barriers / 阅读 / 详情

如何才能把三菱PLC的数据寄存器D变成32位的,来存储更多的数呢?

2023-08-23 19:39:54
共6条回复
余辉

直接创建以个双字的变量:

数模转换原理


三菱PLC存储指令,使用DMOV指令可使数据寄存器D存放32位数据,可以存储更多数据。

MOV指令存储数据是单字节的16位数据,范围是-32765到32767,如果超过这个范围,这个数超过16位(2进制意义上的)即十进制里面的32767。

需要用到DMOV指令了,DMOV指令可以传送32位以内的数。DMOV K10 D0,就是把十进制的10传送到D0和D1中,其中D1存高位,D0存低位,其中D1D0组成就是32位存储器。

扩展资料:

转换原理

1.数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现。数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。

根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数字信号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函数)的乘积。这样,用Sa函数的倒数作为频谱特性补偿,由数字信号便可恢复为采样信号。

由采样定理,采样信号的频谱经理想低通滤波便得到原来模拟信号的频谱。一般实现时,不是直接依据这些原理,因为尖锐的采样信号很难获得,因此,这两次滤波(Sa函数和理想低通)可以合并(级联),并且由于这各系统的滤波特性是物理不可实现的,所以在真实的系统中只能近似完成。

2.模数转换器是将模拟信号转换成数字信号的系统,是一个滤波、采样保持和编码的过程。模拟信号经带限滤波,采样保持电路,变为阶梯形状信号,然后通过编码器,使得阶梯状信号中的各个电平变为二进制码。

参考资料来源:百度百科-可编程逻辑控制器

wio

三菱PLC存储指令,使用DMOV指令可使数据寄存器D存放32位数据,可以存储更多数据。

MOV指令存储数据是单字节的16位数据,范围是-32765到32767,如果超过这个范围,这个数超过16位(2进制意义上的)即十进制里面的32767,我们就需要用到DMOV指令了,DMOV指令可以传送32位以内的数。DMOV K10 D0,就是把十进制的10传送到D0和D1中,其中D1存高位,D0存低位,其中D1D0组成就是32位存储器。

阿啵呲嘚

当您使用32位指令,也就是指令前添加字母D,其操作对象就是32位的了。

例如DMOV D0 D2就是将D0,D1组成的32位数据存入D2,D3组成的32位存储空间去。

snjk

传送数据时使用32位传送指令DMOV.比如[DMOV K**** D0],程序将自动将D1D2组成32位寄存器,D1存储高16位数据,D0存储低16位数据.

左迁

直接创建以个双字的变量

数模转换原理

Chen

使用Dmove指令

相关推荐

数模转换的实质是什么?

数字量转换成模拟量的过程叫做数模转换,简写成D/A。完成这种功能的电路叫做数模转换器,简称DAC。数模转换器的框图如图所示。 输入的二进制数码存入寄存器,存入寄存器的二进制数,每一位控制着一个模拟开关。原理:1、输入的二进制数码存入寄存器,存入寄存器的二进制数,每一位控制着一个模拟开关,模拟开关只有两种可能的输出:或是接地,或是经电阻接基准电压源。2、它由寄存器中的二进制数控制,模拟开关的输出送到加法网络,二进制数码的每一位都有一定的“权”,这个网络把每位数码变成它的加权电流,并把各位的权电流加起来得到总电流,总电流送入放大器,经放大器放大后得到与之对应的模拟电压,实现数字量与模拟量的转换。数模转换:就是将离散的数字量转换为连接变化的模拟量。与数模转换相对应的就是模数转换,模数转换是数模转换的逆过程。接下来我们将从转换器的分类,技术指标,模数变换的方法以及模数转换器的参数等这几方面来介绍数模转换。
2023-08-16 15:14:121

数模转换器电路原理是什么

数模转换器(ADC)是一种电路,它能够将模拟信号转换为数字信号。ADC通常是通过采样和量化来实现转换的。采样是指在模拟信号的某一时刻取样,量化是指将采样值转换为数字值。ADC的精度和分辨率是主要的性能指标。精度表示转换误差的大小,分辨率表示转换的最小变化量。常见的ADC有模数转换器,玄率转换器,差分增量转换器等。
2023-08-16 15:14:251

数字量模拟量的转换原理

数字量:有0和1组成的信号类型,通常是经过编码后的有规律的信号。和模拟量的关系是量化后的模拟量。模拟量:连续的电压,电流等信号量,模拟信号是幅度随时间连续变化的信号,其经过抽样和量化后就是数字量。1. 数模转换器是将数字信号转换为模拟信号的系统, 一般用低通滤波即可以实现。数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数字信号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函数)的乘积。这样,用Sa函数的倒数作为频谱特性补偿,由数字信号便可恢复为采样信号。由采样定理,采样信号的频谱经理想低通滤波便得到原来模拟信号的频谱。一般实现时,不是直接依据这些原理,因为尖锐的采样信号很难获得,因此,这两次滤波(Sa函数和理想低通)可以合并(级联),并且由于这各系统的滤波特性是物理不可实现的,所以在真实的系统中只能近似完成。2. 模数转换器是将模拟信号转换成数字信号的系统,是一个滤波、采样保持和编码的过程。模拟信号经带限滤波,采样保持电路,变为阶梯形状信号,然后通过编码器,使得阶梯状信号中的 各个电平变为二进制码。
2023-08-16 15:14:341

模数转换原理是什么啊

如果用124567890这是个点代表模;如果用0,1代表数,那么,凡是小于5的模一律认为是数的0,其他的人视为数的1,那么一次编码后就实现了转换。
2023-08-16 15:14:502

AD和DA的工作原理是什么?作用是什么?谢谢!

好复杂。。。不懂。。。
2023-08-16 15:15:015

模数转换是什么?

D/A转换器(又称数模转换器,简称DAC),一种将二进制数字量形式的离散信号转换成以标准量(或参考量)为基准的模拟量的转换器,作用是把数字量转变成模拟的器件。A/D转换器(又称模数转换器,或简称ADC),是指将模拟信号转换成数字信号的电路。A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号。A/D转换一般要经过取样、保持、量化及编码4个过程。在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。扩展资料:模数转换的方法从转换原理来分可分为直接法和间接法两大类:1、直接法是直接将电压转换成数字量。它用数模网络输出的一套基准电压,从高位起逐位与被测电压反复比较,直到二者达到或接近平衡。直接逐位比较型转换器是一种高速的数模转换电路,转换精度很高,但对干扰的抑制能力较差,常用提高数据放大器性能的方法来弥补。它在计算机接口电路中用得最普遍。2、间接法不将电压直接转换成数字,而是首先转换成某一中间量,再由中间量转换成数字。常用的有电压-时间间隔(V/T)型和电压-频率(V/F)型两种,其中电压-时间间隔型中的双斜率法(又称双积分法)用得较为普遍。参考资料来源:百度百科-模数转换器参考资料来源:百度百科-数模转换器
2023-08-16 15:15:361

ad7606转换原理是什么

AD7606是一款16位8通道数模转换器,它采用了先进的模拟数字转换技术,可以将模拟信号转换为数字信号。它的工作原理是:首先,将模拟信号输入到AD7606的模拟输入端,然后,AD7606将模拟信号转换为数字信号,最后,将数字信号输出到AD7606的数字输出端。AD7606的转换过程是由一系列的模拟电路和数字电路组成的,其中包括放大器、滤波器、比较器、数据转换器等。
2023-08-16 15:15:521

刚学习单片机,请说一下关于数模和模数转换最基本的知识

简单点:如果用124567890这是个点代表模;如果用0,1代表数,那么,凡是小于5的模一律认为是数的0,其他的人视为数的1,那么一次编码后就实现了转换。详细点:数模转换的原理 是 模数转换原理的逆过程数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器或DAC(Digital Analog Converter)。我们知道数分可为有权数和无权数,所谓有权数就是其每一位的数码有一个系数,如十进制数的45中的4表示为4×10,而5为5×1,即4的系数为10,而5的系数为1, 数模转换从某种意义上讲就是把二进制的数转换为十进制的数。 最原始的DAC电路由以下几部分构成:参考电压源、求和运算放大器、权产生电路网络、寄存器和时钟基准产生电路,寄存器的作用是将输入的数字信号寄存在其输出端,当其进行转换时输入的电压变化不会引其输出的不稳定。时钟基准产生电路主要对应参考电压源,它保证输入数字信号的相位特性在转换过程中不会混乱,时钟基准的抖晃(jitter)会制造高频噪音。二进制数据其权系数的产生,依靠的是电阻,CD格式是16bit,即16位。所以采用16只电阻,对应16位中的每一位。参考电压源依次经过每个电阻的电流和输入数据每位的电流进行加权求和即可得出模拟信号。这就是多比特DAC。 多比特与1比特的区别之处就是,多比特是通过内部精密的电阻网络进行电位比较,并最终转换为模拟信号
2023-08-16 15:16:021

模拟-数字-模拟转换技术的原理与过程是什么?

