barriers / 阅读 / 详情

大学物理角动量问题 如图为什么角动量守恒?求详细说明~~~

2023-08-22 01:28:55
共2条回复
okok云

叫动量守恒的条件是:系统不受外力矩或者所受外力矩之和为零。对人和转盘组成的系统,外力矩为重力的和轴对圆盘的支持力,为一对平衡力,所以外力力矩之和为零。

因此符合动量守恒条件。

注:人和转盘之间的一对相互作用的摩擦力、一对相互作用的弹力(压力和支持力)为内力,无须分析。

用此定律须先分析守恒条件,找到外力矩,考察力矩之和是否为零。

马老四

设人相对于盘的匀角速度为ωr(逆时针为正),盘对地的角速度为ω"(顺时针为负),

系统(人和转盘)合外力矩为零,角动量(对地面)守恒:

0=(ωr-ω")J1-ω".J2 , 则 ω"=ωr.j1/(J1+J2)

匀角速度位移与加速度成正比

θ"/θr=ω"/ωr=J1/(J1+J2)

盘相对于地面转角

θ"=θr.J1/(J1+J2)=2π.mR^2/(mR^2+MR^2/2)=2π.m/(m+M/2) ,顺时针

人相对于地面转角

θ=θr-θ"=2π-2π.m/(m+M/2)=2π(1-m/(m+M/2) ,逆时针

相关推荐

什么是角动量守恒?

角动量守恒,又称角动量守恒定律 是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变. dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化. 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性.   根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.   此原理多用于天文学,天体运行时自转不变.   注解:   (1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 .这时,物体绕定轴作匀角速转动.   (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大.如芭蕾舞演员表演时就是这样.   (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例.因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变.
2023-08-13 00:36:141

角动量为什么守恒?

角动量守恒实际就是力矩相等,比如八大行星离太阳越远,行星线速度越慢;其实就是力臂越长,行星受力越小.再比如一根绳子绑一个石头兜圈,同样的力气,绳子越长,石头越慢;反之,石头越快.这都和力气守恒,也是角动量守恒.再比如普通自行车后车轮,空转时很难停下来,是因为车轮各点两边力矩都相等,互相制约产生的角动量守恒,而其它摩擦力、阻力都很小,所以很难停下来.也因此汽车车轮有的上面有配重找平衡,为的是力矩相等,为的是角动量守恒. 即行星角动量守恒,也就是和太阳自转产生的能量守恒,也就是行星的力矩和太阳自转能量,相符相成,或者说达到平衡,使行星永恒围绕太阳公转.
2023-08-13 00:36:241

什么是角动量守恒?

角动量守恒条件是合外力矩等于零。角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。角动量守恒的具体应用:用角动量守恒推算开普勒第二定律开普勒第二定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。行星在太阳的向心引力作用下绕日运动,所以行星受到的引力对太阳的力矩为零,那么角动量就华丽丽的守恒了,故有L=rpsinα=常数。由上述推导可之掠面速度A/t为常数,所以相同时间行星绕太阳扫过的面积相等。
2023-08-13 00:36:357

证明角动量守恒

http://translate.google.cn/translate?hl=zh-CN&sl=zh-TW&u=http://www.phy.ntnu.edu.tw/demolab/phpBB/viewtopic.php%3Ftopic%3D19083&sa=X&oi=translate&resnum=8&ct=result&prev=/search%3Fq%3D%25E8%25AF%2581%25E6%2598%258E%25E8%25A7%2592%25E5%258A%25A8%25E9%2587%258F%25E5%25AE%2588%25E6%2581%2592%26complete%3D1%26hl%3Dzh-CN%26newwindow%3D1%26client%3Daff-os-worldbrowser%26hs%3DZAx 这个给你希望有帮助
2023-08-13 00:37:234

刚体定轴转动角动量守恒定律原理

刚体定轴转动角动量守恒定律原理如下:定轴转动刚体的角动量守恒的条件是外力对刚体转轴的力矩之和为零。刚体定轴转动的角动量:刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。刚体定轴转动的角动量定理:(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。刚体定轴转动的角动量守恒定律:如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。注解(1)单个刚体对定轴的转动惯量保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量I应等于初始时刻的角动量Im。,亦即Im =I,因而@=@。这时,物体绕定轴作匀角速转动。(2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度@随转动惯量的改变而变,但两者之乘积I 却保持不变,因而当变大时,@变小;变小时,@变大。如芭蕾舞演员表演时就是这样。
2023-08-13 00:37:381

角动量守恒定律怎样推导的?

大学物理中角动量守恒定律的公式为:L = Iω其中,L表示角动量,I表示转动惯量,ω表示角速度。角动量是描述物体旋转运动的物理量,它的大小等于物体的转动惯量I与角速度ω的乘积,即角动量L=Iω。角动量的方向与角速度的方向相同,因此它是一个矢量量。当物体在没有外力作用下,它的角速度和转动惯量保持不变,此时称为角动量守恒。在这种情况下,如果物体的转动惯量发生改变,角速度则相应地发生改变,以保持角动量守恒。这种情况下,当物体由宽的一面旋转变为细的一面旋转时,角速度增大,而当物体由细的一面旋转变为宽的一面旋转时,角速度减小,以保证角动量守恒。学习大学物理角动量守恒公式,需要有以下几个步骤:1、学习物理基础知识。理解角动量的物理定义、角速度的概念和转动惯量的定义等基本概念。同时,需要掌握使用单位的规范,确保计算精度和准确性。2、学习角动量守恒定律的知识。掌握角动量守恒的物理原理和相关定律,深入了解角动量守恒的应用领域和实际意义。3、多做例题。进行大量的练习,从简单到复杂地解决各种相关的物理问题,例如计算质点系的角动量,利用角动量守恒定律进行周期性运动的分析等。4、认真思考,合理应用。在解决问题时,注意理解题意,分析问题的本质,运用角动量守恒定律解决问题。同时也要注意实际应用,掌握如何把角动量守恒定律应用到实际的物理问题中。5、寻求帮助。如果在学习中遇到困难,可以向老师或同学寻求帮助,或者查阅相关的学习资料和教材,加深自己的理解。
2023-08-13 00:38:011

什么是角动量?为什么角动量守恒?如何理解角动量守恒?

这个是物理上的,核物理上的一个知识点,用在核物理上天体。
2023-08-13 00:38:344

求大神解答这三种情况之间的机械能、动量、角动量守恒与不守恒的原理区别…谢谢!

