barriers / 阅读 / 详情

傅里叶红外光谱出峰位置在750,875,1000,1125,1250,1375,1750附近的是什么基团

2023-08-24 18:11:29
TAG: 光谱
共2条回复
okok云
1375应该是甲级,1750应该是羰基,但是,750和875会不会是取代基,你看1500和1600附近有没有基团,有的话那就应该是苯环的取代基了。1250那个也应该是羰基的
陶小凡

搜一下:傅里叶红外光谱出峰位置在750,875,1000,1125,1250,1375,1750附近的是什么基团

相关推荐

傅里叶红外光谱测反射N-H在什么峰位

出峰位置在750。傅里叶红外光谱(FTIR).pdf,红外光谱的原理及应用(一)红外吸收光谱的定义及产生分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃动。
2023-08-18 02:42:561

为什么说傅里叶光谱在红外区有统治地位

红外光谱技术的最新进展是傅里叶变换红外光谱(FTIR)技术.FTIR在信噪比、分辨率、速度和探测极限上具有很多优势.在红外研究领域,FTIR方法几乎完全取代了光栅分光法.傅里叶变换光谱仪可以理解为以某种数学方式对光谱信息进行编码的摄谱仪,它能同时测量、记录所有谱元的信号,并以更高的效率采集来自光源的辐射能量,从而使它具有比传统光谱仪高得多的分辨率和信噪比;同时它的数字化的光谱数据,也便于计算机处理.正是这些基本优点,使傅里叶变换红外光谱方法发展成为目前中、远红外波段中最有力的光谱工具.FTIR的优点1.多通道(Fellgett优点)在色散型仪器中,由于检测器只能响应入射光强度的变化,不能响应入射光频率.因此,在测量时,需把入射的复色光用单色器色散为不同频率的分辨单元.为了检测这些相对纯化的光,就需要用光阑窄缝滤掉绝大部分色散后的单色光,仅让某一频率单色光通过.为了能测定全光谱,只好顺序多次测定色散后不同频率的单色光.对于FTIR光谱仪,入射光被干涉仪调制成声频波,不同频率的光被调制成不同的值,所用探测器既获得强度信息,又获得频率信息.各种频率光同时落到探测器上,无需分光测量.这样色散仪器每次仅测量全光谱很小的一部分,而FTIR却测了全部光谱.如在 波段范围内,用 分辨率进行测量,则测量所需分辨单元数 .用色散光谱仪在T时间内对 波段测量时,每个分辨单元所需的测定时间为 .与此相应,FTIR则为T.由于随机噪声引起的信噪比 与测量时间成正比,所以FTIR比色散型光谱仪信噪比高的多,并且分辨率越高,提高越大.在0.1cm-1分辨率时,提高近190倍.显然多通道的优点使FTIR的信噪比增加,伴随而来的是检测灵敏度大幅提高.2.高光通量(Jacquinot优点)在色散型仪器中,光路里设有狭缝式光阑,绝大部分光被它挡住,仅使极少部分光通过,并且分辨率越高,狭缝调得越窄,实际通过得光越少.加之光路中得许多光学元件也会损失光能,因而使色散型仪器光通量很小.FTIR光谱仪中除了有光能损失很少外,经常不设限光狭缝或其他限光元件.光可全部通过光孔,光通量很大.光学系统的光通量Ω指通过它传送的光的总能量.光通量定义为光束的面积和立体角的乘积,即光阑面积和向准直镜孔径所张立体角的乘积,或者等效为准直光的面积和它的发散的立体角的乘积在一些低分辨率的光谱仪中没有准直光阑,光源或探测器起着有效光阑的作用,限制了光通量的大小.为了获得理想准直的光束(光束完美的平行),光阑必须无穷小,于是光通过量为零.光阑越大,光通量越大,而被准直的光束也越发散.然而,干涉仪中光束的发散度,或者它的光通量,是受到所要求的光谱分辨率限制的.因为对于一个给定的动镜位移,以不同的角度通过干涉仪的光线到达真正光轴有不同的光程差,它们对总干涉图信号的各自贡献将会模糊掉每个动镜位移的光程差.因此,分辨率要求越高,光发散要求越小.最佳的通过量与所研究的最高频率处的光谱分辨率是完全一致的.最大光通量定量地与光谱分辨率成比例3.高测量精度(Connes优点)色散型仪器的精度受很多条件的限制.如校正谱图精度的校样纯度、机械部件移动以及人为的读书误差等,都使这类仪器测量精度难于提高.一般很难达到0.1cm-1精度.FTIR光谱仪的光学结构简单,干涉仪只有一个动镜是运动部件,通常动镜是在无摩擦的空气轴承上移动,其运动又受高度稳定的He-Ne激光干涉系统监控,因此测量的重复性和准确度都很十分高.加之在FTIR系统中,使用了单色性极好的He-Ne激光干涉系统作为采样标尺,确保采样精度达到 0 .001cm-1.4.测量波段宽,全波段内分辨率一致色散型光谱仪测量时,用色散法配以光阑狭缝取得单色光.但这些不同频率的单色光能量又不尽相同.为了保持所获得的能量近似不变,常常需要不断改变狭缝宽度,或用其他技术来调节光通量.这在技术上是很困难的.一种简化的办法是在中红外测量全波段光谱时,使用两种分辨率.色散型光谱仪无法在全波段范围内分辨率一致.FTIR光谱仪以干涉法采集数据,以数字形式存储数据和运算,很容易做到分辨率一致.极宽的测量波段也是FTIR光谱仪特有的优点.它可用改换光源、分束器、探测器的办法,在同一台FTIR光谱仪上实现多波段测量.
2023-08-18 02:43:061

傅立叶红外光谱仪和红外分光光度计一样吗?

