钻井技术

阅读 / 问答 / 标签

石油与天然气地质勘察与钻井技术哪个好?

相对而言,钻井技术更好工作,都比较辛苦,建议选钻井,我是石油高校毕业的,这个比较清楚,有问题再问

华北油田钻井技术有限责任公司介绍?

简介:华北油田钻井技术有限责任公司成立于2000年,位于河北省河间市华油矿区。它是以定向井、水平井、套管开窗井等钻井技术服务和相关仪器设备研制为一体的专业技术公司。现具有各类专业人员58名。定向井工程师和无线随钻操作人员既具有较高的仪器操作水平和处理常见故障的能力,又有在钻井队从事钻井技术工作的经历,因此,我公司技术人员在施工中与钻井队技术人员能够取得良好的沟通。公司仪器管理、维修、校验人员具有多年从事本岗位工作的经历,具有较强的业务能力,能够保障公司仪器满足各种类型钻井施工的需要。承担的服务项目均获得甲方钻井队及定向井技术人员的满意。法定代表人:陈克斌注册资本:1500万人民币联系方式:0317-2585638官网地址:www.hyzj.com.cn地址:河间市曙光路钻三矿区

钻井技术员应了解怎样的知识

我认为应该了解四个方面的大问题:1、钻井工艺2、钻井技术、3前沿技术、本油田的施工难点。

钻井技术专业的开设课程

理论力学、材料力学、流体力学、机械设计基础、计算机程序设计、钻井机械、钻井工程、海洋钻井、试油工程、钻井仪表及自动化、油气层保护技术

石油钻井技术问题

1楼正解。而且每个问题不仅是小文章,可以很大。

急求钻机和钻井技术相关资料!!!

《最新国内外石油勘探开采技术标准大全》 绝对有你要的 私人用贵啊!!! http://cache.baidu.com/c?m=9d78d513d9d430dc4f9ee0697b17c0176f4381132ba7a4020ca7843893732a4a506692ac56510773d8d13b275fa0131aacb22173441e3df2de8d9f4aaab0917e74c37c23706bd71c4dce4ff88d157e9f269059e3a813e1adf045c0ef9099&p=8a67c54ad38459fc57edc02051&user=baidu

钻井技术与哪些行业有关联

化工,机械加工,,,,烟,酒。

中石化的非常规页岩气井的钻井技术如何?

非常规页岩气井的钻井技术得到很大发展。形成了页岩气长井段水平井钻井、油基钻井液、弹塑性水泥浆固井等工程配套技术。

地质导向钻井技术应用现状

1. 地质导向钻井技术 在高效开发复杂油藏方面具有极大的优势,但是它也有自身的不足,那就是在必要的时候该钻井技术仍然需要采用弯壳体马达滑动钻进,这样会造成轨迹过度扭曲。同时,滑动钻进不利于井眼清洁和有效克服摩阻,轨迹控制难度增加,井眼轨迹在达到一定的程度后难以继续向前延伸,使地质导向钻井技术在现代钻井工业中的应用受到极大限制。旋转导向钻井技术就是为了克服上述缺陷而产生的,其目的就是为了取消滑动钻进工作方式、使钻具在旋转钻进的同时,实现轨迹的控制,在有效克服地质导向钻井技术的一些缺陷、提高油藏开发的整体效益、有效避免钻井风险方面有重要意义。世界上多家具有相当实力的钻井服务公司都在研究、开发旋转导向工具,如SPERRY—SUN公司、BAKER — HUGHES INTEQ 公司、SCHLUM—BERGER公司、CAMCO 钻井服务公司、CAM—BRIDGE钻井自动化公司等,但到目前为止,其中获得商业性成功的只有SPERRY—SUN公司的GEO— PILOT旋转导向钻井系统、BAKER—HUGHESINTEQ公司的旋转闭环钻井系统RCLS(RotaryClosed Loop Drilling System)和SCHLUMBERGER公司的POWERDRIVE旋转导向钻井系统。 2.旋转地质导向钻井技术 目前,由于投入应用的旋转导向工具都不具有地质评价功能,旋转地质导向钻井技术因此并未完全成熟,旋转地质导向钻井技术只能和地质评价仪器配合使用,利用地质评价仪器测量的地质参数进行地质导向。现在,世界上有多家钻井服务公司或仪器/-12具开发的公司,正致力于带地质导向功能的旋转导向工具的研究,并且取得了很大的进展。相信在不久的将来,旋转地质导向钻井技术一定会成为现代钻井工业的主流技术,并将进一步推动自动闭环钻井技术的更进一步的成熟。2. 其它方面的进一步发展 随着大位移定向井钻井、超深井钻井、欠平衡钻井、油管钻井等钻井技术的发展,地质导向钻井技术在钻井工业的应用越来越广。为了适应这种发展的需要,地质导向钻井技术也要不断的发展。

目前世界上最高水平钻井技术可达地下多少米

中国首座自主设计、建造的第六代深水半潜式钻井平台“海洋石油981”在中国南海海域正式开钻。   这是中国石油公司首次独立进行深水油气勘探开发,标志着中国海洋石油工业的深水战略迈出了实质性的步伐。   “海洋石油981”于2008年4月28日开工建造,是我国首座自主设计、建造的第六代深水半潜式钻井平台,最大作业水深3000米,钻井深度可达10000米,平台自重超过3万吨;从船底到井架顶高度为137米,相当于45层楼高。   据了解,目前中国海洋石油工业勘探开发的海上油田水深普遍小于300米,大于300米水深的油气勘探开发处于起步阶段。据了解,此次开钻水域在中国南海水域距离香港东南320公里处,开钻井深1500米。 本回答由健康生活分类达人 谢进推荐

深钻井技术攻关及应用效果

簰深1井设计井深6950m,设计井开孔层位为第四系,预计完钻层位为上震旦统灯影组,钻遇新生界、中生界、上古生界及下组合地层。钻探目的:建立簰洲地区下组合地层层序,了解下组合地层厚度、岩性、岩相、深部地质结构特征以及下组合生、储、盖组合条件;查明簰洲构造上震旦统灯影组、下寒武统石龙洞组、中、上寒武统主要储层含气状况,兼探奥陶系、志留系及上组合,评价各层系油气资源潜力;取得系统全面的地质、地球物理、钻井、测井、测试以及分析化验等各项资料参数、数据,为综合评价研究提供依据。(一)主要技术要求a.设计井深较大,应严格控制井斜。b.钻遇油气层时钻井液的性能调配要恰当,避免人为污染油气层。钻井工程要尽量采用平衡钻井技术,以保证获得真实的地层含油气信息。c.该井具有大尺寸井眼段长、小井眼井段深、地层可钻性差的特点,且压力系统复杂、资料少难以准确预测,同一裸眼井段可能存在垮、漏、喷、卡等井下复杂情况,应优化并制定多种施工预案,及时跟踪钻井动态调整施工方案,达到安全、高效、快速完成钻探目的。图3-43 2006-LH测线叠前深度偏移处理与原处理剖面效果对比——簰洲构造(局部)图3-44 2006-SA测线叠前深度偏移处理与原处理剖面效果对比——钟祥弧形褶冲带(局部)d.簰洲地区上组合(志留系以上地层)地温梯度为2.9℃/100m,簰参1井井底(井深3655m)温度为92.9℃。利用簰洲地区上组合地温资料结合邻区较少的下组合测试资料,预测簰深1井井底温度为155.2℃。簰深1井下组合地温较高,高温作用将使钻井液失水,造成钻井液造壁性和流变性都将发生不良变化,严重者可造成钻井液流动性丧失、结块等,因此钻井液应选择抗高温性能好的钻井液,以防出现高温增稠现象,保证钻井液性能稳定,流动性好。e.预测簰深1井钻探过程中,在侏罗系泥页岩、二叠系吴家坪组、志留系泥岩、奥陶系大湾组、分乡组泥页岩及下寒武统石簰组、水井沱组泥页岩等层段会出现应力垮塌为易塌层,应改善泥浆性能以平衡地层应力,然后加入润滑剂、封堵剂、降滤失剂等进行综合处理,保证易塌层的煤层、页岩的稳定性。f.预测簰深1井在嘉陵江组等层段含有石膏、盐岩,存在膏盐等电解质污染钻井液问题,石膏、盐岩溶解不仅破坏钻井液性能,而且会形成大井腔,易导致钻井复杂,在上述井段应选用抗膏盐污染钻井液体系。(二)采用新技术、新方法1.优化井身结构设计簰深1井为江汉盆地平原海相一口区域深探井,钻井中不可预见的因素较多,特别是下组合实钻中地质情况可能与预计有一定差别,存在易漏、易塌、易斜等复杂情况,设计钻遇的目的层多,因此,井身结构的设计应充分考虑到地层和压力可能的变化,各套管程序的选择为各开次钻进安全相对留有余地,以保证完成钻探目的。根据本井地层特点、压力预测及目前钻井工艺技术状况、参考南方海相已钻井实钻井身结构,依据有利于安全、优质、高效钻井和保护油气层的原则进行设计(表3-9;图3-45)。表3-9 簰深1井井身结构设计数据表2.优快钻井技术为加强油气层保护和提高机械钻速,采用PDC+螺杆、优质钻井液为主的复合钻井技术和防斜钻井技术,提高钻井速度,缩短钻井周期。微泡沫钻井技术现场试验,表现出良好的防漏堵漏效果。3.超深井固井、完井工艺技术通过大量水泥浆体系试验和研究,开发和应用了1.30~1.55g/cm3低密度水泥浆体系固井技术(包括低密度防气窜、低密度防漏、低密度防漏防气窜水泥降体系)。该体系具有失水低、流变性能和沉降稳定性好、水泥石强度高、SPN(水泥浆性能系数)低等特点。簰深1井Φ339.7mm技术套管固井分别采用了高强低密度防漏水泥浆体系,固井质量均为良好。图3-45 簰深1井设计井身结构示意图(三)深钻井技术攻关效果簰深1井自2007年4月18日开钻,2009年3月15日完钻,总进尺7050m,顺利完成各项施工,创造了南方海相单井进尺最深、钻遇层位最全的历史纪录。在整个施工过程中,先后创造了133/8″的国产技术套管国内陆上钻井下深最深和国内单级固井段最长两项新纪录。

学钻井技术专业的毕业生就业如何?基本工资多少?

这不好说,各个公司的价格不一样,关键看公司

什么是深水钻井技术?

相对于浅海钻井来讲,深海钻井要困难得多,首先,不能采用插桩式海洋平台,只能采用驳船,并且防喷器要放在海底泥线的位置,所以作业难度很大,成本也比较高。当然回报也是比较高的啊!!

专科生学习的石油工程技术专业,毕业后想学钻井技术专业有什么方

方法如下:1、选择钻井技术专业的硕士或博士研究生课程来进一步深入学习相关知识。2、参加一些钻井技术培训班或短期课程,这可以更快地了解钻井技术的知识和技能要求。3、通过互联网查找相关的学术资料和课程,并自主学习相关知识。

学钻井技术就业情况如何

就业形势:虽然这几年学钻井的毕业生越来越多,但是钻井技术人才还是很缺,尤其是现在很多钻探集团都在开拓海外业务,急需学过专业技术、外语表达能力较好的钻井人才。工资待遇:基本工资中石油统一标准,工资调了好几回,楼上给的助理工程师(本科上班一年后自动转助工)1990差不多那样。奖金各钻探集团都不太一样,和效益挂钩,像你学钻井专业毕业,正常来说,从上班开始,一年四五万没问题,要是出国,那就厉害了,得翻个四五倍。就是一点,一线的工作特别特别辛苦,而且没有节假日这一说,赶上倒班才能休息,放心吧,休息时间还是挺多的。希望对你有所帮助!满意请采纳。