第一种情况:绳子和重力只能提供竖直方向的力,其对O点的力矩为0,故子弹撞入沙袋前后,子弹和沙袋组成的系统对O点的角动量守恒,水平方向动量守恒;设子弹质量为m,沙袋质量为M,则子弹撞入前,动能为p^2/(2m), 撞入后总动能为p^2/[2(M+m)];而子弹撞入前后,系统总重力势能不变,故系统机械能不守恒(子弹射入沙袋,摩擦力做功产生内能)。 第二种情况:同上,系统角动量守恒。由于子弹射入杆,摩擦力做功产生内能,故机械能不守恒。至于水平方向动量,可将杆分离出来进行研究:以杆为研究对象,杆受到撞击一般在O点会有运动倾向,导致其在O点会产生作用力与反作用力(除“打击中心”虎口不受力外,子弹打在其他位置都会在O点产生水平方向效果的反作用力),故杆和子弹组成的系统一般情况由于会受到O点拥有水平方向效果的力,而动量不守恒。 第三种情况,物体在做圆周运动,动量方向不断发生改变,故动量不守恒。由于重力和绳的拉力的合力即为向心力,此力位于水平方向,且时刻指向O点,故此物关于O点的角动量守恒。除此之外,由于没有其他能量转化,系统机械能也是守恒的。
2023-08-13 00:39:271

陀螺角动量守恒原理

事实上,陀螺并非角动量守恒,当陀螺自转角速度方向和竖直方向有一定夹角的时候,很显然,重力对陀螺和地面的接触点的力矩不为0,因此陀螺角动量不会守恒,在这个力矩的作用下,如果陀螺还有一定的初始角速度,陀螺的角动量矢量将会绕着过地面接触点的竖直轴转动。 扩展资料   角动量这个时候大小不变方向在改变,因此也就存在一个变化率,如果陀螺所收到的力矩刚好等于这个变化率,陀螺在理想状态下就会稳定转动。进动的角速度也可以按照这个思路来计算,表达式为Ω=M/(Lsinθ),M是重力产生的力矩,L是陀螺自转的角动量,θ是与竖直方向偏角。
2023-08-13 00:39:341

飞机、轮船上的导航仪利用了哪一力学原理?

飞机轮船上的导航仪利用了哪一力学原理?飞机轮船上的导航仪利用了,磁场的力学原理来制造
2023-08-13 00:39:532

法拉第定律的意义是什么?角动量守恒定律的条件是什么?

最主要的意义就是对于科技的发展以及电能的使用和电工技术,电子技术,电磁测量等方面都会带来非常积极的意义,有助于整体的科技发展和进步;条件就是合外力矩等于0。
2023-08-13 00:40:024

太空转身原理是什么?

力的作用是相互的
2023-08-13 00:41:025

角动量守恒最新进展

角动量守恒定律编辑角动量守恒 即 角动量守恒定律 。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。目录1原理简介▪ 名称▪ 简介2详细内容▪ 概述▪ 定理1原理简介编辑名称角动量守恒定律(law of conservation of angular momentum)[1]简介物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。角动量守恒定律如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。2详细内容编辑概述反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点角动量原理图(或轴)运动的普遍规律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律[2]之一的开普勒第二定律。一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。定理也称动量矩定理。表述角动量与力矩之间关系的定理。对于质点,角动量定理可表述为:质点对固定点的角动量对时间角动量定理的微商,等于作用于该质点上的力对该点的力矩。对于质点系,由于其内各质点间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零。利用内力的这一特性,即可导出质点系的角动量定理:质点系对任一固定点O的角动量对时间的微商等于作用于该质点系的诸外力对O点的力矩的矢量和。由此可见,描述质点系整体转动特性的角动量只与作用于质点系的外力有关,内力不能改变质点系的整体转动情况。
2023-08-13 00:41:181

自行车走不起不倒,什么原理,来个简单明了答案,复杂看不懂?

车上装了陀螺仪!
2023-08-13 00:41:282

求高人科普,角动量守恒定律应用于舰只吗,比如说在航母上有应用吗

在航母的内部有大型转动的轴承 所以大型舰只才不怕风浪。。 我想强调一点请你不要诋毁芒果台,它真的很不错,,在获得开心的同时又能学到很多东西。。谢谢
2023-08-13 00:41:492

请问一下第6题怎么做啊?学过了刚体转动但是还是没有思路啊

既然你提到了刚体,就知道你应该是在说大学物理了,而刚体的定轴转动是刚体的最简单的运动,相当于质点的直线运动,都是比较简单的,而求解力学问题有四条线,建立坐标系求解运动微分方程,利用牛顿动力学方程解题,利用三大守恒原理(动量,角动量,能量守恒)解题,利用分析力学拉格朗日方程(或者哈密顿正则方程)解题,下面就谈一下对于求解质点和刚体运动问题的经验对于单个质点的问题,首先分析受力情况,这里就有点区别,如果质点受有心力作用,那就是死套路了,三大守恒定律加轨道方程一定能求解,实在是没思路还可以从比耐公式出发(即从运动微分方程出发)进行推导,如果不是受有心力作用,还是首先考虑三大守恒定律,因为三大守恒所列的方程都是对时间的一阶微分方程,求解比较方便,一般方程列出结果也就一目了然了,但是也有缺点,由于是求解一阶微分方程,就无法利用三大守恒定律求出质点所受的约束反作用力,如果题中需要求解到约束反作用力如(张力,支持力等)就需要用到牛顿动力学方程结合运动微分方程求解,计算繁琐,但只要顺着思路是可以求出所有待求约束反力的,当然三大守恒定律所能求解出的速度等量也可以求出的(牛顿力学认为改变物体运动的原因只有力,因此牛顿力学处理约束的方法就是把约束去掉,代之以约束反作用力,而分析力学观点认为改变物体运动的原因是力和约束,因此还要单独考虑约束方程。)对于质点组(刚体),其实出发点完全一样,首先都要考虑三大守恒定律,特别是刚体,因为刚体的运动通常存在转动,所以首先就应该想到角动量守恒,当然,刚体转动如果仅仅是定轴转动的话基本上角动量守恒就可以解决,然而真正的刚体运动一般是平面运动或者是定点转动,所以其它守恒定律都应同时考虑,缺点同样是无法求约束反力,对于纯运动学问题还可以考虑基点法和瞬心法求刚体上某一点加速度和速度,同样一切三大守恒定律能求解出来的两都可以利用牛顿动力学方程求解,并且运动牛顿动力学方程还可以求解约束反力,缺点同样是计算要求高最后说一下一直没提到的分析力学,这是另一类求解力学问题的方法,运用该方法在做受力分析是还需做约束分析,判断系统自由度,选取独立广义坐标,利用拉格朗日方程或者哈密顿正则方程求解,理论上一切可以利用牛顿力学求解的力学问题都可以利用分析力学求解,可以说分析力学可以脱离作图直接求解,但是对数学的要求是最高的这就是我的观点,有兴趣可以留言交流~~
2023-08-13 00:41:571

关于守恒原理的问题

对称性原理即诺特定理。诺特定理把对称性跟守恒量联系起来了,非常有用。是指对于力学体系的每一个连续的对称变换,都有一个守恒量与之对应。对称变换是力学体系在某种变换下不变。 常见的例子有动量、能量、角动量守恒跟相应的时空均匀性的关系: 空间均匀性与动量守恒:空间是均匀的,也就是地球上的物理定律跟月球上的物理定律是一样的,物理定律在空间平移(不如从地球移到月亮上)变换下是不变的,由诺特定理可以得到存在这么一个守恒量,即动量。 空间各项同性与角动量守恒:空间是各项同性的,也就是空间没有一个特殊的方向,我们任意取坐标轴的方向,虽然物理量的数值在各个坐标系当中可能是不一样的,但物理定律所对于的方程是不变的,比如牛顿运动定律F=ma(矢量形式)在空间旋转变换下是不变的,我们把坐标轴旋转,虽然矢量的各个分量变了,但总的方程F=ma(矢量形式)是不变的,这样,在牛顿力学当中,就存在着一个跟空间各向同性相对应的守恒量--角动量。 时间均匀性跟能量守恒:同样,由时间均匀性,也就是过去、现在、未来物理定律是一样的,由诺特定理可以得出存在这么一个守恒量--能量。 一般诺特定理的证明都是在拉格朗日形式下来证明的,也就是假定我们所发现的力学体系的拉格朗日描述是正确的。
2023-08-13 00:42:051