不一样.
2023-08-18 02:43:184

黑色的材料怎么测傅里叶红外光谱

根据红外特征谱图的峰位、峰数、峰形和峰强,可将黑色笔墨种类区分开来。以乙腈-水以体积比60比40作为提取剂,分别对122种黑色签字笔字迹进行了提取,根据提取效果的不同,分为可溶(63种)和不可溶(59种)两大类。然后对黑色签字笔字迹进行了傅里叶变换红外光谱测定,根据红外光谱图中特征峰数目的不同,吸收峰的峰位及峰面积比或峰高比的异同进一步进行区分,从而达到对黑色笔墨种类鉴别。
2023-08-18 02:43:411

为什么我的红外光谱图的透过率都超过了100

不可能吧,哪有透光率100的 应该是仪器或你操作错误
2023-08-18 02:43:503

红外线用什么仪器测量发射量?

红外测距仪主要采用的就是红外线传播时不扩散的特带你,由于红外线在穿过许多物质时的折射率比起一般的光要低很多,因此,许多测距的工具要对长距离的目标进行测量时都会采用红外线,要知道,红外线的传播也是需要一定的,而红外测距仪最主要的原理就是红外从测距仪发出后遇到反射物被反射回来的时间,再综合考虑红外线的传播速度,就能精准地计算出目标的距离。红外测距仪怎么用红外测距仪最基本的使用方法就是:首先将红外测距仪放在面前,用右手按住机器上的红色三角键,这样做是为了锁定要测距的目标,再按一下就能对我们本身与目标之间的精确距离进行观察了,机器上的显示屏也会显示出距离的数值,要知道,由于红外测距仪的精准度有着一定的关系,因此最好在白天进行测量。由于现在不少红外测距仪都与激光一起进行了更为高效的配置,因此我们在使用时一定要参考仪器说明书中的意见对其进行操作,不要用眼睛直接对准发射口直视,那样会对眼睛有着很大的损害,在野外进行测量工作时,不能将仪器的发射口与太阳进行重合,这样一来对仪器的光敏元件会有很大的损害。在这里还要注意的是,现在市面上的红外测距仪一般都不具备防水功能,因此在使用的过程中要注意对该机器进行防水作业的处理。
2023-08-18 02:44:024

