常方便,借口也很简单。作为电流输出型传感器的一个特点是,和电压输出型相比,它有很强的抗外界干扰能力。AD590的测量信号可远传百余米。综合比较方案一与方案二,方案二更为适合于本设计系统对于温度传感器的选择。 2. 2 湿度传感器的选择 测量空气湿度的方式很多,其原理是根据某种物质从其周围的空气吸收水分后引起的物理或化学性质的变化,间接地获得该物质的吸水量及周围空气的湿度。电容式、电阻式和湿涨式湿敏原件分别是根据其高分子材料吸湿后的介电常数、电阻率和体积随之发生变化而进行湿度测量的。方案一:采用HOS-201湿敏传感器。HOS-201湿敏传感器为高湿度开关传感器,它的工作电压为交流1V以下,频率为50HZ~1KHZ,测量湿度范围为0~100%RH,工作温度范围为0~50℃,阻抗在75%RH(25℃)时为1MΩ。这种传感器原是用于开关的传感器,不能在宽频带范围内检测湿度,因此,主要用于判断规定值以上或以下的湿度电平。然而,这种传感器只限于一定范围内使用时具有良好的线性,可有效地利用其线性特性。方案二:采用HS1100/HS1101湿度传感器。HS1100/HS1101电容传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。不需校准的完全互换性,高可靠性和长期稳定性,快速响应时间,专利设计的固态聚合物结构,由顶端接触(HS1100)和侧面接触(HS1101)两种封装产品,适用于线性电压输出和频率输出两种电路,适宜于制造流水线上的自动插件和自动装配过程等。相对湿度在1%---100%RH范围内;电容量由16pF变到200pF,其误差不大于±2%RH;响应时间小于5S;温度系数为0.04 pF/℃。可见精度是较高的。综合比较方案一与方案二,方案一虽然满足精度及测量湿度范围的要求,但其只限于一定范围内使用时具有良好的线性,可有效地利用其线性特性。而且还不具备在本设计系统中对温度-30~50℃的要求,因此,我们选择方案二来作为本设计的湿度传感器。2. 3 信号采集通道的选择 在本设计系统中,温度输入信号为8路的模拟信号,这就需要多通道结构。方案一、采用多路并行模拟量输入通道。这种结构的模拟量通道特点为:(1) 可以根据各输入量测量的饿要求选择不同性能档次的器件。总体成本可以作得较低。(2) 硬件复杂,故障率高。(3) 软件简单,各通道可以独立编程。方案二、采用多路分时的模拟量输入通道。 这种结构的模拟量通道特点为:(1) 对ADC、S/H要求高。(2) 处理速度慢。(3) 硬件简单,成本低。(4) 软件比较复杂。综合比较方案一与方案二,方案二更为适合于本设计系统对于模拟量输入的要求,比较其框图,方案二更具备硬件简单的突出优点,所以选择方案二作为信号的输入通道。本文来源于: http://www.waibaowang.net/dianzi/

若某温度控制系统需要控制的温度为80℃,应选用什么传感器?采用什么接线方式?

需要先确定控制目的和要求才能选择控制方案以及相应元器件。例如:仅仅需要在80℃接通或断开电源(类似电水壶),将下图这类温度开关串接在加热回路中就行。如果需要将温度严格保持在80℃,就需要选用温控仪,并根据温控仪的要求选择传感器。

温度控制系统的发展历史

温度及湿度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。 在许多场合,及时准确获得目标的温度、湿度信息是十分重要的,近年来,温湿度测控领域发展迅速,并且随着数字技术的发展,温湿度的测控芯片也相应的登上历史的舞台,能够在工业、农业等各领域中广泛使用。 鉴于此,本文对基于单片机的温湿度计系统进行了相关研究。 本系统是通过单片机控制来实现对周围环境的温湿度进行测量。本系统是以AT89S52单片机为控制单元、温湿度传感器SHT7X为主要检测器件,实现温度、湿度的测量、显示、控制,并利用单片机之间的通信功能,将所采集到的温度和湿度值在液晶屏中显示出来。 温度测量范围为 -40℃ ~ +123.8℃,精度为±0.4℃;湿度测量范围为:0 ~100%RH,精度为±3.0%RH。 本文旨在通过软、硬件的有机结合,以硬件为基础,进行各功能模块的编写。 论文对系统硬件的工作原理进行了简单描述,并附以系统硬件设计框图。 并具体描述LCD液晶显示屏、SHT7X及AT89S52等器件外接电路接口的软、硬件调试,程序流程和实现过程。

2019凯迪拉克XT5双区自动温度控制系统是什么?

