barriers / 阅读 / 详情

3. 蛋白质谱的原理及使用(1)

2023-08-22 11:25:44
共1条回复
snjk

说明:此篇笔记系2016-2017年由克里克学院与康昱盛主办的蛋白质组学网络大课堂整理而成,侵删。该课程由中国农业大学生物学院的李溱老师所授。

为了直观一些,我们先上几张质谱仪的照片,大伙儿感受一下~

质谱仪到底是个啥呢?我们还是先来掉个书袋吧,“官方”定义是这样的:用来测定气态离子质荷比(m/z)的仪器。对照的英文是:An instrument used to determine the mass-to-charge ratio (m/z) of gas phase ions.

我们来抓抓这里面的关键词: 气态、离子、质荷比

从这几个关键词里,你感受到了吗?其实质谱仪检测的范围是非常有限的。首先,它只能检测气态的物质,其次,该物质还必须得是离子。而检测得到的数值也只是该离子的质量与电荷的比值! 也就是说,当离子带一个正电荷或一个负电荷时,质谱仪检测到的m/z的数值就刚好等于离子的重量;当电荷数大于等于2时,我们得用检测到的m/z的数值乘以电荷数,才能得到离子的质量。

看到这里,你是不是有点感慨,原来大名鼎鼎的质谱仪,也就这点儿功能啊~我要说的是,功能不在多,而在专!就是这点功能,却引领了整个领域的革新!

质谱仪的离子质荷比的测定,可以通过质谱图展示。那么质谱图又是长什么样的呢?

我们以上面两张质谱图为示例,质谱图的横轴就是质荷比,纵轴是离子强度。第一张是正丁烷的谱图,横轴质荷比的取值范围是从10-60。另一张是代谢物质谱图,横轴质荷比是100-400。那些小柱子就是信号峰了。

接下来,我们要聊的问题就是:质谱仪是如何获得这些质谱图?

前面说了,质谱只能检测离子,所以要得到质谱图,首先我们要获得离子。离子分为两类:正离子和负离子,那么对应的,它们带正电荷或者带负电荷。

要生成一个正离子,其实就是分子结合一个或多个质子,就可以带上正电荷,这是最简单直接的办法;或者呢,让一个分子失去一个电子,也可以带上一个正电荷。相应的,生成负离子的方法,就是分子结合一个电子,或者失去一个质子。

我们还是以正丁烷为例,它的分子量是58,我们在质谱图的横轴(m/z)58处正好看到一个峰,说明是正丁烷的质谱图是正丁烷分子失去一个电子后,生成正离子而得到的。

在负离子模式下是可以看到得到一个电子的分子的质谱图

我们再来看看另外一个例子,比如一个分子式为C 22 H 25 O 3 N 3 的化合物,通过计算知道它的分子量是379.1890,而在质谱图我们看到m/z轴上的峰是在380.1958,实际上是这个化合物得到一个质子后(分子量+1),形成正离子产生的质谱图。

所以呢,不同的质谱仪,不同的化合物,会得到不同的质谱图。比如第二个例子,如果你以为它的分子量就是380.1958,那计算出的结果肯定就是错的了。

那么,质谱仪是如何得到不同离子的质荷比信息呢?要回答这个问题,我们可以从质谱仪的种类和工作原理聊起。

前面说了,质谱仪是测定气态离子质荷比的仪器,所以进入质谱的离子一定得是带电的。当带电的离子进入电场或磁场时,它的飞行轨迹遵循一定的规律。比如我们把离子放到一个磁场当中,它飞行的时候会产生一个偏转,而偏转的半径与离子质荷比、磁场强度,以及它的动能有关,这就是洛伦兹力。通过检测它的偏转程度,就可以计算出它的质荷比。

所以最简单的质谱仪就是这种磁质谱仪,让离子飞过一个磁场,通过检测器检测它转弯的半径,就可以计算出它的质荷比。当然,现在这类质谱仪用得比较少了。接下来我们要介绍的TOF质谱仪更常用。

这是目前很常用的质谱仪类型。它的工作原理是这样的,通过离子源得到离子以后,离子经过一个加速的区域,所有的离子都会获得一个相同的初始动能,然后它们进入一个没有电场的区域,进行自由地飞行!是不是画图很美?由于所有离子的初始动能是相同的,那么重的离子飞行速度就会慢一些,轻的离子飞得快一些,最终离子都会通过整个飞行区域,到达检测器。

通过测量离子的飞行时间,我们就可以推算出离子的质荷比。飞行时间是与质荷比的平方根成正比的。这就有点像跑步比赛,重的离子跑得慢一些,轻的跑得快一些,我们拿一个秒表,通过测定跑步时间,就可以计算出每个离子的质荷比了。这是一种原理很简单的质谱仪,也是目前使用广泛且性能很不错的质谱仪。

TOF质谱仪长什么样呢?我们来看看下面两个图。

这就是典型的飞行时间质谱仪的模样。因为我们要让离子在一个跑道上飞,就像奥运会上的跑步比赛一样,如果离子们都来跑100米,第一名和第二名可能只差0.01秒,区别起来会比较困难。但如果跑3000米,第一名与第二名可能会差10秒,甚至更多。所以跑道越长,我们越容易把离子区分开来。所以飞行时间质谱仪通常都需要有一个很长的飞行区间。

上图是两种典型的TOF质谱仪,左边是AB的4700质谱仪,它是竖着跑的,所以很高,有两米多。右边是Bruker的Ultraflex质谱仪,是横着跑的,长度也有两米多。所以TOF质谱仪的外表特点就是非常长,为了让离子能够尽可能跑得远一些。

除了TOF,还有一类很常用的质谱仪,就是我们经常听到的四级杆质谱仪。

为啥叫这个名字呢?如果我们来观察一下它的横截面,会发现,它是由四根电极组成的,电极的截面并不是完美的圆,而是双曲抛物线。

在横截面上,四根电极分成两组,两个相对的是一组,在相对的电极上加上一个相同的交流电压和直流电压,而在相邻的电极上,则加上相反的交流电压和直流电压,通过叠加交流电压和直流电压,不同质荷比的离子进入四级杆以后,会发生震荡,一边飞行,一边转圈。

当扫描的电压和频率一定的时候,只有特定质荷比的离子才能穿过四级杆,到达检测器。而其它质荷比的离子就会因为偏转太多,而打到四级杆上,或者从缝隙里穿出。

所以,四级杆质谱仪是用来做质量选择,只让特定质荷比的离子穿过质谱仪。通过改变四级杆上的电压,我们就可以让不同质荷比的离子挨<ins cite="mailto:Zhen%20Li" datetime="2017-01-16T10:58" style="margin: 0px; padding: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important;">依次</ins>个穿过质谱仪,到达检测器。

四级杆质谱仪的外观通常都不会很长,在15-30cm左右,结构是比较紧凑。

还有一类质谱仪,与四级杆质谱仪非常相似,它就是离子阱质谱仪。分为两类,一类叫三维离子阱(3D Ion Trap)质谱仪,另一类叫线性离子阱(Linear Ion Trap)。

线性离子阱与四级杆质谱仪长得是非常像的,它的横截图跟四级杆质谱仪是一样的,只是它的侧面开了一个洞,来作离子弹出用的。四级杆质谱仪中,离子是穿过质谱仪飞出去的,而在离子阱质谱仪中,离子不会飞出质谱仪,而是一直在阱里面,沿着右下图像8字型的轨迹飞行。当扫描电压达到一定的数值以后,离子会被射出来。

对于三维离子阱,我们可以理解为,是将线性离子阱无限地压缩,压缩到最后变成这样一个很短的圆环,形成一个陷阱结构。三维离子阱有两个端电极和一对环形电极构成了一个封闭的空间,把离子困在里面。离子“阱”的名字就是这么来的,相当于是一个陷阱,把离子包在里面,一直进行转圈的运动。

离子阱与四级杆一样,可以通过改变加到离子阱上的扫描电压,让不同质荷比的离子射出来进行检测,也可以将特定质荷比的离子留在离子阱里面,进行后续的处理和操作。这是它们与TOF最大的不同,TOF只能检测不同质荷比的离子,却不能选择让哪些离子留下,而四级杆和离子阱既可以检测离子,同时也可以实现离子的选择,将想要的离子留在离子阱中,或者说,让特定的离子穿过四级杆。所以四级杆或离子阱还有一个名称,叫质量过滤器,它可以过滤特定质荷比的离子。

我们要聊的第四类质谱仪是FTICR和Orbitrap,这类质谱是基于离子在电场或者磁场中会作回旋运动,通过测定回旋共振频率,并进行傅里叶变换,从而测定离子质荷比。

我们先来看看FTICR(见下图),它是将离子放到一个高强度的磁场中进行自旋共振,所以需要一个很大的超导磁铁,用来产生一个很强的磁场。

而Orbitrap则克服了必须要使用超导磁场的困难,它使用一个电场来限制离子的自旋共振。

这种类似的质谱仪都有非常高的分辨率,当然价格也很高。

以上就是我们常用的四类质谱仪:磁质谱仪、TOF、四级杆&离子阱、Orbitrap&FTICR,根据它们的原理和作用的不同,可以分为两大类:

以上是对质谱的原理和几种常见的类型做一个基本介绍,下一篇将继续分享质谱仪性能的几大指标,对质谱仪进行性能评估,以及串联质谱是如何协同工作的。

相关推荐

质谱仪的原理是什么?