傅里叶红外光谱图中2979、1643、1384、1086、1044、877、660波数代表什么基团的特征峰

E型烯烃C-H的面外摇摆振动在这附近有一个吸收峰比较强。你最好把图传上来一下。
2023-08-18 02:44:152

色谱法的目录

第1章概论1.1色谱分析法的历史1.2色谱法的分类1.2.1按流动相和固定相的物态分类1.2.2按分离的原理分类1.2.3按固定相使用的方式分类1.2.4按色谱动力学过程分类1.2.5按色谱技术分类1.3色谱分析法的特点与局限性1.4色谱图和相关术语1.5色谱现代发展及相关联用技术1.6有关色谱的中文工具书和国内外主要色谱期刊习题第2章基本理论2.1概述2.2平衡理论2.2.1分配系数2.2.2分配比2.2.3分配等温线2.2.4对色谱峰峰形的解释2.3塔板理论2.3.1塔板理论假说2.3.2基本关系式2.3.3色谱柱效能及评价2.3.4塔板理论的作用与不足2.4速率理论2.4.1色谱过程中的传质与扩散2.4.2速率理论方程2.4.3影响色谱峰展宽的其他因素2.5分离度2.5.1分离度的表达2.5.2影响分离度的因素习题第3章气相色谱法3.1气相色谱原理3.1.1气相色谱基本流程3.1.2气相色谱分离的原理3.1.3气相色谱常用术语及参数3.2气相色谱仪3.2.1填充柱气相色谱仪3.2.2毛细管柱气相色谱仪3.2.3色谱固定相3.2.4检测器3.2.5色谱数据处理系统3.3气相色谱辅助技术3.3.1裂解气相色谱法3.3.2衍生气相色谱法3.3.3顶空气相色谱法习题第4章高效液相色谱法4.1概述4.2液相色谱的板高方程4.3高效液相色谱仪4.3.1高压输液系统4.3.2进样装置4.3.3色谱柱系统4.3.4液相色谱检测器4.4高效液相色谱分离方式4.4.1液谱分离系统4.4.2液固吸附色谱4.4.3分配色谱4.4.4离子交换和离子色谱4.4.5离子对色谱4.4.6体积排阻色谱法4.4.7亲和色谱法习题第5章平面液相色谱法5.1概述5.1.1平面色谱分类及分离原理5.1.2平面色谱的基本流程5.1.3平面液相色谱的技术参数5.2薄层色谱5.2.1薄层用吸附剂5.2.2薄层板的制备5.2.3展开剂的种类及选择5.2.4点样和展开5.2.5斑点位置的确定及定性方法5.2.6薄层定量方法5.2.7薄层层析的应用5.3加压及旋转薄层5.3.1加压薄层色谱5.3.2旋转薄层色谱5.4纸层析分离技术5.4.1概述5.4.2纸色谱层析条件的选择5.4.3纸色谱点样和展开5.4.4纸色谱显色和应用实例5.5平板电泳分离技术5.5.1电泳技术的基本原理及分类5.5.2常用电泳分离技术5.5.3IEF/SDS?PAGE双向电泳法习题第6章超临界流体色谱法6.1超临界流体色谱的基本原理6.1.1超临界现象和超临界流体的特征6.1.2超临界流体色谱的特点6.1.3流动相及改性剂6.1.4色谱柱和固定相6.2超临界流体色谱仪器6.2.1SFC的一般流程6.2.2SFC流动相输送系统6.2.3SFC分离系统6.2.4SFC检测系统6.3SFC联用技术6.3.1SFC?MS联用6.3.2SFC?FTIR联用6.3.3SFC?NMR联用6.4超临界流体色谱的应用6.4.1糖类6.4.2脂肪酸和酯类6.4.3甘油酯6.4.4甾类化合物6.4.5维生素6.4.6氨基酸、肽、蛋白质6.4.7药物6.4.8手性对映体6.4.9展望习题第7章毛细管电泳7.1概述7.2毛细管电泳分离的一般过程7.2.1分离的一般过程7.2.2数学描述7.3毛细管电泳分离的基本原理7.4基本概念7.4.1电泳、淌度、绝对淌度及有效淌度7.4.2电渗、电渗率及合淌度7.4.3两相分配与权均淌度7.5毛细管电泳分类7.6毛细管电泳仪系统7.6.1电泳仪的结构7.6.2毛细管电泳仪的特点7.7毛细管电泳分离方式7.7.1毛细管区带电泳7.7.2毛细管凝胶电泳7.7.3胶束毛细管电动色谱7.7.4毛细管电色谱7.7.5毛细管等速电泳7.7.6毛细管等电聚焦7.8毛细管电泳柱技术7.9毛细管电泳检测技术7.10应用实例习题第8章色谱的定性和定量分析8.1色谱定性分析8.1.1一般性定性8.1.2利用保留值规律进行定性分析8.1.3利用选择性检测器定性8.1.4联用方法定性8.1.5化学方法定性8.1.6平面色谱中的定性方法8.1.7多种方法配合定性8.2色谱定量分析8.2.1定量分析的基本公式8.2.2色谱峰高和峰面积的测定8.2.3定量校正因子8.2.4定量方法8.2.5影响准确定量的主要因素习题第9章色谱联用技术9.1气相色谱?质谱联用技术9.1.1气相色谱?质谱联用仪器系统简介9.1.2气相色谱?四极杆台式质谱联用仪器简介9.1.3气相色谱?质谱联用的条件选择9.1.4气相色谱?质谱联用的谱图及其信息9.1.5气相色谱?质谱联用质谱谱库及检索简介9.2气相色谱?傅里叶红外光谱联用技术9.2.1气相色谱?傅里叶变换红外联用仪器系统简介9.2.2气相色谱?傅里叶变换红外数据采集与处理简介9.2.3气相色谱?傅里叶变换红外的条件优化9.2.4气相色谱?傅里叶变换红外联用技术的应用9.3液相色谱?质谱联用技术9.3.1LC?MS接口9.3.2LC?MS分析条件的选择9.3.3毛细管电泳?质谱联用9.3.4LC?MS联用的应用9.4液相色谱?傅里叶变换红外光谱联用9.5色谱与其他仪器的联用习题第10章液相色谱样品预处理10.1概述10.2液液萃取10.2.1液液萃取的基本操作10.2.2液液萃取溶剂的选择10.2.3液液萃取常用装置10.3固相萃取10.3.1固相萃取的原理及特点10.3.2固相萃取常用的吸附剂10.3.3洗脱剂10.3.4固相萃取装置及操作10.3.5固相微萃取10.4膜分离10.4.1膜分离原理10.4.2膜的分类10.4.3膜分离过程的类型及特点10.4.4膜分离技术存在的问题及解决方法10.5衍生化技术10.5.1衍生化作用与反应要求10.5.2柱前衍生化10.5.3柱后衍生化10.5.4紫外衍生化10.5.5荧光衍生化参考文献
2023-08-18 02:44:371

塑料红外光谱材质判定的能力验证是怎么做的

塑料红外光谱材质判定的能力验证是怎么做的当红外光照在被测物质上,通过检测被测物质对红外光的吸收强弱来推断物质的分子结构,从而判断被测物质的成分,本文介绍了傅里叶红外光谱仪在鉴定塑料材质过程中
2023-08-18 02:44:531

哪位大侠说一下光谱仪,单色仪,波长计的区别!谢谢!

分别百度一下找出它们的区别这样你的印象会更深
2023-08-18 02:45:062

光源转换波长什么意思

傅里叶近红外光谱仪:用迈克尔逊干涉仪,使用数学上的傅里叶变换,将频率域的信息转换为波长域的信息,从而得到光谱,它是可以得到连续波长信息的.它是一种通用仪器. 双波长近红外光谱仪:只是采用了两个波长(一个测试波长A、一个参比波长B)来得到被测物在A波长上的透过率(或反射率、吸光度等)信息,不能得到全波段的光谱信息.因此只适用于某种测试目的,或者叫做专用仪器. (续答) 对于双波长法来说,不论测试什么物质,都要找到最灵敏的波长,也就是说在这个波长处物质对光的吸收率比较明显(吸收率过大或者过小都不好),而且呈线性(如果没有好的线性,就不容易定量测量,必须用已知物或者标准物来做工作曲线,很复杂的哦).然后再找一个非常不灵敏(或者无吸收)的波长作为参考,两个波长同时得到数据,两个数据相减,就是被测物的信息数据了. 选择这两个波长,通常要靠通用的全波段光谱仪对被测物进行充分的定性分析以后,才能确定. (再续答) 两个波长的实现,方法很多: 1、大多数的双波长仪器是采用一个发光源,前面有双波长滤波片轮,顺序转过,那么探测器就顺序得到两个波长的数据. 2、也有同一个光源,使用分束器分成两束,分别用两个波长的滤光片使两束光变成单波长的光,两个并行的探测器同时探测数据. 3、还有直接就用两个光源做成两个单色光,最简单的办法就是两个LED,因为LED可以是单波长的
2023-08-18 02:45:151

我想测复合材料里碳纳米管的含量,该用什么仪器?傅里叶红外光谱可以吗?

如果复合材料中,只有碳纳米管这一种含碳物质,可以使用元素分析(EA)来确定碳含量,进而转换成碳纳米管含量。
2023-08-18 02:45:321

什么是涂料的活化期?