A/D转换 模数转换器模数转换过程包括量化和编码。量化是将模拟信号量程分成许多离散量级,并确定输入信号所属的量级。编码是对每一量级分配唯一的数字码,并确定与输入信号相对应的代码。最普通的码制是二进制,它有2n个量级(n为位数),可依次逐个编号。模数转换的方法很多,从转换原理来分可分为直接法和间接法两大类。 直接法是直接将电压转换成数字量。它用数模网络输出的一套基准电压,从高位起逐位与被测电压反复比较,直到二者达到或接近平衡(见图)。控制逻辑能实现对分搜索的控制,其比较方法如同天平称重。先使二进位制数的最高位Dn-1=1,经数模转换后得到一个整个量程一半的模拟电压VS,与输入电压Vin相比较,若Vin>VS,则保留这一位;若Vin<Vin,则Dn-1=0。然后使下一位Dn-2=1,与上一次的结果一起经数模转换后与Vin相比较,重复这一过程,直到使D0=1,再与Vin相比较,由Vin>VS还是Vin<V 来决定是否保留这一位。经过n次比较后,n位寄存器的状态即为转换后的数据。这种直接逐位比较型(又称反馈比较型)转换器是一种高速的数模转换电路,转换精度很高,但对干扰的抑制能力较差,常用提高数据放大器性能的方法来弥补。它在计算机接口电路中用得最普遍。 间接法不将电压直接转换成数字,而是首先转换成某一中间量,再由中间量转换成数字。常用的有电压-时间间隔(V/T)型和电压-频率(V/F)型两种,其中电压-时间间隔型中的双斜率法(又称双积分法)用得较为普遍。 模数转换器的选用具体取决于输入电平、输出形式、控制性质以及需要的速度、分辨率和精度。 用半导体分立元件制成的模数转换器常常采用单元结构,随着大规模集成电路技术的发展,模数转换器体积逐渐缩小为一块模板、一块集成电路。例子:例1:对于一个2位的电压模数转换器,如果将参考设为1V,那么输出的信号有00、01、10、11,4种编码,分别代表输入电压在0V-0.25V, 0.26V-0.5V, 0.51V-0.75V, 0.76V-1V时的对应输入。分为4个等级编码,当一个0.8V的信号输入时,转换器输出的数据为11。 例2:对于一个4位的电压模数转换器,如果将参考设为1V,那么输出的信号有0000、0001、0010、0011、0100、0101、0110、0111、1000、1001、1010、1011、1100、1101、1110、1111,16种编码,分别代表输入电压在0V-0.0625V, 0.0626V-0.125V, ...........0.9376V-1V。分为16个等级编码(比较精确)当一个0.8V的信号输入时,转换器输出的数据为1100
2023-08-16 15:16:251

将数字信号转换成模拟信号的过程叫什么?

AD转换AD转换就是模数转换。顾名思义,就是把模拟信号转换成数字信号。主要包括积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。将数字信号转换成模拟信号的过程叫解调;将模拟信号转换成数字信号的过程称为调制。解调就是把模拟通信线路上传来的模拟信号转换成数字信号传送给计算机。解调是从携带消息的已调信号中恢复消息的过程。数模转换就是将离散的数字量转换为连接变化的模拟量。与数模转换相对应的就是模数转换,模数转换是数模转换的逆过程。D/A转换的基本原理,是待转换的数字乘以步进电压,获得输出电压值,然后输出。脉冲编码调制(PCM),将模拟信号转换为数字信号的过程称为脉冲编码调制,将数字信号转换为模拟信号的过程称为脉冲解码调制。正交振幅调制(QAM),将数字信号分为两路,分别进行调制,然后将两路信号相加,形成复合信号。计算机接收信号阶段。由调制解调器把数计算机在发送数据时转换为模拟信号发生在,计算机接收信号的阶段。这个过程称为“调制”,经地调制的信号通过载波传送到另一台计算机前。将数字信号转换成模拟信号叫解调;将模拟信号转换成数字信号的过程称为调制.解调是从携带消息的已调信号中恢复消息的过程。在各种信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号。
2023-08-16 15:16:331

模拟及数模混合器件的原理是什么与应

模拟及数模混合器件的原理与应用模拟和数字混合器件是一种把模拟信号和数字信号相结合的电子器件。它们通常用于解决在模拟和数字电子系统中的信号转换问题,并将信号从一种形式转换为另一种形式。模拟信号是指连续变化的电压或电流信号,而数字信号是指用数字代码表示的信号。为了使这两种信号在电子系统中正确地传输和处理,必须使用模拟和数字混合器件。常见的模拟和数字混合器件包括模数转换器(ADC),数模转换器(DAC),模拟开关和数字信号处理器(DSP)。这些器件通常用于解决在数字电子系统和模拟电子系统之间的信号转换问题,例如,将模拟信号转换为数字信号以便在数字电子系统中处理,或将数字信号转换为模拟信号以便在模拟电子系统中处理。模拟和数字混合器件的应用领域很广,主要包括:音频处理,通信系统,医疗设备,汽车电子,家用电子,工业控制系统等。例如,在音频处理领域,模数转换器(ADC)可以将音频信号从模拟信号转换为数字信号,以便在数字处理器中处理。数模转换器(DAC)则可以将处理后的数字信号转换为模拟信号,以便在音频播放器中播放。在通信系统领域,模拟和数字混合器件可以用于实现信号的转换和处理,以确保信号的准确性和可靠性。在医疗设备领域,模拟和数字混合器件可以用于实现生物信号的采集和处理,以确保诊断的准确性。总的来说,模拟和数字混合器件是一种非常重要的电子器件,它们在很多领域都有着广泛的应用。
2023-08-16 15:16:411

模数转换的通用模数/数模转换结构

软件无线电中通常采用的ADC和DAC的结构包括以下4种类型:(1)并行结构,包括Flash-ADC和串状DAC;(2)分段结构,包括折叠内插ADC和“分段”梯形DAC;(3)迭代结构,包括分区ADC、流水线型ADC、逐次逼近型ADC;(4)Σ-△结构,包括Σ-△ADC和DAC。下面以ADC为例对以上几种结构进行介绍。1.并行结构并行结构的数据转换器的基本思想是:同时比较待转换的信号电平与所有级别的量化电平之间的关系,在模拟信号和数字信号之间相互转换。并行结构所对应的A/D和D/A转换器件分别为Flash-ADC和串状DAC。Flash-ADC内含一列并联比较器,一列由电阻分压器产生的电平作为相应的比较器的基准电压。被转换的模拟电压信号同时加到全部比较器上,各比较器的输出经编码后作为ADC的输出,如图2.12所示。一个分辨率为N(bit)的Flash-ADC含有2N个精密电阻,2Nu22121个高速比较器;分辨率每增加1bit,需要增加2N个精密电阻和2N个高速比较器,这会大大增加集成的复杂度和器件功耗。因此一般Flash-ADC的分辨率无法达到很高。串状DAC是实现Flash-ADC的逆操作,因使用电阻串来构造参考电压而得名,在有的书中也被称为开尔文分配器。串状DAC依靠待转换数据来控制一组开关,以产生合适的电流通过精密电阻,从而产生合适的模拟信号电压。并行结构只需要一级模拟电路,因此具有设计简单,转换时间短,速度快的优点,在所有可能的结构中提供最快的数据转换。在分辨率要求较低的情况下,Flash-ADC和串状DAC两种结构都容易采用超大规模集成电路(VLSI)进行设计。然而,由于比较器(或开关)和精密电阻的数量随着转换器的分辨率呈指数增长,Flash-ADC和串状DAC的芯片面积和功耗也随之呈指数增长。2.分段结构分段结构的数据转换器的思想是把输入信号分成MSB和LSB两个分量,之后两个分量通过各自所对应的数据转换器进行处理,最后将处理的结果组合起来形成输出信号。其中MSB分量反映了输入信号相对较大的幅度增量,而LSB反映了在MSB上所叠加的较小的幅度变化。对于数字信号而言,MSB代表了高位比特,而LSB代表了低位比特。而软件无线电所生成的数字信号也需要变换成模拟信号才能进行射频放大输出。这一切都是通过A/D转换器(ADC)和D/A转换器(DAC)来实现的。与传统无线电不同,软件无线电要求尽可能地以数字形式处理无线信号,因此必须将A/D和D/A转换器尽可能地向天线端推移,这就对A/D和D/A转换器的性能提出了更高的要求。主要体现在两个方面。(1)采样速率。依据采样定理,A/D转换器的抽样频率fs应大于2Wa(为被采样信号的带宽)。在实际中,由于A/D转换器件的非线性、量化噪声、失真及接收机噪声等因素的影响,一般选取fs>2.5Wa。(2)分辨率。采样值的位数的选取需要满足一定的动态范围及数字部分处理精度的要求,一般分辨率80dB的动态范围要求下不能低于12位。本节首先介绍模数/数模变换的原理及关键技术,接着给出模数/数模转换器的一些关键参数,最后讨论几种通用的模数/数模转换器的结构。
2023-08-16 15:16:511

请问什么是∑-△数模转换器,它的原理是什么?