钻井技术专业的介绍

培养能从事石油与天然气钻井工程设计、施工及组织管理等方面的高级技术应用性专门人才。

万米超深孔与连续循环钻井技术

万米超深孔面临着孔底高温高压工况(13000m超深孔孔底温度最高可达360℃,压力最大可达200MPa),由此带来泥浆、孔底动力钻具、井壁稳定性、钻杆柱等一系列难题。连续循环钻井系统是世界钻井界近年来出现的一项新技术和新装备,该技术在接单根时,仍保持钻井液的连续循环,可显著降低钻孔中温度,大大提高上述各项技术的适用性,同时,可有效避免接单根时由于停泵和开泵引起的井底压力波动和岩屑沉降;在整个钻进期间,实现了稳定的当量循环密度和不间断钻屑排出,全面提高了井眼质量和清洁度,可大幅度减少钻井事故,提高钻井作业的安全性与经济性,对万米超深孔钻探施工具有十分重要的意义。连续循环钻井系统是实现连续循环钻井技术的关键技术,其综合了机、电、液、控制一体化等多学科技术,主要是利用主机腔体总成闸板的开合,形成和控制主机上下密封腔室的连通与隔离,与分流管汇配合,完成密闭腔室内钻井液通道的分流切换,实现在接单根中钻井液的不间断循环;利用动力钳、平衡补偿装置和腔体背钳的协同动作,实现在密封腔室内钻杆的自动上卸扣操作。3.1.1 国内外研究现状1995年,Laurie Ayling首先提出了连续循环钻井(CCD)的概念,即在接单根期间保持钻井液的连续循环,并申请了第一项专利;1999年,荷兰Shell NAM公司通过定量风险分析得出结论,连续钻井液循环将使非作业钻井时间减半,每口井作业成本可节省100万美元;2000年,连续循环钻井联合工业项目开始运行,该计划由Maris公司管理,并获得了ITF的资助和由Shell、BP、Total、Statoil、BG和ENI组成的“工业技术联合组织”的支持;2001年,项目选择Varco Shaffer作为设备制造与供应商参与研制。2003年,BP公司在美国Oklahoma的陆上井对一种连续循环系统样机进行了现场测试并取得了成功,随后开始了工程样机的设计和制造。2005年,在意大利南部的Agri油田以及埃及海上的PortFouad油田,ENI公司成功实现了连续循环系统的商业化应用。2006年至2008年,Statoil公司在北海油田利用连续循环系统钻成了6口井,均取得了巨大的成功。经过近10年的发展,目前国外连续循环系统已进入推广应用阶段,在ENI和Statoil公司取得显著成功后,BP、BG和Shell等公司也正在考虑首次使用此项技术。国内主要是中石油钻井工程研究院自2006年起跟踪这一技术,并展开研究,经过多年的技术攻关,2012年4月9日,在中石油钻井工程研究院与渤海钻探钻井技术服务公司联合建成的科学试验井上,该院研发的连续循环钻井系统样机模拟试验过程中,样机基本动作成功实现,但系统的控制精度、可靠性还存在较大问题,样机在关键技术上还需进一步攻关研究。3.1.2 关键技术从技术发展的成熟度和现场操作的安全性考虑,研制连续循环系统应该是根据我国万米深孔钻探技术特点,发展具有自主知识产权的连续循环钻井技术。连续循环系统是集机、电、液、控制于一体的先进钻井技术装备,要成功实现国产化目标,首先必须对系统的关键技术展开深入分析和研究。连续循环系统的关键技术及难点主要包括以下几方面。(1)高压动密封技术在高压高温泥浆连续循环和钻杆运动(轴向、旋转)工况下,孔口连接系统上半封闸板与钻杆之间会产生相对转动和轴向运动,因此闸板的动密封性能是一个关键问题,目前国外产品在35MPa压力下每接40~50次钻杆就必须更换闸板。(2)钻杆精确定位与连接技术钻柱与钻杆接头在不可直接观察的压力腔中完成接、卸操作,钻杆的位置由顶驱上下运动控制,下部钻柱的位置则由卡瓦与连接器共同确定,如何保持钻柱和钻杆的螺纹接头处在一个较为合理的位置,便于螺纹对中,是连续循环动作是否能顺利完成的关键,也是系统提高效率的关键。(3)钻杆连接螺纹与杆体保护技术钻杆本体保护。在上卸扣过程中,极易造成钻杆本体损伤;尤其是动力卡瓦部分,既要承受钻柱的重量,又要提供足够的上卸扣扭矩,使钻杆本体与卡瓦牙板之间的受力状态非常复杂,极易引起钻杆打滑并损伤本体,甚至导致钻柱滑脱掉入井内。钻杆接头的对接和旋扣均在密封腔内进行,操作人员无法直接观测到腔内情况,同时腔内的高压钻井液使接头螺纹承受很大的上顶力作用,如果操作不当,极易造成螺纹损伤,因此在接头对接和旋扣时,必须利用强行起下装置平衡钻井液上顶力作用,使螺纹啮合面上的接触力保持合适值;另外螺纹润滑脂必须具有防冲刷能力,避免接头螺纹发生粘扣。(4)泥浆切换分流技术泥浆分流控制的关键是保证循环压力稳定、无扰动,由于立管与旁通管道之间存在压力差异,因此直接切换容易引起泥浆循环压力的不稳定,同时高压泥浆也会对阀件产生冲刷和冲击作用。因此,在切换前,必须先对低压一侧管道进行充填增压,消除立管与旁通管道之间的压力差异,这样不仅可以保持泥浆循环压力稳定,同时也消除了对阀件的不利影响,可有效提高阀件使用寿命。3.1.3 研究内容与简单方案实现连续循环钻井技术的主要装置是连续循环钻井系统,连续循环系统控制较为复杂,安全可靠性要求高,在研制过程中必须针对高压动密封技术、钻杆精确定位与连接技术、钻杆连接螺纹与杆体保护技术、泥浆切换分流技术等关键技术进行深入分析和研究。课题的研究可在充分调研国内外研究现状的基础上,比较分析典型的连续循环系统的结构,确定项目需开发的连续循环钻井系统主要由泥浆连接器、分流管汇装置、钻杆接卸机械手、控制系统、动力系统等部分组成。(1)研究内容主要研究内容如下:①国内外泥浆连续循环技术情报调研与分析;②泥浆连续循环控制流程制定;③泥浆连续循环系统实施方案(包括泥浆连接器、分流管汇装置、钻杆接卸机械手、控制系统、动力系统等);④关键部件仿真分析研究;⑤样机的总体设计与各部分设计研究;⑥样机的制造与加工;⑦样机室内实验研究与现场实验研究;⑧连续循环配套钻探工艺技术与优化技术研究。参考设计参数为:工作压力≤35MPa,钻杆外径,最大扭矩9kN· m,泥浆流量≤1200gpm(75.7L/s)。(2)研究方案泥浆连接器可由3个类似防喷器的结构组成,每个结构体内部各带有一个密封板,其中下结构体中的是反向密封闸板,中间的是盲板。最上部和下部的结构体中带有旁通和阀门,并连接分流管汇装置,作为接单根时充压、卸压和保持钻井液循环的通路;钻杆接卸机械手具有旋扣、紧扣及卸扣功能,同时在强行起下装置的驱动下能够上下移动,并带有动力卡瓦用于承受钻柱悬重,并提供上卸扣反扭矩;控制系统则为系统各执行部分提供动作驱动力与驱动指令,动力系统主要为液压站,提供驱动动力源。针对泥浆联接器与分流管汇装置的研究可在三重闸板防喷器基本结构的基础上,进行技术的改造,增加泥浆分流通道,并注重局部细节设计,新材料选型等解决高压动密封技术难题,设计新型压力防冲击结构设计,解决泥浆分流切换的扰动难题。钻杆接卸机械手部分则通过优选控制元件、改进控制算法,保证钻杆与钻柱的精确定位、对中与连接;通过改善卡瓦牙板接触条件与材料,改进螺纹润滑密封,减少螺纹和杆体的伤害。动力系统采用液压驱动,模块化设计,并将手动与自动技术相结合,提高操作便利与可靠性。控制系统的逻辑控制信号主要是压力和位置检测,其中压力检测包括密封腔压力立管压力以及各执行机构工作压力等,而位置检测则是指闸板开合、泥浆阀开合、钻杆接头位置以及各执行机构动作位置等,通过冗余设计,确保逻辑控制信号的准确性和可靠性。3.1.4 研究计划课题研究努力争取多方面支持,特别是争取国家或行业科研立项支持,计划用5年时间完成连续循环钻井技术国内外情报调研分析、总体技术实施方案、关键技术与技术难点攻关,样机加工制造与装配、现场实验与优化等工作,通过连续攻关,开发出具有我国自主知识产权的、适应万米超深孔的连续循环钻井技术,并达到现场中试使用要求。2013年1月~2013年6月,完成连续循环钻井系统的国内外情报调研,对比分析,提出连续循环系统开发的基本思路;2013年7月~2013年12月,完成连循环钻井控制流程制定,连续循环钻井系统总体方案初步设计,并完成部分关键子系统设计方案初步研究;2014年1月~2014年12月,完成连续循环钻井系统总体设计详细方案,各部分(泥浆连接器、分流管汇装置、钻杆接卸机械手、控制系统、动力系统)详细设计方案(初稿),各关键问题、难点问题(高压动密封技术、钻杆精确定位与连接技术、钻杆连接螺纹与杆体保护技术、泥浆切换分流技术等)详细解决方案(初稿),完成连续循环系统总图、各部分图纸、计算等初稿;2015年1月~2015年6月,完成连续循环钻井系统关键部分的仿真分析研究,完成连续循环钻井系统总体设计方案(实施稿),完成各分部分设计方案(实施稿),完成并通过总体方案和分部分方案相关的图纸、计算书(实施稿);2015年6月~2015年12月,完成连续循环钻井系统样机的加工,完成连续循环系统的室内实验方案设计,完成连续循环系统现场实验方案设计。2016年1月~2016年12月,完成连续循环钻井技术相关室内实验与现场实验研究,总结问题,提出新的优化和解决方案,完成连续循环配套钻探工艺研究;2017年1月~2017年12月,根据优化方案进行整改,并结合多次实验,实现研究目标,撰写总结报告。

“钻井技术”能够降低火山喷发几率吗?

只能说是增加几率,好像并不能降低火山喷发的几率。

西南石油大学的钻井技术升本之后是什么专业呢?

石油工程 中国数一数二的重点专业 很好升 本校升本校相当容易 一般录取比例在50%左右 不要听人家说很难升 石油很水的 每次录取都要分一批 二批 甚至三批 钱和关系比较重要 升本意义不大 其实我认为读书的意义都不是很大

为什么说我国钻井技术的起源和发展与制盐业有着密切的联系?

我国钻井技术的起源和发展与制盐业有着密切的联系。第一座盐井出现在古巴蜀地区,即现在的四川地区。当时四川的运输业极不发达,海盐很难运到地处内地、道路艰险的四川。但古代巴蜀人发现自己的脚底下就蕴藏着丰富的岩盐和含盐分很高的卤水,他们即因地制宜,开采地下盐以食用。四川人称食盐为“盐巴”。在四川,产盐的地区主要集中在自贡地区,井架林立的自贡因此有“盐都”之称。采盐的需要促进了深井钻探技术的发明和发展。钻井深度越来越深,钻透盐层再往下便是天然气层,卤水制盐需要熬制,使用当地天然气作燃料既方便又经济。由此可见,天然气就是在深井制盐业的促进下开发的,两者的发明基本上是同时出现。

钻井技术服务岗位工作累吗?

这个工作属于野外工作,还可以吧!工作环境都是户外的!

钻井技术员好干吗

不好干。钻井技术员是需要在外面经历风吹雨晒,工作地点通常在野外,且由于长时间在野外圈子小,接触的人和物少,是不好干的一个职业。钻井技术员是企业选出的技术干部,是井队领导成员之一,业务上直接受钻井分企业领导,负责井队工程技术管理工作,履行各项技术指令、举措和操作规程。

北宋「 ”卓筒井”工艺:世界上最早发明的钻井技术,现代钻井的先驱

北宋中期,卓筒工艺的开创,乃是我国也是世界最早发明的钻井技术。这种工艺技术,与现代石油(包括天然气)工业中应用的顿钻钻井方法类同。它比美国创造的顿钻技术至少要早七个多世纪。 关于卓筒井的出现,北宋苏东坡、文同、范镇三位四川名人,在他们的著作中,都有明确的记载,其中苏轼记述最详尽: 「 ”自庆历、皇祐(1041-1054)以来,蜀始创筒井。用圜刃,凿如碗大,深者数十丈。以巨竹去节,牝牡相衔(公母榫连接)为井,以隔横入淡水,则咸泉自上。又以竹之差小者出入井中为桶,无底而窍其上,悬熟皮数寸,出入井中,气自呼吸而启闭之,一筒致水数斗。凡筒井皆用机械,利之所在,人无不知”。 苏轼不愧为文豪,文笔非常简练,介绍卓筒井的内容十分丰富。卓筒井的发明,其工艺技术主要特点和成就,是开创了现代深井(如盐井油气井)的维形,即包含了现代钻井三大基本程序,或称三大基本要素:第一,用圜刃钻头破碎岩石;第二,用泥筒取出井内的岩砂(岩屑);第三,下木竹套管固井保全井壁。 一、世界钻井史上发明的第一个钻头——「 ”圜刃”锉 「 ”圜刃”锉是人类钻探史上发明的第一个钻头。它的发明,创造了现代深井钻头的雏形,因而,成为现代钻头的始祖。 凿井钻头的发明和发展,同其事物进展一样,由简单到复杂,由低级到高级,即早期的「 ”圜刃”钻头发展到现代的鱼尾钻头、齿轮钻头、涡轮钻头及巴拉斯钻头。 现代深井钻探技术,尤其目前世界上超深井的钻井钻头和基本原理,追根溯源,它的祖先乃是我国北宋初发明的「 ”圜刃”钻头和「 ”卓筒井”工艺的继承和发展。 11世纪中叶,中国四川井研盐区的井匠技师们,经过长期的探索和实验,在世界上最早研制成功了第一个深井钻头—— 「 ”圜刃”锉。 「 ”圜刃”是开创卓筒井的钻头,它的形制和结构,根据苏文的记载和古代钻头及钻井原理等进行考证,认为:苏轼以「 ”圜刃,凿如碗大”六个字,描绘了「 ”圜刃”钻头的基本形状。其一,圜刃钻头原始形状呈圆形;其二,在圆形的钻头上有刃锋;其三,锉头的直径与碗口(径)相当;其四,碗的口径就是「 ”卓筒井”的井径。 因圜圆相通,圜和刃的结合,故名「 ”圜刃”锉,即「 ”圜刃”钻头。圆为主体,其底部横凸「 ”一”字刃,锐利,易于破碎岩石。由于这种钻头先进,井匠在地面操作机械,钻凿卓筒井,比汉唐时期,人工手持锄、锸、锹等原始农用工具于井下艰苦作业,挖掘大口盐井,具有钻井工艺先进、工效高、劳动负荷轻、获利丰厚等优越性。因此,「 ”圜刃”钻头的问世和卓筒井的诞生,是世界钻井史上一次大革命。同时为现代深井钴头的出现和发展奠定了基础。 无独有偶,继我国圜刃钻头和卓筒井发明700多年后,美国人拉夫纳兄弟俩开始用冲击式钻井的方法,即一种十分简单的机械原理,开创了「 ”卓筒井”似的盐井,其井深18米(59英尺),凿井钻头直径7.6-10.2厘米(3-4英寸),是用铸钢制作的,它的规格、形制与「 ”圜刃”钻头大致类同。 二、世界钻井史上最早研制的第一个井下取岩(屑)工具——「 ”泥筒” 北宋初,用圜刃钻头开创的卓筒井,是一种冲击式顿钻方法,它与现代石油(天然气)工业中所用的绳式顿钻钻头技术基本相同。 在冲击式顿钻钻井中,及时取出井内粉碎的岩屑,十分重要。一是能提高钻井速度,加快进度;二是能及时考察井身质量是否符合要求(即是否出现井斜或并身不圆的情况),如钻井质量不符合要求,便立即采取措施,进行处理、纠正;三是在钻井时,发现了新的来水(卤水)和天然气的征兆,必须推水或多搧泥,直到井底泥砂(岩屑) 搧净,推水把气拉顺,以免所出的西水或天然气受到泥砂的阻塞和影响。 在长期的钻井实践过程中,四川自贡盐场的匠师总结了一条宝贵的经验:「 ”黄卤推砂,黑卤推气。”即把井内泥砂取净后,岩层裂缝不受泥砂的阻塞,卤气流动畅通,可获取丰富的卤气。 为取出进底的岩屑,我们的先民发明了「 ”泥筒”。苏轼在《蜀盐说》中述到: 「 ”又以竹之差小者出入井中为桶,无底而窍其上,悬熟皮数寸,出入水中,气自呼吸而启闭之,一筒致水数斗。” 由此得知,当时不仅发明推卤汲筒,而且也发明了搧「 ”泥筒”。汲筒和泥筒有区别,但工作原理完全相同,两者都是竹制,筒底「 ”悬熟皮”(即单向阀),入水则启,出水则闭。因岩砂和泥水在筒内下坠,熟皮受压紧贴简底,不泄漏。通过泥简在井底一上一下来回往复运动,水与岩屑混合,由阀门进入筒内,然后提出地面,以达到清除井底岩屑之目的。如果没有发明搧「 ”泥筒”,卓筒井也是无法钻成的。为此,搧「 ”泥筒”的发明,十分巧妙地解决了钻井取砂的一大关键问题,从而为向地层深部开拓提供了可靠保障,标志着我国古代钻井技术已达到了一个新阶段。 现代西方如美国标准顿钻凿井应用的「 ”捞砂简”(又名「 ”抽砂筒”),其工作原理、操作方法,同我国900多年前发明的搧「 ”泥筒”基本一致。 而现代旋钴法钻进,则采用机械动力加压力,促使井内液体循环流动,不断将岩屑从井中返出地面,实现了钻井不停、除砂不断的新工艺,这是继「 ”泥筒”取砂法之后又一次重大的突破。 三、世界钻井史上最早创造的钻井保全井壁及止水的方法——下「 ”木竹”套管固井 卓筒井在11世纪中叶问世,同时也创造了楠竹制作成套管,下入井中,构成井壁,解决了钻井、生产两大难关:其一,保护井壁。竹制套管下入井内固井,可防止因井壁(松软地层)的垮塌,发生井下卡钻事故,从而保证了大口(窍)以下裸眼井段钻井的安全;其二,止水。封隔上部地层淡水渗入井中,避免淡水冲淡了天然水的矿化度,确保盐井下部生产层咸卤的开采。 因此,苏轼说:「 ”‘卓筒井"深者数十丈,以巨竹去节,牝牡相衔为井,以隔横入淡水,则咸泉自上。”由此可知,竹制套管,其结构是利用大楠竹通节中空,「 ”牝牡相衔”(即公母棒连接)的竹筒。南宋爱国诗人陆游在四川荣州(今四川荣县)做官时,亲自看到的卓筒井「 ”绝小”:「 ”荣州,则井绝小,仅容一筒,真海眼也。”盐井下入竹制套管止水,即「 ”隔横入淡水”和保护井壁的功用,这同现代石油(天然气)钻井中下钢管固井的目的和作用是一致的。 古代井匠利用竹制套管是与四川盛产楠竹、斑竹密切相关的。四川土地肥沃,气候温和,雨量充沛,地下湿润,宜于竹子生长,因而竹林遍布,各地竹子用途非常广泛,民众就地取材,用竹子制成日常生活需要的各种器物,如竹房、竹门、竹席、竹椅、竹筐、竹架,到农业灌溉等都广泛使用竹子,简直是竹的世界。 北宋四川大文学家苏东坡,目睹了竹子的广泛用途,尤其是与人们生活有着密切关系,曾深有体会地说:「 ”可使食无肉,不可居无竹”。 四川竹子材源丰富,同时又有独特的优点:伸直挺拔,具有天然圆形管状;质密坚硬,有较高的抗拉、抗压强度;耐腐蚀性能强,作套管固井寿命长达20~50年;产地广,材源丰富,价廉物美;加工制作简便等。如川北有的地区,现在遗存的卓筒井,仍是用楠竹或斑竹作套管固井,为北宋「 ”始创筒井”提供了实物见证。 为此,我国木竹固井技术的创造和发展,无疑为现代钻井固井技术开辟了道路。 在我国北宋「 ”圜刃”钻头和「 ”卓筒井”发明之后,俄国和美国的钻井技术相继得到发展。据两国史载,初始置的盐井,仍是一种小井,同我国北宋发明的卓筒井非常近似。 据俄国和美国早期的钻井史看来,俄国的钻井技术,始于12世纪,至少比我国11世纪中叶发明的钻井技术要晚约1个世纪。美国的钻井技术肇始于19世纪初,比我国要晚7个多世纪。由此可知,我国北宋中期开创的「 ”卓筒井”工艺,是世界上最早发明的钻井技术,理应推崇为现代钻井技术的先驱。

石油钻井技术资料?