研究结果显示:傅里叶红外光谱(FT-IR)表明,对于两种羟基丙烯酸树脂,在混合后不同时间制备的涂膜,相较于PAD体系,PAE制备的水性双组分聚氨酯体系中异氰酸酯基团(-NCO)与羟基基团(-OH)的反应是比较缓慢进行的。分散体型丙烯酸多元醇与固化剂混合后黏度不断下降,随着混合后时间的延长,涂膜的起泡程度逐渐增强,硬度和光泽没有明显变化,耐水性和耐化学性没有明显减弱。乳液型多元醇与亲水改性聚异氰酸酯固化剂混合后,黏度出现先下降后升高的现象,涂膜硬度出现了降低又增加的现象。黏度转折点出现的时间随NCO/OH比的不同而不同。采用相同的搅拌强度,水性双组分聚氨酯体系粒径在活化期内均没有出现明显变化。
2023-08-18 02:45:431

肽键和氨基的红外区别肽键和氨基的红外光谱中的 区别?

红外光谱和傅里叶转变红外光谱的区别? 色散型红外光谱主要是依靠光的色散,傅立叶转换红外光谱只要是靠光的干涉,先产生干涉图,再由傅立叶转换,变换成我们熟悉的红外光谱。
2023-08-18 02:45:502

傅里叶红外光谱图怎么看

傅里叶红外光谱介绍如下:傅立叶变换红外光谱仪无色散元件,没有夹缝,故来自光源的光有足够的能量经过干涉后照射到样品上然后到达检测器,傅立叶变换红外光谱仪测量部分的主要核心部件是干涉仪,干涉仪是由固定不动的反射镜M1(定镜),可移动的反射镜M2(动镜)及分光束器B组成。M1和M2是互相垂直的平面反射镜。B以45°角置于M1和M2之间,B能将来自光源的光束分成相等的两部分,一半光束经B后被反射,另一半光束则透射通过B。在迈克尔逊干涉仪中,当来自光源的入射光经光分束器分成两束光,经过两反射镜反射后又汇聚在一起。再投射到检测器上,由于动镜的移动,使两束光产生了光程差,当光程差为半波长的偶数倍时,发生相长干涉,产生明线;为半波长的奇数倍时,发生相消干涉,产生暗线,若光程差既不是半波长的偶数倍,也不是奇数倍时,则相干光强度介于前两种情况之间。当动镜联系移动,在检测器上记录的信号余弦变化,每移动四分之一波长的距离,信号则从明到暗周期性的改变一次。上内突(句夭图片乃视频)为邰作老亚台"忡传县"田户卜传并发布木平台仅提做信息存储服务。
2023-08-18 02:46:251

傅叶红外光谱仪需要分光吗

不需要。傅里叶变换红外光谱仪,简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
2023-08-18 02:46:481

FTIR和傅里叶红外光谱是一个东西吗

是的,FTIR就是 Fourier Transform infrared spectroscopy的缩写
2023-08-18 02:47:381

如何测量薄膜的吸收系数

都有专门测薄膜厚度和薄膜厚度的仪器
2023-08-18 02:47:482

红外玻璃,caf2含量影响透射率吗

傅里叶变换红外光谱仪简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
2023-08-18 02:48:111

高压下几种有机分子晶体的相变和光学性质的研究论文

高压物理和高压化学主要从事于高压诱导相变和高压诱导化学反应的研究,以及高压下荧光光谱和拉曼光谱的研究。发光材料合成主要从事发光有机小分子与金属形成有机络合物的合成及其光学性质的研究。原子光刻技术原子束刻蚀从事新型自组装单分子层抗蚀剂的开发和利用;亚稳态中性原子曝光源的开发和利用,硅表面硅纳米结构的制造和表征。曾经研究方向:主要是合成有机分子晶体,通过拉曼光谱研究这些分子固体在高压下的晶体结构和分子结构的变化。已经对二苯甲酮(Benzophonone)、安息香(Benzoin)、偶氮苯 (Azobenzene )、苄连氮(Benzalazine)、二苯基乙二酮(Benzil)等晶体的高压下的拉曼光谱和荧光光谱进行了测试,并取得了较好的结果 。主要研究高压下有机分子晶体的相变和光谱学性质。有机分子是有不同的基团组成的,每个基团又是由各种原子组成的,各原子间由化学键连接。具有各种不同的异构体,同分异构体,官能团异构体,构象异构体等。戊烷具有正、异、新三种异构体。环己烷具有船式和椅式两种异构体,而且环上的氢具有两种不同的排列(直立键和倒伏键)。分子的振动和转动产生分子光谱。在拉曼光谱中表现出不同基团的特征频率。而且这些特征频率随着压力的升高,有机分子的结构发生变化,出现新的凝聚相,有些频率消失,或出现新的拉曼频率。有机分子间作用力主要有范德华力和氢键。压力很容易改变其作用力。在特定的压力下,分子间的排列将向最优化排列方向发展,来达到最大堆砌原理,给有机分子晶体带来新的光电磁效应。有机分子的相变可以根据光谱的变化来确定发生了什么的变化。如高压X射线研究高压下分子结构等。国外的高压研究组织先后对甲烷,以及相关的卤代甲烷,萘,蒽,六联噻吩,金刚烷(乌洛托品),碳60,苯,环己烷,环己烯等进行了研究,主要采用的测试手段有差热分析法,傅里叶红外光谱,拉曼光谱,吸收光谱,X射线衍射,中子衍射等技术手段。本实验室主要采用拉曼光谱和荧光光谱来研究有机分子晶体的结构变化和能带变化,计划添加红外光谱仪和拉曼光谱仪结合研究构象变化。并在显微镜下观察有机分子晶体随着压力升高,在不同的偏振片位置的图象采集,为研究提供直观的判断!高压下苯(Benzene)的研究:苯在常温常压下是无色透明的液体,在偏光显微镜下观察呈现杏黄色。在常温下,随着压力的升高,从液相逐渐向固相发生转变,而且还有固相的几次转变,且运用金刚石对顶砧技术加压通过偏光显微镜观察,具有非常漂亮的色彩变化。而且还先后运用X射线衍射研究在不同压力的结构,用拉曼光谱仪和红外光谱仪对分子振动及相变进行研究,发生相变时拉曼峰内部模式变化,或间并态分裂,或拉曼峰消失。还有其它的实验测试手段也曾经对苯进行了研究。最早对苯进行研究的是布里奇曼(Bridgman),在测量苯的压缩率时发现了苯的固相II(Phase II),具有一定的粘滞性。随后开雷恩(Klein)等通过透光的高压窗口观察到了整个相变的过程,并解释为马氏体或互换位置的相变类型。继之乐(Akella)和肯尼迪(Kennedy)运用金刚石对顶砧高压技术通过差热分析法对苯的固相II进行了证明。随着同步辐射的发展,皮埃尔马瑞尼(Piermerini)等通过X射线晶相研究苯的固相II,确定了苯固相II为单斜晶系(monoclinic)(P21/c)C52h的空间群。元胞内有两个分子处于Ci点位置上。其相变的条件为:294K,25Kbar。随后的实验证明了苯固相I (Phase I)Pbcd,D52h的空间群。元胞内有四个分子处于Ci点位置上。其相变的条件为:294K,14Kbar. 苯固相III(Phase III)为单斜晶系,P21/c。其相变条件为295K,40Kbar。伴随着固相III"(Phase III"). 苯的固相IV其相变条件为:295K,110Kbar。我们在室温下可以连续观察到苯的相变过程。并有苯的室温高压相变过程的录像可供下观看。
2023-08-18 02:48:221