∑-△ A/D转换器---电机的转速和位置可以通过监控电机每个相位的电流来判断。∑-△ A/D转换器能非常精确地监控电流,因而对电机控制应用十分理想。在起重机、抽水机和鼓风机等多种工业应用中,电机工作在高温或危险环境。在这些应用中,内在安全性非常重要,必须隔离电流。---隔离电路和数模转换电路集成在一起可以在单一封装中实现高数据传输率、低功耗和电流隔离。∑-△调制器提供串行位流数据格式--其按时平均值和输入信号成正比--使它们容易隔离。用于将基带信号转换为中频信号。信号源提供第一频率的第一周期信号。直接数字合成器(84)根据第一周期基准信号提供第二频率的第二周期信号。上转换器电路以数字方式,利用第二周期信号将基带信号上转换为数字中频信号。数模转换器(82)利用第一周期信号将数字中频信号转换为模拟中频信号。参见http://www.cndzz.com/tech/Article/Print.asp?ArticleID=2737《高性能∑-Δ ADC的原理及应用》
2023-08-16 15:17:051

数模转换的区别

一般说的模拟和数字区别,实质上就是问模拟信号和数字信号的区别:1、信号源工作原理的不同模拟信号就是模拟着信息(如声音信息、图像信息等等)变化而变化的信号;而数字信号却不同,它是将信号经过抽样、量化、编码之后形成数字信号(也叫脉冲信号)。2、输出方式的不同模拟信号一般通过传统的传输线路(例如电话网、有线电视网)来传输。 数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线,和光纤介质等将通信双方连接起来,才能将信号从一个节点传到另一个节点。3、信号状态和方式不同数字信号指自变量是离散的、因变量也是离散的信号,这种信号的自变量用整数表示,因变量用有限数字中的一个数字来表示。在计算机中,数字信号的大小常用有限位的二进制数表示。模拟信号是指信息参数在给定范围内表现为连续的信号。 或在一段连续的时间间隔内,其代表信息的特征量可以在任意瞬间呈现为任意数值的信号。
2023-08-16 15:17:131

模拟信号转化为数字信号的原理

这个原理与单片机没有什么关系,只要看看数字电路就可以明白了,去看看你的教材吧.
2023-08-16 15:18:043

如果一个12位的A/D电压转换器,设其满量程电压为10V,试问其输入端的电压为8.24V,求输出的数字量是多少

4096*8.24/10=3375然后用计算器将其转换为二进制和16进制
2023-08-16 15:18:553

逐次二进制比较法ADC的工作原理是什么?主要优缺点是是什么?

开关S1闭合。电容C1上的电压随输入信号上升。当输入信号达到最大幅值时,S1断开,此时C1保持了输入信号的最大幅值。在探测到输入脉冲刀锋制之后。逐次比较ADC开始它的模数转换过程。首先数模转换(DAC)的最高位被置1。如果在比较器输入端,DAC的输出电压比输入信号的幅值Vs大,则最高位被复位。如果DAC的输出电压比输入信号的幅值Vs小,则最高位状态“1”被保留。然后再将DAC的次高位置1,重复上述过程。.......这个处理过程被不断重复,直到所有位都被比较完毕。比较结束时。驱动DAC的寄存器各位的状态即为输入模拟脉冲幅度被转换的数字量。这个二进制的数码Nc作为寄存器的地址,将此内容的地址加1。在对一系列脉冲转换、存储后,即可得到脉冲幅度的概率分布图,即脉冲幅度谱。如果这个ADC有n位(即2n道),则需要n个比较周期才能完成整个分析过程。且对于各种输入脉冲幅度,都需要同样的分析时间。优缺点:虽然逐次比较法谱仪ADC可具有高分辨率谱仪所需要的道数,但它们的微分非线性却不能满足要求。微分非线性的典型值为1/2最小有效位,这将带来50%的道宽不一致。不过这个文图可通过加入“滑尺技术”加以解决。最终可使得微分非线性降到<1%。带有滑尺技术的逐次二进制比较法ADC可具有较低的微分非线性及较短的转换时间,并且其转换时间与脉冲幅度无关。此类型产品的典型值为:分辨率从1000-16000道,其转换时间可做到从2-20mS。
2023-08-16 15:19:551

信号转换电路有哪些类型?试举例说明其功能。

什么是数模转换?数模转换原理及实质是什么随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。 由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。 这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。数模转换就是将离散的数字量转换为连接变化的模拟量。与数模转换相对应的就是模数转换,模数转换是数模转换的逆过程。。 (图为数模转换器) 数模转换的原理 数字量转换成模拟量的过程叫做数模转换,简写成D/A。完成这种功能的电路叫做数模转换器,简称DAC。数模转换器的框图如图所示。 输入的二进制数码存入寄存器,存入寄存器的二进制数,每一位控制着一个模拟开关。 1、输入的二进制数码存入寄存器,存入寄存器的二进制数,每一位控制着一个模拟开关,模拟开关只有两种可能的输出:或是接地,或是经电阻接基准电压源。 2、它由寄存器中的二进制数控制,模拟开关的输出送到加法...
2023-08-16 15:20:052

音频数字化简单原理

模拟信号是指信号随时间的变化是连续的,即任意时间点总有一个瞬态的信号量与之对应,所以我们也将模拟信号称为连续信号。那么模拟信号为什么叫模拟信号呢?模拟信号传输过程中就是利用传感器把各种自然界各种连续的信号转换为几乎一模一样的电信号。比如说话声音,原本是声带的震动,经过麦克风的采集,将声波信号转换为电信号,此时的电信号波形是和原来的声波波形一样的。只是换了种物理量来表示和传递。因此,模拟信号就是用电信号来直接模拟了自然界各种物理量。 而与之对应的数字信号则是不连续的离散的,是对模拟信号进行采样得到。数字信号是模拟信号的近似,即然是近似就不可能完全一模一样。所以相对于自然界的信号,数字信号只能做到无限的接近。既然我们自然界所有的物理量都是模拟信号,为啥还需要数字信号呢?因为数字信号更便于计算机做直接各种数字处理、计算和存储,所以任何信号转换成了数字量后,就可以充分利用计算机来做各种计算和处理。 我们把声音模拟信号转换成数字信号的过程称为音频数字化(A/D 转换,模数转换)。目前最常见的方案是 PCM(脉冲编码调制 Pulse Codde Modulation),其主要过程是: 采样 -> 量化 -> 编码 。 1、采样 把时间连续的信号转换为一连串时间不连续的脉冲信号,这个过程称为采样。也就是每隔一段时间采集一次模拟信号的样本。采样后的脉冲信号称为采样信号,采样信号在时间轴上是离散的。每秒采集的样本数量,称为采样率,比如采样率 44.1kHz 表示 1 秒钟采集 44100 个样本。采样率越高,还原的声音也就越真实。由于人耳的听觉范围是 20Hz~20kHz,根据 香农采样定理 (若信号的最高频率为 fmax,只要采样频率 f >= 2fmax,采样信号就能唯一复现原信号),理论上来说要把采集的声音信号唯一地还原成原来的声音,声音采样率需要高于声音信号最高频率的 2 倍,需要至少每秒进行 40000 次采样(40kHz 采样率)。这就是为什么常见的 CD 采样率为 44.1kHz,电话、无线对讲机和无线麦克风等的采样率是 8kHz。 2、量化 采样信号量化为数字信号的过程,称为量化。就是将每一个采样点的样本值数字化。 2.1、位深度 位深度(也叫采样精度,采样大小,Bit Depth)表示使用多少个二进制位来存储一个采样点的样本值。位深度越高,表示的振幅越精确。若要尽可能精确的还原声音,只有高采样率是不够的。描述一个采样点,横轴(时间)代表采样率,纵轴(幅度)代表位深度。16bit 表示用 16 位(2 个字节)来表示对该采样点的振幅进行编码时所能达到的精确程度,就是把纵轴分成 16 份描述振幅大小。 常见的常见的 CD 采用 16bit 的位深度,能表示 65535(2^16)个不同值。DVD 使用 24bit 的位深度,大部分电话设备使用 8bit 位深度。 3、编码 将采样和量化后的数字数据转成二进制码流。 如果想要播放声音,需进行 D/A 转换(数模转换),把数字信号转再换成模拟信号。 1、有损和无损: 根据采样率和位深度得知,任何数字音频编码方案都是有损的,无法达到完全还原。目前能够达到最高保真水平的就是 PCM(脉冲编码调制 Pulse Codde Modulation)编码,因此 PCM 约定俗称 无损音频编码,PCM 编码数据可以理解为是未经过压缩的原始音频数据。目前广泛用于素材保存和音乐欣赏,CD、DVD 以及 .WAV 文件中均有应用。 2、比特率: 比特率(Bit Rate),又称码率,指单位时间内传输或处理的比特数量,单位是:比特每秒(bit/s 或者 bps),描述了 1 秒钟的该音频的信息量。在无损无压缩格式中, 比特率 = 采样率 x 位深度 x 声道数 (在有损压缩中这个公式是不成立的,因为原始信息以及被破坏)。例如采样率 44.1kHz 位深度 16bit 的立体声 PCM 编码数据的比特率为: 3、声道: 单声道产生一组声波数据,立体声产生两组声波数据。 声音文件总大小 = 采样率 x 位深度 x 声道数 x 总时长 = 比特率 x 总时长 。例如:采样率 44.1kHz 位深度 16bit 的 1 分钟时长的立体声 PCM 编码数据的大小为: 4、信噪比: 信噪比是指信号与噪声的比例,用于比较所需信号的强度与背景噪声的强度,以分贝(dB)为单位。位深度限制了信噪比的最大值,关系如下图:
2023-08-16 15:20:141