腕力球工作原理

腕力球工作原理如下:腕力球是目前世界上最快的人工动力装置,纯机械,不用电池和任何电源,没有电磁辐射,靠手腕的转动带动球芯高速旋转,进而产生强大的力量。腕力球是腕力健身球的简称,它运用了陀螺仪和角动量守恒的原理,在惯性定律和角动量作用下持续旋转并产生强大的力量,使手腕、手臂处于自主运动状态。通过人为控制,可以任意调节球芯旋转的节奏和速度,速度越快则产生的力量越大,可相当于50种不同重量的哑铃,8000转/分钟时大约有14kg力量,10000转大约有22kg力量。由于它的高速旋转所产生的强大力量,对锻炼手指、手腕、手臂的力量和韧性非常具有帮助,并集运动、娱乐、健身于一体,越来越受到全世界人们的青睐和喜爱。腕力球的基本功能:增强手指、手腕、手臂的力量(握力、腕力、臂力),增强手指、手腕、手臂等部位的韧性,左右手轮换运动可增进左右脑均衡,使手指、手腕、手臂等更加灵活,同时可促进血液循环,舒筋活络,缓解不适,消除疲劳,增进健康。
2023-08-13 00:42:141

谁能简单解释一下角动量守恒 不要复制 要易懂

角动量守恒一般用在天体运动或原子物理中,其来源似乎是开普勒第二定律(面积定律)即极短相同时间内扫过面积相同。VLsina为定值。在合力距为0时守恒,L=mvrsina.r是距参考点的距离(参考点任意)a是速度与r的夹角,可理解为动量力矩。
2023-08-13 00:43:242

怎么理解角动量

看单位自己想嘛,kg×m×m/s,意思就是质量乘距离乘速度呗。1千克的东西在距离旋转中心1米的位置运动速度是1米每秒时,角动量就是1这个单位。
2023-08-13 00:43:353

芭蕾舞演员在在旋转时为了增高转速应该怎么做?物理原理是什么?

先把身体张开,旋转中把手脚缩回来;物理原理是根据动量矩守恒原理,四肢张开,让身体的转动惯量增大,同样的转速可以获得更大的动量矩,手脚缩回,身体转动惯量减小,转速则增大
2023-08-13 00:43:582

关于大学物理中,角动量守恒问题

力矩是初中就学的,大学了反而不会了?
2023-08-13 00:44:072

日常生活中还有什么现象满足角动量守恒定律

角动量守恒,又称角动量守恒定律 是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变。 dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化。 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性。根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.此原理多用于天文学,天体运行时自转不变.注解:(1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 。这时,物体绕定轴作匀角速转动。 (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大。如芭蕾舞演员表演时就是这样。 (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。
2023-08-13 00:44:151