哪里可以做傅里叶红外光谱分析

在化工产品中,组成化学键或官能团的原子处于不断振动的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射有机物分子时,分子中的化学键或官能团可发生振动吸收,不同的化学键或官能团吸收频率不同, 此仪器为成分分析的最基础步骤。由化工产品的基础官能团,可设计样品前处理方案。英格尔检测可以做,像质谱、电镜能谱、色谱仪器都是有的,较全面。
2023-08-18 02:48:321

双波长近红外光谱仪是什么意思

傅里叶近红外光谱仪:用迈克尔逊干涉仪,使用数学上的傅里叶变换,将频率域的信息转换为波长域的信息,从而得到光谱,它是可以得到连续波长信息的。它是一种通用仪器。双波长近红外光谱仪:只是采用了两个波长(一个测试波长A、一个参比波长B)来得到被测物在A波长上的透过率(或反射率、吸光度等)信息,不能得到全波段的光谱信息。因此只适用于某种测试目的,或者叫做专用仪器。 (续答)对于双波长法来说,不论测试什么物质,都要找到最灵敏的波长,也就是说在这个波长处物质对光的吸收率比较明显(吸收率过大或者过小都不好),而且呈线性(如果没有好的线性,就不容易定量测量,必须用已知物或者标准物来做工作曲线,很复杂的哦)。然后再找一个非常不灵敏(或者无吸收)的波长作为参考,两个波长同时得到数据,两个数据相减,就是被测物的信息数据了。选择这两个波长,通常要靠通用的全波段光谱仪对被测物进行充分的定性分析以后,才能确定。 (再续答)两个波长的实现,方法很多:1、大多数的双波长仪器是采用一个发光源,前面有双波长滤波片轮,顺序转过,那么探测器就顺序得到两个波长的数据。2、也有同一个光源,使用分束器分成两束,分别用两个波长的滤光片使两束光变成单波长的光,两个并行的探测器同时探测数据。3、还有直接就用两个光源做成两个单色光,最简单的办法就是两个LED,因为LED可以是单波长的
2023-08-18 02:48:421

