barriers / 阅读 / 详情

爱因斯坦(Albert Einstein)把狭义相对性原理推广为广义相对性原理

2023-08-22 01:02:42
共1条回复
meira

相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。

时空是四维的空间,上面的点是事件。

近代物理学认为,时间和空间不是独立的、绝对的,而是相互关联的、可变的,任何一方的变化都包含着对方的变化。因此把时间和空间统称为时空,在概念上更加科学而完整。

P.S.上面提到的“空间”一词其实不够确切,时空(四维)与空间(三维)有着相差一个维度的区别,它们也不同于通常所说的希尔伯特空间。把宇宙看作四维时空,有一个很重要的原因在于它恰好可以全面地描述发生在我们能够认知的三维空间中发生的一切事件。

狭义相对论,下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们规定如下:

  1.物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竟是用两个在互相匀速移动着的坐标系中的哪一个并无关系。

  2.任何光线在“静止的”坐标系中都是以确定的速度c运动着,不管这道光线是由静止的还是运动的物体发射出来的。

广义相对论,基本假设

等效原理:引力和惯性力是完全等效的。

广义相对性原理:物理定律的形式在一切参考系都是不变的。

主要内容:

爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身固有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。

光速不变原理,在狭义相对论中,指的是无论在何种惯性系(惯性参照系)中观察,光在真空中的传播速度都是一个常数,不随光源和观察者所在参考系的相对运动而改变。这个数值是299,792,458 米/秒。

光速不变原理是爱因斯坦创立狭义相对论的基本出发点之一。

在广义相对论中,由于所谓惯性参照系不再存在,爱因斯坦引入了广义相对性原理,即物理定律的形式在一切参考系都是不变的。这也使得光速不变原理可以应用到所有参考系中。

四维空间

狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。

四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。有这样一个例子:一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。

四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。

相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系,时空与能量动量四矢之间也存在着深刻的联系。

物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。

伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。

著名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。

由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。

相关推荐

什么是相对性原理

相对性原理是力学的基本原理。对自然的研究和对自然力量的利用从一开始就是同使物体个体化(Individualization)联系在一起的,一个物体到另外一些物体的距离随时间发生变化,当这些“另外的”物体依然是所论物体的不可分割开来的背景的时候,我们就无法用数列对应于该物体的位置和位置的改变,也就是不能对物体的位置和速度施行参数化。牛顿在《自然哲学的数学原理》一书中,在其根据运动三定律得到的第五个结论里面清楚地陈述了相对性原理。希望能对您有帮助,也祝您生活愉快!
2023-08-12 23:23:532

相对论的基本原理

相对论的基本原理狭义相对性原理:物理定律在所有的惯性系中有相同的数学形式。光速不变原理:在任何惯性系中看来,光在真空中的传播速率都是 c(数值大约是 30 万公里每秒)。相对论的基础是两个原理,一个是光速不变,一个是参考系的对称性。这个原理基于一个简单的事实:不论我们讨论速度的大小还是方向,都必须要明确测量者。这个就是相对论思想的精髓。假设在浩瀚的宇宙,乔治飘忽在黑暗的空无一物的空间中,从他的角度,他是完全静止的。而远处,他看到另外一个同样漂浮在宇宙中的另外一个人格雷西正向他飘过来。经过他时,他们相互挥了挥手。紧接着,格雷西消失在黑暗的夜空中。这个故事如果从格雷西的角度看,也可以解释为,格雷西自己感觉是静止的,远处的乔治向她飘过来,然后挥了挥手之后消失在夜空中。这两个故事讲的是同一件事情。两个人都觉得自己的静止的。这就是相对性原理的精髓:运动是相对。
2023-08-12 23:24:121

经典力学相对性原理

经典相对性原理(伽利略相对性原理):任何密闭惯性参照系内的试验,无法判断参照系是静止还是做匀速直线运动。相对论相对性原理:物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竟是用两个在互相匀速移动着的坐标系中的哪一个并无关系。问题:一辆地面上匀速运动的车上,从车顶,自由掉下一个物体,车上的人,与车下的人所观测到的运动轨迹不是相同的数学表达形式。不能用系数简单的统一。不同点是经典力学相对性原理只适用于描述机械运动的力学规律,采用的是各惯性系不变的绝对时空观,推导出的是伽利略变换,可以保证机械力学规律的坐标变换不变性,但不能保证电磁运动规律的坐标变换不变性,所以本质上只适用于低速力学现象。相对论(Relativity)的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论和广义相对论的区别是:前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。
2023-08-12 23:25:091

狭义相对论的基本原理是什么?

狭义相对论的基本原理是:(1)在一切惯性系中,基本物理定律都是相同的,称为狭义相对性原理。(2)在任何惯性系中,真空中的光速都相同,恒定地等于c,且与光源的运动无关,称为光速不变原理。由此得出时间和空间各量从一个惯性系变换到另一惯性系时,应满足洛仑兹变换,而不是伽利略变换,并导出许多重要结论,主要有:量度物体长度时,运动物体沿运动方向的长度比静止时缩短,即尺缩效应;量度物体的时间历程时,运动物体的时间进程比静止时长,运动的钟比静止的钟走得慢,即钟慢效应;物体的质量随运动速度的增大而变大;质量为m的物体具有的总能量为E=mc2(质能关系式);任何物体的速度不可能超过光速c等,这些结论与大量的高速(接近光速)运动的粒子的经验事实相符合,特别是在原子核能释放中,质能关系式被具体化,使人类进入原子能时代,为电磁场、核力场和弱力场理论的进一步发展奠定了基础。上述理论从相对性原理出发,而且只对惯性系有效,称为狭义相对论。
2023-08-12 23:25:301

经典力学相对性原理与狭义相对论的相对性原理有何不同

湖工大二学子?大物最后一题?
2023-08-12 23:25:3910

爱因斯坦狭义相对论的两条基本原理是什么?

狭义相对论的两条基本原理是狭义相对性原理和光速不变原理。1、狭义相对性原理一切物理定律(除引力外的力学定律、电磁学定律以及其他相互作用的动力学定律)在所有惯性系中均有效;或者说,一切物理定律(除引力外)的方程式在洛伦兹变换下保持形式不变。不同时间进行的实验给出了同样的物理定律,这正是相对性原理的实验基础。2、光速不变原理光在真空中总是以确定的速度c传播,速度的大小同光源的运动状态无关。在真空中的各个方向上,光信号传播速度(即单向光速)的大小均相同(即光速各向同性)。光速同光源的运动状态和观察者所处的惯性系无关。这个原理同经典力学不相容。有了这个原理,才能够准确地定义不同地点的同时性。
2023-08-12 23:26:141

伽利略相对性原理”是如何提出的?

在物理学史上,一般认为“相对性原理”是伟大物理学家伽利略提出的,所以也称为“伽利略相对性原理”。他在1632年出版的《关于托勒玫和哥白尼两大世界体系的对话》一书中写道:“把你和一些朋友关在一条大船甲板下的主舱里,再让你们带几只苍蝇、蝴蝶和其他小飞虫,舱内放一只水碗,其中放几条鱼,然后挂上一个水瓶,让水一滴一滴地滴到下面的一个宽口罐里。船停着不动时,你留神观察,小虫都以等速向舱内各方面飞行,鱼向各方面随便游动,水滴滴进下面的罐子中。你把任何东西扔给你的朋友时,只要距离相等,向这一方向不必比向另一方向用更多的力,你双脚齐跳,无论向哪个方向跳过的距离都相等。当你仔细地观察这些事情后(虽然当船停止时,事情无疑一定是这样发生的),再说船以任何速度前进,只要是运动匀速的,不忽左忽右地摆动,你将发现,所有上述现象丝毫没有变化,你也无法从其中任何一个现象来确定,船是在运动还是停着不动。……”把这段记载和《尚书纬》的文字对照一下,就可以看出,两者所说的大体是一回事,思想是相同的,所不同的只是详略之别,而在年代上,《尚书纬》比伽利略的著作至少要早1500年!无怪乎,这使得今天的许多学者为之惊叹不已!事实上,在东汉以后,还有不少诸如此类的精彩论述。值得提到的是,东汉王充研究了另一种现象。在讨论日、月运行问题时,他说:“(日、月)系于天,随天四时转行也。其喻若蚁行于碨上。日、月行迟,天行疾。天持日、月转,故日、月实东行而反西旋也。”(《论衡u2022说日》)这里指出:日、月虽然实际上向东运动,但由于天运动快,日、月运动慢,看起来好像是向西运转。王充十分形象地用“蚁行磨上”来比喻这种相对运动。这个比喻为后世所称道、沿用。明末方以智在《物理小识》卷一中,指出同向运动的两个物体,“一疾一徐,谓徐者右行,疾者左行。此亦说之可合而不遂决者也。”这就把相对运动的讨论范围又扩展了,认识更全面了。
2023-08-12 23:26:321