质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。扩展资料有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。分为四极杆质谱仪、离子阱质谱仪、飞行时间质谱仪和磁质谱仪等。有机质谱仪的发展很重要的方面是与各种联用仪(气相色谱、液相色谱、热分析等)的使用。它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的"进样器",将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息。可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。
2023-08-13 13:29:471

质谱仪原理

质谱仪原理:质谱仪能用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪。按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理坦改分为静态仪器和动态仪器。质谱仪能用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达余拿检测器的时间不同。结果为质谱图。质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的一种分析方法。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。用法:分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电竖信搭场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。
2023-08-13 13:30:021

质谱的原理是什么?

质谱的原理如下:质谱是将化合物电离并测定生成的带电粒子质量(质荷比)的仪器,也可简单的说质谱混合物中的单个化合物进行分析的仪器。在硬件上,质谱仪器主要由3部分组成,其中离子源部分将化合物转化成带电离子,质量分析器筛选出目标离子,检测器采集信号并记录交由软件处理成质谱图。质谱的作用质谱仪是为校验各种压力变送器﹑压力传感器﹑压力开关﹑而设计的一款质谱仪器,在测量压力的同时,也可测量电流,所测压力与设定的压力百分数及测量电流同屏显示,电流及电流百分数可通过显示菜单选择。质谱仪不仅解决了标准压力的校验,而且更好的满足了现场综合的测试需要。现在有有许多厂家为了方便客户,已经将整个仪器微型化智能化,从而使质谱仪具备了多量程和记录等功能。以上内容参考:百度百科-质谱
2023-08-13 13:30:321

试说明质谱仪主要部件的作用及其工作原理。

【答案】:质谱仪主要部件的作用及其工作原理如下:(1)真空系统:为了降低背景及减少离子间或离子与分子间的碰撞,离子源、质量分析器及检测器必须处于高真空状态。(2)进样系统:质谱进样系统的目的是在不破坏仪器真空环境、具有可靠重复性的条件下将试样引入离子源。(3)离子源:离子源的作用是使试样分子或原子离子化,同时具有聚焦和准直的作用,使离子汇聚成具有一定几何形状和能量的离子束。(4)质量分析器:质量分析器的作用是将高子源产生的离子按m/z的大小分离聚焦。(5)离子检测器和记录系统:经离子检测器检测后的电流,经放大器放大后,用记录仅快速记录到光敏记录纸上,或者用计算机处理结果。
2023-08-13 13:30:461

什么是质谱,质谱分析原理是什么

质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱分析原理:将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。扩展资料相关仪器:质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束。质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。参考资料来源:百度百科-质谱参考资料来源:百度百科-质谱法
2023-08-13 13:30:561

质谱仪原理高中物理是什么?

质谱仪原理高中物理是:质谱分析法主要是通过对样品的离子的质荷比的分析而实现对样品进行定性和定量的一种方法。因此,质谱仪都必须有电离装置把样品电离为离子,有质量分析装置把不同质荷比的离子分开。经检测器检测之后可以得到样品的质谱图,由于有机样品,无机样品和同位素样品等具有不同形态、性质和不同的分析要求,所以,所用的电离装置、质量分析装置和检测装置有所不同。质谱仪工作原理:质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。
2023-08-13 13:31:131

质谱原理

质谱原理很简单,主要就是通过不同分子m/z(质量电荷比)的不同,通过电场(或电磁场)将他们区分开,在对信号进行探测。理解起来,就是分为三个部分:1. 离子化部分:现在主流方法是MALDI或者ESI,02年nobel就是颁给这两个技术。MALDI优点是在固相下产生+1价离子,ESi是在液相下产生高价态离子。2.分析器:分析器主要是把离子化部分产生的离子分开,现在常用的有TOF(time of flight),靠加速电场分开离子,ion trap(靠电磁场trap住离子,将他们分开),还有orbitrap, FT-ICR(这个比较高端了)。3.探测器:就是探测到离子的原件,不说了然后系统根据获得的数据,生成关于“强度~m/z“的谱图,就是我们说的质谱图。
2023-08-13 13:31:327

质谱检测原理

质谱法的原理如下:待测化合物分子吸收能量(在离子源的电离室中)后产生电离,生成分子离子,分子离子由于具有较高的能量,会进一步按化合物自身特有的碎裂规律分裂,生成一系列确定组成的碎片离子,将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。由于在相同实验条件下每种化合物都有其确定的质谱图,因此将所得谱图与已知谱图对照,就可确定待测化合物。质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱技术发展很快。随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑侦科学,生命科学,材料科学等各个领域。谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用GC-MS进行分析,因为GC-MS使用EI源,得到的质谱信息多,可以进行库检质谱仪索。毛细管柱的分离效果也好。
2023-08-13 13:32:051

用电磁学知识简述质谱仪的工作原理?

工作原理:样品通过进样系统被送进ICP源中,并在高温炬管中蒸发、离解、原子化和电离,绝大多数金属离子成为单价离子,这些离子以超声波速度通过双锥接口(取样锥和截取锥,1级真空)进入质谱仪真空系统。离子通过接口后,在离子透镜(2级真空)的电场作用下聚焦成离子束并进入四极杆离子分离系统(3级真空)。离子进入四极杆质量分析器后,根据质量/电荷比的不同依次分开。最后由离子检测器(多道脉冲计数器)进行检测,其中最常用的离子检测器是通道式电子倍增器。产生的信号经过放大后通过信号测定系统检出。解释:质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪。按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。
2023-08-13 13:32:331

lcms质谱仪原理是什么?

lcms质谱仪三重串联四极杆质谱法的原理是待测化合物分子在电离源电离,生成分子离子,通过第一个四极杆进行选择,基于化合物的质荷比将目标化合物选择出来。之后进行碰撞池进行碎裂。在碰撞池里,化合物生成一系列确定组成的碎片离子。 碎片离子进行第三个四极杆进行选择。通常会选出两对稳定的碎片离子,进行定性定量。将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。 由于在相同实验条件下每种化合物都有其确定的质谱图,因此将所得谱图与已知谱图对照,就可确定待测化合物。
2023-08-13 13:32:552

什么是质谱,质谱分析原理是什么

质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。扩展资料:质谱技术是一种鉴定技术,在有机分子的鉴定方面发挥非常重要的作用。它能快速而极为准确地测定生物大分子的分子量,使蛋白质组研究从蛋白质鉴定深入到高级结构研究以及各种蛋白质之间的相互作用研究。随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑事科学技术,生命科学,材料科学等各个领域。质谱分析法对样品有一定的要求。进行GC-MS分析的样品应是有机溶液,水溶液中的有机物一般不能测定,须进行萃取分离变为有机溶液,或采用顶空进样技术。有些化合物极性太强,在加热过程中易分解,例如有机酸类化合物,此时可以进行酯化处理,将酸变为酯再进行GC-MS分析,由分析结果可以推测酸的结构。参考资料来源:百度百科-质谱
2023-08-13 13:33:134

质谱法的原理&如何看质谱图?

1.质谱就是真空中,利用电子束轰击待测化学物质的分子,将该分子打散,打成一个一个的带电荷的分子离子片段,再根据质谱仪上各个分子离子片段的出峰位置和强度,最终显示出各个离子的分子量以及相应浓度。2.最右面的峰是全分子的离子峰,是化学物质的分子失去1个质子产生的峰,最右面的分子量最大了,显然分子片段不可能比全分子的分子量大,所以最右侧峰应该是大约相对分子量的数值。3.氧上面加上正号,不一定是失去电子,多数情况下是氧又和一个质子(H+)结合了,从而多了一个正电荷。4.看质谱图,只要看特征峰就好了,不要每个峰都知道是什么,只有有自己想要的峰,就行了。化学物质的分子中,单纯依靠质谱来判断是否有某种化学分子存在的情况几乎不存在,更重要的是做为一种辅助监测手段。不过懂得看质谱图,利用质谱分析,还是有必要的。
2023-08-13 13:33:255

质谱仪的原理

利用元素离子质量不同而检测物质成分的仪器离子源:用加热、轰击等方法获得加速极:用来加速离子磁场:用来偏转带电离子窄缝:用来过滤离子,使有用的离子通过接收极:接收从窄缝过来的离子可以调节电压(电扫),或磁场(磁扫)改变离子偏转角度,使某种离子穿过窄缝。测量穿过窄缝离子电流大小,再根据磁场强度,电压大小,得到物质成分和数量。现在。还有四级虑质器等新型质谱可以和色谱结合,构成色-质连用分析装置,定量更准。
2023-08-13 13:34:511

质谱仪的原理是

高三就要搞质谱仪啊?看来现在的高中教育的难度越来越大了。
2023-08-13 13:35:003

什么是质谱仪?它的主要功能有哪些?