中国石油报6月28日讯 (特约记者 吕晶 通讯员 赵宗璋)6月15日,由西部钻探国际钻井公司50718队承钻的玉门油田重点评价井长209井顺利交井。该井首次使用胶乳水泥浆体系固井新工艺获得成功。   玉门油田酒东区块由于井下存在高压水层、油水层间隔小且油水互层、泥浆密度高等影响固井质量的不利因素,完井固井质量难以保证,部分井由于固井质量问题甚至影响到油田勘探开发。针对这个问题,西部钻探国际钻井公司派出固井工程服务公司有关技术人员赴天津工程院进行技术调研,经过双方细致的讨论研究,决定在长209井完井固井中尝试使用胶乳水泥浆体系。http://www.oilchina.com/syxw/20100628/news2010062802215417091.html

煤层气钻井技术规范

1.总则根据钻探目的不同,煤层气井分为探井、开发井两种类型。煤层气探井以发现和获得储量为目的;煤层气开发井以面积降压和煤层气最大产出为目的,保证煤层气田高效开发。2.煤层气井钻井设计2.1 煤层气探井钻井设计2.1.1 煤层气探井钻井工程设计内容应包括:区域地质简介、设计依据及钻探目的、设计地层剖面及预计煤层和特殊层位置、技术指标和质量要求、井下复杂情况提示、地层岩石可钻性分级、地层压力预测、井身结构设计、钻机选型及钻井设备优选、钻具组合设计、钻井液设计、钻头及钻井参数设计、井控设计、取心设计、煤层保护设计、固井设计、新工艺与新技术应用设计、各次开钻施工重点要求、完井设计、健康安全环境管理、完井提交资料、特殊施工作业要求、邻区与邻井资料分析、钻井进度计划以及单井钻井工程投资预算等。2.1.2 煤层气探井钻井设计应以保证实现钻探目的为前提,充分考虑录井、取心、测井、完井、压裂试气等方面的需要。2.1.3 煤层气探井钻井工程设计应体现“安全第一”的原则。目的煤层段设计应有利于取资料和保护煤层;非目的层段设计应主要考虑满足钻井工程施工作业、提高钻井速度和降低成本的需要。2.1.4 煤层气探井钻井工程设计应采用国内成熟适用的先进技术,确保煤层气钻探目的的实现。2.2 煤层气开发井钻井设计2.2.1 煤层气开发井钻井工程设计内容应包括:区域地质、交通和气候概况、设计依据、技术指标及质量要求、井下复杂情况提示、地层岩石可钻性分级及地层压力预测、井身结构设计、钻机选型及钻井主要设备优选、钻具组合设计、钻井液设计、钻头及钻井参数设计、欠平衡设计、井控设计、煤层保护设计、固井设计、新工艺与新技术应用设计、各次开钻或分井段施工重点要求、完井设计、健康安全与环境管理、生产信息及完井提交资料、钻井施工设计要求、特殊工艺施工要求、钻井施工进度计划和单井钻井工程投资预算等。2.2.2 同一区块井身结构相似的一批开发井,在区块钻井设计的前提下,单井钻井设计可以简化。2.2.3 开发井钻井设计应结合煤层气低产特征,优先考虑水平井、多分支井、空气钻井等钻井方式,保证钻井质量,提高煤层气井产量,满足煤层气高效开发的要求。3.煤层气井井身结构按照《SY/T 5431 井身结构设计方法》,井身结构设计应当充分考虑煤层气井地质设计要求、地质目的、地层结构及其特征、地层孔隙压力、地层破裂压力、地层坍塌压力、地层水文条件、完井方式、增产措施、生产抽排方式及生产工具等。3.1 所设计的井身结构应简单合理,满足钻井完井生产、获取资料、压裂和排采的需要。3.2 采用钻井工艺技术应有利于保护煤层。3.3 充分考虑到地层出现漏、涌、塌、卡等复杂情况的处理作业需要,以实现安全、优质、快速钻井。3.4 生产套管一般应采用钢级为J55 或N80 的φ139.7mm 套管,确因产水量大或地层复杂,可采用更大直径的生产套管,目的煤层以下留60m口袋。3.5 一般情况下,采用二开井身结构:表层套管:φ311.1mm钻头×φ244.5mm套管;生产套管:φ215.9mm钻头×φ139.7mm套管。3.6 多分支水平井和裸眼洞穴完井,采用三开井身结构:一开:φ311.1mm钻头×φ244.5mm套管;二开:φ215.9mm钻头×φ177.8mm套管;三开:φ152.4mm钻头×裸眼完井。3.7 地层条件较复杂的探井,可采用三开井身结构:表层套管:φ444.5mm钻头×φ339.7mm套管;技术套管:φ311.1mm钻头×φ244.5mm套管;生产套管:φ215.9mm钻头×φ139.7mm套管。4.煤层气井钻井技术4.1 根据设计钻探深度和《SY/T 5375 旋转钻井设备选用方法》的标准,合理选择钻机设备,设计钻机最大负荷不得超过钻机额定负荷能力的80%。4.2 钻井循环介质选择和煤层保护要求:煤层以上井段应选用防塌性能好、有利于提高机械钻速的钻井液;煤层段推荐使用清水钻井,对异常高压或大段复杂煤层使用无固相钻井液;开发井应尽量采用空气等欠平衡钻井,减少煤储层的伤害。4.3 参照《SY/T 6426 钻井井控技术规程》制定煤层气井井控技术要求。开发井原则上应安装防喷器。在煤田地质详查区、地质资料证实无常规天然气层,且不含硫化氢等有毒气体的低产煤层气开发井可不安装防喷器,但应有详细的防井涌、井喷技术措施和应急预案,确保一次井控。5.煤层气井完井技术5.1 完井方式(包括套管射孔完井、裸眼完井或裸眼洞穴完井)的选择应结合实钻煤层特征和煤岩力学特性,考虑增产方式、气藏工程和排采要求确定。一般情况,完井井口应安装简易套管头。5.2 固井施工前,钻井监督应要求固井技术服务公司依据钻井设计和实钻地质录井资料,结合钻井施工现场情况编制相应的固井施工设计,并报项目部备案。5.3 下套管作业前,钻井监督应要求承包商进行套管及附件检查,固井施工前,对水泥浆性能进行检测,水泥浆性能达到设计要求后方能施工,固井作业过程中应加强水泥浆的采集分析,施工参数应达到固井施工设计要求。5.4 固井施工结束后,根据设计要求,在规定的时间(一般间隔48 小时)内进行固井水泥胶结测井,并按要求进行试压。6.煤层气井钻井质量6.1 钻井施工应加强质量管理,井身质量合格率应达到100%,固井质量合格率不低于99%,取心收获率达到设计要求。6.2 定向井、水平井、多分支水平井等特殊工艺井的井身质量应执行相应的标准,定向井中靶率应达到100%,进入煤层后钻遇率不低于85%。6.3 煤层气钻井取心采用绳索式取心,井深1000m 以浅的井,岩心出井时间不超过25 分钟,岩心直径应大于φ65mm,取心收获率非煤层段不低于90%;一般煤层不低于80%;粉煤不低于50%。7.煤层气井井身质量7.1 钻井深度:钻达设计井深或完钻要求井深,以转盘面至井底,校核钻具实际长度为准的钻井深度。7.2 井斜角:αmax≤3°(井深≤1000m);αmax≤4°(井深1000~1500m)。7.3 最大全角变化率:Kmax≤1°/25m(井深≤1000m);Kmax≤1.3°/25m(井深1000~1500m)。7.4 井底水平位移:s≤20m(井深≤1000m);s≤30m(井深1000~1500m)。7.5 平均井径扩大率:非煤层段Cmax≤15%;固井完井的煤层段Cmax≤25%。7.6 钻井过程中以单点测斜监测为准,完井以完钻电测连续测斜资料为准,最后一测点距离完钻井底不大于10m。8.煤层气井固井质量8.1 套管下深应达到设计要求:表层套管口袋≤1m;技术套管口袋1~1.5m;生产套管口袋1.5~2m,完井人工井底至套管鞋距离≥10m。8.2 水泥返高要求:表层套管水泥返到地面;技术套管满足工程需要;生产套管水泥返到最上一层煤层顶界200m以上,人工井底至目的煤层底界长度≥40m。8.3 套管柱试压符合《SY/T 5467 套管柱试压规范》的要求。8.4 按设计装好井口,并试压达到要求;完井井口装置必须符合设计要求,装好套管头,井口套管接箍顶部应保持水平,生产套管接箍顶部与地面距离小于0.25m;试压完立即用丝堵或盲板法兰将井口封牢,并电焊井号标记。

钻井技术

买专业书,拜个师

目前掌握地质导向钻井技术的有哪几家

斯伦贝谢、贝克休斯、哈里伯顿

我国近代的旋转钻井技术是怎样成熟起来的?

11世纪,我国顿钻井技术传入西方后,西方对设备和工艺进行了改进和更新,特别是在18世纪60年代的工业革命时期,机器的大量使用逐步代替了手工业的操作。而在我国明万历年间(公元1573—1620年)及其以后的300多年里,钻井技术则进入了衰败期。1936年,为了寻找四川地区的油气资源,从德国购买了四部旋转式钻机,该钻机为德国汉内尔厂制造,钻机的可钻深度为1200米,这种钻机当时在世界上还是比较先进的。1937年10月,在四川省巴县的巴1井开钻,1939年11月,在井深1402米的三叠系上部地层中发现了天然气,这是我国利用旋转钻井技术打成的第一口天然气井。1936年9月,我国和苏联在新疆合办独山子油矿,从苏联运来蒸气驱动的旋转钻机3部。1940年玉门也开始使用旋转钻机钻探深部油气,当时由于缺乏钻高压油气层的技术和装备,不会使用重泥浆,致使多口井发生强烈井喷,使地下的油气资源受到破坏,引起当局重视并采取了一系列重大措施。从1942年开始,玉门相继派出多人去美国、伊朗学习钻井技术,1942年8月,还聘请了美国德士古石油公司的钻井技师和司钻来帮助工作。1943年是玉门油矿钻井技术大发展的一年,也是具有重大转折的一年,当时从美国和东巴林岛购回一批钻井防喷器和测井仪器,自己加工制造了泥浆搅拌器、泥浆槽、沉淀池等,使钻井的装备得到很大改善。50年代,玉门油矿以钻井为龙头,建成了我国第一个石油基地,一度撑起全国石油工业的半边天,并培养出了中国第一代石油钻井专家,他们是:董蔚翘、童宪章、史久光、靳锡庚、蒋麟湘、彭佐猷等人,四川有王显文、周士尧、孙自全等。1937—1949年的12年,是我国石油钻井技术的启蒙阶段也是创始阶段。新中国成立前,我国共有旋转钻机30台,用旋转钻机钻井95口,钻井总进尺约53000米,其中,最深的井为1453米,石油钻井的地区主要集中在陕北、玉门、四川和新疆独山子四个油气田。

钻井技术的由来的是怎样的?

为了开发石油和天然气,我国古代劳动人民在生产实践中逐步发明创造了一整套钻井技术。远在战国时期,我们的祖先就已开凿较深的井,自汉代以来,劳动人民进而推广和改进了钻井机械。我国在公元前211年钻了第一个天然气气井,据有关资料记载深度为150米。在今日重庆的西部,人们通过用竹竿不断地撞击来找到天然气。天然气用做燃料来干燥岩盐。宋代的深井钻掘机械已形成一项相当复杂的机械组合。普遍废弃了大口浅井,凿成了筒井。至明代,钻井机械设备和技术有了更进一步的发展。据明代学者曹学佺的《蜀中广记》记载,东汉时期,“蜀始开筒井,用环刃凿如碗大,深者数十丈”。我国古代的天然气开采技术是比较先进的,比如小口深井钻凿法,套管固管法,笕管引气法,试气量法和裂缝性气田的钻凿等技术,均为世界首创。