伽利略相对性原理

伽利略相对性原理,详解如下:伽利略相对性原理,就是力学相对性原理,仅指经典力学定律在任何惯性参考系(惯性系)中数学形式不变,换言之,所有惯性系都是等价(平权)的。伽利略用物理学原理为哥白尼地动学说进行辩解时,应用运动独立性原理通俗说明了石子从桅杆顶上掉落到桅杆脚下而不向船尾偏移的道理。进一步以作匀速直线运动的船舱中物体运动规律不变的著名论述,第一次提出惯性参考系(惯性系)的概念。这一原理被爱因斯坦称为伽利略相对性原理,是狭义相对性原理的先导。从伽利略变换可以导出力学相对性原理。伽利略相对性原理的发现过程:1632年,伽利略在一条作匀速直线运动的船上,对一个封闭船舱内发生的现象进行观察,他写道:"在这里(只要船的运动是匀速的)你在一切现象中观察不出丝毫的改变,你也不能够根据任何现象来判断船究竟是在运动还是在静止着。当你在甲板上跳跃的时候,你所通过的距离和你在一条静止的船上跳跃时所通过的距离完全相同,也就是说,你向船尾跳时并不比你向船头跳时--由于船的迅速运动--跳得更远些,虽然当你跳在空中时,在你下面的甲板是在向着你跳跃相反的方向奔驰着。当你抛一东西给你的朋友时,如果你的朋友在船头而你在船尾时,你所费的力并不比你们两个站在相反的位置时所费的力更大。从挂在天花板下的装着水的酒杯里滴下的水滴,将垂直地落在地板上,没有任何一滴水滴是落向船尾方面,虽然当水滴尚在空中时,船在向前走。苍蝇将继续自己的飞行,在各方面都是一样,丝毫不发生苍蝇(好像它们疲倦地跟在疾驶着的船后)集聚在船尾方面的情形"。在20世纪,爱因斯坦将伽利略相对性原理加以推广,使之成为相对论的基本原理。
2023-08-12 23:26:521

什么是伽利略的相对性原理

牛顿定律
2023-08-12 23:27:213

伽利略相对性原理是什么?

伽利略相对性原理是力学规律在所有惯性坐标系中是等价的。力学过程对于静止的惯性系和运动的惯性系是完全相同的。换句话说,在一系统内部所作任何力学的实验都不能够决定一惯性系统是在静止状态还是在作等速直线运动。首次将相对性原理以明确的形式应用于物理学的人是伽利略。关于物体运动的实验,无论是在陆地上进行还是在航船上进行,结果都是一定的。伽利略是物理学的奠基者,单摆公式、落体公式和惯性定律皆出自其手。在惯性参照框架中,一个不受外力的物体会保持静止或者匀速直线运动的状态。相互间作匀速直线运动的参照框架,若其一为惯性参照框架,则全部都是惯性参照框架。伽利略发现置身于匀速运动的船舱内,人对周围环境的观察不能判断船是否在运动。力学实验不能区分相互间作匀速运动的参照框架。伽利略相对论可用数学表述如下:“若描述物理规律的方程为 f(r, t; λ)=0,则对任意常数v0 ,f(r+v0t, t; λ)=0 成立。” 1909年,人们把相关的时空坐标变换 r"=r+v0t,t"=t称为伽利略变换。牛顿力学满足伽利略相对论,但电磁学却不满足,这为日后相对性思想的进一步拓展埋下了伏笔。惯性定律后来成了牛顿第一定律,摆脱对惯性参照框架的依赖是推广狭义相对论的原初动机之一,广义相对论的一大进步是修正了惯性运动的概念。
2023-08-12 23:27:282

相对性原理

时空学大讲堂 ——反相对论演义 二,时空学初步 2,相对性原理 秒:1967年第13届国际度量衡大会定义:铯133原子基态的两个超精细能级间跃迁对应幅射的9192631770个周期的持续时间 。 实践证明,光的辐射频率与空间中的引力场强度和介质密度无关。因此“秒”在宇宙中有相同的值。 米:1983年第17届国际计量大会定义:米是1/299792458秒的时间间隔内光在真空中行程的长度。 “米”的定义说明光速与米是循环定义,米的长度始终是光速长度的1/299792458。与它们具体的长度无关。事实上,空间中的介质密度越大,光速表征的长度越短,米的长度相应变短;空间中的引力场强度越大,光速表征的长度越长,米的长度相应变长。因此无论光速和米的实际长度怎样变化,“秒”和光速在宇宙中有不变的值。 观察者:具有一定的自然科学知识和技能,并且凭借自己所在时空位置对自然现象进行观测、考量的个人。 参照系:观察者为了观测考量自然现象必须借助由确定的相对速度、相对位置所确定的观察窗口和测量平台。该窗口和平台称作“参照系”。 本征参照系:被考量物体静止于其中的参照系称作该物体的本征参照系。特别地,以观察者自身为参照系原点的参照系称作“观察者本征参照系”。由于观察者参照系与具体的观察者是谁无关,与具体的时空位置无关。因此所有的本征参照系都是等价的。如果自然现象在观察者参照系中发生的初始条件相同,边界条件相同,则观察者观察到的自然现象相同。即自然科学与参照系和观察者无关,或自然科学在宇宙中的形式和内容相同。 本征值:在本征参照系中测量得到的自然科学量的值。因此本征与在宇宙中具体的时空位置无关,其值不变。 相对性原理:哪些概念与参照系无关的观点称为“相对性原理”。一般而言,自然科学现象在本征参照系与非由本征参照系的观测结果是不同的。“相对性原理”说明有哪些概念是参照系的不变量,即哪些概念与参照系无关,即与具体的时空位置无关。因此“相对性原理”的理论意义是说明哪一些概念在宇宙中相同。相对性原理的本质是在逻辑上将人类的实践经验变成了科学理论。虽然相对性原理是物理学中首先提出的概念,但是就性质而言,相对性原理是属于时空学的范畴,而非物理学的课题。 王氏相对性原理:自然科学任何量的值都是本征值。本征值与时空无关,自然科学的形式和内容与时空无关。特别说明,所有自然科学常数都是本征值.因此所有自然科学常数在宇宙中不变。王氏相对性原理不能在理论上证明。但是它有逻辑依据,在实践中总是正确的.因此王氏相对性原理是时空学中的一条公理。
2023-08-12 23:27:521

广义相对性原理的基本原理

物理定律在一切参考系中都具有相同的数学形式,这就是广义相对性原理(广义协变性原理)。广义相对性原理是物理学最基本的原理之一,指出不存在“绝对参考系”,没有一个参考系具有优越地位,所有的参考系都是等价(平权)的。在一个参考系中建立起来的物理定律,通过适当的坐标变换,可以适用于任何参考系。相对性原理最初是由伽利略提出,当时的适用范围是经典力学。爱因斯坦将其推广到非惯性参考系中,包含力学和电磁学的整个经典物理学范围,后来更进一步将引力现象也包含进来。狭义相对性原理虽然把伽利略相对性原理推广到了整个物理领域,但并不能包括非惯性参考系。爱因斯坦把相对性原理推广到一切参考系,指出物理定律在一切参考系中都具有相同的数学形式,即它们必须在任意坐标变换下是协变的,也称为广义协变性原理。广义相对性原理也可以表述为:物理规律在不同的坐标系中的数学形式依照一定的规则(符合群的要求)都可以互相转换 。
2023-08-12 23:28:001

相对论到底是讲什么原理?

相对论是一个关于时空(狭义)和引力(广义)的理论,其主要观点是否定建立在牛顿经典力学基础上的绝对时空观。以牛顿、伽利略为代表的一系列经典物理的缔造者认为:时间和空间就好比容器,物体在这个容器内运动并不能改变时间空间的性质。但理论发展到一定阶段,发现以上观点在高速领域并不成立。爱因斯坦认为,物体的运动与时空会相互作用,导致时空的伸缩,从而会有一系列有趣的结论。狭义相对论有两个基本原理(假设):相对性原理和光速不变原理,狭义相对论所有的公式和现象都可以由这两个原理推出。其主要的结论有:不同参考系之间坐标变换的洛伦兹变换、物体运动与时空相互作用的尺缩效应和钟慢效应、定义了相对论中主要的不变量时空间隔、物体运动与其质量能量关系的运动质量公式和质能方程。在这些理论的基础上,结合闵可夫斯基空间的定义,将经典的电磁理论、力学公式等修改为相对论协变形式。广义相对论建立在狭义相对论的基础之上,修改了其第一条原理,将其扩展为广义相对性原理,完全抛弃了惯性系的概念。另外再提出第三条原理:强等价原理。其主要结论是惯性质量与引力质量等价,非惯性系与引力场局部等价。爱因斯坦最伟大的创举是将引力描述为时空的扭曲,彻底将物理问题变为几何问题。广相的数学基础是微分几何和张量理论,其核心成果是爱因斯坦引力场方程。解场方程成为了研究宇宙的关键,二十世纪后半叶很多人通过解场方程,以求得到宇宙的演化,黑洞的形成和性质等一系列问题。相对论在宏观高速领域的应用非常成功,其很多预言的现象都得到了证实。目前,狭义相对论已经融入了较微观的领域,与量子场论等等一系列理论一起组成了标准模型。另外广义相对论仍然是当代描述引力最成功的理论。标准模型与广义相对论一起成为了当代物理两大理论基础。但它们在很多地方有冲突,为此,当代的理论物理学家正致力于统一这两大理论,构建M理论,或者叫做上帝理论、大统一理论、万物理论等等,爱因斯坦、霍金等人穷其一生未得到满意答案。最后再强调一点:相对论是一个关于时空与引力的理论。以上所有术语可以百度百科,还是比较准确的。
2023-08-12 23:28:323

同时的相对性是怎么解释的?