大学物理,动量守恒定律

动量守恒定律 锁定本词条由“科普中国”百科科学词条编写与应用工作项目 审核 。动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。最初它们是牛顿定律的推论, 但后来发现它们的适用范围远远广于牛顿定律,是比牛顿定律更基础的物理规律, 是时空性质的反映。其中,动量守恒定律由空间平移不变性推出,能量守恒定律由时间平移不变性推出,而角动量守恒定律则由空间的旋转对称性推出。定律说明一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律。1.动量守恒定律是自然界中最重要最普遍的守恒定律之一,是一个实验规律,也可用牛顿第三定律结合动量定理推导出来。2.相互间有作用力的物体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统。[1] 定律特点矢量性动量是矢量。动量守恒定律的方程是一个矢量方程。通常规定正方向后,能确定方向的物理量一律将方向表示为“+”或“-”,物理量中只代入大小:不能确定方向的物理量可以用字母表示,若计算结果为“+”,则说明其方向与规定的正方向相同,若计算结果为“-”,则说明其方向与规定的正方向相反。瞬时性动量是一个瞬时量,动量守恒定律指的是系统任一瞬间的动量和恒定。因此,列出的动量守恒定律表达式m1v1+m2v2+…=m1v1ˊ+m2v2ˊ+…,其中v1,v2…都是作用前同一时刻的瞬时速度,v1ˊ,v2ˊ都是作用后同一时刻的瞬时速度。只要系统满足动量守恒定律的条件,在相互作用过程的任何一个瞬间,系统的总动量都守恒。在具体问题中,可根据任何两个瞬间系统内各物体的动量,列出动量守恒表达式。相对性物体的动量与参考系的选择有关。通常,取地面为参考系,因此,作用前后的速度都必须相对于地面。普适性它不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。适用性适用范围动量守恒定律是自然界最普遍、最基本的规律之一。不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。小到微观粒子,大到宇宙天体,无论内力是什么性质的力,只要满足守恒条件,动量守恒定律总是适用的。适用条件1.系统不受外力或者所受合外力为零;2.系统所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统的动量可看成近似守恒;3.系统总的来看不符合以上条件的任意一条,则系统的总动量不守恒。但是若系统在某一方向上符合以上条件的任意一条,则系统在该方向上动量守恒。[2] 注意:(1)区分内力和外力碰撞时两个物体之间一定有相互作用力,属于一个系统的两个物体之间的力叫做内力;系统以外的物体施加的力,叫做外力。(2)在总动量一定的情况下,每个物体的动量可以发生很大变化例如:静止的两辆小车用细线相连,中间有一个压缩的弹簧。烧断细线后,由于相互作用力的作用,两辆小车分别向左右运动,它们都获得了动量,但动量的矢量和为零。(3)动量与动能定理的区别动量定理:p=反映了力对时间的累积效应,是力在时间上的积累。为矢量方程式,既有大小又有方向。动能定理:反映了力对空间的累积效应,是力在空间上的积累。为标量方程式,只有大小没有方向。数学表达式(1)p=p′即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量。(2)Δp=0即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:(等式两边均为矢量和)。(3)Δp1=-Δp2即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变。[1] 数学推导两球碰撞示意图以两球碰撞为例:光滑水平面上有两个质量分别是m1和m2的小球,分别以速度v1和v2(v1>v2)做匀速直线运动。当m1追上m2时,两小球发生碰撞,设碰后二者的速度分别为v1ˊ,v2ˊ。设水平向右为正方向,它们在发生相互作用(碰撞)前的总动量:p=p1+p2=m1v1+m2v2,在发生相互作用后两球的总动量:pˊ=p1ˊ+p2ˊ=m1v1ˊ+m2v2ˊ。设碰撞过程中两球相互作用力分别是F1和F2,力的作用时间是。根据牛顿第二定律,碰撞过程中两球的加速度分别为:根据牛顿第三定律,大小相等,方向相反,即:F1=-F2所以:m1a1=-m2a2碰撞时两球之间力的作用时间很短,用表示,这样加速度与碰撞前后速度的关系就是:,代入上式,整理后可得:或写成:即:这表明两球碰撞前后系统的总动量是相等的。[2] 实验验证稳定的重核吸收中子后处于不稳定状态,其中的中子会转变成为质子同时放出一个β粒子,这种现象称为β衰变。在历史上,对β衰变机理的探索导致了中微子的发现。当时,一个难以回答的问题是:β衰变过程中所产生的电子从何而来。人们已确认原子核里面不可能存在电子,因此只能认为β衰变所放出的电子是临时产生的,即一个核内中子放出一个电子并转变为一个质子。但进一步的分析表明,这种想法存在着严重的缺陷,因为它明显地违反了能量守恒定律、角动量守恒定律和动量守恒定律。一般而言,放射性原子核所发射出的粒子都要带走大量的能量,由E=mc2知,这是由于原子核有一小部分质量转换成了能量。换句话说,在发射粒子的过程中,原子核总是会损失一小部分质量。但令人困惑不解的是,通常在β衰变过程中发射出的β粒子(电子)所携带的能量不够大,并不与粒子所损失的质量相适应,而且并不是所有的电子的能量都一样,发射出的电子的能量有一个很宽的范围——即有一个很宽的能谱,其中最大的能量(只有少数电子具有这样大的能量)才等于放射过程中母核与子核的能量差(即蜕变能)。对于β衰变过程中的绝大数电子来说,其能量并不等于这一最大能量。这也就是说,在前面所设想的β衰变过程不能使得反应前后能量守恒。“失踪”了的能量跑到哪儿去了呢?尽管人们曾提出了一些可能的解释方案,但是这些设想又为进一步的实验所否定。因此,人们不得不承认前面设想的β衰变过程不符合实际。为了解决上述矛盾,验证能量守恒定律,奥地利物理学家泡利(1900—1958)在1930年提出了一个大胆的设想:如果认为在β衰变过程中还伴随着一种未被查觉的未知粒子的话,那么上面所列举的矛盾都可立即获得解决。亦就是说,如果β衰变遵守能量守恒定律的话,那么在衰变过程中应当还有一种质量极小又不带电荷的粒子存在,泡利是在1930年12月给迈特纳和盖革的信中首先提出这个假设的。泡利的假设提出后不久,1933年费米就在此基础上提出了β衰变理论,并把泡利预言的这样一种不带电的、质量极小的粒子命名为:“中微子”(即中性的小家伙),以区别中子,并用n表示.他认为根据中微子假设,β衰变实际上是中子转变为质子、电子和中微子的过程。后来人们知道,费米所说的中微子其实是“反中微子”。中微子的假设非常成功,但是要观察它的存在却非常困难,由于它质量既小又不带电荷,与其它粒子间的相互作用非常弱,因而它总是顽固地不愿意表露自己。(据说平均地讲,一个中微子要穿透1000光年厚的固体铁“板”才与其它粒子发生相互作用,因此它可以毫不费力地穿过地球而不发生变化。这一性能已被人们用来研究穿透地球的“中微子通讯”的可能性。)显然,中微子的这种个性使得确认它的存在成了一件极困难的事情。1953年,美国洛斯阿拉莫斯科学实验室的物理学爱莱因斯和柯万领导的物理学小组着手进行这种几乎不可能成功的探测。他们在美国原子能委员会所属的佐治亚洲萨凡纳河的一个大裂变反应堆进行探测。终于到1956年,也就是泡利提出这种粒子假设整整四分之一世纪以后,探测到反中微子,1962年又发现了另一种反中微子,中微子的发现说明,能量守恒定律在微观领域里也是完全适用的。[3] 碰撞守恒碰撞是指物体间相互作用时间极短,而相互作用力很大的现象。在碰撞过程中,系统内物体相互作用的内力一般远大于外力,故碰撞中的动量守恒,按碰撞前后物体的动量是否在一条直线区分,有正碰和斜碰。中学物理一般只研究正碰。按碰撞过程中动能的损失情况区分,碰撞可分为三种:弹性碰撞弹性碰撞前后系统的总动能不变,对两个物体组成的系统的正碰情况满足:;(动量守恒);(动能守恒)两式联立可得:;当时,;,此时:若,这时;,碰后实现了动量和动能的全部交换。若,这时;,碰后的速度几乎未变,仍按照原方向运动,质量小的物体以两倍的速度向前运动。若,这时;,碰后按原来的速度弹回,几乎不动。非弹性碰撞非弹性碰撞,碰撞的动能介于前两者碰撞之间。[1] 碰撞中动能不守恒,只满足动量守恒,两物体的碰撞一般都是非弹性碰撞。完全非弹碰撞完全非弹性碰撞,该碰撞中动能的损失最大,对两个物体组成的系统满足:爆炸与碰撞的比较:(1)爆炸,碰撞类问题的共同特点是物体的相互作用突然发生,相互作用的力为变力,作用时间很短,作用力很大,且远大于系统所受的外力,故可用动量守恒定律处理。(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能在爆炸后可能增加;在碰撞过程中,系统总动能不可能增加,一般有所减少转化为内能。(3)由于爆炸,碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理,即作用后还从作用前的瞬间的位置以新的动量开始运动。反冲系统在内力作用下,当一部分向某一方向的动量发生变化时,剩余部分沿相反方向的动量发生同样大小变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.若系统由两部分组成,且相互作用前总动量为零。一般为物体分离则有, M是火箭箭体质量,m是燃气改变量。喷气式飞机和火箭的飞行应用了反冲的原理,它们都是靠喷出气流的反冲作用而获得巨大速度的。现代的喷气式飞机,靠连续不断地向后喷出气体,飞行速度能够超过l000m/s。质量为m的人在远离任何星体的太空中,与他旁边的飞船相对静止。由于没有力的作用,他与飞船总保持相对静止的状态。根据动量守恒定律,火箭原来的动量为零,喷气后火箭与燃气的总动量仍然应该是零,即mΔv+Δmu=0 解出Δv= -Δmμ/m(1)(1)式表明,火箭喷出的燃气的速度越大、火箭喷出物质的质量与火箭本身质量之比越大,火箭获得的速度越大。火箭喷气的速度在2000~4000 m/s已很难再大幅度提高,因此要在减轻火箭本身质量上面下功夫。火箭起飞时的质量与火箭除燃料外的箭体质量之比叫做火箭的质量比,这个参数一般小于10,否则火箭结构的强度就成了问题。但是,这样的火箭还是达不到发射人造地球卫星的7.9 km/s的速度。为了解决这个问题,苏联科学家齐奥尔科夫斯基提出了多级火箭的概念。把火箭一级一级地接在一起,第一级燃料用完之后就把箭体抛弃,减轻负担,然后第二级开始工作,这样一级一级地连起来,理论上火箭的速度可以提得很高。但是实际应用中一般不会超过四级,因为级数太多时,连接机构和控制机构的质量会增加得很多,工作的可靠性也会降低。定律影响一个质点系的内力不能改变质心的运动状态。这个讨论包含三层含义:(1)若一个质点系的质点原来是不动的,那么在无外力作用的条件下,这个质心的位置不变。(2)若一个质点系的质心原来是运动的,那么在无外力作用的条件下,这个质点系的质心将以原来的速度做匀速直线运动。(3)若一个质点在某一外力作用下做某种运动,那么内力不改变质心的这种运动,比如原某以物体做抛体运动时,突然炸成两块,那么这两块物体的质心仍然继续做原来的抛体运动。系统内力只改变系统内各物体的运动状态,不能改变整个系统的运动状态,只有外力才能改变整个系统的运动状态,所以,系统不受或所受外力为0时,系统总动量保持不变动量守恒定律是空间平移不变性的表现。在狭义相对论中,动量和能量结合在一起成为动量-能量四维矢量,动量守恒定律也与能量守恒定律一起结合为四维动量守恒定律。
2023-08-13 00:44:421

刚学角动量,问个关于角动量守恒的问题

你把简单问题复杂化,然后又考虑不全面,出现自相矛盾。角动量的守恒条件,就是合外力矩等于零。其中一种特例就是行星类,叫做有心力,对应力矩等于零,角动量守恒。按照你的分析,你只考虑到r的大小变化,会导致角动量大小变化,这个没错,但是r的方向也在变,也会导致角动量变化,两个因素累加,就会保证角动量不变。但是明显被搞复杂了。
2023-08-13 00:44:551

三大守恒定律的内容是什么?