巨厚盐膏层钻井技术

根据盐膏层化学成分,可将盐膏层分为两类:第一类为较纯的盐膏层,主要成分NaCl达90%以上,盐膏层之间大多为不易水化膨胀的地层;第二类为化学成分较复杂的盐膏层,除晶态NaCl外,还有芒硝、石膏、方解石、碳酸盐岩等。在巨厚盐膏层钻井技术方面,通过对盐膏层三维蠕变压力变化规律、盐膏层溶解速率、套管所受非均匀载荷的研究,在合理地确定钻井液体系和密度,准确地进行套管强度设计及综合配套技术措施方面有了新认识和突破,在安全高效钻穿盐膏层方面取得显著进展。3.3.5.1 盐膏层蠕变规律(1)盐岩的蠕变特性典型的盐岩蠕变曲线(图3-120)中,蠕变分三个阶段。“A”是第一阶段为瞬态蠕变期,在到达下一阶段前,该阶段盐岩蠕变应变率逐渐降低,表现为非线性;“B”是第二阶段为稳态蠕变期,该阶段蠕变应变率保持恒定,表现为线性;“C”是第三阶段为加速蠕变期,该阶段应变率增加直到试样破坏,为非线性。图3-120 典型的盐岩蠕变曲线对盐岩这类塑性材料,蠕变主要表现为“A”、“B”两个阶段,而且“B”阶段持续的时间比较长。对于石油工程,盐膏盐岩主要表现为瞬态蠕变、稳态蠕变两个阶段,在钻进和下套管固井后主要受稳态蠕变的影响。(2)盐膏层的蠕变方程对于特定的盐岩,研究其流变特性就是确定稳态蠕变速率与温度压力的变化关系,即蠕变方程。盐岩蠕变机制、蠕变方程与温度压力有关。盐岩的蠕变模型很多,主要是指数和幂律两种模式。反映盐膏盐岩蠕变的几种主要模型如下。1)幂率模型(Power Law Model)。该模型为一个纯经验公式,对于瞬态蠕变与应力、温度、时间的关系表达式为:中国海相油气勘探理论技术与实践式中:εp为瞬态蠕变应变;σ为差应力;T为温度;t为时间;m、p、n分别为应力、温度、时间的指数。若描述总的应变规律,还应加上稳态项,即:中国海相油气勘探理论技术与实践式中:ε为总应变;为稳态应变率。可以用Weertman位错滑移模式表述:中国海相油气勘探理论技术与实践式中:Q为激活能;R为理想气体常数;β为应力系数(由试验确定);A*为试验常数。幂率模型以显式的形式表达了应力、温度、时间与应变的关系,模型比较简单,对工程实际有一定指导意义,但对盐岩的流变规律描述比较粗糙,现在已很少使用。2)温度指数定律(EXponential Temperature Law)。Senseny P.E.等人于1983年提出,用来描述Avery岛岩丘盐岩的高温(大于熔融温度的一半)流变规律,其具体表达式为:中国海相油气勘探理论技术与实践式中:B、λ为试验常数;其他符号同上。中国海相油气勘探理论技术与实践幂率模型和温度指数模型表达式简单、使用方便,但本身却存在许多缺陷,如在数据回归时有时出现稳态蠕变速率为负的情况,与实际不符,且不能很好地反映复杂应力、温度历史。曾义金教授、杨春和教授等通过大量的蠕变试验,研究得出考虑温度影响的,三维条件下盐膏层蠕变本构方程:中国海相油气勘探理论技术与实践最后一个因子考虑了温度的影响。在恒定室温下,可表述为:中国海相油气勘探理论技术与实践式中:A2*、n、A1、B1*、B2可以通过岩心的蠕变试验得到。(3)盐膏层蠕变压力计算与分析1)盐膏层蠕变压力计算方法。由显式有限差分法编制的FLAC3D有限差分计算软件,提供了能模拟材料的蠕变特性,即材料特性随时间而变化的功能。FLAC3D计算分析中,蠕变模型与其他本构模型的主要区别在于对时间问题的模拟。2)盐膏层蠕变压力分析。A.不同井深盐膏层蠕变压力分析。盐膏层埋深对蠕变压力影响巨大。随盐膏层深度增加,蠕变压力显著增加;随着时间的延续,蠕变压力趋于稳定,最后和上覆地层压力相同;盐膏层埋深越大,蠕变压力趋于稳定的时间越短。B.不同厚度水泥环护壁下盐膏盐岩蠕变压力分析。对埋深一定、不同厚度护壁水泥环条件下盐膏层蠕变压力进行分析得出,水泥环厚度对套管初始应力状态有影响,但不显著。C.不同厚度盐膏盐岩蠕变压力分析。对埋深、护壁水泥环厚度一定,厚度不同的盐膏层对套管的径向压应力、套管周向应力、套管竖向应力变化进行分析得出,在盐层蠕变初期,盐层厚度对套管受力状态有比较明显的影响,但随着时间的延续,套管在不同厚度的盐层中,受力状态趋于一致。D.不同温度下盐膏层蠕变压力分析。温度对套管受力状态的影响十分显著,温度越高,套管在盐膏层蠕变初期承受的蠕变压力、周向应力和垂向应力越高,随着时间的延续,套管蠕变压力和垂向应力趋向一致,但周向应力趋向一致的速度比较缓慢。3.3.5.2 钻井液密度设计技术钻井液密度的确定与盐膏层蠕变特性、钻井液含盐饱和度等因素有关。合理的盐膏层钻井液密度的确定是根据地层特性,利用力学和化学的平衡来进行的。(1)钻井液密度谱钻井液密度图谱是盐层井眼缩径率与钻井液密度相关关系曲线。它可根据蠕变压力和蠕变实验,利用FLAC3D软件计算不同井深、不同钻井液密度下盐层井眼缩径率,并拟合成曲线来建立,也可根据盐膏层钻井的实测蠕变速率数据,利用FLAC3D软件反演,绘制出钻井液密度图谱。图3-121是根据实测蠕变速率,绘制出的钻井液密度图谱。(2)盐膏层井眼溶解速率钻井过程中,钻井液会溶解井下盐层。曾义金教授、邓金根教授等的研究表明,在给定温度下,盐岩溶解速率与钻井液含盐浓度之间存在良好的对数相关关系。由此得到的不同温度下盐岩溶解速率随[Cl-]的变化曲线进一步表明,在给定钻井液含盐浓度下,温度对盐岩溶解速率的影响并非简单的线性关系,而是存在一个临界点,温度在临界点以下,钻井液含盐浓度一定时,随着温度的升高,盐岩溶解速率升高;温度在临界点以上,钻井液含盐浓度一定时,随着温度的升高,盐岩溶解速率降低(图3-122)。图3-121 不同井深所对应缩径率下的钻井液密度谱图3-122 不同温度下盐岩溶解速率随[C1-]的变化曲线同样,根据盐岩溶解速率也可以得出不同温度下,钻井液含盐浓度与井径扩大率相关关系回归曲线(图3-123)。(3)钻井液密度与含盐饱和度的确定根据盐岩溶解速率和井径扩大率与[C1-]关系回归曲线以及钻井液密度图谱,综合考虑蠕变与溶解两方面的作用,确定钻井液密度和含盐饱和度。首先,根据使用的钻井液密度,从钻井液密度图谱(图3-121)中查出对应的蠕变速率,然后,从井径扩大率与[C1-]关系曲线(图3-123)上确定平衡该蠕变速度的井径扩大率所对应的含盐饱和度。另外,根据实测的盐膏层的蠕变速率、使用的钻井液含盐饱和度、钻井液密度谱,同样也可以确定一个地区盐膏层安全钻进所需的钻井液密度。该方法的基本思路是,用正在使用的钻井液密度对照密度谱可以确定该密度下缩径率,用实测的缩径率与查出的缩径率的差值作为再一次查找相应钻井液密度的缩径率,对应该缩径率的钻井液密度就是安全钻进所需的钻井液密度。图3-123 井径扩大率与[C1-]关系回归曲线3.3.5.3 盐膏层钻井配套技术(1)井身结构设计方案针对深井超深盐膏层井,有效防止盐膏层蠕变对套管造成的挤毁损害,从而确保成井的安全,是井身结构设计考虑的重点。目前深井盐膏层常用的井身结构有两种(以塔河油田为例)。图3-124 非均匀外载下的套管强度设计图版1)专封专打方案。以Φ244.5mm套管下至盐顶或5000m左右,用Φ206.3mm套管封盐层;盐下井段采用Φ139.7mm尾管固井。实践证明,该套方案对盐层分布清楚或盐下压力系统较一致的井是可行的,但是对于井况特殊、具有多项钻井地质目的、下部井眼仍需多层套管封隔的井,限制了井径的选择与井眼的延深。目前通常采用在套管程序上加大一级的方法。该方案比较适合各种情况都比较了解的生产井。2)长裸眼揭示盐膏层方案。为保证钻井地质任务的实现,优化设计了长裸眼揭示盐膏层方案,即大尺寸开孔、盐膏层与上覆低承压地层同井眼揭示、大壁厚高抗挤套管封固盐膏层的长裸眼钻井方案,使用Φ244.5mm或Φ273.0mm+Φ244.5mm组合套管悬挂而后回接封固盐膏层;盐下井段使用Φ177.8mm尾管,尾管重叠过盐顶100m;使用密度为1.65g/cm3左右的欠饱和盐水钻井液,结合验漏、堵漏提高地层承压能力的技术揭示盐膏层;采用随钻扩孔或液力扩孔技术保证盐膏层钻井安全等。长裸眼钻盐层与盐层专封专打相比风险较大,在钻井工艺技术方面一般按两步走,即盐前钻井技术和盐层钻井技术。盐前钻井技术的重点是钻遇盐层后立即停止钻井,重做地层破裂压力试验,以确定裸眼井段的承压能力。对低压力点裸眼井段采取一次性封堵措施,如果地层具备(或经过堵漏以后具备)承受盐膏层钻进时的高密度的能力,则转换适合盐膏层钻进的钻井液体系后进行盐膏层钻进。如果进行堵漏后地层仍不能承受盐层钻进时的高密度,应调整方案,转化为盐膏层专封专打方案。该方案优点是首先封隔了多套压力体系,其次是通过尾管的重叠避免了盐层段套管变形现象,第三是简化了井身结构,使完井井眼较大,比专封专打方案多出了一层备用套管空间。该方案比较适合探井。(2)套管强度设计盐膏层套管设计的关键是抗外挤强度计算。以前,盐膏层套管设计一般采用盐膏层最大蠕变压力,即上覆地层压力,套管受均匀载荷作用,管内按40%掏空和安全系数1.125或根据经验采用更大的安全系数进行计算,但是采用这种方法,在实际应用中经常发生套管变形事故,因此,对盐膏层套管设计一定要考虑非均匀外载。1)套管强度设计图版及其应用。根据套管强度设计图版可进行非均匀外载下的套管强度设计。如果已知套管将受到的椭圆形分布载荷值及其轴比,可判断出套管是否安全或者需要哪一种套管才能抗住这种载荷,例如:已知K=0.4,载荷所围面积5=1690.0MPa2,则Pc=23.2MPa,若选用壁厚为9.19mm(D/t=19.3)的P110套管,则Pc/σs=0.03,它大于D/t=19.3的套管所能承受的最大极限载荷(Pc/σs=0.01),套管是不安全的;若改用壁厚12.65mm的V150套管,此时Pc/σs=0.022,而该种套管(D/t=14.1)所能承受的极限载荷Pc/σs=0.025,所以套管是比较安全的。为便于应用,将等效破坏载荷Pc与套管材料屈服极限的比值Pc/σs和套管径厚比D/t间的关系绘成曲线,即套管强度设计图版(图3-124)。图中还绘出了套管受对径载荷及均匀外载作用时的套管强度曲线。对径载荷的等效载荷定义为单位直径长度上所受的集中力。根据套管强度设计图版,可对盐层套管进行设计。2)盐膏层套管强度设计步骤。A.根据盐层流变性、盐层中的地应力及固井时的井内静液柱压力,利用黏弹性有限元计算程序,计算出盐层套管所受盐层蠕变外载随时间的变化规律及分布规律,并得出套管外载的最终稳定值,该稳定值的大小及非均匀性用卡西尼椭圆函数的短、长轴b,a来表示。B.根据b、a值,计算套管所受载荷的面积S及轴比K,求出套管实际所受等效破坏载荷:。C.根据K,Pr由图3-124可进行套管强度设计或检验套管强度。a.根据K,Pr及套管钢级(即σs),选择套管壁厚:先求出Pr/σs,再根据K、Pr/σs值可由图中查得套管的临界径厚比(D/t),即可计算出所需套管的最小壁厚值。b.根据K,Pr及套管壁厚,选择套管钢级:先由K,D/t值由图中查得Pc/σs(Pc为套管所能承受的最大有效载荷),再用实际载荷Pr去除Pc/σs,得到套管管材所需的最小屈服极限σs,由σs值选定套管钢级。c.若已知所用套管钢级(已知σs)、壁厚(可计算径厚比D/t),检验套管的安全性:先求出Pr/σs,再根据K,D/t值由图查得套管产生破坏时的Pc/σs,若Pc/σs<Pr/σs,则套管强度不够,将导致套管的非正常损坏;若Pc/σs>Pr/σs,则套管是安全的。d.套管强度设计时,假设套管内压为零即按全部掏空计算,若套管内压不为零,则其抗均匀外压的强度要大大提高。但当套管外压为非均匀分布时,增加内压套管强度增加不明显。(3)扩孔技术1)随钻扩孔与钻后扩孔相结合的方案。盐膏层上部地层采用Φ311.15mm钻头钻进,自盐膏层顶界以上60m处开始采用领眼钻头为Φ241.3mm的偏心扩孔工具随钻扩孔,扩孔尺寸Φ374.65mm。2)钻后液力扩孔方案。先使用Φ311.15mm钻头钻进,钻过盐膏层后,使用液力扩孔器专门对盐层扩孔,要求平均井径扩大至Φ349.25mm。

邯郸市信发钻井技术服务有限公司怎么样?

简介:邯郸市信发钻井技术服务有限公司成立于2014年04月25日,主要经营范围为钻井技术服务、农业水利灌溉系统管理服务等。法定代表人:赵海发成立时间:2014-04-25注册资本:2000万人民币工商注册号:130400000144288企业类型:有限责任公司(自然人投资或控股)公司地址:河北省邯郸高新技术产业开发区友谊路10号新科园西区16-1-03号

钻井技术 有前途吗?求 详解

很有前途,国家紧缺该类人才,就看你愿不愿以吃苦啦。

目前世界上钻井技术最好的国家是那个国家?

不是美国就是加拿大

钻井技术是什么?

钻井..一个月休息一天吗?

我国近代的旋转钻井技术

11世纪,我国顿钻井技术传入西方后,西方对设备和工艺进行了改进和更新,特别是在18世纪60年代的工业革命时期,机器的大量使用逐步代替了手工业的操作。而在我国明万历年间(公元1573—1620年)及其以后的300多年里,钻井技术则进入了衰败期。1936年,为了寻找四川地区的油气资源,从德国购买了四部旋转式钻机,该钻机为德国汉内尔厂制造,钻机的可钻深度为1200米,这种钻机当时在世界上还是比较先进的。1937年10月,在四川省巴县的巴1井开钻,1939年11月,在井深1402米的三叠系上部地层中发现了天然气,这是我国利用旋转钻井技术打成的第一口天然气井。1936年9月,我国和苏联在新疆合办独山子油矿,从苏联运来蒸气驱动的旋转钻机3部。1940年玉门也开始使用旋转钻机钻探深部油气,当时由于缺乏钻高压油气层的技术和装备,不会使用重泥浆,致使多口井发生强烈井喷,使地下的油气资源受到破坏,引起当局重视并采取了一系列重大措施。从1942年开始,玉门相继派出多人去美国、伊朗学习钻井技术,1942年8月,还聘请了美国德士古石油公司的钻井技师和司钻来帮助工作。1943年是玉门油矿钻井技术大发展的一年,也是具有重大转折的一年,当时从美国和东巴林岛购回一批钻井防喷器和测井仪器,自己加工制造了泥浆搅拌器、泥浆槽、沉淀池等,使钻井的装备得到很大改善。50年代,玉门油矿以钻井为龙头,建成了我国第一个石油基地,一度撑起全国石油工业的半边天,并培养出了中国第一代石油钻井专家,他们是:董蔚翘、童宪章、史久光、靳锡庚、蒋麟湘、彭佐猷等人,四川有王显文、周士尧、孙自全等。1937—1949年的12年,是我国石油钻井技术的启蒙阶段也是创始阶段。新中国成立前,我国共有旋转钻机30台,用旋转钻机钻井95口,钻井总进尺约53000米,其中,最深的井为1453米,石油钻井的地区主要集中在陕北、玉门、四川和新疆独山子四个油气田。

钻井技术的“四字”发展方向是什么?

由陈宝万编写的《钻井和完井》一书,总结了钻井技术的“四字”发展方向,耐人寻味。所谓 “四字”发展方向,即:向“横”的方向发展,打丛式井、延伸井等;向“深”的方向发展,钻深井、深水钻井;向“小”的方向发展,进行小井眼钻井;向“巧”的方向发展,多底井钻井、欠平衡钻井等。

钻井技术的发展过程是怎样的?