质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪。按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。布鲁克(北京)科技有限公司磁共振质谱仪以更小的占地面积提供超过两千万(R> 20,000,000)的超高质量分辨率,无需任何液态致冷剂。scimaX 采用新的磁体设计和双阶段冷却技术, 新设计使用氦气钢瓶而无需液氦和液氦补充, 氦气的消耗量低于台式GC-TQ。
2023-08-13 13:35:203

3. 蛋白质谱的原理及使用(2)

说明:此篇笔记系2016-2017年由克里克学院与康昱盛主办的蛋白质组学网络大课堂整理而成,侵删。该课程由中国农业大学生物学院的李溱老师所授。 我们作为质谱仪的使用者,怎么来评估一台质谱仪的性能呢?或者说,我们如何选择质谱仪呢?质谱仪主要的性能参数如下图,就让我来依次为大伙儿解释一下这些高大上的参数名称到底是啥意思吧。 “官方”的定义是,与三倍噪音相当的物质的量,我们可以理解为这是质谱仪能够检测到的最低含量化合物的浓度,或者量。比这个值再低的化合物,这台质谱仪就无能为力了。 我怎么知道我的质谱仪的检测限是多少呢?通常,我们会用利血平来作为一个标准的化合物测定质谱仪的检测限。比如,当我们在质谱仪中注入50 fg(飞克)利血平,如果我们获得的信噪比能达到100-1000,那么可以认为这台质谱仪的检测限是不错的。50 fg(飞克)利血平中大概只包含了几万个利血平分子,也就是说,如果能实现对含有几万个小分子的化合物进行检测,那么这台质谱仪的灵敏度是挺高的了。大家可以认为,灵敏度与检测限评估的是同一种性能。 这个性能参数也是挺重要的。它表示在什么样的浓度范围之内,质谱仪检测到的信号与样品浓度之间成线性的关系。说得简单点,就是这个浓度范围内的样品,用这台质谱仪检测是比较合适的,高于或低于这个浓度范围的样品,需要浓缩或者稀释后才能用这台质谱仪检测。 通常情况下,质谱仪的线性范围是在3-6个数量级,也就是1,000 – 1,000,000这个范围之内。大部分质谱仪是在1,000 – 10,000这个范围内。 这个参数之所以重要,是因为当我们分析的样品含量分布非常广的时候,比如有的样品含量只有几十μg/ml,而有的样品含量可以达到几mg/ml。在这个比较宽的浓度范围内,如果质谱仪的线性范围非常好,我们不需要浓缩低浓度的样品,也不需要稀释高浓度的样品,可以直接进样,这样可以大大减少样品前处理的复杂程度,很好地节省时间,节省实验步骤。 这是两个非常重要的参数,我们常说的高分辨质谱,指的就是分辨率特别高,且质量准确度特别高。这两个参数怎么理解呢?我们先来看看下面这个图: 就是质谱仪可以分辨的最近两个质谱峰的质量差值。 这是啥意思呢?假设我有两个强度相同的质谱峰,当这两个峰很靠近的时候,我在什么情况下可以明确地判断出这是两个峰,而不是一个呢?基本准则就是,这两峰的重叠部分的高度,不超过任何一个质谱峰峰高10%的时候,我们认为这是两个可分离的峰。反之,如果这两个峰重叠的部分超过10%,就认为是不可分离的,也就是说,在处理质谱图时,是没办法按照两个峰值来处理的。 当两个峰实现10%基线分离时,我们来测定任何一个质谱峰的半峰宽(就是峰高一半处的峰宽),然后用任何一个峰的质荷比除以半峰宽,就可以得到分辨率。目前来讲,高分辨质谱仪的分辨率可以达到50,000-100,000的数量级,一般的四级杆可以达到5,000-10,000。 那么,高分辨质谱的优点如何体现呢?以上面的右图为例,当我们用低分辨质谱仪检测某种物质时,只能得到最外面蓝色的一个质谱峰,当我们不断提高分辨率,会慢慢发现,这一个质谱峰里面,其实包含了若干小的质谱峰,高分辨质谱仪得到的质荷比与低分辨获得的质荷比是有非常明显的差异。这对化合物鉴定来讲,是很重要的信息。如果我们把质荷比都算错了,我们是很难鉴定到正确的蛋白的。 下面这个图也能很直观地告诉我们质谱检测高分辨率的优势。 比如说,我们用17,500的分辨率来对一个化合物进行扫描,会发现在质荷比在280.09的这个位置,有一个非常胖的质谱峰(第一张谱图红色圆圈标记),我们可能会认为这是一个化合物,于是就开始对这个化合物进行鉴定。可是,当我们不断提高质谱仪的分辨率,到一定程度时,我们会发现,这其实是两个不同的峰(第四张谱图红色圆圈标记)。 也就是说,用低分辨率质谱里得到的质荷比来鉴定化合物,得到的信息其实是不完全的(不一定是错的),而通过高分辨质谱,我们就能获得更全面的化合物信息,帮助我们做出正确的判断。 是指质谱仪测到的质荷比与它实际的质荷比的差值,除以它真实的质荷比与1,000,000的乘积。所以它是以ppm为单位的(百万分之一),这个数值看起来更方便。目前高分辨质谱仪质量准确度在2-5个ppm的范围之内。 那么,我们怎么来测定一个质谱仪的实际分辨率及质量准确性呢?以李溱老师的一个实验数据为例: 比如,我们选质荷比是511.6这个峰,计算出它的半峰宽为0.012,于是它的分辨率就是511.6除以0.012,得到的值为42,500,而软件给出的分辨率是48,700,是很接近的。 同样的例子,我们来计算质量准确性。测到的质荷比是511.5978,而这个峰实际的质荷比是511.5995,于是计算出质量偏差为3.3ppm,也就是说此次实验的误差就是3.3ppm,这么一个质量偏差范围通常是可以接受的。 分辨率的重要性可能大伙儿容易理解,那质量准确性的高低到底对化合物鉴定会有怎样的影响呢?我们还是以利血平为例。 利血平分子,在质谱图中的609.28066处会有一个质谱峰。当我们用单四级杆来分析利血平的时候,单四级杆的质量准确性大约是在0.1个质量单位(165ppm)。也就是说,当把利血平注入一个四级杆质谱中,四级杆质谱会告诉我们,这个化合物的质荷比大概是在609.2-609.4这个范围之内。 那么问题就来了!在609.2-609.4范围内,我们用C、H、O和N四种元素可以组合出多少种在化学上可以存在的化合物呢?答案是:209种!也就是说,我们要判断这个化合物是不是利血平,得出正确结果的可能性只有1/209! 当我们将质量准确性不断提高,可以组合出来的可能的化合物就会越来越少。当质量准确性达到3 ppm的时候,只有4种可能的化合物。当达到2 ppm的时候,得到的可能的化合物就只剩下2种了。这时候我们再来判断化合物是不是利血平,那么准确性就会高很多很多。这就是为什么高分辨质谱仪对于化合物鉴定来说非常重要,它可以大大减少候选化合物的数量,提高鉴定的成功率。 可以这么说,分辨率与质量偏差分别评估了质谱仪的精密度与准确性。就像我们打靶,比如我每次都能打到右上角一个点上,说明打靶的精密度非常高,但如果我的目标是靶心,那说明准确性却比较差。另一种情况,比如我打靶很多次,打中的点很分散,东一枪西一枪,但平均起来的位置刚好在靶心上,可以认为质量准确性还可以,但精密度比较差。所以我们希望的是,质谱仪的精密度和准确性都非常高。 目前我们能用到的高分辨质谱仪,不管是QTOF或者Orbitrap系列,都可以达到50,000以上的分辨率,同时也可以达到2-3ppm的质量准确性。所以说,如今做蛋白质组学研究的童鞋们,比起以前,真是幸福了很多! 前面给大伙儿分享了评估质谱仪的几个重要参数。那接下来我们就针对不同质谱的性能做一个粗略的总结。 1、 四级杆和离子阱 :它们的质量扫描范围是有限的,通常情况下是在10-4,000。超过4,000,四级杆和离子阱就只能作为离子传输用,而不能用于离子检测了。它们的分辨率通常是2,000-4,000,好一点的离子阱可以达到10,000-20,000。扫描速度都不是很快,它们的优势是价格非常低,而且整个仪器可以做得非常小。 2、 TOF :它最大的优势是可以测量的质量范围理论上可以无限大和无限小。如果待检测的离子没有质量,那么它的飞行时间将是0,于是可以测到质荷比是0的离子。同理,如果离子的质量是无限大的,那么它的飞行时间也是无限长的,理论上也是可以检测的。TOF的分辨率是5,000-60,000,扫描速度非常快,它的缺点是,TOF需要一个非常长的离子跑道,所以仪器的体积会很大。 3、 FTICR :优势是分辨率非常高,可以达到1,000,000甚至更高,缺点是扫描速度比较慢,而且它需要一个超导磁铁,运行费用非常高,而且FTICR质谱仪本身的价格也很高,通常都在100万美元以上。 4、 Orbitrap :克服了FTICR必须要使用超导磁铁的缺点,它的分辨率可以达到100,000到1,000,000万,扫描速度不是很快,价格比FTICR要低一些。它受专利保护,目前只有Thermo公司可以生产。 对于蛋白质组学研究来讲,我们对质谱仪器性能的最低要求是:分辨率至少在40,000-50,000,质量准确性应该优于5ppm,质量扫描范围应该在100-3,000,扫描速度是每秒至少获得一张高分辨的一级谱图和十张高分辨的二级谱图。达到以上条件的话,就算是满足了我们做蛋白质组学最基本的要求。 上面讲到各种质谱仪的优缺点,那么我们这里引入串联质谱的概念:将相同或者不同的质谱仪串联起来,实现串联或者并联工作。