  根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个惯性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。  相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。  尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。  由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。也就是说,时间进度与参考系有关。这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的"。这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。
2023-08-12 23:28:531

试述真理的绝对性和相对性辩证关系的原理及其现实意义。

(1)真理既是绝对的,又是相对的,是绝对性和相对性的统一。①真理的绝对性和相对性相互依存。②真理的绝对性和相对性相互包含、相互渗透。③相对真理向绝对真理转化。(2)把握真理的绝对性和相对性相统一的原理,对于正确对待马克思主义有重要意义。马克思主义是真理,它是绝对性和相对性的统一。它正确地反映了自然、社会和思维发展的普遍规律,具有绝对性的一面。但是,它又没有穷尽一切事物及其规律,需要随着实践的发展而发展又具有相对性的一面。因为它具有绝对性,所以我们必须坚持它并以它作为我们的指导思想;因为它具有相对性,所以又必须在实践中丰富它、发展它。既坚持又发展,才是对待马克思主义的正确态度。
2023-08-12 23:29:031

谁能告诉我爱因斯坦相对论"推理过程、原理、及其公式?

这个问题好 收藏了!
2023-08-12 23:29:113

关于相对性原理

垂直,因为车外的人看到球与车有相同的水平速度。所以球与车没有水平的相对位移。
2023-08-12 23:29:204

关于相对性原理的

1。弱作用和电磁作用是统一的,已经证明了。2.强作用几乎无法观测,所以基本上是不知道。因此结论就差不多了
2023-08-12 23:29:374

什么是相对论?

相对论释义:研究时间和空间相对关系的物理学说。分为狭义相对论和广义相对论。前者认为物体的运动是相对的,光速不因光源的运动而改变,物体的质量与能量的关系为E=mc2(E代表能量,m代表质量,c代表光速)。后者认为物质的运动是物质引力场派生的,光在引力场中传播因受引力场的影响而改变方向。相对论是爱因斯坦提出的。这个理论修正了从牛顿以来对空间、时间、引力三者互相割裂的看法以及运动规律永恒不变的看法,从而奠定了现代物理学的基础。扩展资料:广义相对论包括如下几条基本假设:1、广义相对性原理(广义协变性原理):任何物理规律都应该用与参考系无关的物理量表示出来。用几何语言描述即为,任何在物理规律中出现的时空量都应当为该时空的度规或者由其导出的物理量。2、爱因斯坦场方程(详见广义相对论条目):它具体表达了时空中的物质(能动张量)对于时空几何(曲率张量的函数)的影响,其中对应能动张量的要求(其梯度为零)则包含了上面关于在其中做惯性运动的物体的运动方程的内容。在本质上,所有的物理学问题都涉及采用哪个时空观的问题。在二十世纪以前的经典物理学里,人们采用的是牛顿的绝对时空观。而相对论的提出改变了这种时空观,这就导致人们必须依相对论的要求对经典物理学的公式进行改写,以使其具有相对论所要求的洛伦兹协变性而不是以往的伽利略协变性。在经典理论物理的三大领域中,电动力学本身就是洛伦兹协变的,无需改写;统计力学有一定的特殊性,但这一特殊性并不带来很多急需解决的原则上的困难;而经典力学的大部分都可以成功的改写为相对论形式,以使其可以用来更好的描述高速运动下的物体。但是唯独牛顿的引力理论无法在狭义相对论的框架体系下改写,这直接导致爱因斯坦扩展其狭义相对论,而得到了广义相对论。
2023-08-12 23:29:461

爱因斯坦是怎么得出相对论的?如题 谢谢了

相对论的创立 早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场。这种事可能发生吗? 与此相联系,他非常想探讨与光波有关的所谓以太的问题。以太这个名词源于希腊,用以代表组成天上物体的基本元素。17世纪,笛卡尔首次将它引入科学,作为传播光的媒质。其后,惠更斯进一步发展了以太学说,认为荷载光波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的物质中。与惠更斯的看法不同,牛顿提出了光的微粒说。牛顿认为,发光体发射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉。18世纪牛顿的微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学说也因此大大发展。当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太。与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来。以太不仅是光波的载体,也成了电磁场的载体。直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太。 但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性原理不一致。关于相对性原理的思想,早在伽利略和牛顿时期就已经有了。电磁学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却遇到了困难。按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一个恒量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽车,一辆向你驶近,一辆驶离。你看到前一辆车的灯光向你靠近,后一辆车的灯光远离。按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不起作用。但根据伽利略理论,这两项的测量结果不同。向你驶来的车将发出的光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=光速-车速。麦克斯韦与伽利略关于速度的说法明显相悖。我们如何解决这一分歧呢? 19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机。海王星的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显示出一种形式上的完整,并被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”。在人们的心目中,古典物理学已经达到了近乎完美的程度。德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了。” 爱因斯坦似乎就是那个将构建崭新的物理学大厦的人。在伯尔尼专利局的日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并形成了自己独特的见解。在十年的探索过程中,爱因斯坦认真研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学。爱因斯坦坚信电磁理论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存在。他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的。经过研究爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦兹理论中已经没有实际意义。于是他想到:以及绝对参照系是必要的吗?电磁场一定要有荷载物吗? 爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性。相对性原理已经在力学中被广泛证明,但在电动力学中却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑。他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有同样的形式,但在这里出现了光速的问题。光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题。当时的物理学家一般都相信以太,也就是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响。19世纪末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因斯坦留下了深刻的印象。 1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。 1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含了狭义相对论的基本思想和基本内容。狭义相对论所根据的是两条原理:相对性原理和光速不变原理。爱因斯坦解决问题的出发点,是他坚信相对性原理。伽利略最早阐明过相对性原理的思想,但他没有对时间和空间给出过明确的定义。牛顿建立力学体系时也讲了相对性思想,但又定义了绝对空间、绝对时间和绝对运动,在这个问题上他是矛盾的。而爱因斯坦大大发展了相对性原理,在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的时间,所有时间和空间都是和运动的物体联系在一起的。对于任何一个参照系和坐标系,都只有属于这个参照系和坐标系的空间和时间。对于一切惯性系,运用该参照系的空间和时间所表达的物理规律,它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理。在这篇文章中,爱因斯坦没有多讨论将光速不变作为基本原理的根据,他提出光速不变是一个大胆的假设,是从电磁理论和相对性原理的要求而提出来的。这篇文章是爱因斯坦多年来思考以太与电动力学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太漂流是不存在的。 什么是同时性的相对性?不同地方的两个事件我们何以知道它是同时发生的呢?一般来说,我们会通过信号来确认。为了得知异地事件的同时性我们就得知道信号的传递速度,但如何没出这一速度呢?我们必须测出两地的空间距离以及信号传递所需的时间,空间距离的测量很简单,麻烦在于测量时间,我们必须假定两地各有一只已经对好了的钟,从两个钟的读数可以知道信号传播的时间。但我们如何知道异地的钟对好了呢?答案是还需要一种信号。这个信号能否将钟对好?如果按照先前的思路,它又需要一种新信号,这样无穷后退,异地的同时性实际上无法确认。不过有一点是明确的,同时性必与一种信号相联系,否则我们说这两件事同时发生是没有意义的。 光信号可能是用来对时钟最合适的信号,但光速不是无限大,这样就产生一个新奇的结论,对于静止的观察者同时的两件事,对于运动的观察者就不是同时的。我们设想一个高速运行的列车,它的速度接近光速。列车通过站台时,甲站在站台上,有两道闪电在甲眼前闪过,一道在火车前端,一道在后端,并在火车两端及平台的相应部位留下痕迹,通过测量,甲与列车两端的间距相等,得出的结论是,甲是同时看到两道闪电的。因此对甲来说,收到的两个光信号在同一时间间隔内传播同样的距离,并同时到达他所在位置,这两起事件必然在同一时间发生,它们是同时的。但对于在列车内部正中央的乙,情况则不同,因为乙与高速运行的列车一同运动,因此他会先截取向着他传播的前端信号,然后收到从后端传来的光信号。对乙来说,这两起事件是不同时的。也就是说,同时性不是绝对的,而取决于观察者的运动状态。这一结论否定了牛顿力学中引以为基础的绝对时间和绝对空间框架。 相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度。由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀。但由于日常生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应。 爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大。他并且给出了著名的质能关系式:E=mc2,质能关系式对后来发展的原子能事业起到了指导作用。
2023-08-12 23:30:001

谁能发表一下关于爱因斯坦《狭义相对论》的见解

很好很强大
2023-08-12 23:30:072

时间有哪些相对性?