王中平的科研方向

高压物理和高压化学主要从事于高压诱导相变和高压诱导化学反应的研究,以及高压下荧光光谱和拉曼光谱的研究。发光材料合成主要从事发光有机小分子与金属形成有机络合物的合成及其光学性质的研究。原子光刻技术原子束刻蚀从事新型自组装单分子层抗蚀剂的开发和利用;亚稳态中性原子曝光源的开发和利用,硅表面硅纳米结构的制造和表征。曾经研究方向:主要是合成有机分子晶体,通过拉曼光谱研究这些分子固体在高压下的晶体结构和分子结构的变化。已经对二苯甲酮(Benzophonone)、安息香(Benzoin)、偶氮苯 (Azobenzene )、苄连氮(Benzalazine)、二苯基乙二酮(Benzil)等晶体的高压下的拉曼光谱和荧光光谱进行了测试,并取得了较好的结果 。主要研究高压下有机分子晶体的相变和光谱学性质。有机分子是有不同的基团组成的,每个基团又是由各种原子组成的,各原子间由化学键连接。具有各种不同的异构体,同分异构体,官能团异构体,构象异构体等。戊烷具有正、异、新三种异构体。环己烷具有船式和椅式两种异构体,而且环上的氢具有两种不同的排列(直立键和倒伏键)。分子的振动和转动产生分子光谱。在拉曼光谱中表现出不同基团的特征频率。而且这些特征频率随着压力的升高,有机分子的结构发生变化,出现新的凝聚相,有些频率消失,或出现新的拉曼频率。有机分子间作用力主要有范德华力和氢键。压力很容易改变其作用力。在特定的压力下,分子间的排列将向最优化排列方向发展,来达到最大堆砌原理,给有机分子晶体带来新的光电磁效应。有机分子的相变可以根据光谱的变化来确定发生了什么的变化。如高压X射线研究高压下分子结构等。国外的高压研究组织先后对甲烷,以及相关的卤代甲烷,萘,蒽,六联噻吩,金刚烷(乌洛托品),碳60,苯,环己烷,环己烯等进行了研究,主要采用的测试手段有差热分析法,傅里叶红外光谱,拉曼光谱,吸收光谱,X射线衍射,中子衍射等技术手段。本实验室主要采用拉曼光谱和荧光光谱来研究有机分子晶体的结构变化和能带变化,计划添加红外光谱仪和拉曼光谱仪结合研究构象变化。并在显微镜下观察有机分子晶体随着压力升高,在不同的偏振片位置的图象采集,为研究提供直观的判断!高压下苯(Benzene)的研究:苯在常温常压下是无色透明的液体,在偏光显微镜下观察呈现杏黄色。在常温下,随着压力的升高,从液相逐渐向固相发生转变,而且还有固相的几次转变,且运用金刚石对顶砧技术加压通过偏光显微镜观察,具有非常漂亮的色彩变化。而且还先后运用X射线衍射研究在不同压力的结构,用拉曼光谱仪和红外光谱仪对分子振动及相变进行研究,发生相变时拉曼峰内部模式变化,或间并态分裂,或拉曼峰消失。还有其它的实验测试手段也曾经对苯进行了研究。最早对苯进行研究的是布里奇曼(Bridgman),在测量苯的压缩率时发现了苯的固相II(Phase II),具有一定的粘滞性。随后开雷恩(Klein)等通过透光的高压窗口观察到了整个相变的过程,并解释为马氏体或互换位置的相变类型。继之乐(Akella)和肯尼迪(Kennedy)运用金刚石对顶砧高压技术通过差热分析法对苯的固相II进行了证明。随着同步辐射的发展,皮埃尔马瑞尼(Piermerini)等通过X射线晶相研究苯的固相II,确定了苯固相II为单斜晶系(monoclinic)(P21/c)C52h的空间群。元胞内有两个分子处于Ci点位置上。其相变的条件为:294K,25Kbar。随后的实验证明了苯固相I (Phase I)Pbcd,D52h的空间群。元胞内有四个分子处于Ci点位置上。其相变的条件为:294K,14Kbar. 苯固相III(Phase III)为单斜晶系,P21/c。其相变条件为295K,40Kbar。伴随着固相III"(Phase III"). 苯的固相IV其相变条件为:295K,110Kbar。我们在室温下可以连续观察到苯的相变过程。并有苯的室温高压相变过程的录像可供下观看。
2023-08-18 02:48:501

聚丙烯酰胺红外光谱

用胶体滴定法测试聚丙烯酰胺的阳离子度,用胶体反滴定法和溴代十六烷基吡啶滴定法测试聚丙烯酰胺的阴离子度,用傅里叶红外光谱对自制的聚丙烯酰胺进行官能团分析,并对常温条件下,pH值、指示剂用量、滴定速度以及聚合物残留乳化剂对离子度测定的影响进行研究。研究结果表明:对阳离子聚丙烯酰胺,当采用胶体滴定法测试阳离子度,pH=2-3,滴定速度约为25μL/s时,测试结果准确;而对阴离子聚丙烯酰胺,当采用反滴定法测定阴离子度时,在pH=9~10,滴定速度约为25μL/s时,测试结果准确;当采用溴代十六烷基吡啶滴定法时,只有在阴离子度大于30%时才可以准确测出样品的阴离子度
2023-08-18 02:49:191

傅里叶变换红外光谱仪能定量分析吗

主要看你是使用在哪个领域,国家有关于傅里叶红外定量分析的行业标准,目前有部分行业是可以做定量分析,感兴趣的话QQ471821340。
2023-08-18 02:49:321

相对近红外值和湿化学值,你更相信哪个

近红外光是介于可见光(ⅥS)和中红外光(MIR)之间的电磁波,按ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。傅里叶红外光谱仪(FT-IR)是分子吸收光谱,不同的官能团,化学键振动或转动,对不同波数的红外光有吸收,据此,可以测定出样品有哪些官能团或化学键存在或变化,用以物质的定性、定量、反应过程等的研究。
2023-08-18 02:49:421

使用红外光谱仪测试样品有哪些注意事项?