这样做的目的有两个:产生二级碎片离子(为什么要产生二级碎片离子我们后来会讲),以及实现不同质谱仪性能的优势互补。 我们知道,不同的质谱仪性能是不同的。比如说,四级杆质谱可以实现离子选择,但它的分辨率比较差,而TOF不能实现离子的选择,但分辨率比较高。那么我们能不能把不同性能的质谱仪串到一起,让它们协同工作呢?我们通常会利用串联质谱或者MS-MS来实现这个需求。它们的结合方式有很多种: 第一种:三重四级杆(Triple Quadrupole),或者串联四级杆,就是把三个四级杆串联起来,这样做的主要目的是为了实现二级质谱的扫描。 第二种:四级杆和飞行时间质谱仪串联到一起,就是我们经常听到的Q-TOF,它实际上是为了提高二级质谱的分辨率。 第三种:Orbitrap与四级杆组合,比如Orbitrap Fusion,或者Orbitrap与离子阱组合到一起,比如说Orbitrap Elite等,就是这样的组合。 首先,我们聊一聊怎么通过串联质谱仪获得二级碎片离子。 上面是一个串联四级杆结构的示意图。串联四级杆,或者叫三重四级杆,它是由三个四级杆串联起来。通常,第二个四级杆是由六级杆或八级杆来代替,但我们还是叫它四级杆。这个四级杆不是一个质量选择系统,而是一个collision cell,即碰撞池,用来碎裂离子。 当串联四级杆工作的时候,第一个四级杆是开启了质量选择的模式,它让特定质荷比的离子穿过质谱仪,而把其它的离子都甩掉(甩到四级杆上,或者甩到四级杆的空间当中去)。然后,当特定的离子被选择好后(称为母离子),会进入碰撞池。 在碰撞池里有这样一个结构,就是入口和出口存在电压差,通常入口电压会高于出口电压,当母离子进来以后,通过电压差的作用,就会被加速。而且碰撞池里会充上氦气或氮气,当离子被加速以后,它就会与碰撞池里的氦气或氮气分子发生碰撞、碎裂,形成一些碎片,叫做fragment ions,也就是碎片离子,或者子离子。这些碎片离子会进到第三个四级杆中,进行二级的扫描,得到二级质谱图。 下图就是一个串联四级杆质谱仪,我们可以看到,它仍然是一个非常紧凑的结构。 我们以莱克多巴胺为例,来看看它的分子通过串联质谱仪,会发生哪些变化,得到怎样的谱图。 莱克多巴胺这是一种兽药。它的分子量是301.1672,结构式见上图。第一张图,测出来的质荷比为302.1744,这是一个一级质谱的扫描图,在302.1744处有一个莱克多巴胺的质谱峰。 然后呢,我们告诉质谱仪,把302.1744处的这个离子挑出来,将CID(碰撞诱导解离)电压设为10伏,即在碰撞池的入口与出口处增加一个10V的电压差,让离子以10V的碰撞能来进行碰撞。碰撞以后,在第二张图里,我们看到302处的信号强度变弱了,同时284和164的信号强度变强了,原来没有看到的107、121、136信号也出现了。 接下来,我们把碰撞电压从10V增加到25V,增加以后我们会发现,302处的信号完全消失了,表明原来在第一个四级杆中被选择出来的这个离子,经过高能量的碰撞后,完全碎裂了,碎成了91、107、121、136和164这样一些碎片离子。那么这些碎片离子都是什么呢? 我们通过分析结构会发现,它们分别对应着莱克多巴胺的不同的碎片结构,比如164其实对应着莱克多巴胺右端的局部,136对应的是左半部分,等等。 通过分析碎片的化学结构,我们就可以把它们拼装起来,拼成一个完整的莱克多巴胺分子。这就是我们如何通过二级质谱图,来实现对化合物的结构鉴定。而实际的鉴定过程常常会更复杂更伤脑筋一些,上面只是一个简单的示例。 那么对于多肽,或者说对于蛋白酶解后的多肽片段来说,我们可以通过同样的过程,通过分析一个多肽理论上可以得到哪些碎片,然后与谱图进行对比,就可以实现对多肽序列的鉴定。这部分后面会详细再讲。我们先来看个简单的例子,如下图: 比如说我们有左上角这样一个肽段,理论上可以得到灰色标记出的各种b-y离子,通过分析质谱图,可以从中找到对应的碎片离子(右边表格里红色标记的都是可以从质谱图中找到的碎片离子),通过将这些信息拼装起来,我们就可以知道多肽的序列是什么。 上面通过以三重四级杆为例,跟大伙儿分享了串联质谱仪是如何获取二级碎片离子及二级谱图的。那么,其它一些串联质谱仪也是类似的过程。 Q-TOF与串联四级杆其实是非常像的,只不过它把第三个四级杆换成了一个飞行时间质谱仪。也就是说,一个四级杆,接一个碰撞池,然后接一个飞行时间质谱仪。为了增加飞行的距离,我们会让离子拐个弯再飞回来,这种叫反射模式飞行,让离子在更短的空间内可以飞得更远一些。 下面这个图就是一个Q-TOF质谱仪,是Bruker生产的。它的飞行时间管(flight tube)的长度可以达到3.6米,离子飞一个来回是7.2米。这个数字大伙儿可以留意一下,后面在讲真空度的时候,还会再次提到。 Orbitrap系列比一般的串联质谱仪要复杂一些,大伙儿可以通过下面这个示意图感受一下。 这个系列有好几种串联质谱仪,比如Q Exactive质谱仪,它的Q1也是一个四级杆,Q2是碰撞池,Q3是被一个Orbitrap所取代。 再比如Orbitrap Elite,它的Q1是一个离子阱,Q2是一个碰撞池,Q3为一个Orbitrap,也就是说,Orbitrap Elite里面是没有四级杆的,它用一个离子阱代替了四级杆。 还有一款是Orbitrap Fusion(见下图),它是三种质谱仪混在一些的组合,它的第一级是四级杆,第二级是一个离子阱,第三级是一个Orbitrap,同时它还有一个碰撞池,整体是一个非常复杂的结构。它的特点是,Orbitrap与离子阱可以同步进行扫描。 一般的质谱仪里,两个质量检测量是不能同时扫描的,只能是一个作为质量检测的功能,另外一个作为过滤用。而Orbitrap Fusion里的离子阱和Orbitrap是同时可以进行扫描的,也就是说,它是一个并列的结构,而不仅仅是串联的,所以它的扫描速度会更快,性能也更好。Fusion的分辨率可以达到240,000 – 960,000。 上面我分享了几种常用的质谱仪,那么以Q-TOF为例,我们再来学习一下质谱仪的基本构造。 对于质谱仪来说,最核心的部分就是质量分析器,它包括两个部分,就是前面我们详细介绍的质量过滤器和质量检测器。质谱仪所有其它部分都是为这个核心部分来服务的。 除了这个核心的组件以外,质谱仪还需要以下几个部分辅助: 真空系统 :为什么需要有真空系统呢?我们知道,质谱仪是一台检测气态离子质荷比的仪器,当一个气态离子在空气中飞行时,它会与空气分子发生碰撞,它带的电荷可能就会被撞没了,而成为一个不带电荷的气态分子,那么质谱仪就无法再测量它的质荷比了。所以我们希望得到的这个气态离子能够在质谱仪中稳定存在,所以质谱仪需要一个真空系统,让离子可以稳定地飞行,不受其它空气分子的干扰。 真空系统通常需要有两级,一级是低真空,由机械泵或油泵来提供,它可以大概1-3个mbar,也就是千分之一个大气压的压力环境,低真空的目的是为了给高真空提供一个后备压力环境。高真空是用涡轮泵来提供的,它的真空程度是-1E-5~-1E-10 mbar,在这样一个真空环境里,空气分子基本上都被抽干净了。 可能你想问,为什么要求这个数量级的真空条件呢? 我们先引出一个概念,叫离子的平均自由程(mean free path),它的意思是,一个离子在一个真空环境中飞行多长的距离会碰到下一个空气分子。这就决定了离子在真空中可以稳定存在多久。 以串联四级杆为例,串联四级杆质谱仪大概有1米长左右,所以我们希望离子在飞行1米的过程中,不要碰到其它的空气分子。那么对于串联四级杆来讲,只要维持的真空度能保证1米距离内不会碰到空气分子就可以了。所以串联四级杆通常只需要-1E5 mbar的真空度。 而对于Q-TOF来说,离子的飞行距离大概是在5-7米(大伙儿还记得吗?前面介绍Q-TOF时专门提到了7米这个飞行距离),比串联四级杆的飞行距离长了将近一个数据级,所以Q-TOF质谱仪要求的真空度大约在-1E-6 ~ -1E-7 mbar,才能保证离子在飞行这么长的过程中,不会碰撞到其它空气分子。 而对于Orbitrap质谱仪,离子在里面飞行的时间可以达到1秒钟,会飞行非常远的距离,所以Orbitrap要求-1E-10 mbar这样的真空度。 离子源系统 :我们需要把样品从外界大气压的非电离环境中导入质谱仪,变成一个气态的离子,所以需要一个离子源来实现这个功能。 计算机系统 :实现质谱仪的控制和数据的采集。 气体系统 :气体供应和废气处理(氮气、氩气) 电力供应 :UPS不间断电源系统 加上核心组件质量分析器,以上就是组成质谱仪的六大系统 。后面我们还会讨论每一部分的结构、使用以及维护。 安装好这六大组件的质谱仪可以用下面的示意图来表示。通常情况下,质量分析器和高真空的涡轮泵都会装在一个大盒子里,这个模块叫主机,而低真空泵(油泵)会放在主机的外面,因为这部分会产生很多的震动、噪音和热量,需要分开放置,从而防止震动对质谱仪产生的影响。质谱仪前面会有一个离子源,侧面会有一个废气口,质谱仪和泵产生的废气,通过这个排气管排到室外。尤其是泵产生的废气,通常是致癌的,所以排气尤其重要。 以上讨论了如何评估质谱仪的性能、串联质谱仪的工作原理,以及组成质谱仪的六大组件。下一篇将会聊聊液相色谱仪的构成,以及液质联用设备的工作原理。
2023-08-13 13:35:451