温度控制按钮和触摸屏用来调节暖风、冷风和通风。1.驾驶员和乘客温度控制装置2.风扇控制3.驾驶员和乘客的加热和通风型座椅(如装备)4.后窗除雾器5.前挡风玻璃除霜6.OFF(风扇)开关7.空气内循环8.AUTO(自动操作)温度触摸屏控制装置1.车外温度显示2.驾驶员和乘客温度控制装置3.风扇控制4.后座(后区温度控制触摸屏)(如装备)5.空调制冷模式6.同步(温度同步)7.温度控制选择(应用程序托盘按钮)8.驾驶员和乘客空气输送模式控制装置温度控制触摸屏触摸信息娱乐主屏幕上的“空调”或触摸屏应用托盘上的温度按钮(如装备),可对风扇、空气输送模式、空调、驾驶员和乘客温度以及同步设置进行控制。随后可在温度控制首页上进行选择。温度控制状态屏当调节面板上的温度控制按钮时,温度控制状态屏将短暂显示。可通过温度控制状态屏调节空气输送模式。自动操作该系统自动将车辆加热或冷却到所需温度:·风扇转速·空气输送模式·空调制冷模式·空气内循环当“AUTO(自动)”点亮时,所有功能都自动操作。每种功能也均可进行手动设置。未进行手动设置的功能将会继续受到自动控制。要将系统置于全自动操作模式:1.按下“AUTO(自动)”。2.设定温度。等待片刻,让系统稳定。然后根据需要调节至最舒适温度。为提高燃油效率并使车内迅速冷却,天气暖和时会自动选择内循环。内循环指示灯不点亮。按下@可选择内循环模式;再次将其按下可选择外循环模式。OFF(关闭):按下以打开或关闭风扇。在关闭风扇后,前后温度显示将关闭。如果调节温度控制、空气输送模式,则风扇会被打开。驾驶员和乘客温度可分别进行调节。按下可升高或降低温度。通过触摸触摸屏上的按钮,也可调节驾驶员和乘客温度。同步(温度同步):触摸触摸屏上的“同步”,可将所有的温区设置与驾驶员温区设置同步。调节驾驶员侧温度控制装置可改变所同步的温度。调节前排或后排乘客(如装备)设置后,温度同步断开。后座:如装备,触摸前区温度控制触摸屏上的“后座”,打开后区温度控制屏。此时可从前排乘客区域调节后区温度控制设置。手动操作按下风扇控制按钮或触摸屏风扇控制装置可提高或降低风扇转速。风扇转速设置将显示出来。按下任一按钮可取消自动风扇控制并手动控制风扇。按下“AUTO(自动)”将返回自动操作。空气输送模式控制装置:点击触摸屏上所需的空气输送模式可改变气流方向。所选空气输送模式按钮将点亮。触摸任一空气输送模式按钮可取消自动空气输送控制,从而能够手动控制气流方向。按下“AUTO(自动)”将返回自动操作。要改变当前模式,可选择下列模式:空气流向仪表板出风口。空气分别从仪表板出风口和地板出风口流出。空气流向地板出风口。对车窗进行除雾或除湿。空气流向挡风玻璃及地板出风口。快速对挡风玻璃进行除雾或除霜。空气流向挡风玻璃。按下以开启或关闭。改变空气输送模式的同时关闭除霜。空调制冷模式:触摸触摸屏上的“制冷模式”可打开或关闭空调。如果风扇关闭或车外温度降至零度以下,则空调不会运行。按下“AUTO(自动)”将返回自动操作,空调可根据需要运行。自动空气内循环:当AUTO指示灯点亮时,空气根据需要自动内循环以帮助快速降低车内温度。温度控制系统可能装备检测空气污染情况的传感器。使用自动空气内循环时,空气质量控制系统可能运行。要调节空气质量传感器的灵敏度。@:按下以在车内空气内循环和空气外循环之间切换。内循环模式启用时,按钮上的指示灯点亮。此模式有助于快速降低车内温度,或减少进入车内的空气和气味。按下此按钮可取消自动内循环。按下“AUTO(自动)”将返回自动操作;内循环根据需要自动运行。自动除雾:温度控制系统有传感器自动检测车内湿度。检测到高湿度时,温度控制系统可能进行调节使外界空气进入并打开空调。如果未检测到车窗可能起雾,温度控制系统返回正常操作。要关闭或打开“自动除雾”。后窗除雾器REAR:按下以打开或关闭后窗除雾器。按钮上的指示灯点亮,表明后窗除雾器已打开。该除雾器仅在点火开关处于“打开/运行”位置时才工作。如果点火开关处于“附件”或“关闭”位置,则除雾器将关闭。后窗除雾器可设置为自动操作。“后窗自动除雾”选择“打开”后,如果车内温度低且车外温度更低时,后窗除雾器将自动打开。按下后窗除雾器按钮时,车外后视镜加热功能打开以帮助除去后视镜表面的雾和霜。要注意的是:切勿试图使用刮胡刀片或锋利器物从前挡风玻璃和后窗内侧清除霜花或其他的东西。这将有可能损坏后窗除雾器网格线,影响后窗除雾功能正常使用。此类维修不属于车辆保修范围。驾驶员和乘客的加热和通风型座椅(如装备):可加热驾驶员或乘客座椅。按下C可使驾驶员或乘客座椅通风。自动加热和通风型座椅:在车辆个性化设置中将自动座椅通风和自动座椅加热功能设置成“打开”,可启用此功能。当车辆发动机运行时,此功能将以车辆内部温度所要求的水平自动激活加热型或通风型座椅。中控面板上的手动加热型座椅按钮指示灯指示当前使用的加热型座椅级别(高、中、低或关闭)。按下中控面板上的关闭自动加热型座椅功能。按下中控面板上的C以关闭自动通风型座椅功能。远程启动温度控制操作:如装备远程启动功能,则温度控制系统可能会在远程启动车辆时运行。系统使用驾驶员的先前设置加热或冷却车辆内部。如果环境温度低,远程启动时后窗除雾功能可能会开启。远程启动时后窗除雾指示灯不点亮。如装备,在车外温度低时,加热型座椅将打开,在车外温度高时,通风型座椅将打开。在远程启动过程中,加热和通风型座椅指示灯可能不点亮。如装备,在车外温度低的情况下,远程启动时加热型方向盘将打开。加热型方向盘指示灯可能不点亮。传感器挡风玻璃附近仪表板顶部的日光传感器监测阳光热量。温度控制系统根据传感器信息调节温度、风扇转速、内循环和空气输送模式,达到最舒适的感受。如果传感器被覆盖,则自动温度控制系统可能无法正常工作。