  1、测定时实验室的温度应在15~30℃,相对湿度应在65%以下,所用电源应配备有稳压装置和接地线。因要严格控制室内的相对湿度,因此红外实验室的面积不要太大,能放得下必须的仪器设备即可,但室内一定要有除湿装置。  2、如所用的是单光朿型傅里叶红外分光光度计(目前应用最多),实验室里的CO2含量不能太高,因此实验室里的人数应尽量少,无关人员最好不要进入,还要注意适当通风换气。  3、如供试品为盐酸盐,因考虑到在压片过程中可能出现的离子交换现象,标准规定用氯化钾(也同溴化钾一样预处理后使用)代替溴化钾进行压片,但也可比较氯化钾压片和溴化钾压片后测得的光谱,如二者没有区别,则可使用溴化钾进行压片。  4、为防止仪器受潮而影响使用寿命,红外实验室应经常保持干燥,即使仪器不用,也应每周开机至少两次,每次半天,同时开除湿机除湿。特别是霉雨季节,最好是能每天开除湿机。  5、红外光谱测定最常用的试样制备方法是溴化钾(KBr)压片法(药典收载品种90%以上用此法),因此为减少对测定的影响,所用KBr最好应为光学试剂级,至少也要分析纯级。使用前应适当研细(200目以下),并在120℃以上烘4小时以上后置干燥器中备用。如发现结块,则应重新干燥。制备好的空KBr片应透明,与空气相比,透光率应在75%以上。  6、压片法时取用的供试品量一般为1~2mg,因不可能用天平称量后加入,并且每种样品的对红外光的吸收程度不一致,故常凭经验取用。一般要求所没得的光谱图中绝大多数吸收峰处于10%~80%透光率范围在内。最强吸收峰的透光率如太大(如大于30%),则说明取样量太少;相反,如最强吸收峰为接近透光率为0%,且为平头峰,则说明取样量太多,此时均应调整取样量后重新测定。  7、测定用样品应干燥,否则应在研细后置红外灯下烘几分钟使干燥。试样研好并具在模具中装好后,应与真空泵相连后抽真空至少2分钟,以使试样中的水分进一步被抽走,然后再加压到0.8~1GPa(8~10T/cm2)后维持2~5min。不抽真空将影响片子的透明度。  8、压片时KBr的取用量一般为200mg左右(也是凭经验),应根据制片后的片子厚度来控制KBr的量,一般片子厚度应在0.5mm以下,厚度大于0.5mm时,常可在光谱上观察到干涉条纹,对供试品光谱产生干扰。  9、压片时,应先取供试品研细后再加入KBr再次研细研匀,这样比较容易混匀。研磨所用的应为玛瑙研钵,因玻璃研钵内表面比较粗糙,易粘附样品。研磨时应按同一方向(顺时针或逆时针)均匀用力,如不按同一方向研磨,有可能在研磨过程中使供试品产生转晶,从而影响测定结果。研磨力度不用太大,研磨到试样中不再有肉眼可见的小粒子即可。试样研好后,应通过一小的漏斗倒入到压片模具中(因模具口较小,直接倒入较难),并尽量把试样铺均匀,否则压片后试样少的地方的透明度要比试样多的地方的低,并因此对测定产生影响。另外,如压好的片子上出现不透明的小白点,则说明研好的试样中有未研细的小粒子,应重新压片。  10、压片用模具用后应立即把各部分擦干净,必要时用水清洗干净并擦干,置干燥器中保存,以免锈蚀。
2023-08-18 02:49:521

傅里叶红外光谱仪能测硅基上的薄膜吗(硅不透光)

可以,只要表面平整,我公司有两台
2023-08-18 02:50:001

红外测苯甲酸时,苯甲酸为什么要在红外灯下研细,谢谢。

1.将所有的膜具擦拭干净,在红外灯下烘烤;2.在红外灯下研钵中加入KBr进行研磨,至少十分钟;3.将KBr装入膜具,在压片机上压片,压力上升至35Mpa左右,稳定5分钟;4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。5. 取一定量的样品(样品:KBr=100:1)放入研钵中研细,然后重复上述步骤得到试样的薄片;6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图;7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图;8.在红外光谱仪自带的谱图库中进行检索,检出相关度较大的已知物的标准谱图,对样品的谱图进行解读,参考标准谱图得出鉴定结果。五、结果与分析样品的红外谱图:(1)在基团频率区,芳烃的C—H的伸缩振动峰在3020—3000cm-1之间,C=C骨架伸缩振动峰~1600cm-1和~1500cm-1;另外,酸的O—H伸缩振动峰在3400—2400cm-1之间,而C=O伸缩振动峰一般在1760cm-1或1710cm-1(H键)处,这两个特征在基团频率区不甚明显;(2)在指纹区,700cm-1左右的705cm-1和662cm-1为单取代苯C—H变形振动的特征吸收峰;
2023-08-18 02:50:251

傅里叶扫描时背景架什么情况下不能放样品

已有样品。因为该技术只能用于对已有样品进行测试,无法对新的未知样品进行采集。换句话说,傅里叶红外色谱只能对已经存在的样品进行测试,而不能对即将采集的样品进行测试,因此,需要使用其它的技术来采集新的未知样品。傅里叶红外光谱扫描技术采用的是傅里叶变换红外光谱仪。它可以通过将经过样品的辐射光与经过热源的光在时间上很短的瞬间进行干涉,从而实现红外吸收光谱的测定。
2023-08-18 02:50:321