信号转换器的工作原理

经过A/D转换器转换。
2023-08-16 15:20:263

AD和DA转换是什么意思

AD转换是指模数转换,就是把模拟信号转换成数字信号。主要包括积分型、逐次逼近型、并行比较型/串并行型、调制型、电容阵列逐次比较型及压频变换型。DA转换则是指数模转换,将数字信号转换为模拟信号。其需要注意的指标是:转换范围、转换精度、转换时间。扩展资料:为确保系统处理结果的精度,A/D转换器和D/A转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D与D/A转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D与D/A转换器的重要技术指标。A/D与D/A转换器的主要技术参数如下:1、D/A转换器的性能的主要参数有:(1)、分辨率:是指D/A转换器能够转换的二进制数的位数,位数多分辨率也就越高。(2)、转换时间:指数字量输入到完成转换,输出达到终值并稳定为止所需的时间。电流型D/A转换较快,一般在几ns到几百ns之间。电压型D/A转换较慢,取决于运算放大器的响应时间。(3)、精度:指D/A转换器实际输出电压与理论值之间的误差,一般采用数字量的最低有效位作为衡量单位。(4)、线性度:当数字量变化时,D/A转换器输出的模拟量按比例关系变化的程度。理想的D/A转换器是线性的,但是实际上是有误差的,模拟输出偏离理想输出的值称为线性误差。2、A/D转换器的主要技术指标:(1)、分辨率:由于实现AD转换的工作原理和采用工艺技术不同,因此生产出种类繁多的A/D转换芯片。A/D转换器按分辨率分为4位、6位、8位、10位、14位、16位和BCD码的31/2位、51/2位等。(2)、转换速率:按照转换速度可分为超高速(转换时间≤330ns),次超高速(330—3.3μS),高速(转换时间3.3—333μS),低速(转换时间>330μS)等。(3)、绝对精度:指输入满刻度数字量时,A/D转换器的实际输出值与理论值之间的偏差。该偏差用最低有效位lsb的分数来表示,如±1/2lsb或±1lsb。(4)、线性误差:实际的模拟数字转换关系和理想的直线关系不同而出现的误差,通常用LSB表示。参考资料来源:百度百科—AD转换
2023-08-16 15:20:351

AD和DA转换是什么意思

d/a转换器是数模转换器,反之就是模数转换。比
2023-08-16 15:20:585

怎样把数字信号转为模拟信号吗

传统的电视机天线是模拟信号,但信号传输时易产生干扰且易受外界因素干扰,近年来国家普遍推行数字信号技术,例现有的数字卫星电视(就是卫星天线,卫星锅),目前模拟电视台越来越少了,建议使用卫星天线(现在安装一个锅只要180元就可以搞定)
2023-08-16 15:21:452

什么是音频数字化,图像数字化,请详细讲解

从字面上来说,数字化 (Digital) 就是以数字来表示,例如用数字去记录一张桌子的长宽尺寸,各木料间的角度,这就是一种数字化。跟数位常常一起被提到的字是模拟 (Analog/Analogue) ,模拟的意思就是用一种相似的东西去表达,例如将桌子用传统相机将三视图拍下来,就是一种模拟的记录方式。两个概念:1、分贝(dB):声波振幅的度量单位,非绝对、非线性、对数式度量方式。以人耳所能听到的最静的声音为1dB,那么会造成人耳听觉损伤的最大声音为100dB。人们正常语音交谈大约为20dB。10dB意味着音量放大10倍,而20dB却不是20倍,而是100倍(10的2次方)。2、频率(Hz):人们能感知的声音音高。男性语音为180Hz,女性歌声为600Hz,钢琴上C调至A调间为440Hz,电视机发出人所能听到的声音是17kHz,人耳能够感知的最高声音频率为20kHz。将音频数字化,其实就是将声音数字化。最常见的方式是透过脉冲编码调制PCM(Pulse Code Modulation) 。运作原理如下。首先我们考虑声音经过麦克风,转换成一连串电压变化的信号,如图一所示。这张图的横座标为秒,纵座标为电压大小。要将这样的信号转为 PCM 格式的方法,是先以等时距分割。我们假设用每 0.01 秒分割,则得到图二。我们把分割线与信号图形交叉处的座标位置记录下来,可以得到如下资料,(0.01,11.65) 、(0.02,14.00) 、 (0.03,16.00) 、 (0.04,17.74) … ..(0.18,15.94) 、 (0.19,17.7) 、 (0.20,20) 。好了,我们现在已经把这个波形以数字记录下来了。由于我们已经知道时间间隔是固定的 0.01 秒,因此我们只要把纵座标记录下来就可以了,得到的结果就是 11.65 14.00 16.00 17.74 19.00 19.89 20.34 20.07 19.44 18.59 17.47 16.31 15.23 14.43 13.89 13.71 14.49 15.94 17.70 20.00 这一数列。这一串数字就是将以上信号数字化的结果。看吧,我们确实用数字记录了事物。在以上的范例中,我们的采样频率是 100Hz(1/0.01 秒 ) 。其实电脑中的 .WAV 档的内容就是类似这个样子,文件头中记录了采样频率和可容许最大记录振幅,后面就是一连串表示振幅大小的数字,有正有负。常见CD唱盘是以PCM格式记录,而它的采样频率 (Sample Rate) 是 44100Hz ,振幅采样精度/数位是 16Bits ,也就是说振幅最小可达 -32768(-2^16/2) ,最大可达 +32767(2^16/2-1) 。CD唱盘是以螺旋状由内到外储存资料,可以存储74分钟的音乐。CD唱盘的规格为什么是 44.1kHz、16Bits呢?关于 44.1kHz 这个数字的选取分为两个层面。首先人耳的聆听范围是 20Hz 到 20kHz ,根据 Nyquist Functions ,理论上只要用 40kHz 以上的采样频率就可以完整记录 20kHz 以下的信号。那么为什么要用 44.1kHz 这个数字呢?那是因为在 CD 发明前硬盘还很贵,所以主要将数字音频信号储存媒体是录像带,用黑白来记录 0 与 1 。而当时的录像带格式为每秒 30 张,而一张图又可以分为 490 条线,每一条线又可以储存三个取样信号,因此每秒有 30*490*3=44100 个取样点,而为了研发的方便, CD唱盘也继承了这个规格,这就是 44.1kHz 的由来。在这里我们可以发现无论使用多么高的采样精度/数位,记录的数字跟实际的信号大小总是有误差,因此数字化无法完全记录原始信号。我们称这个数字化造成失真称为量化失真。--------------------------------------------------------------------------------数字化的最大好处是资料传输与保存的不易失真。记录的资料只要数字大小不改变,记录的资料内容就不会改变。如果我们用传统类比的方式记录以上信号,例如使用录音带表面的磁场强度来表达振幅大小,我们在复制资料时,无论电路设计多么严谨,总是无法避免杂讯的介入。这些杂讯会变成复制后资料的一部份,造成失真,且复制越多次信噪比 ( 信号大小与噪音大小的比值 ) 会越来越低,资料的细节也越来越少。如果多次复制过录音带,对以上的经验应该不陌生。在数字化的世界里,这串数字转换为二进制,以电压的高低来判读1与0,还可以加上各种检查码,使得出错机率很低,因此在一般的情况下无论复制多少次,资料的内容都是相同,达到不失真的目的。 那么,数字化的资料如何转换成原来的音频信号呢?在计算机的声卡中一块芯片叫做 DAC(Digital to Analog Converter) ,中文称数模转换器。DAC的功能如其名是把数字信号转换回模拟信号。我们可以把DAC想像成 16 个小电阻,各个电阻值是以二的倍数增大。当 DAC 接受到来自计算机中的二进制 PCM 信号,遇到 0 时相对应的电阻就开启,遇到 1 相对应的电阻不作用,如此每一批 16Bits 数字信号都可以转换回相对应的电压大小。我们可以想像这个电压大小看起来似乎会像阶梯一样一格一格,跟原来平滑的信号有些差异,因此再输出前还要通过一个低通滤波器,将高次谐波滤除,这样声音就会变得比较平滑了。从前面的内容可以看出,音频数字化就是将模拟的(连续的)声音波形数字化(离散化),以便利用数字计算机进行处理的过程,主要包参数括采样频率(Sample Rate)和采样数位/采样精度(Quantizing,也称量化级)两个方面,这二者决定了数字化音频的质量。采样频率是对声音波形每秒钟进采样的次数。根据这种采样方法,采样频率是能够再现声音频率的一倍。人耳听觉的频率上限在2OkHz左右,为了保证声音不失真,采样频率应在4OkHz左右。经常使用的采样频率有11.025kHz、22.05kHz和44.lkHz等。采样频率越高,声音失真越小、音频数据量越大。采样数位是每个采样点的振幅动态响应数据范围,经常采用的有8位、12位和16位。例如,8位量化级表示每个采样点可以表示256个(0-255)不同量化值,而16位量化级则可表示65536个不同量化值。采样量化位数越高音质越好,数据量也越大。反映音频数字化质量的另一个因素是通道(或声道)个数。记录声音时,如果每次生成一个声波数据,称为单声道;每次生成二个声波数据,称为立体声(双声道),立体声更能反映人的听觉感受。除了上述因素外,数字化音频的质量还受其它一些因素(如扬声器质量,麦克风优劣,计算机声卡A/D与D/A(模/数、数/模)转换芯片品质,各个设备连接线屏蔽效果好坏等)的影响。综上所述,声音数字化的采样频率和量化级越高,结果越接近原始声音,但记录数字声音所需存储空间也随之增加。可以用下面的公式估算声音数字化后每秒所需的存储量(假定不经压缩):存储量=(采样频率*采样数位)/8(字节数)若采用双声道录音,存储量再增加一倍。例如,数字激光唱盘(CD-DA,红皮书标准)的标准采样频率为44.lkHz,采样数位为16位,立体声,可以几乎无失真地播出频率高达22kHz的声音,这也是人类所能听到的最高频率声音。激光唱盘一分钟音乐需要的存储量为:44.1*1000*l6*2*60/8=10,584,000(字节)=10.584MBytes这个数值就是微软Windows系统中WAVE(.WAV)声音文件在硬盘中所占磁盘空间的存储量。由MICROSOFT公司开发的WAV声音文件格式,是如今计算机中最为常见的声音文件类型之一,它符合RIFF文件规范,用于保存WINDOWS平台的音频信息资源,被WINDOWS平台机器应用程序所广泛支持。另外,WAVE格式支持MSADPCM、CCIPTALAW、CCIPT-LAW和其他压缩算法,支持多种音频位数,采样频率和声道,但其缺点是文件体积较大,所以不适合长时间记录。因此,才会出现各种音频压缩编/解码技术的出现,例如,MP3,RM,WMA,VQF,ASF等等它们各自有自己的应用领域,并且不断在竞争中求得发展。
2023-08-16 15:21:551