智能温度控制系统研究目的和意义及发展

此系统可广泛应用在热水器、生物培养液、实验室等。所以此系统的设计有着深远的意义。此系统主要是为了记录温度和设备运行数据。该温度控制系统采用单片机进行控制,不仅具有控制方便、简单、灵活等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。扩展资料:智能温度控制系统具有高智能化,友好的人机交流界面,硬件简单,成本低,温度控制精度高(±1C距离误差),便利性和多功能性等,可广泛使用-55℃至125℃范围内的场合,且有一定的实用价值。系统的启动包括,全局变量定义,RAM启动,特殊功能寄存器启动以及外部设备启动。全局变量的定义,主要是完成对与AT89S51单片机连接的外部接口的定义,以及对内存单位特殊定义。参考资料来源:百度百科-温度自动控制系统

国内外室内温度控制系统的发展现状

1、截止到2023年6月3日我国的温度测量控制现状远未达到工厂,在实际生产中仍存在各种问题,有设备支撑能力差,工业化程度低,环境控制水平落后,硬件和软件资源不能共享,可靠性差。2、国外温度测量控制现状发展较国内稳定,其设备支撑强。

求单片机温度控制系统的论文

要:本文介绍了一种基于MSP430 单片机的温度测控装置。该装置可实现对温度的测量,并能根据设定值对环境温度进行调节,实现控温的目的。控制算法基于数字PID算法。0 引言温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用[1]。单片机具有处理能强、运行速度快、功耗低等优点,应用在温度测量与控制方面,控制简单方便,测量范围广,精度较高。本文设计了一种基于MSP430单片机的温度测量和控制装置,能对环境温度进行测量,并能根据温度给定值给出调节量,控制执行机构,实现调节环境温度的目的。1 整体方案设计单片机温度控制系统是以MSP430单片机为控制核心。整个系统硬件部分包括温度检测系统、信号放大系统、A/D转换、单片机、I/O设备、控制执行系统等。单片机温度控制系统控制框图如下所示:温度传感器将温度信息变换为模拟电压信号后,将电压信号放大到单片机可以处理的范围内,经过低通滤波,滤掉干扰信号送入单片机。在单片机中对信号进行采样,为进一步提高测量精度,采样后对信号再进行数字滤波。单片机将检测到的温度信息与设定值进行比较,如果不相符,数字调节程序根据给定值与测得值的差值按PID控制算法设计控制量,触发程序根据控制量控制执行单元。如果检测值高于设定值,则启动制冷系统,降低环境温度;如果检测值低于设定值,则启动加热系统,提高环境温度,达到控制温度的目的。2 温度信号检测本系统中对检测精度要求不是很高,室温下即可,所以选用高精度热敏电阻作为温度传感器。热敏电阻具有灵敏度较高、稳定性强、互换精度高的特点。可使放大器电路极为简单, 又免去了互换补偿的麻烦。热敏电阻具有负的电阻温度特性,当温度升高时,电阻值减小,它的阻值—温度特性曲线是一条指数曲线,非线性度较大。而对于本设计,因为温度要求不高,是在室温环境下,热敏电阻的阻值与环境温度基本呈线性关系[2],这样可以通过电阻分压简单地将温度值转化为电压值。给热敏电阻通以恒定的电流,可得到电阻两端的电压,根据与热敏电阻特性有关的温度参数T0 以及特性系数k,可得下式T=T0-kV(t) (1)式中T为被测温度。根据上式,可以把电阻值随温度的变化关系转化为电压值随温度变化的关系,由于热敏电阻的电信号一般都是毫伏级,必须经过放大,将热敏电阻测量到的电信号转化为0~3.6之间,才能在单片机中使用。下图为放大电路原理图。稳压管的稳压值为1.5V。由于传感器输出微弱的模拟信号,当信号中存在环境干扰时,干扰信号也被同时放大,影响检测的精度,需用滤波电路对先对模拟信号进行处理,以提高信号的抗干扰能力。本系统采用巴特沃斯二阶有源低通滤波电路。选取该巴特沃斯二阶有源低通滤波电路的截止频率fH=10 kHz 。