能量守恒定律——时间平移不变性动量守恒定律——空间平移不变性角动量守恒定律——空间各向同性三大守恒定律:能量守恒定律(包括机械能守恒定律)、动量守恒定律和角动量守恒定律。机械能守恒 动能和势能的总量守恒而能量守恒包括了所有的能量 包括热能等所以能量守恒的范围比机械能守恒的范围更加大机械能是能量的一种形式的表现,机械能守恒也就是能量守恒的一种表现形式.能量守恒的使用范围比机械能守恒的使用范围大,但有时解决具体问题是使用具体的机械能可能表达比较简单.如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。做一个类比可能比较好:动量守恒应该还是挺清楚的吧? 那么对于一个系统如果没有合外力的话 就动量守恒了。那么对于一个系统如果没有合力矩的话 就角动量守恒了。角动量守恒就是在转动中的"动量守恒",对于星云收缩的话,个人认为是不能单靠角动量守恒来解释的。(不过对于星云来说,万有引力对于他们的力矩是零,所以角动量守恒。)
2023-08-13 00:45:1815

关于角动量守恒

某个方向的角动量应该是对于某个转轴来说的,所以该问题中竖直方向角动量守恒,考虑竖直方向角动量时,r应该取大小应该是到转轴的距离。向下的速度是由于下落过程中重力做功,有外力参与的过程中,角动量是不一定守恒的。而水平速度方向上仍然是守恒的,此时角动量沿竖直方向。
2023-08-13 00:46:241

高一物理竞赛,关于角动量守恒的一点不解。请乱讲的不要入了。感谢解答。

1. 角速度和速度一样是跟参考系的选取有关系的,所以选地面固定点为参考点的话D、C的角速度是不一样的,而在与B平动的参考系来看D、C的角速度是相等的。而角动量守恒和动量守恒定律类似,虽然在不同惯性系具体数值不同但在惯性系都成立的。所以你需要去验证的是角动量的定量关系而不是角速度的。2. 在角动量守恒定律里,角速度不是一个关键的概念,关键是理解角动量。所以以
2023-08-13 00:46:364

什么宇宙守恒定律?

质量能量守恒定律动量守恒定律电荷守恒定律
2023-08-13 00:46:472

王亚平的心肌实验的原理

实验一:太空细胞——空间站实验展示 细胞在失重环境下生长得好吗?当然好!正如航天员王亚平在课堂上所说,细胞在太空中很神奇,甚至能看到它在跳动。在此次太空授课中,航天员叶光富为大家展示了太空中细胞的神奇变化。记者在现场看到,心肌细胞在荧光显微镜下闪闪发光,还做起了收缩运动。太空授课科普专家组成员、北京交通大学物理国家级实验教学示范中心副教授陈征解释说,这是微重力环境下活的心肌细胞因为生物电脉冲而产生的明暗闪烁。实验二:太空转身——角动量守恒原理 究竟怎样完成太空转身?航天员叶光富漂浮着尝试了吹气、游泳等方法后均无果,但当他右手不断地划着圈并且越划越快时,他在太空成功转身。“叶光富的太空转身体现的是角动量守恒原理。”陈征解释说,空间站处于微重力环境,人人身轻如燕,但同时也失去了地面摩擦力提供的向前的动力,因此人不但不会比在地面上走路更轻松,反而会寸步难行。他解释道,太空转身实验的核心关键词叫做角动量。角动量是描述物体转动的物理量。这个试验所展现的是在微重力的环境中,航天员在不接触空间站的情况下,类似于理想状态下验证“没有外力矩,物体会处于角动量守恒”。航天员上半身向左转动时,按照角动量守衡的原则,下半身就会向右转。讲课中,航天员就是通过右手划圈实现转身。实验三:浮力消失——浮力与重力伴生 乒乓球在太空里会浮在水面上吗?王亚平在“天宫课堂”上,将乒乓球放在盛有水的杯子中,轻轻用吸管一压,失重环境下,会发生什么有趣的事情?只见乒乓球停留在了水中,不能浮起来。乒乓球在微重力环境下“浮力消失”,陈征说,微重力条件下,液体内部压强处处相等,因而也就不再有上下表面压强差而产生的浮力。“重力和浮力相伴而生,正是地球上的重力使得乒乓球能够浮于水面。”实验四:水膜张力——液体表面张力 在翟志刚、叶光富的辅助下,航天员王亚平把一个金属圈插入饮用水袋中,慢慢抽出金属圈,形成了一个水膜。接着,她往水膜表面贴上一片和女儿一起完成的花朵折纸。在水膜试验中,这朵花在太空中“绽放”。“在微重力环境下,表面张力很大的水也能够延展成水膜而不像地面上不要加入表面活性剂,贴在水膜上的花朵也因为表面张力而展开。”陈征说。那么什么是液体表面张力?清华大学航天学院副教授王兆魁曾介绍,受到内部分子的吸引,液体表面分子有被拉入内部的趋势,导致表面就像一张绷紧的橡皮膜,这种促使液体表面收缩的绷紧的力,就是表面张力。实验五:水球光学——同样是液体表面张力 王亚平接着用饮水袋往水膜上注水,利用液体表面张力,水膜很快变成一个亮晶晶的大水球。叶光富立即向水球内注入空气,水球内形成一个球形气泡。神奇的事情发生了,水球产生了双重成像,中间和外部一个是正像一个是倒像。这是为什么呢?陈征解释道,重力影响极小时,水在表面张力作用下形成近乎完美的球形,可以像凸透镜那样成像。在加入气泡后,悬在水球中的气泡又把水球分成了中心和周围两部分,中心部分变成两个凹透镜的组合而成一个正立虚像,周围部分仍是凸透镜形成倒立实像。实验六:泡腾片实验——浮力消失 泡腾片遇到水之后会产生很多气泡,那么在太空,泡腾片与水球相遇会发生什么变化?在今天的“天宫课堂”第一课上,太空教师王亚平就做了这样一个实验。只见泡腾片在水球里不断冒泡,但在失重环境下,气泡虽然不断产生,但并没有离开水球。而随着气泡不断增多,水球逐渐变成了一个充满欢乐的“气泡球”,而且产生了阵阵香气。
2023-08-13 00:46:541

什么是动量矩守恒原理?如何适用于猫的翻身?