Da380芯片工作原理

DA芯片的用途如下: DA芯片是数模转换和模数转换芯片,因为外界信号都是模拟量的,而电脑只能识别数字信号所以需要先把模拟信号转换成数字信号再给电脑,电脑处理完后再把电脑的数字信号转换成模拟的才能给外界。
2023-08-16 15:22:031

请教关于ADC模块的软件触发转换等问题

模数转换器(adc)的基本原理模拟信号转换为数字信号,一般分为四个步骤进行,即取样、保持、量化和编码。前两个步骤在取样-保持电路中完成,后两步骤则在adc中完成。常用的adc有积分型、逐次逼近型、并行比较型/串并行型、σ-δ调制型、电容阵列逐次比较型及压频变换型。下面简要介绍常用的几种类型的基本原理及特点:1积分型(如tlc7135)。积分型adc工作原理是将输入电压转换成时间或频率,然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片adc大多采用积分型,现在逐次比较型已逐步成为主流。双积分是一种常用的ad转换技术,具有精度高,抗干扰能力强等优点。但高精度的双积分ad芯片,价格较贵,增加了单片机系统的成本。2逐次逼近型(如tlc0831)。逐次逼近型ad由一个比较器和da转换器通过逐次比较逻辑构成,从msb开始,顺序地对每一位将输入电压与内置da转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辨率(12位)时价格便宜,但高精度(>12位)时价格很高。3并行比较型/串并行比较型(如tlc5510)。并行比较型ad采用多个比较器,仅作一次比较而实行转换,又称flash型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频ad转换器等速度特别高的领域。串并行比较型ad结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型ad转换器配合da转换器组成,用两次比较实行转换,所以称为halfflash型。4σ-δ调制型(如ad7701)。σ-δ型adc以很低的采样分辨率(1位)和很高的采样速率将模拟信号数字化,通过使用过采样、噪声整形和数字滤波等方法增加有效分辨率,然后对adc输出进行采样抽取处理以降低有效采样速率。σ-δ型adc的电路结构是由非常简单的模拟电路和十分复杂的数字信号处理电路构成。5电容阵列逐次比较型。电容阵列逐次比较型ad在内置da转换器中采用电容矩阵方式,也可称为电荷再分配型。一般的电阻阵列da转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片ad转换器。最近的逐次比较型ad转换器大多为电容阵列式的。6压频变换型(如ad650)。压频变换型是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种ad的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。其优点是分辨率高、功耗低、价格低,但是需要外部计数电路共同完成ad转换。数模转换器(dac)的基本原理dac的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。大多数dac由电阻阵列和n个电流开关(或电压开关)构成。按数字输入值切换开关,产生比例于输入的电流(或电压)。此外,也有为了改善精度而把恒流源放入器件内部的。dac分为电压型和电流型两大类,电压型dac有权电阻网络、t型电阻网络和树形开关网络等;电流型dac有权电流型电阻网络和倒t型电阻网络等。
2023-08-16 15:22:473

传送数据的原理!!!高分求解!!超不懂!!好的追加!

是用电流,
2023-08-16 15:22:553

怎么将数字信号转换成模拟信号,其主要原理是什么?

经过数/模转换(D/A),有专用的集成电路,例如ADC0832等等。原理请查数字电子电路的教科书。
2023-08-16 15:23:194

数字量的转换原理

1、数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现.数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号然后进行低通滤波。根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数字信号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函数)的乘积.这样,用Sa函数的倒数作为频谱特性补偿,由数字信号便可恢复为采样信号。由采样定理,采样信号的频谱经理想低通滤波便得到原来模拟信号的频谱。  一般实现时,不是直接依据这些原理,因为尖锐的采样信号很难获得,因此,这两次滤波(Sa函数和理想低通)可以合并(级联),并且由于这各系统的滤波特性是物理不可实现的,所以在真实的系统中只能近似完成。  2、模数转换器是将模拟信号转换成数字信号的系统,是一个滤波、采样保持和编码的过程。模拟信号经带限滤波,采样保持电路,变为阶梯形状信号,然后通过编码器, 使得阶梯状信号中的各个电平变为二进制码。
2023-08-16 15:23:351

模数转换是什么意思?

D/A转换器(又称数模转换器,简称DAC),一种将二进制数字量形式的离散信号转换成以标准量(或参考量)为基准的模拟量的转换器,作用是把数字量转变成模拟的器件。A/D转换器(又称模数转换器,或简称ADC),是指将模拟信号转换成数字信号的电路。A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号。A/D转换一般要经过取样、保持、量化及编码4个过程。在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。扩展资料:模数转换的方法从转换原理来分可分为直接法和间接法两大类:1、直接法是直接将电压转换成数字量。它用数模网络输出的一套基准电压,从高位起逐位与被测电压反复比较,直到二者达到或接近平衡。直接逐位比较型转换器是一种高速的数模转换电路,转换精度很高,但对干扰的抑制能力较差,常用提高数据放大器性能的方法来弥补。它在计算机接口电路中用得最普遍。2、间接法不将电压直接转换成数字,而是首先转换成某一中间量,再由中间量转换成数字。常用的有电压-时间间隔(V/T)型和电压-频率(V/F)型两种,其中电压-时间间隔型中的双斜率法(又称双积分法)用得较为普遍。参考资料来源:百度百科-模数转换器参考资料来源:百度百科-数模转换器
2023-08-16 15:23:531

A/D转换器作用是什么?