什么是质谱仪?

分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达105~106量级,可测量原子质量精确到小数点后7位数字。质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。固体火花源质谱:对高纯材料进行杂质分析。可应用于半导体材料有色金属、建材部门;气体同位素质谱:对稳定同位素C、H、N、O、S及放射性同位素Rb、Sr、U、Pb、K、Ar测定,可应用于地质石油、医学、环保、农业等部门
2023-08-13 13:35:541

串联质谱法的原理是什么?

串联质谱法是指用质谱作质量分离的质谱方法。它还有几种名称,如质谱-质谱法,多级质谱法,二维质谱法和序贯质谱法。作用:1 诱导第一级质谱产生的分子离子裂解,有利于研究子离子和母离子的关系,进而给出该分子离子的结构信息。2 从干扰严重的质谱中抽取有用数据,大大提高质谱检测的选择性,从而能够测定混合物中的痕量物质。串联质谱仪的组合方式:1 磁分析器-静电分析器-磁分析器2静电分析器-磁分析器-静电分析器3 三重四极滤质器质谱仪4 混合式串联质谱仪,如MA-ESA-Q-Q。实现串联质谱有空间串联的时间串联两种方式。以MA-ESA-Q-Q说明空间串联质谱的作用。其机制为: 先用MA进行质量分离,筛先出某一种离子,在MA与ESA之间进行第一次碰撞活化,高能量的离子产生出一级子离子;再由ESA从一级子离子中筛先出某一种离子,它经减速后在一级Q中进行第二次碰撞活化,产生低能量碰撞诱导分解产物(二级子离子),二级子离子再通达二级Q进行分析,由于在此系统中同时检测了高、低能量碰撞的诱导分解产物,因此可获得较全面的离子信息。离子阱属于时间串联式质谱,在离子阱中进行质量选择、离子活化、质量分析,而且可多次重复。
2023-08-13 13:36:122

怎么看待质谱法?

目前,质谱分析法(massspectrometricmethod)是测量同位素丰度最有效的方法。质谱仪根据带电原子和分子在磁场或电场中具有不同的运动,将它们相互分离。由于质谱仪的种类多样,用途又非常广泛,因此,就不一一进行介绍下面仅简单介绍一下质谱分析的基本原理,详细论述可参考Brand(2002)。质谱仪一般可分为四个重要的组成部分:①进样系统;②离子源;③质量分析器;④离子检测器(图1.8)。图1.8用于稳定同位素测量的气源质谱仪示意图(1)进样系统(inletsystem):这一特殊装置需要在几秒钟内迅速、连续地分析两个气体(样品和标准气),所以安装较为特殊,包括一个转换阀(changeovervalve)。这两种气体由直径约0.1mm、长约1m的毛细管从储样室(reservoir)中引入,其中一种气体流向离子源(ionsource),另一种气体流向废气泵(wastepump),从而[tele.magic61.cn/article/501798.html][tele.liuguanzhang.com.cn/article/501349.html][tele.gzxsdyy.cn/article/402385.html][tele.jswybg.cn/article/901748.html][tele.leanstartup.cn/article/960135.html][tele.syybx.cn/article/460973.html][tele.qucat.cn/article/403928.html][tele.cnlev.cn/article/076294.html][tele.qucat.cn/article/216095.html][tele.cnlev.cn/article/732016.html]
2023-08-13 13:36:343

微生物质谱仪检测原理

微生物质谱仪检测原理如下:微生物的质谱鉴定是一种基于细菌全细胞蛋白质组指纹图谱分析的技术,与Sherlock全自动微生物鉴定系统的细胞脂肪酸成分分析相类似,质谱分析亦需要通过专门的数据分析和专家系统对未知细菌的特殊蛋白图谱与菌种文库中收集的菌种蛋白质组指纹图谱进行比较。由于微生物质谱分析的蛋白质大分子适合于飞行时间质量分析器(time-of-flight analyzer),因此,微生物的质谱鉴定被统称为基质辅助激光解吸电离的飞行时间质谱技术(matrix-assisted laser desorption ionization time-of-flight mass spectrometry,MALDI-TOF MS)。MALDI-TOF MS能直接对微生物的蛋白质混合物进行分析,具有适应范围广、准确、灵敏、特异、鉴定快速、高通量。质谱分析本是一种物理方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。
2023-08-13 13:36:511

电感耦合等离子体质谱仪用途有哪些

摘要:电感耦合等离子体质谱仪的工作原理比较复杂,气体经过仪器,经过高频感应圈时,产生磁场,从而使激发态的粒子回收到稳定的基态时要放出一定的能量,表现为一定波长的光谱,通过对比即可分析样品中所含元素的种类和含量。电感耦合等离子体质谱仪用途主要有痕量及超痕量多元素分析和同位素比值分析。具体的电感耦合等离子体质谱仪额的知识和我一起到文中来看看吧!一、电感耦合等离子体质谱仪原理是什么电感耦合等离子体质谱仪是在这个行业中比较常用到的一种设备,它主要是由等离子体发生器、雾化室、矩管、四极质谱仪和一个快速通道电子倍增管等部件组成,下面我们就来详细的介绍下电感耦合等离子体质谱仪工作原理:高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有三个同轴氢气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。工作气体(Ar)则由中部的石英管道引入,开始工作时启动高压放电装置让工作气体发生电离,被电离的气体经过环绕石英管顶部的高频感应圈时,线圈产生的巨大热能和交变磁场,使电离气体的电子、离子和处于基态的氖原子发生反复猛烈的碰撞,各种粒子的高速运动,导致气体完全电离形成一个类似线圈状的等离子体炬区面,此处温度高达6000一10000摄氏度。样品经处理制成溶液后,由超雾化装置变成全溶胶由底部导入管内,经轴心的石英管从喷咀喷入等离子体炬内。样品气溶胶进入等离子体焰时,绝大部分立即分解成激发态的原子、离子状态。当这些激发态的粒子回收到稳定的基态时要放出一定的能量(表现为一定波长的光谱),测定每种元素特有的谱线和强度,和标准溶液相比,就可以知道样品中所含元素的种类和含量。二、电感耦合等离子体质谱仪用途有哪些电感耦合等离子体-质谱仪是一种用于环境科学技术及资源科学技术领域的分析仪器,那么你知道电感耦合等离子体质谱仪用途有哪些吗?电感耦合等离子体质谱仪主要用途:1、痕量及超痕量多元素分析。2、同位素比值分析。
2023-08-13 13:37:191