还在学生时代,爱因斯坦就在思考这样一个令人困惑的问题:假如他以光的速度穿过以太旅行,他将看到一些什么呢?按照运动的相对性原理,这时光束应该相当于静止空间中振荡的电磁场,但这种观点同麦克斯韦理论不符。于是爱因斯坦开始猜想,力学定律以及包括光的传播在内的其他物理学定律,对于以不同速度运动的观测者必然具有相同的形式。他认为,相对性原理不仅能应用于力学现象,而且同样也能应用于光学和电磁学现象。光速不但对于相对静止的观测者是相同的,对于那些处于相对匀速运动中的观测者也是相同的。迈克耳逊-莫雷实验的零结果是“正确的”,因为:第一,不存在以太;第二,光速不变。爱因斯坦接着便以这两条结论为前提,推广了伽利略的相对性原理,建立了自己的、更加普遍的新理论——狭义相对论。所谓“狭义”,指它仅限于匀速运动的场合。狭义相对论指出,不管是力学现象,还是光学和电磁学现象,它们所遵循的规律都与惯性系的运动状态无关。这样,爱因斯坦就完满地解决了麦克斯韦的电磁波理论和建立在牛顿力学定律基础上的物理学其他部分之间的矛盾,从而开创了物理学的一个新时代。狭义相对论发表于1905年,论文的题目叫“论动体的电动力学”。从这篇文章我们看到,爱因斯坦是通过分析时间概念来解决问题的,也是在“同时性的相对性”这个问题上取得突破的。他醒悟到时间的可疑,认为时间不能绝对定义,并且指出,对于肘间的测量决定于人们对“同时性”的认识。也就是说,对时间间隔的测量必然涉及对同时性的判断,即一个事件和另一个事件在时间上的吻合。他在“论动体的电动力学”一文中对这一点有一段精彩的表述:“如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得‘时间"在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,‘那列火车7点钟到达这里",这大概是说:‘我的表的短针指到7同火车的到达是同时的事件。"”可能有人认为,用“我的表的短针的位置”来代替“时间”,也许就有可能克服由于定义“时间”而带来的一切困难。事实上,如果问题只是在于为这只表所在的地点来定义一种时间,那么这样一种定义就已经足够了。但是,如果问题是要把发生在不同地点的一系列事件在时间上联系起来,或者说——其结果依然一样——要定出那些在远离这只表的地点所发生的事件的时间,那么这样的定义就不够了。爱因斯坦认识到,时间与信号速度之间有不可分的联系,不同距离处的两事件的同时性,与事件的相对位置以及观测者借以感知它们的联系方式有关。如果事件的距离和把它与观测者联系起来的信号的速度是已知的,观测者便可计算出该事件发生的时间,并把它和自己先前经历过的某一时刻对应起来。这种计算对于不同的观测者是不同的。但是,在爱因斯坦提出这个问题以前,人们却一直信守这样一个原则:事件被感知的时间只取决于它发生的时间,它对于所有的观测者都是一样的。爱因斯坦指出,上述原则基于这样一个前提,即如果所有观测者的计算都正确无误,他们对于同一给定事件应该得到相同的时间。然而,爱因斯坦令人信服地证明,这一前提一般并不成立。他发现,处于匀速相对运动中的不同观测者,对于同一事件一般总会测出不同的时间。如果两只时钟相互之间处于匀速相对运动之中,则它们将保持不同的时间,你无法说哪个钟是“准”的。运动的时钟总比相对静止的时钟要变慢。对于我们日常遇到的运动速度,这一效应可以忽略,但当时钟运动的速度愈接近光速,时钟变慢的效应就愈益显著。为了进一步说明这个问题,让我们来做一个“思想实验”。这是不必在实验室进行,而只是通过头脑去想象的“实验”,它也是科学实验的一种形式,并且颇得物理学家们的宠爱。事实上,就连中学生在做物理课习题时也常常用到它。这个实验是这样的:假定在首都机场的卫星楼里有两只质量相同的时钟A和B,经过校准同步后,让A钟留在卫星楼里,而把B钟装上飞机。当飞机由北京飞经上海再返回首都机场时,把钟B和钟A相比较,这时它们的指针所指示的时间会相同吗?有些读者可能会脱口而出:相同。但事实并非如此。如果这两个时钟足够精密的话,我们将会发现钟B要比钟A慢一些。这就是爱因斯坦相对论所预言的“时钟矛盾”。这里所说的矛盾,不是逻辑意义上的矛盾,而是指与常识相反的考虑方法,即所谓“佯谬”。按照狭义相对论,两只同步了的时钟,其中一只以速度V沿十条闭合曲线运动,经历一秒后回到原处,那么它比那只始终未动的钟要慢12(V/c)2,此处c为光速。由此可以推出:对于同一经历过程,飞机上钟B测定的时间间隔为△τ,卫星楼里不动的钟4测得的为△t,于是因为任何物体(这里是飞机)的运动速度不会超过光速,√1-(V/c)2的值始终小于1,所以相对于A钟来说,钟B变慢了。钟A走过1秒时,钟B只经过1-(v/C)2秒。通常情况下,V/c值远远小于1,1-(v/C)2近似等于1,时钟变慢的程度微乎其微。但是,如果我们能够发射一个宇宙飞船,使它相对于地球以光速的0.98倍的速度飞行,在地面上的人看来,飞船内时钟走速将只有地面上时钟走速的1/5。在这种情况下,假如我们让25岁和28岁的亲兄弟中的哥哥乘飞船作5年飞行,那么当他回到地面上时,弟弟将会发现他比哥哥大了1岁。因为这5年是指地面上的5年,弟弟的年龄已经30岁了。可是在这段时间里,飞船内的时钟只走过1年,哥哥只长了1岁,只有29岁。有些物理书上又把这种现象称为“双生儿佯谬”。相对论预言的这种奇妙现象,长期以来一直是物理学家热烈讨论的话题。可是,一直到原子钟问世之后,才有可能对它作出肯定性的实验验证。1971年,美国海军天文台把4台铯原子钟装上飞机从华盛顿出发,分别向东和向西作环球飞行。结果发现,向东飞行的铯钟与停放在该天文台的铯钟之间读数相差刃毫微秒;向西飞行时,这一差值为273微秒。虽然在这次试验中没有扣除地球引力所造成的影响,但测量结果表明,“双生儿佯谬”是确实存在的。
2023-08-12 23:30:151

爱因斯坦的相对论是怎么的.

百度百科
2023-08-12 23:30:379

狭义相对论的基本效应有哪些?

楼上搞错了,尺缩,钟慢是推出来的,基本的是相对性原则和光速不变原则
2023-08-12 23:31:073

关于相对论的详细资料

http://post.baidu.com/f?kz=11197627
2023-08-12 23:31:173

用真理的绝对性和相对性辨证关系原理论述对于马克思主义既坚持又要发展

你觉的你给的分数和你要求的题目成正比吗?你先想好这个问题的正解,再来提问,我相信会有很多人做答的.
2023-08-12 23:31:266

相对论的全文

到百度里面去搜索
2023-08-12 23:31:544

解释一下爱恩斯坦的狭义相对论(详细)

又有谁能用自己的理解写上一篇呐?
2023-08-12 23:32:143

爱因斯坦相对论是什么?