A/D转换一般要经历四个过程:采样、保持、量化和编码。在实际电路中,有些过程是结合在一起的,比如采样保持、量化和编码往往在转换过程中同时实现。数模转换器,也称为D/A转换器,简称DAC。将二进制数字量形式的离散信号转换为基于标准量(或参考量)的模拟量的转换器,用于将数字量转换为模拟量。模数转换方法根据转换原理可分为直接法和间接法:1.直接法是将电压直接转换成数字量。它利用数模网络输出的一组参考电压,从高位开始逐位与被测电压进行比较,直到它们达到或接近平衡。直接逐位比较转换器是一种高速数模转换电路,转换精度高,但干扰抑制能力差,常通过提高数据放大器的性能来补偿。它最常用于计算机接口电路。2.间接法不是直接把电压转换成数字,而是先转换成中间量,再转换成数字。常用的有电压-时间间隔(V/T)型和电压-频率(V/F)型,其中电压-时间间隔型中的双斜率法(又称双重积分法)应用较为广泛。百万购车补贴
2023-08-16 15:24:101

数模转换的通用模数/数模转换结构

软件无线电中通常采用的ADC和DAC的结构包括以下4种类型:(1)并行结构,包括Flash-ADC和串状DAC;(2)分段结构,包括折叠内插ADC和“分段”梯形DAC;(3)迭代结构,包括分区ADC、流水线型ADC、逐次逼近型ADC;(4)Σ-△结构,包括Σ-△ADC和DAC。下面以ADC为例对以上几种结构进行介绍。1.并行结构并行结构的数据转换器的基本思想是:同时比较待转换的信号电平与所有级别的量化电平之间的关系,在模拟信号和数字信号之间相互转换。并行结构所对应的A/D和D/A转换器件分别为Flash-ADC和串状DAC。Flash-ADC内含一列并联比较器,一列由电阻分压器产生的电平作为相应的比较器的基准电压。被转换的模拟电压信号同时加到全部比较器上,各比较器的输出经编码后作为ADC的输出,如图2.12所示。一个分辨率为N(bit)的Flash-ADC含有2N个精密电阻,2Nu22121个高速比较器;分辨率每增加1bit,需要增加2N个精密电阻和2N个高速比较器,这会大大增加集成的复杂度和器件功耗。因此一般Flash-ADC的分辨率无法达到很高。串状DAC是实现Flash-ADC的逆操作,因使用电阻串来构造参考电压而得名,在有的书中也被称为开尔文分配器。串状DAC依靠待转换数据来控制一组开关,以产生合适的电流通过精密电阻,从而产生合适的模拟信号电压。并行结构只需要一级模拟电路,因此具有设计简单,转换时间短,速度快的优点,在所有可能的结构中提供最快的数据转换。在分辨率要求较低的情况下,Flash-ADC和串状DAC两种结构都容易采用超大规模集成电路(VLSI)进行设计。然而,由于比较器(或开关)和精密电阻的数量随着转换器的分辨率呈指数增长,Flash-ADC和串状DAC的芯片面积和功耗也随之呈指数增长。2.分段结构分段结构的数据转换器的思想是把输入信号分成MSB和LSB两个分量,之后两个分量通过各自所对应的数据转换器进行处理,最后将处理的结果组合起来形成输出信号。其中MSB分量反映了输入信号相对较大的幅度增量,而LSB反映了在MSB上所叠加的较小的幅度变化。对于数字信号而言,MSB代表了高位比特,而LSB代表了低位比特。而软件无线电所生成的数字信号也需要变换成模拟信号才能进行射频放大输出。这一切都是通过A/D转换器(ADC)和D/A转换器(DAC)来实现的。与传统无线电不同,软件无线电要求尽可能地以数字形式处理无线信号,因此必须将A/D和D/A转换器尽可能地向天线端推移,这就对A/D和D/A转换器的性能提出了更高的要求。主要体现在两个方面。(1)采样速率。依据采样定理,A/D转换器的抽样频率应大于(为被采样信号的带宽)。在实际中,由于A/D转换器件的非线性、量化噪声、失真及接收机噪声等因素的影响,一般选取。(2)分辨率。采样值的位数的选取需要满足一定的动态范围及数字部分处理精度的要求,一般分辨率80dB的动态范围要求下不能低于12位。本节首先介绍模数/数模变换的原理及关键技术,接着给出模数/数模转换器的一些关键参数,最后讨论几种通用的模数/数模转换器的结构。
2023-08-16 15:24:461

要详细的转换过程

2023-08-16 15:25:152

数模和模数有什么区别?

D/A转换器(又称数模转换器,简称DAC),一种将二进制数字量形式的离散信号转换成以标准量(或参考量)为基准的模拟量的转换器,作用是把数字量转变成模拟的器件。A/D转换器(又称模数转换器,或简称ADC),是指将模拟信号转换成数字信号的电路。A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号。A/D转换一般要经过取样、保持、量化及编码4个过程。在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。扩展资料:模数转换的方法从转换原理来分可分为直接法和间接法两大类:1、直接法是直接将电压转换成数字量。它用数模网络输出的一套基准电压,从高位起逐位与被测电压反复比较,直到二者达到或接近平衡。直接逐位比较型转换器是一种高速的数模转换电路,转换精度很高,但对干扰的抑制能力较差,常用提高数据放大器性能的方法来弥补。它在计算机接口电路中用得最普遍。2、间接法不将电压直接转换成数字,而是首先转换成某一中间量,再由中间量转换成数字。常用的有电压-时间间隔(V/T)型和电压-频率(V/F)型两种,其中电压-时间间隔型中的双斜率法(又称双积分法)用得较为普遍。参考资料来源:百度百科-模数转换器参考资料来源:百度百科-数模转换器
2023-08-16 15:25:291

A/D转换器作用是什麽

汽车是每个人出行的必备工具。当然,汽车知识必不可少。为了让大家更容易理解这些知识,今天,边肖就给大家介绍一下A/D转换器的作用是什么的问题。有兴趣的话可能对你有帮助。A/D转换的作用是将时间和幅度连续的模拟信号转换成时间和幅度离散的数字信号。A/D转换主要经历四个过程:采样、保持、量化和编码。在实际电路中,有些过程是结合在一起的,比如采样和保持、量化和编码往往在转换过程中基本同时实现。数模转换器,又称D/A转换器,简称DAC。将二进制数字量形式的离散信号转换成基于标准量(或参考量)的模拟量的转换器。它的功能是将数字量转换成模拟量。模数转换方法根据转换原理可分为直接法和间接法。直接法是将电压直接转换成数字量。它利用数模网络输出的一组参考电压,从高位开始一点一点地等效于被测电压,直到它们达到或接近平衡。直接逐位等效转换器是一种转换精度高的高速数模转换电路,但抑制干扰的能力较差,常通过提高数据放大器的性能来补偿。它最常用于计算机接口电路。2.间接法不是直接把电压转换成数字,而是开始转换成中间量,再转换成数字。常用的有电压-时间距离(V/T)型和电压-频率(V/F)型,其中电压-时间距离型中的双斜率法(也称双重积分法)应用较为广泛。
2023-08-16 15:25:471

模拟信号通过哪些步骤转换成数字信号(具体)?

买一个转换器就OK了。
2023-08-16 15:25:582

什么叫plc的数字量和模拟量他们有什么区别?

数字量传递的是0和1的开关量,它表示的是二进制的状态;而模拟量传递的是连续变化的一段信号范围,比如外部输入的4-20mA,输出的0-10V等
2023-08-16 15:26:093

什么是A/D、D/A转换器?它们的作用是什么?