氦气质谱仪原理

氦气质谱仪原理是根据质谱学原理,用氦气作示漏气体制成的气密性检测仪器,由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成,质谱室里的灯丝发射出来的电子,在室内来回地振荡,并与室内气体和经漏孔进人室内的氦气相互碰撞使其电离成正离子,这些氦离子在加速电场作用下进人磁场,由于洛伦兹力作用产生偏转,形成圆弧形轨道,改变加速电压可使不同质量的离子通过磁场和接收缝到达接收极而被检测。
2023-08-13 13:37:411

布鲁克质谱仪的鉴定原理

布鲁克质谱仪的鉴定原理:1、物质气化后以分子状态进入质谱仪后,经过灯丝发射的电子轰击后,成各种不同的碎片。2、有的是只掉了一个h,有的是掉了一个基团,有的成为更小的碎片。然后这些碎片进入四极杆后,四极杆通过不同的电的方向变换,这些碎片在通过四极杆时,由于碎片的质量和所带的电核不同。3、有的是只掉了一个h,有的是掉了一个基团,有的成为更小的碎片。然后这些碎片进入四极杆后,四极杆通过不同的电的方向变换,这些碎片在通过四极杆时,由于碎片的质量和所带的电核不同。
2023-08-13 13:38:211

试述质谱仪的工作原理,并指出硬电离源和软电离源的区别?

质谱仪是利用电磁学原理,是试样分子转变成代正电荷的气体离子,并按离子的荷质比将它们分开,同时记录和显示这些离子的相对强度。硬电离源有足够的能量碰撞分子,使它们处在较高的激发能态。其弛豫过程包括硬电离源键的断裂并产生荷质比小于分子离子的碎片离子。由硬电离源所获得的质谱图,通常可以提供被分析物质所含功能基的类型和结构信息。软电离源由软电离源软电离源所获得的质谱图中,分子离子峰的强度很大,碎片离子峰较少且强度较低,但提供的质谱数据可以得到精确的分子质量。
2023-08-13 13:38:311

质谱分析法的基本原理

质谱分析方法是利用质谱仪测定各种元素的同位素质量和相对丰度的方法。质谱仪由离子源、分析器和收集器三部分组成。样品先在气体放电管内被加热形成离子,之后样品离子通过几道狭缝进行速度筛选。通过最后一道狭缝的离子均具有恒定的速度。具有恒定速度的离子进入分析器后受到外加磁场的作用,它们将作圆周运动。由于各种同位素离子的质量不同,它们将循着不同的路径到达收集器。用照相底板拍摄下这些轨迹,分析底板上各种同位素离子的位置和强度,可求得它们的质量和相对丰度。质谱仪方法现已是一种得到广泛应用的化学分析方法,它可用于痕量元素分析。它也可进行同位素分离以制备纯的同位素样品。江苏天瑞仪器股份有限公司GC-MS 6800是天瑞仪器精心打造的一款高性价比气相色谱质谱联用仪,具有完全的自主知识产权,拥有多项技术,可广泛应用于高分子材料、环境保护、电子电器、医药、石油化工、食品安全、纺织皮革等多行业中有害物质的检测。
2023-08-13 13:38:432

质谱仪中四级杆的工作原理是什么

质谱仪中四级杆的工作原理如下:在四级杆质量选择器的硬件中,通常的做法是调整射频工作频率w来选择离子的质量,调整U与V的比值来调整离子的通过率。本节对应的图片可见,三角形区域为该质量的离子稳定的区域。U与V的比值在此体现为斜率。可见,U/V越大,离子的选择精度越高,仪器的解析能力越强,但是能稳定通过的离子数量减小;而U/V比值越小,离子通过的数量多,但是解析度下降。经过权衡之后,大多数四级杆质谱仪的解析能力大约都是1Th,体现在质谱图上就是半峰宽度大约为1Th或者1Da。
2023-08-13 13:39:004

高中化学.什么是质谱仪,原理是什么,在化学中有什么应用

质谱仪是用来测分子或者离子还有一些中间体的相对分子量的,原理就是高中的带电粒子在磁场中的偏转半径和质荷比有关.一般分子需要先经过电子束的轰击才行
2023-08-13 13:40:491

质谱仪原理是怎样的?

质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。扩展资料有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。分为四极杆质谱仪、离子阱质谱仪、飞行时间质谱仪和磁质谱仪等。有机质谱仪的发展很重要的方面是与各种联用仪(气相色谱、液相色谱、热分析等)的使用。它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的"进样器",将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息。可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。
2023-08-13 13:41:091

质谱仪的工作原理是什么

某化工厂每季度需用质谱仪分离检测同位素两次,但中心化验室没有质谱仪,化验室主任口头向分管厂长反映后,决定派小李去采购,并要求小李一定要买性能最先进的质谱那些做法不合理
2023-08-13 13:41:269

质谱仪原理

质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。扩展资料有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。分为四极杆质谱仪、离子阱质谱仪、飞行时间质谱仪和磁质谱仪等。有机质谱仪的发展很重要的方面是与各种联用仪(气相色谱、液相色谱、热分析等)的使用。它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的"进样器",将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息。可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。
2023-08-13 13:42:181

质谱仪的工作原理是什么

质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。扩展资料:质谱仪的分类1、有机质谱仪有机质谱仪基本工作原理:以电子轰击或其他的方式使被测物质离子化,形成各种质荷比(m/e)的离子,然后利用电磁学原理使离子按不同的质荷比分离并测量各种离子的强度,从而确定被测物质的分子量和结构。2、无机质谱仪无机质谱仪与有机质谱仪工作原理不同的是物质离子化的方式不一样,无机质谱仪是以电感耦合高频放电 (ICP)或其他的方式使被测物质离子化。3、同位素质谱仪同位素质谱分析法的特点是测试速度快,结果精确,样品用量少(微克量级)。能精确测定元素的同位素比值。广泛用于核科学,地质年代测定,同位素稀释质谱分析,同位素示踪分析。参考资料:百度百科-质谱仪
2023-08-13 13:42:341

质谱仪原理

分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达105~106量级,可测量原子质量精确到小数点后7位数字。质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。固体火花源质谱:对高纯材料进行杂质分析。可应用于半导体材料有色金属、建材部门;气体同位素质谱:对稳定同位素C、H、N、O、S及放射性同位素Rb、Sr、U、Pb、K、Ar测定,可应用于地质石油、医学、环保、农业等部门
2023-08-13 13:42:552

质谱法的原理是什么?

质谱法的原理如下:待测化合物分子吸收能量(在离子源的电离室中)后产生电离,生成分子离子,分子离子由于具有较高的能量,会进一步按化合物自身特有的碎裂规律分裂,生成一系列确定组成的碎片离子,将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。由于在相同实验条件下每种化合物都有其确定的质谱图,因此将所得谱图与已知谱图对照,就可确定待测化合物。质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱技术发展很快。随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑侦科学,生命科学,材料科学等各个领域。谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用GC-MS进行分析,因为GC-MS使用EI源,得到的质谱信息多,可以进行库检质谱仪索。毛细管柱的分离效果也好。
2023-08-13 13:43:101

lcms质谱仪原理

质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪。按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。中文名 质谱仪外文名mass spectrograph又称质谱计含义分离和检测不同同位素的仪器快速导航分类定义质谱仪能用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。原理公式:q/m=E/B1B2r质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的一种分析方法[1] 。质谱仪简介质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。用法分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达 105 ~106 量级,可测量原子质量精确到小数点后7位数字。质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。固体火花源质谱:对高纯材料进行杂质分析。可应用于半导体材料有色金属、建材部门;气体同位素质谱:对稳定同位素C、H、N、O、S及放射性同位素Rb、Sr、U、Pb、K、Ar测定,可应用于地质石油、医学、环保、农业等部门。
2023-08-13 13:43:381

什么是质谱,质谱分析原理是什么

质谱是通过高能电子束轰击气化的分子或碎片,产生各种分子离子峰和碎片离子峰,根据这些信息推测有机物结构及其分子量。
2023-08-13 13:43:508

质谱仪的原理是什么 化学题中质谱仪的图像怎么看

看等效氢位 一个峰是一个
2023-08-13 13:46:581

质谱法的原理是啥?

质谱法的原理如下:待测化合物分子吸收能量(在离子源的电离室中)后产生电离,生成分子离子,分子离子由于具有较高的能量,会进一步按化合物自身特有的碎裂规律分裂,生成一系列确定组成的碎片离子,将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。由于在相同实验条件下每种化合物都有其确定的质谱图,因此将所得谱图与已知谱图对照,就可确定待测化合物。质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱技术发展很快。随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑侦科学,生命科学,材料科学等各个领域。谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用GC-MS进行分析,因为GC-MS使用EI源,得到的质谱信息多,可以进行库检质谱仪索。毛细管柱的分离效果也好。
2023-08-13 13:47:051

质谱仪的原理是怎样的?