百读收
2023-08-12 23:32:266

爱因斯坦相对论的主要观点

狭义相对论:1。狭义相对性原理(狭义协变性原理):一切的惯性参考系都是平权的,即物理规律的形式在任何的惯性参考系中是相同的。2.光速不变原理:真空中的光速在任何参考系下是恒定不变的广义相对论:1.广义相对性原理(广义协变性原理):任何物理规律都应该用与参考系无关的物理量表示出来。2.爱因斯坦场方程:它具体表达了时空中的物质(能动张量)对于时空几何(曲率张量的函数)的影响,其中对应能动张量的要求(其梯度为零)则包含了上面关于在其中做惯性运动的物体的运动方程的内容。
2023-08-12 23:32:443

相对性原理

相对性原理是力学的基本原理。对自然的研究和对自然力量的利用从一开始就是同使物体个体化联系在一起的。一个物体到另外一些物体的距离随时间发生变化。当这些“另外的”物体依然是所论物体的不可分割开来的背景的时候,我们就无法用数列对应于该物体的位置和位置的改变,也就是不能对物体的位置和速度施行参数化。给定一个物体,它相对于一些物体运动,标志出这些物体,然后用数列与这些距离相对应,于是这些物体就成为参照物,而给定物体到这些物体的距离的全体就成为参照空间。对应于距离的数之全体组成为一有序系统。这样同参照物联系在一起的坐标系,也就被引进来了。所谓处所的相对性原理就是坐标系的平等性;从一个坐标系转换到另一个坐标系的可能性;以及给出坐标变换时物体内部的特性和物体内部的各质点的距离及其结构的不变性。相对性原理说的参考系平等用空间描述是,无论静止系还是运动系空间的各向都是平等的,以参考系的实验物体为原点,一米的距离是相等的,静止系内的一米与运动系的一米相同(指的是静止系内的一米拿到运动系与运动系的一米相同)。静止系与运动系的空间能够通过一定的关系转换也是因为两者都是空间的一部分。空间上的任一点是不动的。空间上一点,通过不同的物体描述可以不同。 (物体可以是参考系。)例如在静止系中运动经过10米远的地方,在另一运动参考系看来可能就是100米。‘10米远的地方"说的是终点,没说起点。而这个10米与100米表示的是空间上的同一个点。正因为如此两者才可以互相变换。相对性原理,运动系与静止系是平等的,运动系中的1米与静止系中的1米相同。所谓一米(就是空间大小)指的是空间上不同两点间的空间间隔。无论我们用静止系描述空间上的点,还是用运动系描述空间上的点,空间两点间的间隔是不变的,是相同的。例如上面,静止系从10米远的地方到11米处,在运动系就是100米远的地方到101米处。
2023-08-12 23:33:132

相对性原理是什么?等效原理是什么?

相对性原理是力学的基本原理。对自然的研究和对自然力量的利用从一开始就是同使物体个体化(Individualization)联系在一起的。一个物体到另外一些物体的距离随时间发生变化。当这些“另外的”物体依然是所论物体的不可分割开来的背景的时候,我们就无法用数列对应于该物体的位置和位置的改变,也就是不能对物体的位置和速度施行参数化。也即给定一个物体,它相对于一些物体运动,标志出这些物体,然后用数列与这些距离相对应,于是这些物体就成为参照物,而给定物体到这些物体的距离的全体就成为参照空间。对应于距离的数之全体组成为一有序系统。这样同参照物联系在一起的坐标系,也就被引进来了。所谓处所的相对性原理就是坐标系的平等性;从一个坐标系转换到另一个坐标系的可能性;以及给出坐标变换时物体内部的特性和物体内部的各质点的距离及其结构的不变性。 等效原理是广义相对论的第一个基本原理,也是整个广义相对论的核心。其基本含义是指重力场与以适当加速度运动的参考系是等价的。爱因斯坦于1911年注意到这一规律,1915年正式以原理的形式提出。等效原理:引力的最基本的物理性质。 在任何一个时空点上都可以选取适当的参考系,使一切物质的运动方程中不再含有引力项,即引力可以局部地消除。如果认为这种消除了引力的参考系是惯性系,那么,等效原理告诉我们,在任何一个时空点,一定存在局部惯性系。伽利略最早注意到,不同物体沿斜面的下滑运动是一样的,即引力加速度与物体的组成无关。</p>
2023-08-12 23:33:471

相对论原理

相对论原理如下:1、相对性原理:基本物理定律在所有惯性系中都保持相同形式的数学表达式,因此一切惯性系都是等价的。2、光速不变原理:在一切惯性系中,光在真空中的传播速率都等于c,与光源的运动状态无关。相对论和量子力学是现代物理学的两大基本支柱。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。狭义相对论提出于1905年,广义相对论提出于1915年(爱因斯坦在1915年末完成广义相对论的创建工作,在1916年初正式发表相关论文)。狭义相对论(Special Relativity)和广义相对论(General Relativity)的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。
2023-08-12 23:33:561

经典力学相对性原理与狭义相对论的相对性原理有何不同

经典力学相对论其实是狭义相对论的一种特殊情况,即当物体运动速度远小于光速时,可以由狭义相对论过渡到牛顿理论,但是狭义相对论也并不是所有的理论都适合,它也有限制范围,它只有在弱引力场中才适用,当引力作用不可忽略时,时空的特性就应该用广义相对论来解释。
2023-08-12 23:34:233

狭义相对论的两条基本原理是什么?

狭义相对论的两条基本原理是狭义相对性原理和光速不变原理。1、狭义相对性原理一切物理定律(除引力外的力学定律、电磁学定律以及其他相互作用的动力学定律)在所有惯性系中均有效;或者说,一切物理定律(除引力外)的方程式在洛伦兹变换下保持形式不变。不同时间进行的实验给出了同样的物理定律,这正是相对性原理的实验基础。2、光速不变原理光在真空中总是以确定的速度c传播,速度的大小同光源的运动状态无关。在真空中的各个方向上,光信号传播速度(即单向光速)的大小均相同(即光速各向同性)。光速同光源的运动状态和观察者所处的惯性系无关。这个原理同经典力学不相容。有了这个原理,才能够准确地定义不同地点的同时性。
2023-08-12 23:34:321

什么是伽利略的相对性原理

1、力学规律在所有惯性坐标系中是等价的。力学过程对于静止的惯性系和运动的惯性系是完全相同的。换句话说,在一系统内部所作任何力学的实验都不能够决定一惯性系统是在静止状态还是在作等速直线运动。2、伽利略在《对话》中写道:当你在密闭的运动着的船舱里观察力学过程时,“只要运动是匀速的,决不忽左忽右摆动,你将发现,所有上述现象丝毫没有变化,你也无法从其中任何一个现象来确定,船是在运动还是停着不动。即使船运动得相当快,在跳跃时,你将和以前一样,在船底板上跳过相同的距离,你跳向船尾也不会比跳向船头来得远,虽然你跳到空中时,脚下的船底板向着你跳的相反方向移动。你把不论什么东西扔给你的同伴时,不论他是在船头还是在船尾,只要你自己站在对面,你也并不需要用更多的力。3、水滴将象先前一样,垂直滴进下面的罐子,一滴也不会滴向船尾,虽然水滴在空中时,船已行使了许多_。鱼在水中游向水碗前部所用的力,不比游向水碗后部来得大;它们一样悠闲地游向放在水碗边缘任何地方的食饵。最后,蝴蝶和苍蝇将继续随便地到处飞行,它们也决不会向船尾集中,并不因为它们可能长时间留在空中,脱离了船的运动,为赶上船的运动显出累的样子。如果点香冒烟,则将看到烟象一朵云一样向上升起,不向任何一边移动。所有这些一致的现象,其原因在于船的运动是船上一切事物所共有的,也是空气所共有的。”相对性原理是伽利略为了答复地心说对哥白尼体系的责难而提出的。这个原理的意义远不止此,它第一次提出惯性参照系的概念,这一原理被爱因斯坦称为伽利略相对性原理,是狭义相对论的先导。
2023-08-12 23:34:501

相对论的基本原理

相对论的基本原理狭义相对性原理:物理定律在所有的惯性系中有相同的数学形式。光速不变原理:在任何惯性系中看来,光在真空中的传播速率都是 c(数值大约是 30 万公里每秒)。相对论的基础是两个原理,一个是光速不变,一个是参考系的对称性。这个原理基于一个简单的事实:不论我们讨论速度的大小还是方向,都必须要明确测量者。这个就是相对论思想的精髓。假设在浩瀚的宇宙,乔治飘忽在黑暗的空无一物的空间中,从他的角度,他是完全静止的。而远处,他看到另外一个同样漂浮在宇宙中的另外一个人格雷西正向他飘过来。经过他时,他们相互挥了挥手。紧接着,格雷西消失在黑暗的夜空中。这个故事如果从格雷西的角度看,也可以解释为,格雷西自己感觉是静止的,远处的乔治向她飘过来,然后挥了挥手之后消失在夜空中。这两个故事讲的是同一件事情。两个人都觉得自己的静止的。这就是相对性原理的精髓:运动是相对。
2023-08-12 23:35:361

相对论原理

相对论是一个关于时空(狭义)和引力(广义)的理论,其主要观点是否定建立在牛顿经典力学基础上的绝对时空观。以牛顿、伽利略为代表的一系列经典物理的缔造者认为:时间和空间就好比容器,物体在这个容器内运动并不能改变时间空间的性质。但理论发展到一定阶段,发现以上观点在高速领域并不成立。爱因斯坦认为,物体的运动与时空会相互作用,导致时空的伸缩,从而会有一系列有趣的结论。狭义相对论有两个基本原理(假设):相对性原理和光速不变原理,狭义相对论所有的公式和现象都可以由这两个原理推出。其主要的结论有:不同参考系之间坐标变换的洛伦兹变换、物体运动与时空相互作用的尺缩效应和钟慢效应、定义了相对论中主要的不变量时空间隔、物体运动与其质量能量关系的运动质量公式和质能方程。在这些理论的基础上,结合闵可夫斯基空间的定义,将经典的电磁理论、力学公式等修改为相对论协变形式。广义相对论建立在狭义相对论的基础之上,修改了其第一条原理,将其扩展为广义相对性原理,完全抛弃了惯性系的概念。另外再提出第三条原理:强等价原理。其主要结论是惯性质量与引力质量等价,非惯性系与引力场局部等价。爱因斯坦最伟大的创举是将引力描述为时空的扭曲,彻底将物理问题变为几何问题。广相的数学基础是微分几何和张量理论,其核心成果是爱因斯坦引力场方程。解场方程成为了研究宇宙的关键,二十世纪后半叶很多人通过解场方程,以求得到宇宙的演化,黑洞的形成和性质等一系列问题。相对论在宏观高速领域的应用非常成功,其很多预言的现象都得到了证实。目前,狭义相对论已经融入了较微观的领域,与量子场论等等一系列理论一起组成了标准模型。另外广义相对论仍然是当代描述引力最成功的理论。标准模型与广义相对论一起成为了当代物理两大理论基础。但它们在很多地方有冲突,为此,当代的理论物理学家正致力于统一这两大理论,构建M理论,或者叫做上帝理论、大统一理论、万物理论等等,爱因斯坦、霍金等人穷其一生未得到满意答案。最后再强调一点:相对论是一个关于时空与引力的理论。以上所有术语可以百度百科,还是比较准确的。
2023-08-12 23:36:121

狭义相对论的两个基本原理是什么?