为了开发石油和天然气,我国古代劳动人民在生产实践中逐步发明创造了一整套钻井技术。远在战国时期,我们的祖先就已开凿较深的井,自汉代以来,劳动人民进而推广和改进了钻井机械。我国在公元前211年钻了第一个天然气气井,据有关资料记载深度为150米。在今日重庆的西部,人们通过用竹竿不断地撞击来找到天然气。天然气用做燃料来干燥岩盐。宋代的深井钻掘机械已形成一项相当复杂的机械组合。普遍废弃了大口浅井,凿成了筒井。至明代,钻井机械设备和技术有了更进一步的发展。据明代学者曹学佺的《蜀中广记》记载,东汉时期,“蜀始开筒井,用环刃凿如碗大,深者数十丈”。我国古代的天然气开采技术是比较先进的,比如小口深井钻凿法,套管固管法,笕管引气法,试气量法和裂缝性气田的钻凿等技术,均为世界首创。我国钻井技术的起源和发展与制盐业有着密切的联系。第一座盐井出现在古巴蜀地区,即现在的四川地区。当时四川的运输业极不发达,海盐很难运到地处内地、道路艰险的四川。但古代巴蜀人发现自己的脚底下就蕴藏着丰富的岩盐和含盐分很高的卤水,他们即因地制宜,开采地下盐以食用。四川人称食盐为“盐巴”。在四川,产盐的地区主要集中在自贡地区,井架林立的自贡因此有“盐都”之称。采盐的需要促进了深井钻探技术的发明和发展。钻井深度越来越深,钻透盐层再往下便是天然气层,卤水制盐需要熬制,使用当地天然气作燃料既方便又经济。由此可见,天然气就是在深井制盐业的促进下开发的,两者的发明基本上是同时出现。由于天然气层较深,要开凿气井必须有优良的钻井设备。我国当时已有先进的铁制业,为钻井提供了铸铁造的钻头。动力则用人力。人先跳到杠杆的一端把钻头抬高,再跳下来使钻头砸下去。钻井用的竹缆是由竹条制成的。竹缆具有很强的抗拉强度,与一些钢缆的抗拉强度相当。而且竹缆有极好的挠性,容易绕在钻头提升鼓上,而且遇水后强度增加,恰好用来冲击岩石。在不断的劳动实践中,古巴蜀人民发明了一系列专用的钻井工具,总结出一整套钻井技术,开凿出一大批很深的天然气井。这些深井钻探技术迅速传播开来,被世界各国仿效采用。盐的生产在我国历史悠久。据研究考证,夏代时已产盐,主要为海水煮盐,主产于福建沿岸等地。殷商时期,规模扩大,不仅有海水制盐,而且有湖水制盐,不仅有制盐工人,而且有管盐的“盐人”。战国时,有池水制盐,也有井卤煮盐。表明我国是世界最早的产盐国。据《华阳国文·蜀志》记载,四川省临邛即现在的邛崃县制井盐,“井有二水,取井火煮之,一封水得五织盐”。“二水”即卤水,“井火”就是天然气。这里是世界最早制井盐的地方。

欠平衡钻井技术

欠平衡钻井技术以空气钻井为先导开始于20世纪50年代,采用空气压缩机向油井内注入空气和水的混合物。在90年代,不断完善的欠平衡配套设备和技术有:井口旋转控制系统、高压注气系统、地面分离系统、监测仪表系统、支持软件系统,使得欠平衡技术在美国、加拿大、欧洲被广泛采用,从而在世界范围内形成一股欠平衡钻井热潮。我国欠平衡钻井技术早在20世纪60年代,进入90年代以来,我国欠平衡技术加速发展,尤其是塔里木油田解放128井、轮古系列井欠平衡钻井的成功,将我国欠平衡钻井推向了一个新的阶段。3.3.4.1 欠平衡钻井技术的分类和分级(1)欠平衡钻井类型按工艺分类:可分为液相(水基、油基钻井液)和气相(空气、氮气、雾化、泡沫、充气)。欠平衡钻井技术对应的密度为:1)气体钻井,密度的适用的范围0~0.02g/cm3。2)雾化钻井,密度的适用的范围0.02~0.04g/cm3。3)泡沫钻井,密度的适用的范围0.04~0.6g/cm3;井口加回压时可达到密度的适用的范围0.8g/cm3以上。4)充气钻井,密度的适用的范围0.7~0.9g/cm3;部分地区还更高。5)油包水或水包油钻井液钻井,密度的适用的范围0.8~1g/cm3。6)淡水或卤水钻井液钻井,密度的适用的范围1.0~1.30g/cm3。7)常规钻井液钻井,密度的适用的范围大于1.10g/cm3。8)泥浆帽钻井,用于钻较深的高压裂缝储层或高含硫化氢的气层。目前使用的欠平衡钻井技术主要有以下几种:气相欠平衡钻井、气液两相欠平衡钻井、液相欠平衡钻井。(2)欠平衡钻井分级美国钻井承包商协会欠平衡作业委员会为给工程技术人员选择合适的设备和相应的方案,制定了欠平衡油井分类系统标准。该分类系统标准把风险油井分为6级,从0~5。每一级下又分为A和B两类。具体分类情况如下:0级:只提高钻井效率,不涉及油气层。1级:油井靠自身压力无法自流到井口,油井是稳定的,从井控的角度来看风险较低。2级:油井靠自身压力可以自流到地面,如发生灾难性设备失效,可以采用常规压井方法进行处理。3级:不产油气的地热井。最大关井压力小于欠平衡设备的承压能力,如发生灾难性设备失效会导致严重后果。4级:有原油产出,最大关井压力小于欠平衡设备的工作压力,如发生灾难性设备失效会立即导致严重后果。5级:最大注入压力大于欠平衡作业压力,但小于防喷器的最大承压能力,灾难性设备失效会立即导致严重后果。3.3.4.2 欠平衡钻井设备及工艺(1)欠平衡钻井常规设备1)地面设备:包括旋转防喷器、单(双)闸板防喷器、节流管汇、四通、液压控制阀、液气分离器、压井重浆罐、撇油罐、储油罐、各种高(低)压硬(软)管线、防回火器、点火管线和自动点火器等。2)井下工具:包括箭式单流阀、投入式止回阀、钻杆上(下)旋塞、六方钻杆、旁通阀等。3)其他设备:包括无线通讯设备、有害气体报警及防护设备、防火防爆设备等。目前能够完成全过程欠平衡钻井的设备分两类,一是井口强行起下钻装置,用它来克服管柱在起出末期或下入初期时井内的上顶力;二是井下封井器或井下套管阀,它可以完成井下关井,使井口在不带压的情况下完成管柱起下。(2)气体钻井设备1)设备能力的要求。气体(雾化)钻井设备根据所施工的井眼尺寸、井深和采用的钻具尺寸、井眼出水情况等因素的不同,要求设备的能力有所不同,需要针对具体情况进行分析,以便确定设备的类型、参数和能力。根据气体钻井计算软件计算气体钻井参数结果见表3-8。2)气体(雾化)钻井设备的组成、作用和流程。气体钻井需要配备的设备,除了井口压力控制设备——旋转防喷器外,还需要一些特殊的设备,这些设备的不同组合,可以满足不同钻井方式的要求(表3-9)。气体钻井设备及循环流程如图3-119。3.3.4.3 欠平衡钻井设计(1)一般原则井底负压值的大小因地区的不同而各异,根据邻井的单位压差下的油气产量、地面设备的处理能力、期望的随钻产油量、井眼稳定性要求、现场设备运行稳定性情况以及施工人员的业务水平等几个方面的原因综合考虑。在设计时一般遵循以下几个原则:表3-8 气体钻井不同井况所需的气量表3-9 气体钻井所需设备图3-119 气体钻井循环流程图1)井底负压值下限是零,上限为地层孔隙压力与地层坍塌压力之差。2)液相欠平衡钻井技术井底负压值设计应尽可能小,以降低井口压力,井底负压值一般取在1~3MPa之间。3)气体和雾化钻井,井底负压值不作特别设计。4)泡沫和充气钻井,井底负压值设计余地较大,有气相存在,井底负压值可设计得大一些,防止出现过平衡。立管充气钻井,井底负压值应考虑大于2MPa。5)负压差是保证欠平衡钻井成功的重要参数,负压差设计应从井口装置、套管承压能力、旋转控制头的性能、井眼的稳定性、地面对产出液量分离能力等多个方面进行综合考虑。(2)气体钻井设计1)空气钻井段选择。地层的力学稳定性、出气、出水、出硫化氢情况是决定空气钻井技术能否正常应用的重要因素。空气钻井使用条件是井壁稳定,地层不出水或出水量不大,不含烃类物质或烃类物质含量不高,不含H2S。A.井壁稳定性分析。地层井壁稳定性分析是实施空气钻井的一个先决条件之一。根据已钻井地质资料分析地层砂、泥、页岩成分,地层砂岩石英含量、胶结程度,分析满足实施空气钻井的技术条件。B.地层出水分析。根据已钻井资料,分析地层有无出水现象及出水程度。C.地层出气分析。为确保空气钻井顺利实施,需要对空气钻井施工井段地层压力和出气情况进行评估。D.地层H2S分析。空气钻井主要立足一次井控,强化二次井控,杜绝井喷失控。基于国内常规泥浆钻井经验,遇见硫化氢气层的可能性有但不是十分严重,但需要高度重视。只要钻井过程中发现H2S显示,就必须停止空气钻井。E.适用井段确定。对地层井壁稳定性、出水情况和地层出气情况综合分析,选出最适合空气钻井的井段。要求在空气钻进时加强地层监测,做到水层、气层及时发现、及时处理。2)主要参数的确定。气体钻井水力参数计算模式有四种:Angel理论推算法、Ikoku等人的考虑岩屑下沉的计算方法、Adewumi等人由流体力学推导的计算方法、Supon等人的试验回归方法,目前在气体钻井参数设计时使用的是基于以上一种或几种模型的计算机软件。气体钻井的两个重要参数是井底压力和气体流量,必须在井底保持足够压力以克服悬浮固相的重力和摩擦力所引起的压降。由于最小浮力可能发生在井底和钻铤与钻杆连接处,因此这两处必须确保气体速度,气体钻井要求的最优气体速度取决于颗粒直径。除了上面两个参数外,影响气体钻井的参数还有钻速、岩屑尺寸、地面大气压力、温度等。3.3.4.4 空气钻井施工(1)气举在实施空气钻井前,钻柱下至井底后,从高压管线注气口经由高压管线、钻柱把井内钻井液用压缩空气举升出来,气举时一般使用2台空压机(排气量54.4m3/min)和1台增压机(排气量60m3/min)。控制注气压力略大于井筒内液柱压力,并通过调整节流阀控制井口回压的方法,防止井口喷涌量过大或超过液气分离器额定压力,逐步将井筒替空。气举完成后,必须使用压缩空气继续清洗、干燥井筒,待返出的气体干燥后,方可开始钻进。(2)空气钻进在Φ314.1mm或Φ316.5mm井眼中,一般使用4~5台空压机进行空气钻进,排量100~130m3/min,注气压力1.5~2.5MPa,正常情况下(除气举、地层出水)不使用增压机,当注气压力超过空压机的最大工作压力时(2.5MPa),才启动增压机。钻出的岩屑成粉末状,扭矩较常规钻井大;根据返出的岩屑颗粒大小、比例和湿润程度以及注气压力、扭矩变化、上提下放阻卡情况判断井下出水和井壁失稳等异常情况,依严重程度不同,分别采取增加循环时间、增大注气量、转换成雾化钻井、泡沫钻井直至钻井液钻井等措施和方式。在气柱作用于井下的压力微乎其微的情况下,关键是做好气体检测、硫化氢检测和井控工作,准确及时检测返出气体中的组分变化,尽可能控制井下燃爆,防止出现井下事故。(3)起下钻在非产层实施气体钻井起钻前充分循环将钻屑携带干净,停止向井内注气,待环空压缩气体返出后,敞开井口正常起钻,起钻时要注意卸放止回阀下面钻具内圈闭的压力,下钻时正常下钻,下钻到底后在钻具顶部接止回阀后恢复钻进;在产层实施气体钻井,如果井口有压力需要通过旋转防喷器起下钻,钻具重量不能克服上顶力时,需要使用不压井起下钻装置或使用井下套管阀进行起下钻。(4)转换钻井液发现以下情况之一时,应考虑将空气钻井改为常规泥浆钻井:1)地层出水,地面表现为见液滴。2)返出气体全烃含量连续超过3%。3)返出流体中H2S含量连续超过5mg/m3。4)扭矩、摩阻突然增大或起下钻困难影响钻井安全。5)井斜大于设计要求且纠斜效果差。如果空气钻井施工现场配备有雾化、泡沫钻井设备,那么当钻遇地层出水时可以视出水大小及时转化为雾化或泡沫钻井。在空气钻井施工现场,详细制定了空气钻井转化为泥浆钻井的原则、方法和具体实施步骤。在进行泥浆转换过程中,严格执行了空气钻井转换为泥浆钻井技术方案。3.3.4.5 欠平衡钻井技术应用实践(1)在南方地区应用中国南方海相气体钻井技术主要应用在陆相地层。在陆相须家河组以上地层开始实施空气(雾化)钻井以来,取得了非常好的效果,机械钻速提高了5~10倍。(2)在塔里木地区应用从1998年以来,在塔北地区奥陶系碳酸盐岩地层钻井施工欠平衡井次达60余口,井别涉及生产井、评价井、探井、定向井、水平井及侧钻水平井,较好地解决了塔北地区奥陶系碳酸盐岩储层钻井漏失等工程问题,显著地提高了油气产量和钻井机械速度,提高评价井、探井的油气发现概率,产生了显著的社会、经济效益。

井下动力钻井技术是什么?

井下动力钻井技术是钻井技术的又一次技术革命。常规转盘钻井施工原理是:动力机通过传动装置驱动转盘,转盘通过方钻杆使钻杆柱旋转,而钻杆最下端的钻头随着转动。井越深,钻杆柱越长,钻头得到的扭矩也越小。而井下动力钻井技术,则是钻杆不转动,钻井液从钻杆柱中间流下去,推动井下动力钻具转动,从而带动钻头转动。它不受井深的限制。井下动力钻具可分为涡轮钻具和螺杆钻具两种。苏联以研发涡轮钻具为主,欧美国家则以螺杆钻具为主。目前,螺杆钻具应用更为广泛。涡轮钻具与孕镶金刚石钻头配合,钻高温高硬地层具有较好效果。螺杆钻具在我国已得到广泛应用。

水平井钻井技术

水平井钻完井技术是页岩气规模开发的关键技术,页岩气几乎都采用水平井开采。水平井钻完井技术,包括欠平衡、空气钻井、控制压力钻井、旋转导向钻井、钻井液配方、有效固井等技术,也包括同井场利用滑移井架钻模式钻探多口水平井技术。水平井与直井相比,其优势在于:①成本为直井的1.5~2.5倍,单井控制储量是直井的3~4倍;②水平井与储层裂缝相交机会大,明显改善储层流体的流动状况和增加泄流面积;③减少地面设施、占地面积,延伸可采范围。

水平井钻井技术是什么?