般质谱仪结构与工作原理 质谱分析法主要是通过对样品的离子的质荷比的分析而实现对样品进行定性和定量的一种方法。因此,质谱仪都必须有电离装置把样品电离为离子,有质量分析装置把不同质荷比的离子分开,经检测器检测之后可以得到样品的质谱图,由于有机样品,无机样品和同位素样品等具有不同形态、性质和不同的分析要求,所以,所用的电离装置、质量分析装置和检测装置有所不同。但是,不管是哪种类型的质谱仪,其基本组成是相同的。都包括离子源、质量分析器、检测器和真空系统。
2023-08-13 13:47:332

什么是质谱仪?

质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。扩展资料有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。分为四极杆质谱仪、离子阱质谱仪、飞行时间质谱仪和磁质谱仪等。有机质谱仪的发展很重要的方面是与各种联用仪(气相色谱、液相色谱、热分析等)的使用。它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的"进样器",将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息。可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。
2023-08-13 13:47:421

质谱仪是怎样产生质谱图?

质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。扩展资料有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。分为四极杆质谱仪、离子阱质谱仪、飞行时间质谱仪和磁质谱仪等。有机质谱仪的发展很重要的方面是与各种联用仪(气相色谱、液相色谱、热分析等)的使用。它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的"进样器",将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息。可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。
2023-08-13 13:47:551

质谱仪是啥?谁发明的?

质谱仪 又称质谱计[1](mass spectrometer)。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。   分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达 105 ~106 量级,可测量原子质量精确到小数点后7位数字。  质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。  固体火花源质谱:对高纯材料进行杂质分析。可应用于半导体材料有色金属、建材部门;气体同位素质谱:对稳定同位素C、H、N、O、S及放射性同位素Rb、Sr、U、Pb、K、Ar测定,可应用于地质石油、医学、环保、农业等部门
2023-08-13 13:48:091

质谱仪是做什么的?

分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达105~106量级,可测量原子质量精确到小数点后7位数字。质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。固体火花源质谱:对高纯材料进行杂质分析。可应用于半导体材料有色金属、建材部门;气体同位素质谱:对稳定同位素C、H、N、O、S及放射性同位素Rb、Sr、U、Pb、K、Ar测定,可应用于地质石油、医学、环保、农业等部门
2023-08-13 13:48:191

高效液相质谱联用仪的工作原理,可以告诉我吗?

GC/MS被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。 质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。 接口:由GC出来的样品通过接口进入到质谱仪,接口是色质联用系统的关键。 接口作用: 1 压力匹配——质谱离子源的真空度在10-3Pa,而GC色谱柱出口压力高达105Pa,接口的作用就是要使两者压力匹配。 2 组分浓缩——从GC色谱柱流出的气体中有大量载气,接口的作用是排除载气,使被测物浓缩后进入离子源。 常见接口技术有: 1 分子分离器连接(主要用于填充柱)扩散型——扩散速率与物质分子量的平方成反比,与其分压成正比。当色谱流出物经过分离器时,小分子的载气易从微孔中扩散出去,被真空泵抽除,而被测物分子量大,不易扩散则得到浓缩。 2 直接连接法(主要用于毛细管柱)在色谱柱和离子源之间用长约50cm,内径0.5mm的不锈钢毛细管连接,色谱流出物经过毛细管全部进入离子源,这种接口技术样品利用率高。 3 开口分流连接该接口是放空一部分色谱流出物,让另一部分进入质谱仪,通过不断流入清洗氦气,将多余流出物带走。此法样品利用率低。 离子源 离子源的作用是接受样品产生离子,常用的离子化方式有: 电子轰击离子化(electron impact ionization,EI) lEI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+ ) , M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 化学离子化(chemical ionization,CI) 将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与 样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2 ,形成(M-1)离子。 场致离子化(field ionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 场解吸离子化( field desorption ionization, FD) 用于极性大、难气化、对热不稳定的化合物。 负离子化学离子化(negative ion chemical ionization,NICI) 是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度( 10-15 g)。质量分析器 其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有四极质量分析器(quadrupole analyzer) 原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 检测器 检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2-3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 GC-MS的常用测定方法l总离子流色谱法(total ionization chromatography,TIC)—— 类似于GC 图谱,用于定量。l反复扫描法(repetitive scanning method,RSM)——按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(mass chromatography,MC)——记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 选择性离子监测(selected ion monitoring,SIM)—— 对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2-3个数量级。 质谱图——为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。
2023-08-13 13:48:305

蛋白质谱的原理及使用(一)