3 控制系统设计3.0 软件设计单片机温度控制器控制温度范围100℃到400℃,采用通断控制,通过改变给定控制周期内加热和制冷设备的导通和关断时间,来提高和降低温度,以达到调节温度的目的。软件设计中选取控制周期TC 为200(T1×C) ,导通时间取Pn ×T1×C ,其中Pn 为输出的控制量,Pn值介于0~200之间, T1 为定时器定时的时间,C为常数。由上两式可看出,通过改变T1 定时时间或常数C,就可改变控制周期TC 的大小。温度控制器控制的最高温度为400℃,当给定温度超过400℃时以400℃计算。图3为采样中断流程图。数模转换部分使用单片机自带的12位A/D转换器,能同时实现数模转换和控制,免去使用专用的转换芯片,使系统处理速度更快,精度更高,使电路简化。采样周期为500 μs ,当采集完16个点的数据以后,设置标志“nADCFlag =1”,通知主程序采集完16个点的数据,主程序从全局缓冲区里读出数据。为进一步减小随机信号对系统精度的影响,A/D转换后,用平均值法对采样值进行数字滤波。每16个采样点取一次平均值。然后将计算到的平均值作为测量数据进行显示。同时,按照PID算法,对温度采样值和给定值之间的偏差进行控制,得到控制量。采样全过程完成后就可屏蔽采样中断,同时启动T1定时[3],进入控制过程。温度值和热敏电阻的测量值在整个温度采样区间内基本呈线性变化,因此在程序中不需要对测量数据进行线性校正。MSP430的T1定时器中断作为控制中断,温度采样过程和控制输出过程采用了互锁结构,即在进行温度采样,温度值处理和运算等过程时T1不定时,待采样全过程进行完时再启动T1定时并同时屏蔽采样中断。T1定时开始就进入控制过程,在整个控制过程中都不采样,直到200(T1×C) 定时时间到,要开始新一轮的控制周期。在启动采样的同时屏蔽T1中断。图4为T1定时中断流程图。图中,M代表定时器控制周期计数值,N则表示由调节器计算出的控制量。首先判断控制周期TC是否己经结束。若控制周期TC已结束(即M=0),则屏蔽T1定时器中断,进行新一轮温度采样;若控制周期TC还未结束〔即M≠0 〕,则开始判断导通时间是否结束。若导通时间己结束(即N=0),则置输出控制信号为低,并重新赋常数C值,启动定时器定时,同时退出中断服务程序;若导通时间还未结束(即N ≠0 ),则置输出控制信号为高,控制执行其间继续导通,重新赋常数C值,启动定时器定时,同时退出中断服务程序。3.1 数字PID本文控制算法采用数字PID 控制,数字PID 算法表达式如下所示:其中,KP 为比例系数;KI=KPT/TI 为积分系数;T 为采样周期,TI 为积分时间系数;KD=KPTD/T 为微分系数,TD 为微分时间系数。u(k) 为调节器第k次输出, e(k) 为第k 次给定与反馈偏差。对于PID 调节器,当偏差值输出较大时,输出值会很大,可能导致系统不稳定,所以在实际中,需要对调节器的输出限幅[4],即当|u|>umax 时,令u=umax 或u=-umax ,或根据具体情况确定。3.2 温度调节PI 控制器根据温度给定值和测量值之间的偏差调节,给出调节量,再通过单片机输出PWM 波,调节可控硅的触发相位的相位角,以此来控制执行部件的关断和开启时间,达到使温度升高或降低的目的。随后整个系统再通过检测前一阶段控制后的温度,进行近一步的控制修正,最终实现预期的温度监控目的。4 结论本设计利用单片机低功耗、处理能力强的特点,使用单片机作为主控制器,对室内环境温度进行监控。其结构简单、可靠性较高,具有一定的实用价值和发展前景。参考文献[1] 赵丽娟,邵欣.基于单片机的温度监控系统的设计与实现.机械制造,2006,44(1)[2] 张开生,郭国法.MCS-51 单片机温度控制系统的设计.微计算机信息,2005,(7)[3] 沈建华,杨艳琴,翟骁曙..MSP430 系列16 位超低功耗单片机原理与应用.清华大学出版社,2004,148-155[4] 赖寿宏.微型计算机控制技术.北京:机械工业出版社,1994:90-95