水平井钻井技术是利用特殊的井下动力工具与随钻测量仪器,钻成井斜角大于86°,并保持这一角度钻进一定长度井段的定向钻井技术。在油气田开发中,水平井可以增加裸露出油面积,数倍地提高油气产量。水平井钻井技术包括随钻测量技术、井眼轨迹控制技术、井壁稳定技术、钻井完井液技术等。从垂直井段转变为水平井段的曲率半径越小,施工难度越大。水平井按曲率半径分,可分为长半径水平井、中半径水平井、短半径水平井、超短半径水平井。按照井的类型分,可分为常规水平井、套管侧钻水平井、分支水平井。按照水平井的用途分,可分为生产水平井、注入水平井、横向勘探水平井。水平井钻井技术起源于20世纪的30年代,发展于80年代。全球每年钻各种水平井在20000口以上。在国内,以胜利油田、辽河油田、新疆油田、长庆油田、塔里木油田等为代表的一些油田,也广泛应用水平井钻技术,开发各种油气藏,每年钻各类水平井2000余口,并都见到较好的效果。

旋转导向钻井技术是什么?

旋转导向钻井技术是20世纪90年代出现的一项尖端自动化钻井新技术。它的出现是世界钻井技术的一次质的飞跃。旋转导向钻井技术的核心是旋转导向钻井系统。它主要由井下旋转自动导向钻井系统、地面监控系统和将上述两部分联系在一起的双向通信技术组成。它具有钻进时摩阻与扭阻小、钻速高、成本低、建井周期短、井眼轨迹平滑、易调控并可延长水平段长度等特点。旋转导向系统按其导向方式可分为推靠钻头式和指向钻头式两种。

水平井钻井技术的介绍

水平井钻井技术是利用特殊的井底动力工具与随钻测量仪器一种钻井技术。

 大位移钻井技术

大位移钻井技术是20世纪80年代后期在国外逐步兴起的一项钻井新技术。90年代末,中国海洋石油将这项新技术成功用于开发边际油田和一般油田,以减少生产平台建设费用。所谓大位移定向井是指水平位移与垂直深度之比大于2的定向井,通常比值接近2的定向井也称为大位移井。大位移钻井技术是在定向井技术基础上发展起来的。我国海上石油从1968年开始在渤海湾钻丛式定向井。当时定向工具是涡轮钻具+弯接头+扶正器,地面钻具划线法人工计算定向。造斜段每钻一个单根或立柱起钻电测井斜和方位,精确度低、效率低、风险大。造斜达到设计最大井斜后才改用稳斜钻具钻进。1968~1975年运用这套原始技术在渤海多座平台上钻定向井数十口,使当时海洋丛式井钻井技术在国内处于领先水平。1976年从国外引进了单点照相测斜仪和戴纳(DYNA)井下动力螺杆钻具,从此由井下定向代替了地面定向,提高了定向精度和钻井效率,使定向钻井技术走上了一个新阶段。1979年运用新的定向工具在渤海8号平台上钻定向井12口,平均井深3321m,最大水平位移1184m,平均建井周期55天,创造了国内新水平。1980年中国海油对外合作后进入了大规模油田开发期,陆续引进先进的定向工具。1982年渤海埕北油田定向井使用戴纳和纳威(NAVI)钻具,有缆随钻测斜仪(DOT),进一步提高了钻井效率。埕北油田A平台28口定向井,平均井深1857m,平均建井周期17.37天。1985~1989年先后引进有线随钻测斜仪 SST、电子多点测斜仪、抗磁性干扰测斜仪(SRD)、陀螺测斜仪(BOSS)、无缆随钻测斜仪(MWD)等先进仪器和戴纳及纳威钻具,使定向工具达到国际水准。并对定向钻井人员进行国内外培训,使海洋定向井技术进入现代化水平。至90年代后期,在涠洲10-3、渤中28-1、锦州20-2、绥中36-1等油气田完成定向井数百口,其中不少井为大斜度井和较大位移井。1991~1992年还分别钻成渤中28-1-N6H和涠洲11-4-A13两口水平井。1993年海油南北定向井专业队伍合并,成立海洋定向井技术服务公司,进一步加强了技术引进和开发工作。先后引进导向马达(AKO)、Land mark定向井应用软件,对导向钻井技术、三维大位移钻井技术、水平井技术等进行攻关,并取得突破性进展,使导向钻井技术必备要素成龙配套。首先完善了导向钻具组合,PDC钻头+可调弯角大功率导向马达(AK0)+随钻测斜仪(MWD),其次应用定向井计算机专用软件包,同时培养了一批有经验、又掌握现代技术的定向井工程师,为导向钻井技术的应用打下了基础。从1995年起导向技术在优快钻井和密集型丛式钻井中发挥了明显作用。在导向钻井技术成熟应用的基础上,又引进LWD,使导向技术进入地质导向钻进阶段,在平湖气田等10多口水平井钻井中应用效果良好。有了成熟的导向钻井技术,也就为大位移钻井技术打下了坚实基础,使海洋石油大位移钻井技术一上手就旗开得胜,取得一个接一个的胜利(表11-1)。表11-1 中国海洋石油大位移井统计表(至2002年)一、西江24-1油田大位移井开发技术西江24-3油田位于我国南海北部珠江口盆地,水深100m,由中国海油与菲利普斯及派克顿公司合作开发。距该油田东部8km的西江24-1油田含油面积4.2km2,探明地质储量465 ×104m3,油层埋深2500~2800m,是1985年发现的油田。发现井试油日产1905m3,采油指数高达370m3/d.MPa,具有高渗透率、流动性好、不出砂、充足的水体能量,不需注水采油等优点。但是,按常规方法建生产平台或水下井口则无开发价值。直到1995年根据合作伙伴菲利普斯在英国北海钻大位移井的经验和BP公司钻成位移超过8000m开发井的启示,产生了从西江24.3油田生产平台上钻大位移井到西江24-1油田进行开发的新思路。经论证此方案开发费用只需常规开发费用的38%~48%。1996年中国海油成立大位移井钻井工程专家组,分别对油藏模拟、开发计划可行性、大位移井可行性等三大项14个专题进行深入细致的研究和评估。对综合钻井生产平台、钻机负荷、动力需求、摩阻、扭矩、测量技术要求、井眼稳定与清洗、钻井程序、水力参数等进行反复调研与实验分析,得出了详尽的数据报告,依据可靠的研究,制定出钻机改造计划、钻井计划及实施方案。经过缜密组织和准备,1996年11月西江24-3-A14大位移井开始钻井作业,次年6月完井并投产。井深9238m,建井周期101天,垂深2985m,水平位移8062.7m,位垂比2.70。最大井斜角86.2°,中靶半径45m。降斜段钻穿14个砂岩油层,地质储量增加近1倍,达到875×104m3。该井创3项世界第一纪录:①最大水平位移8062.7m;②311.1mm 裸眼井段长5032m;③MWD/LWD实时传输接收讯号深达9106m。该井还创造了两项世界第二纪录:①井深9238m;②244.5mm 套管下深6752m。(一)西江24-3-A14大位移井钻井工程难点a.井深:设计9450m,实钻9238m,前所未有;b.“S”形井身剖面,井眼轨迹控制难度大;c.裸眼井段长,最长5032m,维持井壁稳定、套管防磨难度大;d.地质条件复杂:有大段水敏性泥页岩,钻遇断层和砂泥岩应力段;e.靶心直径要求高:设计152m,实际90m;f.井斜大(设计最大斜度79.14°,实际86.2°)、裸眼长,井眼清洗难度大;g.安全固井和完井难度大;h.设备需长时间高负荷运转,扭矩最大达69147N·m,大钩负荷最大达3825kN,井架最大负荷680t,最大排量5.7m3/min,最高泵压47MPa。该井虽然难度大,但在专家们共同努力下,顺利完成钻井作业并成功投产。投产后日产原油稳定在1000t左右,半年多时间就收回全部投资2261万美元。在西江24-3-A14井成功的鼓舞下,1999~2002年又从西江24-3油田平台向西江24-1油田钻成4口大位移井,井深8610~9189m,垂深2820~2851m,最大井斜78°~84.50,位移垂深比2.65~2.82。且井越打越快,最快的A18年完井周期89天。投资也大幅度降低,投资最高的A17井1800万美元,最低的A18井为985万美元。(二)新工艺和新技术西江大位移井之所以取得百分之百的成功,新工艺和新技术的应用起了关键作用。应用的主要新工艺和新技术如下。1.导向工具①TRACS和AGS可遥控变径稳定器;②新型加长内喷嘴导向马达;③旋转钻进自动导向系统;④配合“PowerDrive”旋转导向工具特制PDC高效保径钻头,适应软硬地层钻进,可倒划眼;⑤液力加压系统。2.降摩阻/扭矩工具与技术①扭矩/摩阻监测计算软件;②软扭矩旋转系统;③非旋转钻杆保护器(NRDPP);④直读扭矩指示器;⑤低扭矩、低摩阻钻井工具;⑥钻压扭矩短节。3.测量仪器与技术①高精度差率示波陀螺仪;②地面综合处理钻井录井测量讯号显示系统(IDEAL);③MWD/LWD、(CDR+AND)/APWD等多联随钻测量及连续脉冲有效传输技术;④近钻头井斜/方位测量技术(AIM);⑤MWD的“零间隙调控”(Zero—Gap脉冲器)和FSK(6BPS)新技术;⑥钻杆传送测井仪。4.固井配套工具①套管漂浮接箍;②滚柱式套管扶正器和螺旋套管扶正器;③自封式套管循环接头;④可切削式套管鞋;⑤斜井用可旋转尾管悬挂器。5.钻井液及其他①低毒油基钻井液;②泥浆当量环空密度(ECD)和环空返速(MTV)监测软件;③先进配套的固控系统;④液压泥浆防喷盒和钻台真空吸液装置;⑤高扭矩φ140mmS-135钻杆;⑥机械效率与分析软件包(MEL);⑦卡钻预测软件包(SPIN)。二、歧口17~2和秦皇岛32-6油田大位移井钻井技术渤海歧口17-2油田分为东西两个高点,西高点为油田主体。距主体4km的东高点,按常规至少要布6口开发井,建一座导管架,铺设4km海底管线。开发成本高,效益低。运用大位移井技术,从西高点生产平台打4口大位移井到东高点进行开发,可大幅度提高经济效益。1999年在歧口17-2油田顺利完成4口大位移井钻井作业。井深4435~4690m,垂深1869~2082m,最大斜度76°~93.8°,水平位移3631~3697m,水垂比1.77~1.94。2001年在歧口17-2油田大位移井技术成功实践的基础上,在秦皇岛32-6油田钻成两口大位移水平井,开发该油田馆陶组油层。开创了利用大位移井技术开发单一油层、减少生产平台、降低油田开发成本的先例。秦皇岛32.6油田馆陶组油层按常规开发方案,需布生产井10多口,建一座生产平台,采用大位移水平井技术,只需钻两口井就可开发该油层,不仅提高经济效益,还缩短了油田建设周期。秦皇岛32-6-A25井,井深3038m,垂深1496m,最大井斜角91°,水平段长702m,位移1942m,水垂比1.3。秦皇岛32-6-A26井,井深3715m,垂深1492m,最大井斜角92°,水平段长981m,位移2997m,水垂比2.01。歧口17-2和秦皇岛32-6油田大位移井的成功实践,新技术新装备的应用是关键。(一)设备a.购置“HIGHG”型线性振动筛、新型离心机等固控设备,增强了固控能力。b.UE13200型绞车采用无功功率补偿技术,无新增设备情况下,使配电站负荷增加700kW,提高了绞车提升能力。c.配置高强度139.7m钻杆,不仅保障了钻具安全性,也提高了井眼环空上返速度,增强了钻井液携屑能力。(二)钻井设计a.与石油院校合作,进行岩石力学、井壁稳定研究,为钻井设计提供依据。b.井身结构、井眼轨迹运用计算机软件进行筛选优化。c.与国内有关单位合作研制了一套扭矩、摩阻预测分析软件,在应用实践中证明误差不超过15%,接近外国公司同类软件的先进水平。(三)钻井液自主开发出水基聚合醇(PEM)体系钻井液。具有强润滑性、摩阻系数小(0.1以下)、携屑性能强(钻屑热滚回收率达90.7%~93.2%)、对泥页岩抑制性强、对环境无毒害等优点。(四)井眼轨迹控制技术a.极软浅部地层大井眼造斜技术。300~500m井段,444.5mm( )井眼造斜,井斜角达到70°以上进入稳斜段。b.采用MWD/LWD和井下可变径稳定器,以及计算机软件技术,实施三维井眼轨迹控制。其中,在秦皇岛32-6-A26井使用了自主研制的可变径稳定器,试用效果良好。(五)固井完井技术a.244.5mm( )套管采用套管漂浮接箍,顺利通过大斜度井段和水平井段,下入预计井深。b.水平井尾管送入技术:适当扶正器,加重钻杆放在靠近直井段管柱上,以便增大轴向力推动尾管下行。c.水平井段裸眼砾石充填技术。d.筛管砾石充填完井技术。e.套管射孔完井技术。(六)堵漏技术采用碳酸钙封堵漏层,可酸洗或油溶解堵。三、大位移钻井技术成果显著a.经济效益可观。钻大位移井开发油田的投资比常规开发方案低,可取得显著经济效益。西江24-1油田5口大位移井,截止2002年6月底已产原油256.3×104m3,总收入3.3亿美元,累计获净现金流1.2亿美元,政府税收1.5亿美元。预计经济生产寿命可至2008年,可累计产油2810桶,获净现金流2.3亿美元,政府税收可达2.7亿美元。b.可为社会做出重大贡献。边际油田在我国海域已发现的油田中占有相当比重,大位移井技术为今后高效开发海洋边际油田闯出了一条新路,将为国家增加大量可用油气资源。c.结合大位移井钻井与完井工程实践,对大位移井的井身结构与套管柱优化设计、井下扭矩/摩阻的数值模拟与控制、井壁不稳定性评估与控制、井眼轨迹导向控制与可视化、钻头选型、钻井液及井下工具等方面取得了创新性研究成果,形成了一套具有中国海油特色和国际先进水平的大位移井钻井与完井工艺技术,标志着我国运用高新技术开发海上边际油田进入了世界先进行列。d.扩大了中国海洋石油在国内外的影响,并提高了声誉。围绕西江大位移钻井与完井工程,先后两次在广东省蛇口组织召开了来自世界十几个国家、几十家油公司及技术公司近百人的“大位移井技术国际研讨会”,表现了世界石油界对西江24-1油田大位移井开发成功的肯定及对技术成果的重视,产生了良好的效应。

钻井技术专业介绍

专业介绍钻井技术主要研究钻井基本理论、工艺技术、生产运行和组织管理等方面基本知识和技能,进行钻井、完井、试井及井下作业、运行、维护和管理等。例如:岩心取样检测,石油和天然气开采中设计和测量确定井位、安装钻井设备测试,泥浆循环加固井壁等。开设的课程《理论力学》、《材料力学》、《流体力学》、《机械设计基础》、《钻井机械》、《钻井工程》、《海洋钻井》、《钻井仪表及自动化》、《油气层保护技术》、《常见事故分析与处理》开设的院校克拉玛依职业技术学院庆阳职业技术学院

钻井技术分哪些?