动量守恒定理  1。内容:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律.ue004  说明:  (1)动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第三定律和动量定理推导出来;  (2)动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。最初它们是牛顿定律的推论,但后来发现它们的适用范围远远广于牛顿定律,是比牛顿定律更基础的物理规律,是时空性质的反映。其中,动量守恒定律由空间平移不变性推出,能量守恒定律由时间平移不变性推出,而角动量守恒定律则由空间的旋转对称性推出;  (3)相互间有作用力的物体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统.  2.动量守恒定律的适用条件:系统不受外力或系统所受外力的合力为零,或内力远大于外力.ue004  注意:(1)区分内力和外力  碰撞时两个物体之间一定有相互作用力,由于这两个物体是属于同一个系统的,它们之间的力叫做内力;系统以外的物体施加的,叫做外力。  (2)在总动量一定的情况下,每个物体的动量可以发生很大变化  3.动量守恒的数学表述形式:ue004  (1)p=p′.  即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量;ue004  (2)Δp=0.  即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:  m1v1+m2v2=m1v1′+m2v2′(等式两边均为矢量和);  (3)Δp1=-Δp2.  ue004即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变.ue004  3.动量定理与动能定理的区别:  动量定理Ft=mv2-mv1反映了力对时间的累积效应,是力在时间上的积分。  动能定理Fs=1/2mv^2-1/2mv0^2反映了力对空间的累积效应,是力在空间上的积分。[编辑本段]动量守恒定律的本质  系统内力只改变系统内各物体的运动状态,不能改变整个系统的运动状态,只有外力才能改变整个系统的运动状态,所以,系统不受或所受外力为0时,系统总动量保持不变.
2023-08-13 00:47:031

钟摆对转动轴角动量守恒吗?

钟摆对转动轴角动量守恒。因为钟摆总是围绕着一个中心值在一定范围内作有规律的摆动,所以被冠名为钟摆理论,由此得知摆钟的工作原理即是角动量守恒定律。角动量守恒是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。
2023-08-13 00:47:101

遥控直升机飞行原理

玩具直升飞机起飞,就是能飞起来主要是靠主螺旋桨旋转,对空气施加向下的压力,然后靠着反冲力上升的。至于那个压力产生的原理,则关系到流体力学。说白了也很简单,因为螺旋桨叶片有一个倾斜的角度,旋转的时候带动空气运动,导致上下的气流速度不一样,从而产生压差。这和吊扇差不多,你可以试试,吊扇转着的时候,如果你在钓钩上用个弹簧测力计的话,可以明显地看到吊扇转着的时候要“轻”一些。【言归正传】直升飞机向前飞的原因是主螺旋翼和副螺旋翼不平行,副螺旋翼前倾,导致它旋转的时候会向后施加一个力道,这个力使得飞机向前飞。你可以检查一下两副螺旋翼的情况,副螺旋翼上有调节杆平衡杆,你自己弄一下,让飞机在断电的时候两副螺旋翼是平行的就可以了。在空中打转,主要是主螺旋翼和副螺旋翼转动频率不一致,可以说是步调不协调,遥控器上有微调,这点说明书上应该有操作方法啊。至于原理,其实就是角动量守恒,主螺旋翼和副螺旋翼步调不一致的话,它们产生的角动量mvr不为零,这个时候,就需要直升飞机主体旋转来平衡这个角动量,使得飞机的角动量和为零。调节主副螺旋翼步调一致,就是要使它们产生的角动量抵消,只要这个角动量抵消了,飞机主体就不转了。你可以先控制飞机低空盘旋,慢慢微调,使飞机主体不转了之后再向高空起飞。。。唉,关键是现在便宜的飞机都没有“记忆”模块,当你降落之后重新起飞的时候,免不了又要微调一次。。。
2023-08-13 00:47:191

角动量守恒

角动量守恒,又称角动量守恒定律 是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变。 dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化。 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性。  根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.  此原理多用于天文学,天体运行时自转不变.  注解:  (1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 。这时,物体绕定轴作匀角速转动。   (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大。如芭蕾舞演员表演时就是这样。   (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。以上回答你满意么?
2023-08-13 00:47:461

角动量守恒转台实验原理

角动量守恒转台的实验原理为绕定轴转动的刚体,当对转轴的合外力矩为零时,刚体对转轴的角动量守恒,此为刚体的角动量守恒定律。根据角动量定理,内力不影响系统的总角动量,因此只要外力矩为零,则系统的角动量守恒。若物体为刚体,则表现为物体绕轴具有恒定的转速。若物体是非刚体,则体系的转速与其转动惯量成反比。地球受到的来自于月球和太阳的引力经过其质心,如果不考虑潮汐力的作用,这些力的力矩为零,因此地球的自转角动量守恒,由于地球近似是一个刚体,因此表现为地球具有恒定的自转角速度。同样,地球受到太阳的引力是有心力,故它绕太阳的公转运动也满足角动量守恒的条件,这就是开普勒第二定律:地球的矢径在相等的时间内扫过的面积相等。不过地球的轨道不是圆轨道,故公转角速度不是恒定的。芭蕾舞表演者脚下受力的力矩如果足够小,她的角动量是守恒的,在她张开手臂时,转速就减小,而收拢手臂则转速增加。跳水运动员在空中飞翔过程中只受重力作用,作用点正好是人体的转动中心,因此力矩为零,故角动量守恒。若他想在空中多翻几次筋斗,则必须在这有限的时间内,尽可能提高翻转角速度,因此他必须尽可能的缩成一团以减小自身转动惯量;而入水时又要尽可能竖直向下,减小摇摆,因此就伸直全身,将转速降到最低。
2023-08-13 00:48:091

角动量守恒原理,详细的浅显易懂的,不要教科书式的回答。

角动量守恒实际就是力矩相等,比如八大行星离太阳越远,行星线速度越慢;其实就是力臂越长,行星受力越小。再比如一根绳子绑一个石头兜圈,同样的力气,绳子越长,石头越慢;反之,石头越快。这都和力气守恒,也是角动量守恒。再比如普通自行车后车轮,空转时很难停下来,是因为车轮各点两边力矩都相等,互相制约产生的角动量守恒,而其它摩擦力、阻力都很小,所以很难停下来。也因此汽车车轮有的上面有配重找平衡,为的是力矩相等,为的是角动量守恒。即行星角动量守恒,也就是和太阳自转产生的能量守恒,也就是行星的力矩和太阳自转能量,相符相成,或者说达到平衡,使行星永恒围绕太阳公转。
2023-08-13 00:48:331

为什么跳水运动员在跳水过程中角动量守恒?

运动员起跳后,围绕着质心转动,因重力通过质心轴,故其角动量L=Jω守恒。运动员在空中翻转过程中,因动作的变化导致四肢末端到质心距离的改变,使得运动员对质心的转动惯量J随之变化,因此其角速度随之变化。据L=Jω,运动员的角动量L不变,则角速度ω与转动惯量J成反比。扩展资料角动量守恒定律内容对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。这是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。
2023-08-13 00:48:421

下面四种运动,哪一种没有利用角动量守恒原理

角动量守恒,又称角动量守恒定律 是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变. dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化. 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性.   根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.   此原理多用于天文学,天体运行时自转不变.   注解:   (1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 .这时,物体绕定轴作匀角速转动.   (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大.如芭蕾舞演员表演时就是这样.   (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例.因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变.
2023-08-13 00:48:581

角动量守恒定律公式是什么?