狭义相对论的两条基本原理是狭义相对性原理和光速不变原理。1、狭义相对性原理一切物理定律(除引力外的力学定律、电磁学定律以及其他相互作用的动力学定律)在所有惯性系中均有效;或者说,一切物理定律(除引力外)的方程式在洛伦兹变换下保持形式不变。不同时间进行的实验给出了同样的物理定律,这正是相对性原理的实验基础。2、光速不变原理光在真空中总是以确定的速度c传播,速度的大小同光源的运动状态无关。在真空中的各个方向上,光信号传播速度(即单向光速)的大小均相同(即光速各向同性)。光速同光源的运动状态和观察者所处的惯性系无关。这个原理同经典力学不相容。有了这个原理,才能够准确地定义不同地点的同时性。
2023-08-12 23:36:211

爱因斯坦的相对性原理与经典力学有何不同

经典力学是建立在绝对时空观上各参照系公认的科学结论。相对论是建立在爱因斯坦相对时间上的测量结果,这个时间的定义不符合科学定义。爱因斯坦不知道太空不是真空;不知道空气、水、油、玻璃、水晶等很多物质都是光介质;他对波学知识几乎为0。相对论漏洞百出,需要大量修正,相对论可以用做解决接近光速运动,会看到什么现象的问题。
2023-08-12 23:36:393

世界上的那些事物是相对性的

相对性原理  相对性原理是力学的基本原理。对自然的研究和对自然力量的利用从一开始就是同使物体个体化(Individualization)联系在一起的。一个物体到另外一些物体的距离随时间发生变化。当这些“另外的”物体依然是所论物体的不可分割开来的背景的时候,我们就无法用数列对应于该物体的位置和位置的改变,也就是不能对物体的位置和速度施行参数化。给定一个物体,它相对于一些物体运动,标志出这些物体,然后用数列与这些距离相对应,于是这些物体就成为参照物,而给定物体到这些物体的距离的全体就成为参照空间。对应于距离的数之全体组成为一有序系统。这样同参照物联系在一起的坐标系,也就被引进来了。所谓处所的相对性原理就是坐标系的平等性;从一个坐标系转换到另一个坐标系的可能性;以及给出坐标变换时刚体内部的特性和刚体内部的各质点的距离及其结构的不变性。 力学的全部发展过程(包括其形成过程)一直同参照系统变更时扩大物理客体不变性概念的范围联系在一起的。在十七世纪不仅已然判明物体的结构与坐标系的选择无关,而且也明确了从一个坐标系过渡到另一个相对它作匀速直线运动的坐标系时,力和加速度之间关系的不变性。这就是用现代物理语言陈述的伽利略伟大发现的内容。它是近代自然科学的真正起点。倘若地球不是一个被赋予特权的参考物,倘若宇宙间根本就没有这种物体,这就表明空间中所有的点和所有的方向都是平等的,即空间是均匀的,各向同性的。这就是近代自然科学的中心思想,它发现于十七世纪并一直延续到今。 牛顿在《自然哲学的数学原理》一书中,在其根据运动三定律得到的第五个结论里面清楚地陈述了相对性原理。但是,牛顿力学没有绝对运动的概念是不行的。绝对运动概念是同力和加速度联系在一起的。从运动学来看,力的作用不是单值的。比如在一个计算系统中力引起某个加速度,那么在另一个相对于前者是以加速运动的系统中它却可以引起另一种加速度,当然也包括加速度为零的情况。因此只有根据动力学的效应,根据引起绝对加速度的系统中的力才能把绝对运动加以标志。牛顿用把水盛在旋转着的桶中的著名的实验作为证明存在着绝对运动和绝对空间的判定实验。这时水将沿着水桶的边缘升高;倘若水桶不动,而其周围的空间绕着水桶旋转的话,这种现象或许不会发生[1]。对牛顿来说离心力的存在是有利于绝对运动的决定性的论据。《自然哲学的数学原理》的全部内容和牛顿建立起来的宇宙体系都是同这种思想联系在一起的,即不能用任何一种具体的物质所产生的作用来解释离心力。在解释离心力发生时,这一著名的牛顿现象并没有提供转动与具体的物理实体有关系的根据。因之牛顿把转动和加速运动都认为是相对于空间本身的。然而不管把这个结论形而上学地加以绝对化的企图如何,它本身还是同十七到十九世纪的天文学、力学和物理学的认识相适应的。 由于提出绝对空间这一概念使得牛顿能比笛卡尔的相对主义又向前作了一系列发展。按照牛顿的理解,所谓绝对运动并不是相对于一些个别的物体,而是相对于空间。牛顿所主张的这种绝对静止的空的空间可以看成充满整个宇宙的,数目不定的,离散存在的物质和“宇宙气”的总代表。是否可以把天体的总和看成是那种“被赋予特权”的参考物甚至就看成是上述那种空间呢?这里还要再谈一下那种不可分割开来的实在。所谓物体相对于空间运动本身就意味着把一个被个体化的物体同一个不可分割的背景(即把物体加以个体化之后所声剩下来的整个宇宙)加以对照。牛顿认为加速度就是相对这一没有被明确的背景而言的。然而在每一个具体的动力学的课题中他必须应用和具体的物体联系在一起的某个计算系统。因而在给出动力学课题的范围后必须把相对静止的物体和与具体物体无关的,作为绝对空间出现的,被赋于特权的计算系统加以区分。在《原理》一书中这部分内容放在基本定义之后进行了叙述。[2] 这里我们暂且把这种未予明确的绝对空间的概念放在一旁,先来谈谈相对运动概念。这个个概念在应用到自由度数很大甚至无限大的系统时就会受到限制。可是只要我们回到那种不可分割的,整体连续的表象,只要我们放弃单个物体位置和运动的参数变化以及为些所必备的坐标系,那么绝对运动和相对运动的对立就被撤消了。对某一宏观体积中质点的热运动来说,相对性的概念就没有什么用途。不过当我们规定系统的自由度数不太大,并且可以不间断地记录每一质点的位置和速度,那么相对性的概念还可以保持下来。这样,要是可以把宇宙气体(不去研究里面个别质点的位置和速度)同连续介质组成一体的话,牛顿的绝对空间或许就获得唯理论的意义。当绝对空间具有洛仑兹那种全部充满空间以太的特征的时候,绝对空间也同样会获得唯理论的意义。(尽管已为后来的一系列实验所驳倒)
2023-08-12 23:36:481

相对论讲了什么原理?