为了有效地开发油气田,政府常常用法律形式来规定井间距。在一个指定的区域内,只能开钻并完成一口天然气井,这一面积的标准为640acre (2600000m2 )。在美国和加拿大,一口井中或者一个天然气田的开采量,在某个特定的时间内都要受到限制。定向钻井按照传统的观点,绝大多数钻井都钻成一个垂直的井孔,按照垂直来要求的话仅仅有微小的偏差。但是最近,旋转钻井可以打出一口定向(偏斜)的井来,以达到用直井无法钻到的特殊目的层 (图3.3)。比如,可以通过打一口定向井而达到人口稠密区的地下目的层,而井位则可以设在该区之外。定向钻井可以灵活地达到一个复杂的产气地带,在井口中绕开落鱼钻进,或者从陆地钻达海域的储层,而在陆地上钻井要便宜得多。此外,许多钻井平台为了节省时间和投资,都采用了从一个浮动平台钻出多口定向井的技术。图3.3 定向钻井的原因(引自Norman Hyne所著《石油勘探与开发》,PennWell,1995)在定向钻井中,井孔开始由垂直方向偏转的拐点叫做初始造斜点。该点之下钻进呈曲线进行了,这叫做井身折弯或者“造斜”。对于定向钻井一个非常有用的最新进展是涡轮钻井,在这项技术中,钻头被以循环带动为动力的井下涡轮发动机带动旋转。由于这种旋转运动仅仅由钻头来完成,所以就不需要钻杆的旋转了。水平钻井定向钻井的概念已被延伸应用到水平钻井了,而且,这一技术对天然气与石油的开发越发重要。与常规的钻井不同,为了开采天然气,水平钻井可以沿着储集层的走向钻入,打开更多的储层。与定向钻井相似,一口水平井也有一个开始发生角度变化的初始造斜点,但这一角度连续增加直到井孔侧向钻入地层。钻水平井的原因在于:(1)增加薄层的采收率;(2)使一套低渗透率的储集层天然气产量增加;(3)打通分隔的产气带;(4)通过连通垂直断裂而提高天然气的采收率;(5)防止开采来自储集层上覆或下伏的额外的天然气或水;(6)提高钻井人员加注压裂液的能力。海上钻井海上钻井作业与陆上钻井作业相似,但要昂贵得多。在海上,平均的天然气井的深度大约为10400ft (3200m)。陆地与海上钻井的主要区别在于钻井设备所安装的钻井平台。一座海上勘探船必须能够在水中移动至不同的钻井位置。海上钻井平台包括钻井船 (它主要用于浅海区域,防水型的)、 自升式平台(有可以升降的支架腿,能够在深达350ft(100m)的较深水域钻探)、半潜式钻井平台(一个完整的钻井平台,它在海水中呈半潜状态并用锚将钻井平台的四周固定)三种。半潜式钻井平台在强大的风浪中非常稳定,并可以在水深达2000ft(600m)的水域进行钻井作业。钻井船漂浮在海上,通过船身的一个孔进行钻井作业。这些钻井平台都可以在水中的任何深度操作。图3.4 张力支柱式钻井平台(引自Norman Hyne所著《石油勘探与开发》, Penn Well,1995)一旦在海域发现了一个商业性天然气田,就可以用一台固定式或张力支柱式钻井平台进行开发作业。固定式、钢制的外壳是最常见的。它们的腿插入一些事先打入海底的钢筒中。相反,一台张力支柱式钻井平台浮在海上气田上,用一种直径较小的、空心的钢管,依靠本身的巨大重量矗立在海底(图3.4)。

钻井技术是什么?

为满足不同条件的钻井需要,优质、安全、快速钻进,钻井工作者几十年来研究了各种钻井技术,现已发展成为以喷射钻井及优化参数钻井为核心的钻井综合配套技术。下面重点介绍喷射钻井技术、优选参数钻井技术、直井防斜技术、定向井技术、钻井取心技术等。一、喷射钻井技术喷射钻井技术在我国是从1978年开始试验并在生产上逐渐推广的。喷射钻井的实质就是钻井水力参数的优化。喷射钻井的一个显著特点是从钻头喷射出来的钻井液射流具有很高的喷射速度,井底得到较大的冲击力和水功率,从而及时清除井底岩屑,破碎井底岩石,提高钻井速度。(一)射流对井底的水力作用1.射流特性图4-7 射流结构射流是指通过管嘴或孔口,过水断面周界不与固体壁接触的液流,见图4-7。射流出喷嘴后,由于摩擦作用,射流流体与周围流体产生动量交换,带动周围流体一起运动,使射流的周界直径不断扩大。射流纵剖面上周界母线的夹角称为射流扩散角(α)。α越小,则射流的密集性越高,能量就越集中。在射流中心,各点的流速等于出口流速(vjo)部分称等速核。在射流的任一横截面上,从等速核向外速度很快降低,到射流边界上速度为零。超过等速核以后,射流轴线上的速度迅速降低。当射流撞击井底后,形成井底冲击压力波和井底漫流。L为射流轴线上某点距出口的距离,vjm为距出口L处的最大射液速度。2.射流对井底的清洗作用射流撞击井底后形成的井底冲击压力波和井底漫流是射流对井底清洗的两种主要形式。(1)射流的冲击压力作用。射流撞击井底后形成的冲击压力波并不是作用在整个井底,而是作用在如<ahref="4797B51267B0427EB929F1C52E1E6774">图4-8</a>所示的小圆面积上,井底岩屑所受冲击压力极不均匀。极不均匀的冲击压力使岩屑产生一个翻转力矩,从而离开井底,如<ahref="DA46E734B8C842C68F156F57585D79AE">图4-9</a>所示,这就是射流对井底岩屑的冲击翻转作用。(2)漫流的横推作用。射流撞击井底后形成的漫流是一层很薄的高速液流层,具有附面射流的性质。这层具有很高速度的井底漫流,对井底岩屑产生一个横向推力,使其离开原来的位置。因此,井底漫流对井底清洗有非常重要的作用。图4-8 射流作用图4-9 岩屑翻转3.射流对井底的破岩作用当射流的水功率足够大时,射流不但有清洗井底的作用,而且还有直接或辅助破碎岩石的作用。(二)射流水力参数和钻头水力参数射流水力参数包括射流的喷射速度、射流冲击力和射流水功率。钻头喷嘴出口处的射流速度称为射流喷射速度,习惯上称为喷速。射流冲击力是指射流在其作用的面积上的总作用力的大小。单位时间内射流所具有的做功能量就是射流水功率。钻头水力参数包括钻头压力降和钻头水功率。钻头压力降是指钻井液流过钻头喷嘴以后钻井液压力降低的值。钻头水功率是指钻井液流过钻头时所消耗的水力功率。二、最优化钻井技术(优选参数钻井技术)钻进过程中的机械破岩参数主要包括钻压和转速。为寻求一定的钻压、转速参数配合,使钻进过程达到最佳的技术经济效果,首先需要确定一个衡量钻进技术经济效果的标准,并将各参数对钻进过程影响的基本规律与这一标准结合起来,建立钻进目标函数。然后,运用最优化数学理论,在各种约束条件下,寻求目标函数的极值点。满足极值点条件的参数组合,即为钻进过程的最优机械破岩参数。利用这个最优参数实施的钻井方法称为最优化钻井。因此,最优化钻井的实质就是对影响钻进速度的主要因素以及钻进过程中的基本规律进行分析,并建立相应的数学模型。(一)影响钻速的主要因素除了前面已经介绍的岩石特性和钻头类型对钻速有重要影响外,钻进过程中的钻压、转速、水力因素、钻井液性能以及钻头的牙齿磨损等也是影响钻速的主要因素。1.钻压对钻速的影响在钻进过程中,钻头牙齿在钻压的作用下吃入地层、破碎岩石。钻压的大小决定了牙齿吃入岩石的深度和岩石破碎体积的大小。因此,钻压是影响钻速的最直接和最显著的因素之一。钻进实践表明,在其他钻进条件保持不变的情况下,钻压与钻速的典型关系近似于线性关系。2.转速对钻速的影响转速对钻速的影响是人们早就认识到,并已研究解决了的问题。在钻压和其他钻井参数保持不变的条件下,随着转速的提高,钻速是以指数关系变化的,但指数一般都小于1。3.牙齿磨损对钻速的影响钻进过程中钻头在破碎地层岩石的同时,其牙齿也受到地层的磨损。随着钻头牙齿的磨损,钻头工作效率将明显下降,钻进速度也随之降低。4.水力因素对钻速的影响表征钻头及射流水力特性的参数统称为水力因素,其总体指标通常用井底单位面积上的平均水功率(称为比水功率)来表示。水力因素对钻速的影响表现为两个方面:一是水功率大,钻头喷嘴所产生的钻井液射流对井底岩屑的冲洗作用大。但当实际水功率大于净化所需的水功率时,井底达到完全净化后,水功率的提高不会进一步提高钻速。二是水力能量的破岩作用。当水功率超过井底净化所需的水功率后,机械钻速仍有可能增加。5.钻井液性能对钻速的影响钻井液性能对钻速的影响规律比较复杂,其复杂性不仅在于表征钻井液性能的各参数对钻速都有不同程度的影响,而且几乎不可能在改变钻井液某一性能参数时不影响其他性能参数的变化。因此要单独评价钻井液的某一性能对钻速的影响相当困难。试验研究表明,钻井液的密度、黏度、失水量和固相含量及其分散性等,都对钻速有不同程度的影响。(二)目标函数的建立衡量钻井整体技术经济效果的标准有多种类型。目前,一般都以钻头单位进尺成本作为标准,其表达式为:式中 Cpm——单位进尺成本,元/m;Cb——钻头成本,元;Cr——钻机作业费,元/h;t——钻头钻进时间,h;tt——起下钻及接单根时间,h;H——钻头进尺,m。式中的钻头进尺和钻头工作时间与钻进过程中所采用的各参数有关。建立各参数与H和t的关系,并代入进尺成本表达式,即形成以每米钻井成本表示的钻进目标函数。并对目标函数的极值条件和约束条件进行确定。各种条件确定后,就可以通过最优化数学方法,求解出在约束条件限定范围内使钻井成本最低的一组最优钻压、最优转速和最优钻头磨损量组合。三、直井防斜技术直井就是设计轨道是一条铅垂线的井。直井防斜技术也称直井的轨迹控制,就是要防止实钻轨迹偏离设计的铅垂直线。一般来说,实钻轨迹总是要偏离设计轨道的,所以实钻的直井总是会发生井斜的。要想控制直井井眼绝对不斜是不可能的,问题在于能否控制井斜的度数或井眼的曲率在一定范围之内。(一)井斜的原因分析影响井斜的因素很多,但概括起来可分为两大类:一类是地质因素,一类是钻具因素。找到井斜的原因,就可以提出防斜的措施。1.地质因素地质因素导致的井斜最本质的原因是地层可钻性的不均匀性(由地层层理、岩层硬度不同引起)和地层的倾斜。1)地层层理的影响沉积岩具有层理,在垂直于层面方向上可钻性高,平行于层面方向的可钻性低,如图4-10所示。钻头总是有向着容易钻进的方向前进的趋势。在地层倾斜且地层倾角小于45°时,钻头前进方向偏向垂直于地层层面的方向,于是偏离铅垂线。在地层倾角超过60°以后,钻头前进方向则沿着平行于地层层面方向下滑,也要偏离铅垂线。当地层倾角在45°~60°之间时,井斜方向属不稳定状态。图4-10 地层可钻性的各向异性导致井斜2)地层硬度的影响在沉积过程中,由于沉积环境的不同,造成不同地层的硬度不同。如图4-11所示,由于地层倾斜,钻头底面遇到“软”侧地层时钻速高,遇到“硬”侧地层时钻速低,于是井沿轴线偏离,发生井斜。如图4-12所示,在钻头的一侧下面钻遇溶洞或较疏松的地层,而另一侧则遇较致密的地层。于是钻头前进方向发生偏离,偏向难以钻进的一侧。从以上分析可知,地层可钻性的各种不均匀性和地层倾斜引起井斜的机理,最终体现在钻头对井底的不对称切削,使钻头轴线相对于井眼轴线发生倾斜,从而使新钻的井眼偏离原井眼。2.钻具因素钻具,尤其是靠近钻头部分钻具(称作“底部钻具组合”)的倾斜和弯曲是导致井斜的主要因素。钻具的倾斜和弯曲将产生两个后果:一是引起钻头倾斜,在井底形成不对称切削,如图4-13所示,新钻的井眼不断偏离原井眼方向;二是钻头受到侧向力的作用,迫使钻头进行侧向切削,如图4-14所示,也使新钻的井眼不断偏离原井眼方向。导致钻具倾斜和弯曲的原因有:图4-11 地层可钻性纵向变化引起井斜图4-12 地层可钻性的横向变化引起井斜(1)入井钻具本身弯曲。(2)由于钻具直径小于井眼直径,钻具和井眼之间有一定的间隙,所以钻具在井眼内活动余地很大,这就给钻具的倾斜和弯曲创造了空间条件。在井眼扩大的井中尤其如此。(3)钻压的作用。下部钻具受压后必将向井壁一侧倾斜。当压力超过一定值后,钻柱将发生弯曲。弯曲的钻柱将使靠近钻头的钻具倾斜更大。(4)安装误差。在安装设备时,天车、游车和转盘三点不在一条铅垂线上,或转盘安装不平而引起钻具一开始就倾斜。图4-13 钻头不对称切削导致井斜图4-14 钻头侧向切削导致井斜(二)防斜技术上述井斜原因中,地质原因是客观存在的,无法改变;井眼扩大总是有个过程,不会刚一钻成就马上扩大,所以可以利用这个过程防斜;钻具原因则可以人为控制。在防斜方面人们进行了大量研究,设计了许多种防斜钻具组合,最常见的两种是满眼钻具组合和钟摆钻具组合。1.满眼钻具组合控制井斜从上述对井斜原因的分析可知,井斜的原因可归结为钻头对井底的不对称切削、钻头轴线相对于井眼轴线发生倾斜,以及钻头上侧向力导致对井底的侧向切削。防斜的措施就是想办法克服这三个原因,满眼钻具组合就是这样设计的。设想,如果钻具的直径与钻头的直径完全相等,上述三个井斜原因就都会被克服。但这样做将无法循环钻井液,而且会引起一系列其他问题,在工程上是行不通的。实际应用中采用扶正器组合的办法来解决。满眼钻具组合的结构是,在靠近钻头大约20cm长的钻铤上适当安置扶正器,以此来达到防斜的目的。所谓“适当安置”,包括扶正器的数量、位置和直径。一般安装四个扶正器,如图4-15所示。(1)近钻头扶正器:安装在钻头之上,简称“近扶”。近扶直径较大,与钻头直径仅差1~2mm。在易斜地区,近扶的长度可加长;在特别易斜的地层,可将两个扶正器串联起来作为近扶。近扶的主要作用是,依靠其支撑在尚未扩大的井壁上,抵抗钻头所受的侧向力,有效防止钻头侧向切削。同时,近扶由于直径大、长度大、刚性大,也可有效防止钻头倾斜,从而阻止钻头的不对称切削。图4-15 满眼钻具组合(2)中扶正器:简称“中扶”或“二扶”。中扶的位置需要经过严格计算。中扶的直径与近扶相同。中扶的主要作用是保证中扶与钻头之间的钻柱不发生弯曲,使这段钻柱不发生倾斜,从而防止钻头对井底的不对称切削。(3)上扶正器:简称“上扶”或“三扶”。上扶安置位置在中扶之上的一个钻铤单根处。上扶的直径一般与近扶和中扶相同,但要求可以稍松。(4)第四扶正器:简称“四扶”,一般情况下不需要,仅在特别易斜的地层才安装四扶。四扶安置位置在上扶之上的一个钻铤单根处,直径要求与上扶相同。上扶与四扶的作用在于增大下部钻柱的刚度,协助中扶防止下部钻柱轴线发生倾斜。2.钟摆钻具组合控制井斜钟摆钻具原理如图4-16所示。当钟摆摆过一定角度时,在钟摆上会产生一个向回摆的力GC,简称钟摆力,GC=G·sinα,G为切点A到井底钻头位置B点的重力。显然,钟摆摆动的角度越大,钟摆力就越大。如果在钻柱的下部适当位置加一个扶正器,该扶正器支撑在井壁上,使下部钻柱悬空,则该扶正器以下的钻柱就好像一个钟摆,也要产生一个钟摆力。此钟摆力的作用是使钻头切削井壁的下侧,从而使新钻的井眼不断下斜。钟摆钻具组合设计的关键在于计算扶正器至钻头的距离LZ,此距离太小则钟摆力小;此距离太大则扶正器和钻头间的钻柱与井壁会产生新的接触点,所以LZ称为最优距离。考虑到扶正器的磨损和井径的扩大,在实际使用时,扶正器至钻头的距离可比计算的LZ降低5%~10%。四、定向井技术图4-16 钟摆钻具原理图(一)定向井及其应用领域使井眼轴线沿着预计轨迹钻达目的层的钻井方法称为定向钻井。定向井应用领域大体有三种情况。(1)受地面环境条件限制的情况:当地面上是高山、湖泊、沼泽、河流、沟壑、海洋、农田或重要的建筑物等,难以安装钻机进行钻井作业或者安装钻机和钻井作业费用很高时,为了勘探和开发地下油田,最好是钻定向井。(2)地下地质条件有要求的情况:对于断层遮挡油藏,定向井比直井可发现和钻穿更多的油层;对于薄油层,定向井和水平井比直井的油层裸露面积要大得多。另外,侧钻井、多底井、分支井、大位移井、侧钻水平井、径向水平井等定向井的新种类,显著扩大了勘探效果,增加了原油产量,提高了油藏采收率。(3)处理某些井下事故时:当井下落物或断钻事故最终无法捞出时,可从上部井段侧钻打定向井;特别是遇到井喷着火,用常规方法难以处理时,在事故井附近打定向井(称作救援井),与事故井贯通,进行引流或压井,处理井喷着火事故。目前,定向钻井已成为油田勘探开发极为重要的手段。井眼轨道设计和井眼轨迹控制是定向钻井技术的基本内容。事实上,直井可以看作是定向井的特例,其设计的轨道为一条铅垂线。直井防斜和定向井井眼轨迹控制,在技术原理上是一致的,只是应用方向不同而已。(二)定向井的基本参数所谓井眼轨迹,实质就是井眼轴线。一口实钻井的井眼轴线乃是一条空间曲线。为了进行轨迹控制,就要了解这条空间曲线的形状,就要进行轨迹测量,这就是“测斜”。目前常用的测斜方法并不是连续测斜,而是每隔一定长度的井段测一个点,这些井段称为“测段”,这些点被称为“测点”。测斜仪器在每个点上测得的参数有三个,即井深、井斜角和井斜方位角,这三个参数就是井眼轨迹的基本参数。井深指井口(通常以转盘面为基准)至测点的井眼长度,也有人称之为斜深,国外称为测量井深。井深是以钻柱或电缆的长度来量测。井深既是测点的基本参数之一,又是表明测点位置的标志。过井眼轴线上某测点作井眼轴线的切线,该切线向井眼前进方向延伸的部分称为井眼方向线。井眼方向线与重力线之间的夹角就是井斜角。井斜角表示了井眼轨迹在该测点处倾斜度的大小。某测点处的井眼方向投影到水平面上,称为井眼方位线或井斜方位线。以地理正北方位线为始边,顺时针方向旋转到井眼方位线上所转过的角度,即井眼方位角。需要注意的是,目前广泛使用的磁性测斜仪是以地球磁北方位为基准的。磁北方位与地理正北方位并不重合,而是有个夹角,称为磁偏角。用磁性测斜仪测得的井斜方位角称为磁方位角,并不是真方位角,需要经过换算求得真方位角。(三)定向井轨道分类根据设计轨道(而不是根据实钻轨迹)的不同,定向井可分为二维定向井和三维定向井两大类。所谓二维定向井,是指设计的轨道都在一个铅垂线平面上变化,即设计轨道只有井斜角的变化而无井斜方位角的变化。三维定向井则既有井斜角的变化又有井斜方位角的变化。二维定向井又可分为常规二维定向井和非常规二维定向井。常规二维定向井段形状都是由直线和圆弧曲线组成。非常规二维定向井的井段形状除了直线和圆弧曲线外,还有某种特殊曲线,例如悬链线、二次抛物线,等等。三维定向井可分为纠偏三维定向井和绕障三维定向井。在实际工程中,最常见的是常规二维定向井。(四)定向控制技术在定向井、水平井及大位移井等特殊工艺钻井中,不仅需要对垂直井段防斜打直,更需要定向造斜、定向增斜或降斜及定向稳斜等作业。在这些定向钻进过程中,井眼轨迹的定向控制技术是不可缺少的关键性技术。在井眼轨迹的定向控制中,井下动力钻具组合和转盘钻具组合均获得了成功的应用。1.井下动力钻具组合在定向井和水平井钻井中,广泛采用了导向钻井系统。导向钻井系统包括井下动力钻具组合、长寿命的高效钻头、随钻测量工具及地面配套系统等,其中井下动力钻具组合是核心部分,它主要由带弯接头或具有弯外壳或偏心稳定器的井下动力钻具及普通稳定器构成。采用井下动力钻具组合滑动钻进,可以有效控制井眼轨迹。井下动力钻具组合具有多种不同的组合形式,比较典型的是带弯接头的井下动力钻具组合、涡轮钻具组合、螺杆钻具组合。2.转盘钻具组合对于转盘钻具组合,扶正器(稳定器)的安装位置和个数是至关重要的。通过合理的扶正器安放组合,便可得到所需要的增斜、稳斜或降斜钻具组合,如图4-17所示。1)增斜钻具组合在定向井中,用造斜工具初始造斜后,通常使用增斜钻具组合。紧接在钻头上方的单稳定器因支点效应可使井斜角增加,为了达到所要求的井眼轨迹,可通过增加稳定器来改变增斜组合的造斜率。2)稳斜钻具组合一旦井斜角增至所需的角度,就要用稳斜钻具组合来钻稳斜井段。现在的问题是要减小钻具组合的增斜或降斜趋势。实际上这一点很难做到,因为地层效应和重力会改变井斜角。为了消除增斜和降斜趋势,稳定器安装间隔要小,必要时可采用短钻铤。一般稳斜组合只装三个稳定器。钻压变化基本上不影响这种组合的定向特性。3)降斜组合组合在定向井中,只有S形(五段制)的剖面设计要求降斜。降斜钻具组合的另一个应用是,当井斜角增加到超出设计要求时必须降斜,以把井眼纠回到原定的轨道。最好是在较软的地层中降斜,因为在硬地层钟摆钻具组合降斜很慢。五、钻井取心技术岩心是提供地层剖面原始标本的唯一途径,从岩心标本可以得到其他方法无法得到的资料。在油气田勘探、开发各阶段,为查明储油、储气层的性质或从大区域的地层对比到检查油气田开发效果、评价和改进开发方案,任一研究步骤都离不开对岩心的观察和研究。常规钻进取心工具的基本组成都包括:取心钻头,内、外岩心筒,岩心爪,扶正器及其悬挂装置,见图4-18。图4-17 转盘钻具组合图4-18 取心工具组成示意图1—取心钻头;2—岩心爪;3—内岩心筒;4—外岩心筒;5—扶正器;6—回压阀;7—悬挂轴承;8—悬挂装置取心钻头是钻进地层、形成岩心的关键工具。取心钻头可分为刮刀式取心钻头、牙轮取心钻头、金刚石取心钻头三种。岩心筒是取心工具的重要部分之一,包括内岩心筒、外岩心筒、扶正器、回压阀及悬挂总成等部件。外岩心筒为优质无缝钢管制成,上接钻柱,下接取心钻头。内岩心筒的作用是在取心钻进时接受、储存和保护岩心。悬挂总成包括悬挂轴承组和悬挂装置。岩心爪的作用是在取心钻进结束后用以割断岩心,并在起钻时承托已割取的岩心以防其脱落。