在工业控制过程中,它是控制系统与微机之间不可缺少的接口方式。要实现自动控制,就要检测有关参数,A/D转换器,把检测到的电压或电流信号(模拟量)转换成计算机能够识别的等效数字量,这些数字量经过计算机处理后输出结果,通过D/A转换器变为电压或电流信号,送到执行机构,达到控制某种过程的目的。
2023-08-16 15:26:253

a/d数模转换的评价标准是什么,其中的量化精度什么意思

A是模拟,D是数字,A/D转换,就是模拟信号转换为数字信号(的装置、的过程)。一。什么是a/d.d/a转换: 随着数字技术,特别是信息技术的飞速发展与普及,在现代控制。通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度。压力。位移。图像等),要使计算机或数字仪表能识别。处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析。处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路-模数和数模转换器。 将模拟信号转换成数字信号的电路,称为模数转换器(简称a/d转换器或adc,analog to digital converter);将数字信号转换为模拟信号的电路称为数模转换器(简称d/a转换器或dac,digital to analog converter);a/d转换器和d/a转换器已成为信息系统中不可缺俚慕涌诘缏贰?br>为确保系统处理结果的精确度,a/d转换器和d/a转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,a/d与d/a转换器还要求具有较高的转换速度。转换精度与转换速度是衡量a/d与d/a转换器的重要技术指标。随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的a/d和d/a转换器,它们具有愈来愈先进的技术指标。二。d/a和a/d转换器的相关性能参数: d/a转换器是把数字量转换成模拟量的线性电路器件,已做成集成芯片。由于实现这种转换的原理和电路结构及工艺技术有所不同,因而出现各种各样的d/a转换器。目前,国外市场已有上百种产品出售,他们在转换速度。转换精度。分辨率以及使用价值上都各具特色。d/a转换器的主要参数:衡量一个d/a转换器的性能的主要参数有:(1)分辨率 是指d/a转换器能够转换的二进制数的位数,位数多分辨率也就越高。(2)转换时间 指数字量输入到完成转换,输出达到最终值并稳定为止所需的时间。电流型d/a转换较快,一般在几ns到几百ns之间。电压型d/a转换较慢,取决于运算放大器的响应时间。(3)精度 指d/a转换器实际输出电压与理论值之间的误差,一般采用数字量的最低有效位作为衡量单位。(4)线性度 当数字量变化时,d/a转换器输出的模拟量按比例关系变化的程度。理想的d/a转换器是线性的,但是实际上是有误差的,模拟输出偏离理想输出的最大值称为线性误差。 a/d转换器的功能是把模拟量变换成数字量。由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的a/d转换芯片。a/d转换器按分辨率分为4位。6位。8位。10位。14位。16位和bcd码的31/2位。51/2位等。按照转换速度可分为超高速(转换时间≤330ns),次超高速(330~3.3μs),高速(转换时间3.3~333μs),低速(转换时间>330μs)等。a/d转换器按照转换原理可分为直接a/d转换器和间接a/d转换器。所谓直接a/d转换器,是把模拟信号直接转换成数字信号,如逐次逼近型,并联比较型等。其中逐次逼近型a/d转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化a/d芯片采用逐次逼近型者多;间接a/d转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型),电压/频率转换型,电压/脉宽转换型等。其中积分型a/d转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。有些转换器还将多路开关。基准电压源。时钟电路。译码器和转换电路集成在一个芯片内,已超出了单纯a/d转换功能,使用十分方便。
2023-08-16 15:27:061

声音数字化的原理

原理如下:一、模拟信号和数字信号模拟信号是指信号随时间的变化是连续的,即任意时间点总有一个瞬态的信号量与之对应,所以我们也将模拟信号称为连续信号。那么模拟信号为什么叫模拟信号呢?模拟信号传输过程中就是利用传感器把各种自然界各种连续的信号转换为几乎一模一样的电信号。比如说话声音,原本是声带的震动,经过麦克风的采集,将声波信号转换为电信号,此时的电信号波形是和原来的声波波形一样的。只是换了种物理量来表示和传递。因此,模拟信号就是用电信号来直接模拟了自然界各种物理量。而与之对应的数字信号则是不连续的离散的,是对模拟信号进行采样得到。数字信号是模拟信号的近似,即然是近似就不可能完全一模一样。所以相对于自然界的信号,数字信号只能做到无限的接近。既然我们自然界所有的物理量都是模拟信号,为啥还需要数字信号呢?因为数字信号更便于计算机做直接各种数字处理、计算和存储,所以任何信号转换成了数字量后,就可以充分利用计算机来做各种计算和处理。二、数字音频化我们把声音模拟信号转换成数字信号的过程称为音频数字化(A/D转换,模数转换)。目前最常见的方案是PCM(脉冲编码调制PulseCoddeModulation),其主要过程是:采样->量化->编码。1、采样把时间连续的信号转换为一连串时间不连续的脉冲信号,这个过程称为采样。也就是每隔一段时间采集一次模拟信号的样本。采样后的脉冲信号称为采样信号,采样信号在时间轴上是离散的。每秒采集的样本数量,称为采样率,比如采样率44.1kHz表示1秒钟采集44100个样本。采样率越高,还原的声音也就越真实。由于人耳的听觉范围是20Hz~20kHz,根据香农采样定理(若信号的最高频率为fmax,只要采样频率f>=2fmax,采样信号就能唯一复现原信号),理论上来说要把采集的声音信号唯一地还原成原来的声音,声音采样率需要高于声音信号最高频率的2倍,需要至少每秒进行40000次采样(40kHz采样率)。这就是为什么常见的CD采样率为44.1kHz,电话、无线对讲机和无线麦克风等的采样率是8kHz。2、量化采样信号量化为数字信号的过程,称为量化。就是将每一个采样点的样本值数字化。2.1、位深度位深度(也叫采样精度,采样大小,BitDepth)表示使用多少个二进制位来存储一个采样点的样本值。位深度越高,表示的振幅越精确。若要尽可能精确的还原声音,只有高采样率是不够的。描述一个采样点,横轴(时间)代表采样率,纵轴(幅度)代表位深度。16bit表示用16位(2个字节)来表示对该采样点的振幅进行编码时所能达到的精确程度,就是把纵轴分成16份描述振幅大小。常见的常见的CD采用16bit的位深度,能表示65535(2^16)个不同值。DVD使用24bit的位深度,大部分电话设备使用8bit位深度。3、编码将采样和量化后的数字数据转成二进制码流。如果想要播放声音,需进行D/A转换(数模转换),把数字信号转再换成模拟信号。
2023-08-16 15:27:141

数模转换器的性能指标

D/A转换器的主要特性指标包括以下几方面: D/A转换器的转换精度与D/A转换器的集成芯片的结构和接口电路配置有关。如果不考虑其他D/A转换误差时,D/A的转换精度就是分辨率的大小,因此要获得高精度的D/A转换结果,首先要保证选择有足够分辨率的D/A转换器。同时D/A转换精度还与外接电路的配置有关,当外部电路器件或电源误差较大时,会造成较大的D/A转换误差,当这些误差超过一定程度时,D/A转换就产生错误。在D/A转换过程中,影响转换精度的主要因素有失调误差、增益误差、非线性误差和微分非线性误差。 一般情况下,影响D/A转换精度的主要环境和工作条件因素是温度和电源电压变化。由于工作温度会对运算放大器加权电阻网络等产生影响,所以只有在一定的工作范围内才能保证额定精度指标。较好的D/A转换器的工作温度范围在-40℃~85℃之间,较差的D/A转换器的工作温度范围在0℃~70℃之间。多数器件其静、动态指标均在25℃的工作温度下测得的,工作温度对各项精度指标的影响用温度系数来描述,如失调温度系数、增益温度系数、微分线性误差温度系数等。 D/A转换器的输入与输出传递特性曲线的斜率称为D/A转换增益或标度系数,实际转换的增益与理想增益之间的偏差称为增益误差(或称标度误差)。增益误差在消除失调误差后用满码。输入时其输出值与理想输出值(满量程)之间的偏差表示,一般也用LSB的份数或用偏差值相对满量程的百分数来表示。 串行数模转换是将数字量转换成脉冲序列的数目,一个脉冲相当于数字量的一个单位,然后将每个脉冲变为单位模拟量,并将所有的单位模拟量相加,就得到与数字量成正比的模拟量输出,从而实现数字量与模拟量的转换。随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。将模拟信号转换成数字信号的电路,称为模数转换器(简称A/D转换器或ADC,Analog to Digital Converter);将数字信号转换为模拟信号的电路称为数模转换器(简称D/A转换器或DAC,Digital to Analog Converter);A/D转换器和D/A转换器已成为计算机系统中不可缺少的接口电路。为确保系统处理结果的精确度,A/D转换器和D/A转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D与D/A转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D与D/A转换器的重要技术指标。 随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的A/D和D/A转换器,它们具有愈来愈先进的技术指标。本章将介绍几种常用A/D与D/A转换器的电路结构、工作原理及其应用。
2023-08-16 15:27:561

如果一个12位的A/D电压转换器,设其满量程电压为10V,试问其输入端的电压为8.24V,求输出的数字量是多少

输出的数字量是110100101111。ADC分辨率为12位时,可以量化的最大数值为2^12=4096个单位,满量程电压为10V,ΔU=10V÷4096=0.00244140625V。当输入电压为8.24V时,对应的十进制数为8.24x4096+10=3375.104,分析取值,若取3375则为8.23974609375V,若取3376则为8.2421875V,转换存在误差,因此最终取值为3375,数字量为110100101111。扩展资料:转换原理数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现,数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号然后进行低通滤波。根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数字信号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函数)的乘积。这样,用Sa函数的倒数作为频谱特性补偿,由数字信号便可恢复为采样信号。由采样定理,采样信号的频谱经理想低通滤波便得到原来模拟信号的频谱。参考资料:百度百科-数字量
2023-08-16 15:28:131

求大神简述一下这个阶梯波的电路工作原理?