转发自 http://crickcollege.com/news/179.html 为了直观一些,我们先上几张质谱仪的照片,大伙儿感受一下~ 质谱仪到底是个啥呢?我们还是先来掉个书袋吧,“官方”定义是这样的:用来测定气态离子质荷比(m/z)的仪器。对照的英文是:An instrument used to determine the mass-to-charge ratio (m/z) of gas phase ions. 我们来抓抓这里面的关键词:气态、离子、质荷比! 从这几个关键词里,你感受到了吗?其实质谱仪检测的范围是非常有限的。首先,它只能检测气态的物质,其次,该物质还必须得是离子。而检测得到的数值也只是该离子的质量与电荷的比值! 也就是说,当离子带一个正电荷或一个负电荷时,质谱仪检测到的m/z的数值就刚好等于离子的重量;当电荷数大于等于2时,我们得用检测到的m/z的数值乘以电荷数,才能得到离子的质量。 看到这里,你是不是有点感慨,原来大名鼎鼎的质谱仪,也就这点儿功能啊~我要说的是,功能不在多,而在专!就是这点功能,却引领了整个领域的革新! 质谱仪的离子的质荷比测定到,可以通过质谱图展示。那么质谱图又是长什么样的呢? 我们以上面两张质谱图为示例,质谱图的横轴就是质荷比,纵轴是离子强度。第一张是正丁烷的谱图,横轴质荷比的取值范围是从10到60。另一张是代谢物质谱图,横轴质荷比是100-400。那些小柱子就是信号峰了。 接下来,我们要聊的问题就是:质谱仪是如何获得这些质谱图? 前面说了,质谱只能检测离子,所以要得到质谱图,首先我们要获得离子。离子分为两类:正离子和负离子,那么对应的,它们带正电荷或者带负电荷。 要生成一个正离子,其实就是分子结合一个或多个质子,就可以带上正电荷,这是最简单直接的办法;或者呢,让一个分子失去一个电子,也可以带上一个正电荷。相应的,生成负离子的方法,就是分子结合一个电子,或者失去一个质子。 我们还是以正丁烷为例,它的分子量是58,我们在质谱图的横轴(m/z)58处正好看到一个峰,说明是正丁烷的质谱图是正丁烷分子失去一个电子后,生成正离子而得到的。 我们再来看看另外一个例子,比如一个分子式为C22H25O3N3的化合物,通过计算知道它的分子量是379.1890,而在质谱图我们看到m/z轴上的峰是在380.1958,实际上是这个化合物得到一个质子后(分子量+1),形成正离子产生的质谱图。 所以呢,不同的质谱仪,不同的化合物,会得到不同的质谱图。比如第二个例子,如果你以为它的分子量就是380.1958,那计算出的结果肯定就是错的了。 那么,质谱仪是如何得到不同离子的质荷比信息呢?要回答这个问题,我们可以从质谱仪的种类和工作原理聊起。 磁质谱仪 前面说了,质谱仪是测定气态离子质荷比的仪器,所以进入质谱的离子一定得是带电的。当带电的离子进入电场或磁场时,它的飞行轨迹遵循一定的规律。比如我们把离子放到一个磁场当中,它飞行的时候会产生一个偏转,而偏转的半径与离子质荷比、磁场强度,以及它的动能有关,这就是洛伦兹力。通过检测它的偏转程度,就可以计算出它的质荷比。 所以最简单的质谱仪就是这种磁质谱仪,让离子飞过一个磁场,通过检测器检测它转弯的半径,就可以计算出它的质荷比。当然,现在这类质谱仪用得比较少了。接下来我们要介绍的TOF质谱仪更常用。 飞行时间质谱仪(TOF****) 这是目前很常用的质谱仪类型。它的工作原理是这样的,通过离子源得到离子以后,离子经过一个加速的区域,所有的离子都会获得一个相同的初始动能,然后它们进入一个没有电场的区域,进行自由地飞行!是不是画图很美?由于所有离子的初始动能是相同的,那么重的离子飞行速度就会慢一些,轻的离子飞得快一些,最终离子都会通过整个飞行区域,到达检测器。 通过测量离子的飞行时间,我们就可以推算出离子的质荷比。飞行时间是与质荷比的平方根成正比的。这就有点像跑步比赛,重的离子跑得慢一些,轻的跑得快一些,我们拿一个秒表,通过测定跑步时间,就可以计算出每个离子的质荷比了。这是一种原理很简单的质谱仪,也是目前使用广泛且性能很不错的质谱仪。 TOF质谱仪长什么样呢?我们来看看下面两个图。 这就是典型的飞行时间质谱仪的模样。因为我们要让离子在一个跑道上飞,就像奥运会上的跑步比赛一样,如果离子们都来跑100米,第一名和第二名可能只差0.01秒,区别起来会比较困难。但如果跑3000米,第一名与第二名可能会差10秒,甚至更多。所以跑道越长,我们越容易把离子区分开来。所以飞行时间质谱仪通常都需要有一个很长的飞行区间。 上图是两种典型的TOF质谱仪,左边是AB的4700质谱仪,它是竖着跑的,所以很高,有两米多。右边是Bruker的Ultraflex质谱仪,是横着跑的,长度也有两米多。所以TOF质谱仪的外表特点就是非常长,为了让离子能够尽可能跑得远一些。 **四级杆质谱仪 ** 除了TOF,还有一类很常用的质谱仪,就是我们经常听到的四级杆质谱仪。 为啥叫这个名字呢?如果我们来观察一下它的横截面,会发现,它是由四根电极组成的,电极的截面并不是完美的圆,而是双曲抛物线。 在横截面上,四根电极分成两组,两个相对的是一组,在相对的电极上加上一个相同的交流电压和直流电压,而在相邻的电极上,则加上相反的交流电压和直流电压,通过叠加交流电压和直流电压,不同质荷比的离子进入四级杆以后,会发生震荡,一边飞行,一边转圈。 当扫描的电压和频率一定的时候,只有特定质荷比的离子才能穿过四级杆,到达检测器。而其它质荷比的离子就会因为偏转太多,而打到四级杆上,或者从缝隙里穿出。 所以,四级杆质谱仪是用来做质量选择,只让特定质荷比的离子穿过质谱仪。通过改变四级杆上的电压,我们就可以让不同质荷比的离子依次穿过质谱仪,到达检测器。 四级杆质谱仪的外观通常都不会很长,在15-30cm左右,结构是比较紧凑。 离子阱质谱仪 还有一类质谱仪,与四级杆质谱仪非常相似,它就是离子阱质谱仪。分为两类,一类叫三维离子阱(3D Ion Trap)质谱仪,另一类叫线性离子阱(Linear Ion Trap)。 线性离子阱与四级杆质谱仪长得是非常像的,它的横截图跟四级杆质谱仪是一样的,只是它的侧面开了一个洞,来作离子弹出用的。四级杆质谱仪中,离子是穿过质谱仪飞出去的,而在离子阱质谱仪中,离子不会飞出质谱仪,而是一直在阱里面,沿着右下图像8字型的轨迹飞行。当扫描电压达到一定的数值以后,离子会被射出来。 离子的飞行轨迹示意图 对于三维离子阱,我们可以理解为,是将线性离子阱无限地压缩,压缩到最后变成这样一个很短的圆环,形成一个陷阱结构。三维离子阱有两个端电极和一对环形电极构成了一个封闭的空间,把离子困在里面。离子“阱”的名字就是这么来的,相当于是一个陷阱,把离子包在里面,一直进行转圈的运动。 离子阱与四级杆一样,可以通过改变加到离子阱上的扫描电压,让不同质荷比的离子射出来进行检测,也可以将特定质荷比的离子留在离子阱里面,进行后续的处理和操作。这是它们与TOF最大的不同,TOF只能检测不同质荷比的离子,却不能选择让哪些离子留下,而四级杆和离子阱既可以检测离子,同时也可以实现离子的选择,将想要的离子留在离子阱中,或者说,让特定的离子穿过四级杆。所以四级杆或离子阱还有一个名称,叫质量过滤器,它可以过滤特定质荷比的离子。 FTICR****和Orbitrap 我们要聊的第四类质谱仪是FTICR和Orbitrap,这类质谱是基于离子在电场或者磁场中会作回旋运动,通过测定回旋共振频率,并进行傅里叶变换,从而测定离子质荷比。 我们先来看看FTICR(见下图),它是将离子放到一个高强度的磁场中进行自旋共振,所以需要一个很大的超导磁铁,用来产生一个很强的磁场。 而Orbitrap则克服了必须要使用超导磁场的困难,它使用一个电场来限制离子的自旋共振。 image 这种类似的质谱仪都有非常高的分辨率,当然价格也很高。 以上就是我们常用的四类质谱仪:磁质谱仪、TOF、四级杆&离子阱、Orbitrap&FTICR,根据它们的原理和作用的不同,可以分为两大类: 1 质量检测器:仅可测定进入质谱仪的不同质荷比离子的丰度(TOF和Orbitrap等),不能选择离子通过质谱仪; 2 质量过滤器:测定不同质荷比离子的丰度,让特定质荷比或质荷比区段的离子通过质谱仪(四级杆和离子阱)。
2023-08-13 13:49:051

1、质谱仪的原理和应用 2、质谱仪的分类和关键部件

原理:根据不同质量数的带电粒子在电场或磁场中的运动状态的不同而实现分离和检测。组成:离子源、光学系统、真空系统、质量分析器、信号检测和数据处理系统其中,以离子源和质量分析器为质谱仪的核心部件分类:不同种类的离子源和不同种类的质量分析器以及两者的组合,构成了种类丰富的质谱仪关键部件的差别,这个话题太大,不是几句话说得清的,主要原因是关键部件种类很多,分析起来内容篇幅太多,如有需要,可以进一步交流。
2023-08-13 13:49:251

有机质谱仪是用什么来进行分离的?

质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。扩展资料有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。分为四极杆质谱仪、离子阱质谱仪、飞行时间质谱仪和磁质谱仪等。有机质谱仪的发展很重要的方面是与各种联用仪(气相色谱、液相色谱、热分析等)的使用。它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的"进样器",将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息。可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。
2023-08-13 13:49:331

便携式气相色谱质谱联用仪的工作原理以及应用

原理和台式的气质联用仪一样,便携只是体积更小,功耗更低罢了,原理没什么不同。
2023-08-13 13:49:502

质谱法原理及看图方法?

质谱法的原理如下:质谱就是真空中,利用电子束轰击待测化学物质的分子,将该分子打散,打成一个一个的带电荷的分子离子片段,再根据质谱仪上各个分子离子片段的出峰位置和强度,最终显示出各个离子的分子量以及相应浓度。最右面的峰是全分子的离子峰,是化学物质的分子失去1个质子产生的峰,最右面的分子量最大了,显然分子片段不可能比全分子的分子量大,所以最右侧峰应该是大约相对分子量的数值。氧上面加上正号,不一定是失去电子,多数情况下是氧又和一个质子(H+)结合了,从而多了一个正电荷。看质谱图的方法:看质谱图,只要看特征峰就好了,不要每个峰都知道是什么,只有有自己想要的峰,就行了。化学物质的分子中,单纯依靠质谱来判断是否有某种化学分子存在的情况几乎不存在,更重要的是做为一种辅助监测手段。不过懂得看质谱图,利用质谱分析,还是有必要的。拓展资料:质谱的解析大致步骤如下:1.确认分子离子峰,并由其求得相对分子质量和分子式;计算不饱和度。2.找出主要的离子峰(一般指相对强度较大的离子峰),并记录这些离子峰的质荷比(m/z值)和相对强度。3.对质谱中分子离子峰或其他碎片离子峰丢失的中型碎片的分析也有助于图谱的解析。4.用MS-MS找出母离子和子离子,或用亚稳扫描技术找出亚稳离子,把这些离子的质荷比读到小数点后一位。5.配合元素分析、UV、IR、NMR和样品理化性质提出试样的结构式。最后将所推定的结构式按相应化合物裂解的规律,检查各碎片离子是否符合。若没有矛盾,就可确定可能的结构式。6.已知化合物可用标准图谱对照来确定结构是否正确,这步工作可由计算机自动完成。对新化合物的结构,最终结论要用合成此化合物并做波谱分析的方法来确证资料链接:百度百科_质谱法
2023-08-13 13:50:111

三重四级杆质谱原理

原理:物质气化后以分子状态进入质谱仪后,经过灯丝发射的电子轰击后,成各种不同的碎片。有的是只掉了一个H,有的是掉了一个基团,有的成为更小的碎片。然后这些碎片进入四极杆后,四极杆通过不同的电的方向变换,这些碎片在通过四极杆时,由于碎片的质量和所带的电核不同(质荷比)。所以也随着四极杆电的方向变换而改变前进方向,带电碎片到达终点(接收端)的时间不同,质荷比太小或太大的带电碎片它们的方向变换也会过快或过慢(这个可以设置)会撞到四极杆而不能被检测,中间的碎片会按质荷比由小到大的顺序先后到达接受端,而被检测到。
2023-08-13 13:50:284

质谱仪的工作原理和质谱法可以提供哪些信息

不懂
2023-08-13 13:50:572