钻井技术是哪个国家发明的?

钻井技术在中国可上溯到公元前4世纪。李约瑟博士曾公正地评价道:“今天勘探油田所用的钻探井或凿洞坑术,肯定是中国人发明的。”事实确是如此。在西方连杆式钻井技术和现代化的旋转钻头技术中都能找到中国古代技术的痕迹。西方的深井钻探技术实质是从中国传入的,而现代石油工业也是建立在比西方要早1900多年的中国技术基础之上。

【浅谈石油工程钻井技术的发展】 华东石油工程公司江苏钻井

  摘 要:随着深水油气资源不断发现,近几年来深水钻探工作量越来越大。随着水深的增加和复杂的海况环境条件,对钻井工程突出了更高的挑战,钻井技术的难度也越大。本文对深水的钻井设备、关键技术进行了阐述,对深水钻井领域发展具有重要的作用。   关键词:深水钻井;关键技术;发展   中图分类号:TD265.1 文献标识码:A   全世界未发现的海上油气储量有90%潜伏在水深超过1000m以下的地层,所以深水钻井技术水平关系着深海油气勘探开发的步伐。对于海洋深水钻井工程而占,钻井环境条件随水深的增加变得更加复杂,容易出现常规的钻井工程难以克服的技术难题,因此深水钻井技术的发展是影响未来石油发展的重要因素。   1 深水油气勘探形势   全球海洋油气资源丰富。据估计,海洋石油资源量约占全球石油资源总量的34%,累计获探明储量约400×108t,探明率30%左右,尚处于勘探早期阶段。据美国地质调查局(USGS)评估,世界(不含美国)海洋待发现石油资源量(含凝析油)548×108t,待发现天然气资源量7815×108m3,分别占世界待发现资源量的47%和46%。因此,全球海洋油气资源潜力巨大,勘探前景良好,为今后世界油气勘探开发的重要领域。   随着海洋钻探和开发工程技术的不断进步,深水的概念和范围不断扩大。目前,大于500m为深水,大于1500m则为超深水。据估计,世界海上44%的油气资源位于300m以下的水域,其中,墨西哥湾深水油气资源量高达(400~500)×108桶油当量,约占墨西哥湾大陆架油气资源量的40%以上,而巴西东部海域深水油气比例高达90%左右。   20世纪90年代以来,由于发现油气田储量大,产量高,深水油气倍受跨国石油公司青睐,发展迅速。据估计,近年来,深水油气勘探开发投资年均增长30.4%,2004年增加到220亿美元。1999年作业水深已达2000m,2002年达3000m。90年代以来,全球获近百个深水油气发现,其中亿吨级储量规模的超过30%。2000年,深水油气储量占海洋油气储量的12.3%,比10年前增长约8%。2004年,全球海洋油气勘探获20个重大深水发现(储量大于110×108桶)。1998-2002年有68个深水项目,约15×108t油当量投产;2003-2005年则增至144个深水项目,约4216×108 t油当量投产,2004年深水石油产量210×108 t,约占世界石油产量的5%。   2 目前深水油气开发模式   深水油气开发设施与浅水油气开发设施不同,其结构大多从固定式转换成浮式,因此开发方式和方法也发生了变化。国外深水油气开发中常用的工程设施有张力腿(TLP)平台、半潜式(SEMIOFPS)平台、深吃水立柱式(SPAR)平台、浮式生产储油装置(FPSO)以及它们的组合。   3 深水钻井关键技术   3.1 深水定位系统   半潜式钻井平台、钻井船等浮式钻井装置在海中处于飘浮状态,受风、浪、流的影响会发生纵摇、横摇运动,必须采用可靠的方法对其进行定位。   动力定位是深水钻井船的主流方式。在现有的深水钻井船中,只有采用常规锚链定位(额定作业水深不足1000m),1000m以上水深的钻井船采用的都是动力定位,在建的钻井船全部采用动力定位。动力定位系统一般采用DGPS定位和声纳定位2种系统。声纳定位系统的优点:(1)精确度高(1%-2%)、水深(最大适用水深为2500m);(2)信号无线传输(不需要电缆);(3)基本不受天气条件的影响(GPS系统受天气条件的影响);(4)独立,不需要依靠其他系统提供的信号。声纳定位系统的缺点:(1)易受噪声的影响,如环境噪声、推进器噪声、测试MWD等;(2)折射和阴影区;(3)信号传输时间;(4)易受其他声纳系统的干扰,如多条船在同一地方工作的情况。   3.2 大位移井和分支水平井钻井技术   海上钻井新技术发展较快,主要包括大位移井、长距离水平钻井及分支水平井钻井技术。这些先进技术在装备方面主要包括可控马达及与之配套的近钻头定向地层传感器。在钻头向地层钻进时,近钻头传感器可及时检测井斜与地层性质,从而使司钻能够在维持最佳井眼轨迹方面及时做出决定。   由于水平井产量高,所以在国外海上油气田的开发中已经得到了广泛的应用。目前,国外单井总水平位移最大已经达11000m。分支水平井钻井技术是国际上海洋油气田开发广泛使用的技术,近年来发展很快。利用分支井主要是为了适应海上需要,减少开发油藏所需平台数量及平台尺寸(有时平台成本占开发成本一半还多)。具体做法是从一个平台(基础)钻一口主干井,然后从主干井上急剧拐弯钻一些分支井,以期控制较大的泄油面积,或者钻达多个油气层。   3.3 深水双梯度钻井技术   与陆地和浅海钻井相比,深海钻井环境更复杂,容易出现常规钻井装备和方法难以克服的技术难题:锚泊钻机本身必须承受锚泊系统的重量,给钻机稳定性增加了难度;隔水管除了承受自身重量,还承受严重的机械载荷,防止隔水管脱扣是一个关键问题;地层孔隙压力和破裂压力之间安全钻井液密度窗口窄,很难控制钻井液密度安全钻过地层;海底泥线处高压、低温环境影响钻井液性能产生特殊的难题;海底的不稳定性、浅层水流动、天然气水合物可能引起的钻井风险等。国外20世纪60年代提出并在90年代得到大力发展的双梯度钻井(DualGradi-entDrilling,简称DGD)技术很好地解决了这些问题。双梯度钻井技术的主要思想是:隔水管内充满海水(或不使用隔水管),采用海底泵和小直径回流管线旁路回输钻井液;或在隔水管中注入低密度介质(空心微球、低密度流体、气体),降低隔水管环空内返回流体的密度,使之与海水相当,在整个钻井液返回回路中保持双密度钻井液体系,有效控制井眼环空压力、井底压力,克服深水钻井中遇到的问题,实现安全、经济的钻井。   3.4 喷射下导管技术   海上浅水区的表层套管作业通常采用钻孔、下套管然后固井的作业方式。在深水区,由于海底浅部地层比较松软,常规的钻孔/下套管/固井方式常常比较困难,作业时间较长,对于日费高昂的深水钻井作业显然不合适。目前国外深水导管钻井作业通常采用“Jetting in”的方式。常规做法是在导管柱(?覫914.4mm或0762mm)内下入钻具,利用导管柱和钻具(钻铤)的重量,边开泵冲洗边下人导管。

钻井技术、油气开采、石油与天然气地质勘探技术、油气储运技术 哪 个专业 好学

如果你是男生 可离家 愿辛苦多赚钱 学钻井或勘探 可离家 不太辛苦 钱中等 学储运 不愿离家 不愿辛苦 钱可以稍少些 学采油如果你是女生 说实话哪个都不适合你 钻井和勘探一定不要选 除非你要读研 采油和储运相对好些