空调温度控制系统的工作原理

提问不是太全!我理解问是内机设定温度控制吧!这个是根据回风温度来的,一般的家用定频空调是工具你设定的稳定在正负3摄氏度内开关压缩机来控制房间温度的!当回风温度低于设定温度3摄氏度时关闭压缩机这时不供给房间冷气,当高于设定温度3摄氏度时开启压缩机制冷。制热时相反!还有其他的温度控制比如盘管温度,室外温度-等等这些都是起到保护和调节作用的!

家用电冰箱的温度控制系统是怎么样的一个工作原理?

分机械温控和电子温控,你问哪个?机械温控利用工质的热胀冷缩原理。感温包内冲注工质,感温包外壳紧密固定贴在冰箱内部(通常在冷藏箱),当冰箱内温度上升,感温包内工质膨胀,克服弹簧力(就是温度设定1~7转盘)推动机械温控器内触电导通,制冷压缩机工作,从而冰箱降温,感温包内工质收缩,使得机械温控器内触电断开,制冷压缩机停止工作。电子温控利用负温度系数热敏电阻,即温度上升,电阻变小。上面说的感温包由温度探头(负温度系数热敏电阻)代替,冰箱内温度上升,探头电阻变小;冰箱内温度下降,探头电阻变大,通过温控电路板上的电压比较器和设定值(就是一个可调电阻)比较,输出压缩机的启停