大统一理论公式 现在,人们发现微观粒子之间仅存在四种相互作用力,它们是万有引力、电磁力、强相互作用力、弱相互作用力.宇宙间所有现象都可以用这四种作用力来解释.进一步研究四种作用力之间联系与统一,寻找能统一说明四种相互作用力的理论称为大统一理论.爱因斯坦在提出相对论以后,从20年代开始就致力于寻找一种统一的理论来解释所有相互作用,也就是解释一切物理现象,直到他1955年逝世.他几十年的努力虽未成功,但却激励了后人. 地球膨裂说认为,要想搞清大统一理论公式,必须首先搞清为什么万有引力公式和库仑力公式中的常数G和K互换万有引力和库仑力相等要想搞清这一问题,必须搞清万有引力就是磁力。现代科学证明:“任何物质都具有磁性,所以任何物质在不均匀磁场中都会受到磁力的作用”{1}。科学家们现已测出:“星际空间磁感应强度为10^-10(T)、原子核表面约10^12(T)、中子星表面 约10^8(T)、人体表面 3×10^(-10) (T){2}” 。连人体表面磁感应强度都 3×10^-10 (T),这说明铅球和苹果也必然具有磁力,所以苹果坠地并不是被万有引力吸落的,而是被地球磁力吸落的。因此万有引力是不存在的,万有引力就是磁力,万有引力公式就是磁力公式。我们以原子核和电子间的万有引力和库仑力对万有引力公式和库仑力公式中的常数G和K互换万有引力和库仑力相等进行验证。我们知道:G=6.67×10^-11、原子核质量为1.67×10^-27、电子质量为9.1×10^-31、原子核的电荷q1=1.6×10^-19、电子的电荷q2=1.6×10^-19、K=9.0×10^9。常数G和K互换后原子核和电子间的库仑力G q1q2/r^2=6.67×10^-11×1.6×10^-19×1.6×10^-19=1.7×10^-48/r^2;常数G和K互换后原子核和电子间万有引力KMm/r^2=9.0×10^9×1.67×10^-27×9.1×10^-31 =1.36×10^-47/r^2。因为原子不显电性(磁性)电子和原子核的距离的正常距离,和原子显电性(磁性)电子和原子核的的超正常距离二者的差别非常小,所以差别可以乎略不计。因此,常数G和K互换后的原子核和电子间的库仑力与常数G和K互换后原子核和电子间的万有引力二者基本相等。因此说库仑力就是万有引力就是磁力。 我们从G=6.67×10^-11、星际空间磁感应强度为10^-10(T),二者基本相等可以看出万有引力常数G就是星际空间磁感应强度;我们从K=9.0×10^9、原子核表面磁场强度约10^12(T)二者基本相等,可以看出库仑力常数K就是原子核表面磁场强度。因此计算万有引力和库仑力时,用的万有引力公式GMm/r^2和库仑力公式Kq1q2/r^2中的常数G和K应该换成磁场强度。为什么计算原子核和电子间的万有引力和库仑力时,万有引力公式和库仑力公式中的常数G和K应该互换呢?地球膨裂说认为,原子之所以不显电性(磁性)是因为电子和原子核的距离是正常距离,因为原子核和电子都有磁性,原子核和电子间的距离是正常距离,因此,原子和电子之间的磁场强度应为原子核表面磁场强度约10^12(T)。原子之所以显电性(磁性)是因为流动的电子数量会受外界作用增多或减小,这样宏观反映为带电体,流动的电子和原子核的距离超出正常距离,所以原子核和流动电子之间的磁场强度应为星际空间磁感应强度为10^-10(T)。因此,求宏观中的万有引力公式中的常数G应为空间磁感应强度;求微观中的万有引力公式中的常数G应为原子核表面磁场强度;求宏观中库仑力公式中的常数K应为原子核表面磁场强度,求微观中库仑力公式中的常数K应为星际空间磁感应强度。因此宏观中的磁场强度和微观中的磁场强度正好相反,万有引力和库仑力公式中的磁场强度正好相反。因为宏观中的磁场强度和微观中的磁场强度正好相反,因此计算原子核和电子间的万有引力和库仑力时,用的万有引力公式GMm/r^2和库仑力公式Kq1q2/r^2中的常数G和K应该互换。 为什么万有引力公式GMm/r^2和库仑力公式Kq1q2/r^2只适用于宏观,万有引力公式KMm/r^2和库仑力公式Gq1q2/r^2只适用于微观呢?这是因为万有引力公式GMm/r^2和库仑力公式Kq1q2/r^2是在宏观条件下求得的,宏观中的磁场强度和微观中的磁场强度正好相反,所以只适用于宏观。地球膨裂说认为,既然万有引力就是库仑力,万有引力就是磁力,所以库仑力也是磁力,这就是大统一理论。只要把万有引力公式F=GMm/r^2中的常数G换成磁场强度B(可变量),F=BMm/r^2就是大统一理论公式。因为微观和宏观中的库仑力等于常数互换后的万有引力,所以只要测出两个带电体的质量,求库仑力求常数互换后的万有引力就可以了。参考文献:{1}、百度搜索:百度百科,磁性。磁性概述:因为任何物质都具有磁性,所以任何物质在不均匀磁场中都会受到磁力的作用。{2}、百度搜索:磁感应强度,4量纲,(单位:T),原子核表面 约10^12;中子星表面 约10^8;星际空间 10^(-10);人体表面 3*10^(-10)。作者:赖柏林
2023-08-12 23:37:052

有谁知到相对论?

我知道
2023-08-12 23:38:023

什么是相对论?

u200du200d爱因斯坦的相对论简而言之就是指的是时间,空间,运动着的物质这三者的关系!爱因斯坦的相对论用公式证明了质量,速度,引力,和时间这一关系!即单位时间内速度越高,质量就越大,其自身的引力也就越大至于他的质能转换方程则简单的说明了,如果你想要把某一个有质量的东西加速到光速需要多大的能量!爱因斯坦在其相对论中用公式证明了我们现在生活的时空位于一个连续的四维时空中(即:长,宽,高,时间),其本身没有涉及到量子力学,因为量子力学与相对论的时间相隔甚远。u200du200d
2023-08-12 23:38:112

真理的相对性应该理解为

相对真理(或真理的相对性)是指人们在一定条件下对客观事物及其规律的正确认识是有限的,它也有两个方面的含义:其一,从认识的广度来看,任何真理性认识都是对整个客观世界某些领域、某些事物和过程在一定范围内的正确反映。其二,从认识的深度来看,任何真理性的认识也只是对特定的具体事物在一定程度、一定层次上的近似的正确反映。何理解真理的绝对性和相对性的辩证关系真理的绝对性是具有绝对性的真理,是指真理的无条件性、无限性,真理的相对性是具有相 对性的真理,是指真理的有条件性、有限性。 真理的绝对性和相对性是同一个客观真理的两个方面, 两种特性, 因而二者是辩证统一 的。 第一,具有绝对性的真理和具有相对性的真理是相互渗透,相互包含,相互制约的。一 方面,相对之中有绝对,绝对寓于相对之中;真理的相对性之中,也包含着绝对性的颗粒。 另一方面,绝对之中也有相对,绝对真理如果离开了一个一个这样的有条件的相对真理,那 它是无法存在的。 真理的绝对性通过相对性表现出来, 无数具有相对性的真理之总和构成具 有绝对性的真理。 从真理的两重性来看, 任何真理既是绝对的, 又是相对的, 是两者的统一。 第二, 具有相对性的真理和具有绝对性的真理又是辩证转化的。 真理永远处在由相对向 绝对的转化和发展中,这是真理发展的规律。人类认识是一个不断深化的过程,是从相对性 真理走向绝对性真理, 接近绝对性真理的过程, 任何真理性的认识都是由相对性真理向绝对 性真理转化过程中的一个环节。 人们不断地发现相对中的绝对和绝对中的相对, 使真理的绝 对性不断拓展和深化。 总而言之,绝对性真理和相对性真理,从静态上看,即从它们的相互渗透上看,任何客 观真理既是绝对的,又是相对的;从动态上看,即从真理的发展上看,任何客观真理都是由 相对性真理向绝对性真理转化的一个环节, 又都表现为一个过程。 绝对性真理和相对性真理 不是两个真理,而是同一个真理的两种不同属性。在这个问题上,我们必须反对割裂两者辩证关系的绝对主义和相对主义
2023-08-12 23:39:031

《相对论》的基本内容是什么?