大学物理中角动量守恒定律的公式为:L = Iω其中,L表示角动量,I表示转动惯量,ω表示角速度。角动量是描述物体旋转运动的物理量,它的大小等于物体的转动惯量I与角速度ω的乘积,即角动量L=Iω。角动量的方向与角速度的方向相同,因此它是一个矢量量。当物体在没有外力作用下,它的角速度和转动惯量保持不变,此时称为角动量守恒。在这种情况下,如果物体的转动惯量发生改变,角速度则相应地发生改变,以保持角动量守恒。这种情况下,当物体由宽的一面旋转变为细的一面旋转时,角速度增大,而当物体由细的一面旋转变为宽的一面旋转时,角速度减小,以保证角动量守恒。学习大学物理角动量守恒公式,需要有以下几个步骤:1、学习物理基础知识。理解角动量的物理定义、角速度的概念和转动惯量的定义等基本概念。同时,需要掌握使用单位的规范,确保计算精度和准确性。2、学习角动量守恒定律的知识。掌握角动量守恒的物理原理和相关定律,深入了解角动量守恒的应用领域和实际意义。3、多做例题。进行大量的练习,从简单到复杂地解决各种相关的物理问题,例如计算质点系的角动量,利用角动量守恒定律进行周期性运动的分析等。4、认真思考,合理应用。在解决问题时,注意理解题意,分析问题的本质,运用角动量守恒定律解决问题。同时也要注意实际应用,掌握如何把角动量守恒定律应用到实际的物理问题中。5、寻求帮助。如果在学习中遇到困难,可以向老师或同学寻求帮助,或者查阅相关的学习资料和教材,加深自己的理解。
2023-08-13 00:49:071

刚体定轴转动的角动量守恒定律

刚体定轴转动的角动量守恒定律内容如下:中文名称:刚体定轴转动的角动量守恒定律英文名称:Law of conservation of angular momentum of rigid body in rotational motion定义及摘要:刚体定轴转动的角动量守恒定律根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即M=OI=恒量在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.注解(1)单个刚体对定轴的转动惯量保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量I应等于初始时刻的角动量Im。,亦即Im =I,因而@=@。这时,物体绕定轴作匀角速转动。(2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度@随转动惯量的改变而变,但两者之乘积I 却保持不变,因而当变大时,@变小;变小时,@变大。如芭蕾舞演员表演时就是这样。(3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变
2023-08-13 00:49:291

大学物理角动量守恒公式是什么?

大学物理中角动量守恒定律的公式为:L = Iω其中,L表示角动量,I表示转动惯量,ω表示角速度。角动量是描述物体旋转运动的物理量,它的大小等于物体的转动惯量I与角速度ω的乘积,即角动量L=Iω。角动量的方向与角速度的方向相同,因此它是一个矢量量。当物体在没有外力作用下,它的角速度和转动惯量保持不变,此时称为角动量守恒。在这种情况下,如果物体的转动惯量发生改变,角速度则相应地发生改变,以保持角动量守恒。这种情况下,当物体由宽的一面旋转变为细的一面旋转时,角速度增大,而当物体由细的一面旋转变为宽的一面旋转时,角速度减小,以保证角动量守恒。学习大学物理角动量守恒公式,需要有以下几个步骤:1、学习物理基础知识。理解角动量的物理定义、角速度的概念和转动惯量的定义等基本概念。同时,需要掌握使用单位的规范,确保计算精度和准确性。2、学习角动量守恒定律的知识。掌握角动量守恒的物理原理和相关定律,深入了解角动量守恒的应用领域和实际意义。3、多做例题。进行大量的练习,从简单到复杂地解决各种相关的物理问题,例如计算质点系的角动量,利用角动量守恒定律进行周期性运动的分析等。4、认真思考,合理应用。在解决问题时,注意理解题意,分析问题的本质,运用角动量守恒定律解决问题。同时也要注意实际应用,掌握如何把角动量守恒定律应用到实际的物理问题中。5、寻求帮助。如果在学习中遇到困难,可以向老师或同学寻求帮助,或者查阅相关的学习资料和教材,加深自己的理解。
2023-08-13 00:49:571

大学物理角动量守恒公式

大学物理中角动量守恒定律的公式为:L = Iω其中,L表示角动量,I表示转动惯量,ω表示角速度。角动量是描述物体旋转运动的物理量,它的大小等于物体的转动惯量I与角速度ω的乘积,即角动量L=Iω。角动量的方向与角速度的方向相同,因此它是一个矢量量。当物体在没有外力作用下,它的角速度和转动惯量保持不变,此时称为角动量守恒。在这种情况下,如果物体的转动惯量发生改变,角速度则相应地发生改变,以保持角动量守恒。这种情况下,当物体由宽的一面旋转变为细的一面旋转时,角速度增大,而当物体由细的一面旋转变为宽的一面旋转时,角速度减小,以保证角动量守恒。学习大学物理角动量守恒公式,需要有以下几个步骤:1、学习物理基础知识。理解角动量的物理定义、角速度的概念和转动惯量的定义等基本概念。同时,需要掌握使用单位的规范,确保计算精度和准确性。2、学习角动量守恒定律的知识。掌握角动量守恒的物理原理和相关定律,深入了解角动量守恒的应用领域和实际意义。3、多做例题。进行大量的练习,从简单到复杂地解决各种相关的物理问题,例如计算质点系的角动量,利用角动量守恒定律进行周期性运动的分析等。4、认真思考,合理应用。在解决问题时,注意理解题意,分析问题的本质,运用角动量守恒定律解决问题。同时也要注意实际应用,掌握如何把角动量守恒定律应用到实际的物理问题中。5、寻求帮助。如果在学习中遇到困难,可以向老师或同学寻求帮助,或者查阅相关的学习资料和教材,加深自己的理解。
2023-08-13 00:50:301

角动量守恒

角动量守恒条件是合外力矩等于零。角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。角动量守恒的具体应用:用角动量守恒推算开普勒第二定律开普勒第二定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。行星在太阳的向心引力作用下绕日运动,所以行星受到的引力对太阳的力矩为零,那么角动量就华丽丽的守恒了,故有L=rpsinα=常数。由上述推导可之掠面速度A/t为常数,所以相同时间行星绕太阳扫过的面积相等。
2023-08-13 00:50:542

角动量守恒公式

大学物理中角动量守恒定律的公式为:L = Iω其中,L表示角动量,I表示转动惯量,ω表示角速度。角动量是描述物体旋转运动的物理量,它的大小等于物体的转动惯量I与角速度ω的乘积,即角动量L=Iω。角动量的方向与角速度的方向相同,因此它是一个矢量量。当物体在没有外力作用下,它的角速度和转动惯量保持不变,此时称为角动量守恒。在这种情况下,如果物体的转动惯量发生改变,角速度则相应地发生改变,以保持角动量守恒。这种情况下,当物体由宽的一面旋转变为细的一面旋转时,角速度增大,而当物体由细的一面旋转变为宽的一面旋转时,角速度减小,以保证角动量守恒。学习大学物理角动量守恒公式,需要有以下几个步骤:1、学习物理基础知识。理解角动量的物理定义、角速度的概念和转动惯量的定义等基本概念。同时,需要掌握使用单位的规范,确保计算精度和准确性。2、学习角动量守恒定律的知识。掌握角动量守恒的物理原理和相关定律,深入了解角动量守恒的应用领域和实际意义。3、多做例题。进行大量的练习,从简单到复杂地解决各种相关的物理问题,例如计算质点系的角动量,利用角动量守恒定律进行周期性运动的分析等。4、认真思考,合理应用。在解决问题时,注意理解题意,分析问题的本质,运用角动量守恒定律解决问题。同时也要注意实际应用,掌握如何把角动量守恒定律应用到实际的物理问题中。5、寻求帮助。如果在学习中遇到困难,可以向老师或同学寻求帮助,或者查阅相关的学习资料和教材,加深自己的理解。
2023-08-13 00:51:021