简单说,就是个数模转换电路;555是计数脉冲产生器,161是十六进制计数器,循环输出 0~F 16个数值,4053是二选一模拟开关;后面的电阻阵列及运放共同构成数模转换电路,具体原理,去看书本或网上查数模转换电路部分;显然这个阶梯波有16级,一个周期是从最低值一级级升到最高值,然后再跳到最低值而开始下一个周期;另外,如果输出不够,还可在R3左边加个电阻接地,以提供电路增益;
2023-08-16 15:28:401

如何通过数模转换输出波形?

我的思路是:一,输出各种波形是通过向DAC0832输出连续的数字量来实现。二,频率控制有两种方式。1、用延时程序。每给0832送一个数字量,就调用延时程序。延时程序可以这样写mov cx , ndd: loop dd这里的n的取值依据你的延时时间长短来控制2、用8253计数实现比如让8253的某通道工作于方式2,写入一个计数初值。然后:每给0832写一个数字量,就去读8253的输出(8253的输出得通过244或245去读取),到读取到输出为低电平时就向0832写下一个数字量,否则继续读,直到输出为低。其实,两种方法的本质都在于:让每个数字量对应的模拟输出电压保持一点时间,这样一个周期里的所有数字量的时间相加就是该周期的长度了。所以想要频率可调,那就是要用键盘输入n的值或者8253的计数初值。应该明白了吧?
2023-08-16 15:28:491

数字量和模拟量的区别

开关量开关量主要指开入量和开出量,是指一个装置所带的辅助点,譬如变压器的温控器所带的继电器的辅助点(变压器超温后变位)、阀门凸轮开关所带的辅助点(阀门开关后变位),接触器所带的辅助点(接触器动作后变位)、热继电器(热继电器动作后变位),这些点一般都传给PLC或综保装置,电源一般是由PLC或综保装置提供的,自己本身不带电源,所以叫无源接点,也叫PLC或综保装置的开入量。1、数字量在时间上和数量上都是离散的物理量称为数字量。把表示数字量的信号叫数字信号。把工作在数字信号下的电子电路叫数字电路。例如:用电子电路记录从自动生产线上输出的零件数目时,每送出一个零件便给电子电路一个信号,使之记1,而平时没有零件送出时加给电子电路的信号是0,所在为记数。可见,零件数目这个信号无论在时间上还是在数量上都是不连续的,因此他是一个数字信号。最小的数量单位就是1个。2、模拟量在时间上或数值上都是连续的物理量称为模拟量。把表示模拟量的信号叫模拟信号。把工作在模拟信号下的电子电路叫模拟电路。例如:热电偶在工作时输出的电压信号就属于模拟信号,因为在任何情况下被测温度都不可能发生突跳,所以测得的电压信号无论在时间上还是在数量上都是连续的。而且,这个电压信号在连续变化过程中的任何一个取值都是具体的物理意义,即表示一个相应的温度。转换原理1. 数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现。数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数字信号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函数)的乘积。这样,用Sa函数的倒数作为频谱特性补偿,由数字信号便可恢复为采样信号。由采样定理,采样信号的频谱经理想低通滤波便得到原来模拟信号的频谱。一般实现时,不是直接依据这些原理,因为尖锐的采样信号很难获得,因此,这两次滤波(Sa函数和理想低通)可以合并(级联),并且由于这各系统的滤波特性是物理不可实现的,所以在真实的系统中只能近似完成。2. 模数转换器是将模拟信号转换成数字信号的系统,是一个滤波、采样保持和编码的过程。模拟信号经带限滤波,采样保持电路,变为阶梯形状信号,然后通过编码器,使得阶梯状信号中的各个电平变为二进制码。
2023-08-16 15:28:594

什么叫模拟量控制和数字控制

在时间上和数值上都是连续的物理量称为模拟量。数字控制是一种借助数字、字符或者其他符号对某一工作过程进行编程控制的自动化方法。通常使用专门的计算机,操作指令以数字形式表示,机器设备按照预定的程序进行工作。简称数控。扩展资料:模拟量转换原理:1、数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现。数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数字信号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函数)的乘积。这样,用Sa函数的倒数作为频谱特性补偿,由数字信号便可恢复为采样信号。由采样定理,采样信号的频谱经理想低通滤波便得到原来模拟信号的频谱。一般实现时,不是直接依据这些原理,因为尖锐的采样信号很难获得,因此,这两次滤波(Sa函数和理想低通)可以合并(级联),并且由于这各系统的滤波特性是物理不可实现的,所以在真实的系统中只能近似完成。2、模数转换器是将模拟信号转换成数字信号的系统,是一个滤波、采样保持和编码的过程。 模拟信号经带限滤波,采样保持电路,变为阶梯形状信号,然后通过编码器, 使得阶梯状信号中的各个电平变为二进制码。参考资料来源:百度百科-数字控制参考资料来源:百度百科-模拟量
2023-08-16 15:29:171

声音如何转换成数字信号的?

这个问题太专业了,估计别人说了你也不懂.我和你一样,看了下面的也不懂.
2023-08-16 15:29:373

声卡、DAC解码器的区别

一、声卡:声卡是将话筒或线性输入的声音信号经过模/数转换编程数字音频信号进行数据处理,然后再经过数/模转换变成模拟信号,送往混音器中放大,最后输出驱动扬声器发声。下面对声卡的各个组成部分做一个介绍。1、数字信号处理芯片数字信号处理芯片可以完成各种信号的记录和播放任务,还可以完成许多处理工作,如音频压缩与解压缩运算、改变采样频率、解释MIDI指令或符号以及控制和协调直接存储器访问(DMA)工作。2、A/D和D/A转换器声音原本以模拟波形的形式出现,必须转换成数字形式才能在计算机中使用。为实现这种转换,声音卡含有把模拟信号转成数字信号的A/D转换器,使数据可存入磁盘中。为了把声音输出信号送给喇叭或其他设备播出,声卡必须使用D/A转换器,把计算机中以数字形式表示的声音转变成模拟信号播出。3、总线接口芯片总线接口芯片在声卡与系统总线之间传输命令与数据。4、音乐合成器音乐合成器负责将数字音频波形数据或MIDI消息合成为声音/5、混音器混音器可以将不同途径,如话筒或线路输入、CD输入的声音信号进行混合。此外,混音器还为用户提供软件控制音量的功能。二、DAC解码器解码器,是一种专门负责将电脑里的数字信号转化为音箱、功放、耳放、耳机所需要的模拟信号,用来提供比声卡更好的音质的设备,有的解码器还带有USB数字声卡、耳机放大电路等辅助部分。解码器的用途,是进行数字信号到模拟信号的转换解码器的核心解码部分 由 数字信号接收部分、数字到模拟转换及模拟输出部分 组成数字信号接收部分是解码器的门户,负责将收到的数字信号迎接进来,做一些翻译,然后把信号交给后面的数字到模拟转换及模拟输出部分数字到模拟转换及模拟输出部分和上面声卡的一模一样,结构原理一样,做的也是同一个工作。用来将电脑里的数字信号转换为音箱喇叭、耳机喇叭所最终需要的模拟信号而发出声音。三、简单理解,声卡里面一定包含有DAC解码器,但解码器不能包含声卡的功能 。声卡除了放音,DAC转换。还有录音ADC转换等其它功能 。当然解码器功能单一,在这一方面可能更强憨些吧。
2023-08-16 15:29:475

9038数字转模拟用什么运放

9038用AD828运放。数模转换就是将离散的数字量转换为连接变化的模拟量。与数模转换相对应的就是模数转换,模数转换是数模转换的逆过程。D/A转换的基本原理,是待转换的数字乘以步进电压,获得输出电压值,然后输出。把模拟信号转换为数字量,称为模数转换器。把数字量转换成模拟量,称为数/模转换器。市场上单片集成ADC和DAC芯片有几百种之多,而且技术指标也越来越先进,可以适应不同应用场合的需要。运放是运算放大器的简称。可以实现各种模拟电量的数学运算。但它不是用来做计算器上的加减乘除运算,而是在模拟信号处理过程中,可能需要将信号进行放大、加减乘除、积分、微分等操作。
2023-08-16 15:30:171

数字消息可以完整的变回模拟消息吗?

不可以。因为数字消息和模拟消息是两种不同性质的消息。数字信号就是“1”、“0”组成的二进制编码,要将其转换为模拟信号,需要使用数模转换芯片。经典的DAC0832,八位的数模转换芯片,就通过这个芯片,简单介绍一下数模转换芯片的工作原理吧。如果这个芯片供给的标准电压为+5V、0V,如果你数字量输入“11111111”,则输出+5V。输入“10000000”,则输出+2.5V。输入“00000000”,则输出0V。当然,如果你参考电压取的+5V和-5V时,对应地,输入“11111111”,则输出+5V。输入“10000000”,则输出0V。输入“00000000”,则输出-5V。这方面的知识可以参考一下单片机应用方面的书籍。
2023-08-16 15:30:241