普通物理学1 一、伽利略相对性原理和经典力学时空观 惯性系:一个不受外力或外力合力为0的物体,保持静止或匀速直线运动不变,这样的参考系,叫惯性参考系,简称惯性系。 (新想法:如果认识到非贯性系力产生的原因,在进行物理实验时将此力(惯性力)一并计算,那么就与跳出非惯性系,在惯性系中实验得到一样的结论,就可以把非惯性系当成惯性系对待——这与广义相对论的相对性原理是类似的) 一切彼此作匀速直线运动的惯性系,对于描写机械运动的力学规律来说是完全等价的,在一个惯性系的“内部”所作的任何力学实验,都不能确定这一惯性系本身是在静止状态,还是在作匀速直线运动。这个原理叫力学相对性原理,或伽利略相对性原理。 牛顿说:“绝对的、真正的和数学的时间自己流逝着,并由于它的本性而均匀地、与任一外界对象无关地流逝着。”“绝对空间,就本性而言,与外界任何事物无关,而永是相同的和不动的。”(见牛顿著作《自然哲学的数学原理》) 二、狭义相对论的提出背景 在19世纪末,人们知道光速是有限的,在测量光速时发现,木星卫星发出的光,到达地球的时间是相同的,而不管地球是朝向卫星运动还是背向卫星运动。这不符合物体运动的速度叠加原理(A参照系相对于B参照系速度为v1,A上发出相对A速度为V2的物体,物体相对于B速度为V1+V2),而符合波的性质,因为当时已知的所有波都有介质,因此人们假设光也有介质,定名为“以太”,光在以太中稳定传播,所以与地球的运动无关。 由于地球并非宇宙中的特殊天体,以太应该对地球有相对运动,而著名的迈克耳孙(A.A.Michelson)和莫雷(E.W.Morley)实验证明了相对地球运动的以太不存在,也就是说,如果存在以太,以太就是对地球静止的,这里和一些人认为的证明了以太不存在,叙述上有一点点区别。 1905年,爱因斯坦提出两条假设: 1。相对性原理:物理学在一切惯性参考系中都具有相同的数学表达形式,也就是说,所有惯性系对于描述物理现象都是等价的。(够绝对的) 2。光速不变原理:在彼此相对作匀速直线运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。 1964年到1966年,欧洲核子中心(CERN)在质子同步加速器中作了有关光速的精密实验测量,直接验证了光速不变原理。实验结果是,在同步加速器中产生的一种介子(写法是派的0次方)以0.99975c的高速飞行,它在飞行中发生衰变,辐射出能量为6000000000eV的光子,测得光子的实验室速度仍是c。 三、狭义相对论时空观 狭义相对论为人们提出了一个不同于经典力学的时空观。按照经典力学,相对于一个惯性系来说,在不同的地点、同时发生的两个事件,相对于另一个与之作相对运动的惯性系来说,也是同时发生的。但相对论指出,同时性问题是相对的,不是绝对的。在某个惯性系中在不同地点同时发生的两个事件,到了另一个惯性系中,就不一定是同时的了。经典力学认为时空的量度不因惯性系的选择而变,也就是说,时空的量度是绝对的。相对论认为时空的量度也是相对的,不是绝对的,它们将因惯性系的选择而有所不同。所有这一切都是狭义相对论时空观的具体反映。 同时的相对性 现举一个假想实验,一列匀速运动的火车,车头和车尾分别装有两个标记A1、B1当他们分别与地面上的两个标记A、B重合时,各自发出一个闪光。在A、B的中点C和A1、B1的中点C1,各装一个接受器,C点将同时接收到两端的信号,而信号传递需要时间,在这段时间内火车向前运动了,所以C1先收到车头的信号,后收到车尾的信号。也就是说,不同的参照系没有认为两个事件都是同时发生的。“同时”有相对性。 四、洛伦兹坐标变换 洛伦兹公式是洛伦兹为弥补经典理论中所暴露的缺陷而建立起来的。洛伦兹是一位理论物理学家,是经典电子论的创始人。 坐标系K1(O1,X1,Y1,Z1)以速度V相对于坐标系K(O,X,Y,Z)作匀速直线运动;三对坐标分别平行,V沿X轴正方向,并设X轴与X1轴重合,且当T1=T=0时原点O1与O重合。设P为被“观察”的某一事件,在K系中观察者“看”来。它是在T时刻发生在(X,Y,Z)处的,而在K1系中的观察者看来,它是在T1时刻发生在(X1,Y1,Z1)处的。这样的两个坐标系间的变换,我们叫洛伦兹坐标变换。 在推导洛伦兹变换之前,作为一条公设,我们必须假设时间和空间都是均匀的,因此它们之间的变换关系必须是线性关系。如果方程式不是线性的,那么,对两个特定事件的空间间隔与时间间隔的测量结果就会与该间隔在坐标系中的位置与时间发生关系,从而破坏了时空的均匀性。例如,设X1与X的平方有关,即X1=AX^2,于是两个K1系中的距离和它们在K系中的坐标之间的关系将由X1a-X1b=A(Xa^2-Xb^2)表示。现在我们设K系中有一单位长度的棒,其端点落在Xa=2m和Xb=1m处,则X1a-X1b=3Am。这同一根棒,其端点在Xa=5m和Xb=4m处,则我们得到X1a-X1b=9Am。这样,对同一根棒的测量结果将随棒在空间的位置的不同而不同。为了不使我们的时空坐标系原点的选择与其他点相比较有某种物理上的特殊性,变换式必须是线性的。 先写出伽利略变换:X=X1+VT1; X1=X-VT 增加系数k,X=k(X1+VT1); X1=k1(X-VT) 根据狭义相对论的相对性原理,K和K1是等价的,上面两个等式的形式就应该相同(除正负号外),所以两式中的比例常数k和k1应该相等,即有k=k1。 这样, X1=k(X-VT) 为了获得确定的变换法则,必须求出常数k,根据光速不变原理,假设光信号在O与O1重合时(T=T1=0)就由重合点沿OX轴前进,那么任一瞬时T(由坐标系K1量度则是T1),光信号到达点的坐标对两个坐标系来说,分别是 X=CT; X1=CT1 XX1=k^2 (X-VT)(X1+VT1) C^2 TT1=k^2 TT1(C-V)(C+V) 由此得 k= 1/ (1-V^2/C^2)^(1/2) 于是 T1=(T-VX/C^2) / (1-V^2/C^2)^(1/2) T= (T1+VX/C^2)/ (1-V^2/C^2)^(1/2) 爱因斯坦假设: 1.物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竟是用两个在互相匀速移动着的坐标系中的哪一个并无关系。 2.任何光线在“静止的”坐标系中都是以确定的速度c运动着,不管这道光线是由静止的还是运动的物体发射出来的。”
2023-08-12 23:39:142

狭义相对性原理

第一个“如果第二个坐标系K"相对于K也在做匀速直线运动的话”就相当于两个运动的物体一样,把每个物体当作一个坐标第就行,即可以在每个物体上建立一个坐标系。“如果K是一个伽利略坐标系,则其他每一个相对于K"在做匀速直线运动的坐标系K"也是一个伽利略坐标系”在下也不懂“如果K"相对于K做匀速运动而没有旋转的坐标系”旋转也可以理解为物体的旋转,坐标系不是一个死的东西,它也是可以移动的,当然也就可以旋转了也。这只是本人的一点愚见
2023-08-12 23:39:241

力学相对性原理的原理

在一个惯性系的内部所作的任何经典力学实验,都不能确定这一惯性系本身是处于相对静止状态,还是匀速直线运动状态。换言之,经典力学定律在任何一个惯性系中数学形式不变。对于所有的惯性系,力学定律都是相同的,或者说,一切惯性系都是等价(平权)的,没有一个惯性系具有优越地位。
2023-08-12 23:39:311

狭义相对性原理的原理

如果S"是相对于惯性坐标系S作匀速直线运动且无转动的坐标系,那么,根据伽利略变换,S"也是惯性坐标系,自然现象相对于坐标系S"的演变将与惯性系S的演变一样依据同样的物理规律,这个陈述称为狭义相对性原理。换言之,一切物理规律在任何惯性系中具有相同的数学形式,由于这一原理是对力学相对性原理的推广,又称爱因斯坦相对性原理。狭义相对性原理(狭义协变性原理)还可以表述为:物理定律在任何惯性系中具有相同的数学形式,即洛伦兹变换对于除引力外的经典物理学定律具有协变性。爱因斯坦把伽利略相对性从力学领域推广到包括电磁学在内整个物理学领域,指出任何力学和电磁学实验现象都不能区分惯性系的绝对运动,包括相对静止或者匀速直线运动。该原理与光速不变原理是狭义相对论的两个基本公设。所有惯性系的空间都是各向同性的,空间中的任一点是不动的,空间中的一点通过不同的参照物描述可以不同(物体可以是惯性系)。狭义相对性原理指出,所有惯性系都是等价(平权)的。
2023-08-12 23:39:461

相对论的大纲是?

 相对论的大纲是 《相对论》是爱因斯坦所著的一部在世界科学理论界影响巨大的著作,主要包括狭义相对论和广义相对论原理的阐述,中文版本由周学政、徐有智编译,编译目录如下:  ·第一部分狭义相对论   1.几何命题的物理意义  2.坐标系  3.经典力学中的空间和时间  4.伽利略坐标系  5.狭义相对性原理  6.经典力学中所用到的速度相加原理  7.光的传播定律与相对性原理的表面抵触  8.物理学的时间观  9.同时性的相对性  10.距离概念的相对性  11.洛伦兹变换  12.量杆和时钟在运动时的行为  13.速度相加原理:斐索试验  14.相对论的启发作用  15.狭义相对论的普遍性结果  16.经验和狭义相对论  17.四维空间  ·第二部分广义相对论   1.狭义和广义相对性原理  2.引力场  3.引力场的思想试验  4.惯性质量和引力质量相等是广义相对性公设的一个论据  5.等效原理  6.经典力学的基础和狭义相对伦的基础在哪些方面不能令人满意  7.广义相对性原理的几个推论  8.在转动的参考物上的钟和量杆的行为  9.欧几里得和非欧几里得连续区域  10.高斯坐标  11.狭义相对论得时空连续区可以当作欧几里得连续区  12.广义相对论得时空连续区不是欧几里得连续区  13.广义相对论原理的严格表述  14.在广义相对性原理的基础上理解引力问题.  相对论是关于时空和引力的基本理论,主要由爱因斯坦(AlbertEinstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯系参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。  
2023-08-12 23:39:591