角动量守恒

角动量守恒条件是合外力矩等于零。角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。角动量守恒的具体应用:用角动量守恒推算开普勒第二定律开普勒第二定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。行星在太阳的向心引力作用下绕日运动,所以行星受到的引力对太阳的力矩为零,那么角动量就华丽丽的守恒了,故有L=rpsinα=常数。由上述推导可之掠面速度A/t为常数,所以相同时间行星绕太阳扫过的面积相等。
2023-08-13 00:51:242

根据角动量守恒定律解释为什么花样滑冰运动员在旋转的时候先张开双臂在迅速收拢两臂。

角动量守恒定律:J1.ω1=J2.ω2当手臂靠拢时J2减小,ω2增大(旋转加快)角动量=转动惯量乘以角速度,运动员旋转时收拢双臂就等于减小了自身半径,也就使自身的转动惯量变小,因为角动量守恒,所以角速度就变大了。运动员先张开双臂缓慢转动起来,冰面上的摩擦力很小,基本对转速没有影响,而重力和支撑力与旋转轴平行,对系统的转动也不起作用;根据“转动速度与距离的乘积”不变的“角动量守恒定律”,把四肢收拢,就相当于减小了与转轴的距离,转速自然就会加快。扩展资料:如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一的开普勒第二定律。参考资料来源:百度百科-角动量守恒定律
2023-08-13 00:51:501

物理中的角动量守恒怎样应用

你好, 物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。角动量守恒定律如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。详细内容概述反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点角动量原理图(或轴)运动的普遍规律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一的开普勒第二定律。一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。希望能帮到你。
2023-08-13 00:52:061

角动量守恒有什么应用

  角动量守恒  角动量守恒,又称角动量守恒定律 是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变.dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化.角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性.  根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.  此原理多用于天文学,天体运行时自转不变.  (1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 .这时,物体绕定轴作匀角速转动.  (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大.如芭蕾舞演员表演时就是这样.  (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例.因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变.
2023-08-13 00:52:151

什么是角动量

问题一:什么是角动量 角动量是刚体力学中的概念,你可以对比质点力学中动量的概念来理解角动量的概念。 动量 是和 速度、 质量、 力 相联系的。 角动量是和 转动角速度、转动惯量、力矩 相联系的。 物体的 质量 和 速度 的乘积叫做运动物体的动量 刚体的 转动惯量和 角速度 的乘积,叫做刚体对转轴的角动量或者是叫动量矩。 质量 是物体惯性 的量度 转动惯量 是刚体转动的惯性 的量度 动量守恒定律: 运动物体如果受到的合外力为零(或不受外力的作用),则物体动量的大小和方向都保持不变。 或者说:如果物体系受到的合外力为零,则系统内各物体动量的矢量和保持不变。 刚体转动的角动量守恒定律:在刚体转动时,如果受到的外力对轴的合外力矩为零(或不受外力矩作用),则刚体对同轴的角动量保持不变。 动量矩守恒定律是一条很有用的定律。 例如:人手持铁哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的重要例子。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。当人把两臂收回抱在胸前时,转动惯量减小了,但动量矩仍保持不变,所以转动速度就变快了。 花样滑冰、体操、跳水、芭蕾舞……中许多旋转动作都应用了这一定律。 自行车行走时,车轮转动,遵从动量矩守恒定律,只有受到足够大的外力距作用时,其动量矩才会改变――改变转轴的方向,所以,车轮转动得越快,自行车越不容易倾倒。所以“定车”需要较高的技巧; 杂技演员在表演车技时常常猛蹬几下,车速快了,他才在车上作各种技巧动作。 根据动量矩守恒定律,在不受到外力绩作用时,保持它原来的转动方向,所以高速旋转的物体具有定向性。由此做成了陀螺仪,在飞机、航海、航天技术中都离不开陀螺仪。 问题二:角动量是什么? 质量乘速度乘轴心距 角动量在物理学中是与物体到原点的位移和动量相关的物理量, 角动量在经典力学中表示为到原点的位移和动量的叉乘,通常写做L 。角动量是矢量。 L= r times p (times 表示乘,即L=r*p) 其中,r表示质点到旋转中心(轴心)的距离(可以理解为半径),L表示角动量。p 表示动量。 在不受外力矩作用时,体系的角动量是守恒的。 角动量在量子力学中与角度是一对共轭物理量。我们知道,要测量一个直线运动的物体运动快慢,可以用速度来表示,那么物体的旋转状况又用什么来衡量呢?一种办法就是用“角动量”。对于一个绕定点转动的物体而言,它的角动量等于质量乘以速度,再乘以该物体与定点的距离。物理学上有一条很重要的角动量守恒定律,它是说,一个转动物体。他的旋转速如果不受外力矩作用,它的角动量就不会因物体形状的变化而变化。例如一个芭蕾舞演员,当他在旋转过程中突然把手臂收起来的时候(质心与定点的距离变小),他的旋转速度就会加快,因为只有这常才能保证角动量不变。这一定律在地球自转速度的产生中起着重要作用。” 地球的角动量要用微积分做。 L=∫∫r(mωr)dmdr 积分区间为[0,R],[0,m] R是地球半径,m为地球质量,ω为地球自转角速度=2π/24H 问题三:什么是角动量? 角动量的物理意义: 如果对于某一固定点,质点所受的合外力矩为零,则此 质点对该固定点的角动量矢量保持不变.(质点角动理守恒定律) 如果一个质点系所受的合外力矩等于该质点系的角动量对时间的变化率(力矩和角动量都相对于惯性系中同一定点.)(质点系的角动量守恒定理) 因为角动量也服从守恒定律,在近代物理中其运用极其广泛. 角动量L=r×F(矢量叉乘)=r*F*sin 由角动量守恒定律可以证明开普勒第二定律:行星对太阳的径矢在相等时间内扫过相等的面积. 问题四:什么是角动量 类比即可理解: 1、线动量,linear momentum 平时说到线动量时,总是将“线”字省略了。 线动量联系的是平动 translation,也就是没有转动、振动等等; 平动中质心的运动规律跟物体内其他各点没有丝毫区别; 线动量 = 平动的惯性量度 乘以 线速度 = 质量 乘以 速度。 2、角动量,angular momentum 当物体的运动中,有转动时,平动的惯性量度就变成了转动的惯性量度; 转动的惯性量度是转动惯量; 平动的线速度就转化为角速度; 角动量 = 转动的惯性量度 乘以 角速度 = 转动惯量 乘以 角速度。 线速度的物理意义 = 单位时间内的线位移; 角速度的物理意义 = 单位时间内的角位移,就是转过了多少角度。 问题五:什么是角动量 角动量是刚体力学中的概念,你可以对比质点力学中动量的概念来理解角动量的概念。 动量 是和 速度、 质量、 力 相联系的。 角动量是和 转动角速度、转动惯量、力矩 相联系的。 物体的 质量 和 速度 的乘积叫做运动物体的动量 刚体的 转动惯量和 角速度 的乘积,叫做刚体对转轴的角动量或者是叫动量矩。 质量 是物体惯性 的量度 问题六:什么是角动量守恒? 角动量守恒,又称角动量守恒定律 是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变。 dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化。 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变耿。 根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律. 此原理多用于天文学,天体运行时自转不变. 注解: (1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 。这时,物体绕定轴作匀角速转动。 (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大。如芭蕾舞演员表演时就是这样。 (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。
2023-08-13 00:52:251

角动量守恒应用

导航仪,开普勒定律(径矢单位时间内扫过面积相等)
2023-08-13 00:52:352