显微成像红外光谱仪可以在复合材料中区分两种物质吗

复合材料界面是指复合材料的基体与增强材料之间化学成分有显著变化的、构成彼此结合的、能起载荷等传递作用的微小区域。目前的研究尚处于半定量和半经验的水平上。 最早复合材料界面曾被想像成是一层没有厚度的面(或称单分子层的面)。而事实上复合材料界面是一层具有一定厚度(纳米以上)、结构随基体和增强体而异、与基体有明显差别的新相——界面相(或称界面层)。因为增强体和基体互相接触时, 在一定条件的影响下,可能发生化学反应或物理化学作用,如两相间元素的互相扩散、溶解,从而产生不同于原来两相的新相;即使不发生反应、扩散、溶解,也会由于基体的固化、凝固所产生的内应力,或者由于组织结构的诱导效应,导致接近增强体的基体发生结构上的变化或堆砌密度上的变化,从而导致这个局部基体的性能不同于基体的本体性能,形成界面相。界面相也包括在增强体表面上预先涂覆的表面处理剂层和增强体经表面处理工艺而发生反应的表面层。因此,必须建立复合材料界面存在独立相的新概念。复合材料界面相的结构与性能对复合材料整体的性能影响大。为改善复合材料性能,必须考虑界面设计和控制。结构复合材料界面相存在的残应力,是由于基体的固化或凝固收缩和两相间热膨胀系数的失配而造成的。无论应力大小和方向,都会影响到复合材料受载时的行为,如造成复合材料拉伸和压缩性能的明显差异等。结构复合材料界面的作用,是在复合材料受到载荷时把基体上的应力传递到增强体上。这就需要界面相有 足够的粘接强度,而两相表面能够互相浸润是先决条件。但是界面层并不是粘接得越强越好,而是要有适当的粘接强度,因为界面相还有另一个作用是在一定应力条件下能够脱粘,同时使增强体在基体中拔出并互相发生摩擦。这种由脱粘而增大表面能所做的功、拔出功和摩擦功都提高了破坏功,有助于改善复合材料的破坏行为,即提高它的强度。至于功能复合材料界面相的作用,目前尚很少研究,但已有实验证实,界面相在功能复合材料中的作用也是重要的。 表征为了认识界面的作用,了解界面结构对材料整体性能的影响,必须先表征界面相的化学、物理结构,厚度和形貌,粘接强度和残余应力等,从而可以寻找它们与复合材料性能之间的关系。 界面相化学结构包括组成元素、价态及其分布。其表征可以借助许多固体物理用的先进仪器,如俄歇电子 谱(AES,SAM)、电子探针(EP)、X光电子能谱仪 (X PS)、扫描二次离子质谱仪(S SIMS)、电子能量损失谱仪(EELS,PEELS)、傅里叶红外光谱(FTIR)、显微 拉曼光谱(MRS)、扩展X射线吸收细微结构谱 (E XAFS)等。由于界面相有时仅为纳米级的微区,而且有的组成非常复杂(尤其是金属和陶瓷基复合材料), 因此迄今还不能说哪一种方法可以满意地给出有关复合材料界面相全部化学信息。这是因为这些方法有的束斑太大,远远超过界面微区的尺寸;有的仅能提供元素的信息而不能知道元素的价态;有的会对某些观察物造成 表面损伤等,存在着各式各样的局限性。所以仍需研究 合适的新方法,或几种方法的配合使用。 界面相形貌和厚度的表征也有不少方法,如透射电 镜(TEM)、扫描电镜(S EM)。新方法有角扫描X射线反射谱(GAXP),可以测定金属基和陶瓷基复合材料界 面相的厚度。但这些方法在测量上也有难度。 界面相粘接强度的表征基本上有5种方法,即单丝拔出法、埋入基体的单丝裂断长度法、微(单丝)压出 法、球形(或锥形)压头压痕法、常规三点弯剪法等。前两种方法只能表征单丝复合材料的行为;后3种虽是表 征复合材料,但又各有不足之处。而且各种方法测出 的数据相差甚远,以球形压痕法和三点弯剪法数值较高。目前尚难以决定何种方法是最为合适的。此外,还有用 动态力学法测定内耗值以表征界面结合状态的方法。界面湘残余应力的表征也很困难。对透明基体和不 透明基体都分别有其相应的方法,但是均不理想,同时 在计算处理上也较复杂。复合材料界面理论过去对于复合材料界面理论的 研究是试图提出一个能够适用于各种复合材料的理论,诸如化学反应理论、浸润理论、可形变层理论、约束层 理论、静电作用理论以及把一些理论结合起来的理论。但它们都有许多矛盾,常不能自圆其说。由于对界面认识的逐步深化,了解到界面相的复杂性与多重性是和原组成材料、加工工艺和使用环境密切有关。因此,理论研究转向针对某一具体体系,探讨界面微结构与宏观性能的关系,界面浸润过程和界面反应的热力学与动力学 关系,建立某种体系的界面相模型并作理论处理等。
2023-08-18 02:50:421

使用红外光谱仪测试样品有哪些注意事项?

  1、测定时实验室的温度应在15~30℃,相对湿度应在65%以下,所用电源应配备有稳压装置和接地线。因要严格控制室内的相对湿度,因此红外实验室的面积不要太大,能放得下必须的仪器设备即可,但室内一定要有除湿装置。  2、如所用的是单光朿型傅里叶红外分光光度计(目前应用最多),实验室里的CO2含量不能太高,因此实验室里的人数应尽量少,无关人员最好不要进入,还要注意适当通风换气。  3、如供试品为盐酸盐,因考虑到在压片过程中可能出现的离子交换现象,标准规定用氯化钾(也同溴化钾一样预处理后使用)代替溴化钾进行压片,但也可比较氯化钾压片和溴化钾压片后测得的光谱,如二者没有区别,则可使用溴化钾进行压片。  4、为防止仪器受潮而影响使用寿命,红外实验室应经常保持干燥,即使仪器不用,也应每周开机至少两次,每次半天,同时开除湿机除湿。特别是霉雨季节,最好是能每天开除湿机。  5、红外光谱测定最常用的试样制备方法是溴化钾(KBr)压片法(药典收载品种90%以上用此法),因此为减少对测定的影响,所用KBr最好应为光学试剂级,至少也要分析纯级。使用前应适当研细(200目以下),并在120℃以上烘4小时以上后置干燥器中备用。如发现结块,则应重新干燥。制备好的空KBr片应透明,与空气相比,透光率应在75%以上。  6、压片法时取用的供试品量一般为1~2mg,因不可能用天平称量后加入,并且每种样品的对红外光的吸收程度不一致,故常凭经验取用。一般要求所没得的光谱图中绝大多数吸收峰处于10%~80%透光率范围在内。最强吸收峰的透光率如太大(如大于30%),则说明取样量太少;相反,如最强吸收峰为接近透光率为0%,且为平头峰,则说明取样量太多,此时均应调整取样量后重新测定。  7、测定用样品应干燥,否则应在研细后置红外灯下烘几分钟使干燥。试样研好并具在模具中装好后,应与真空泵相连后抽真空至少2分钟,以使试样中的水分进一步被抽走,然后再加压到0.8~1GPa(8~10T/cm2)后维持2~5min。不抽真空将影响片子的透明度。  8、压片时KBr的取用量一般为200mg左右(也是凭经验),应根据制片后的片子厚度来控制KBr的量,一般片子厚度应在0.5mm以下,厚度大于0.5mm时,常可在光谱上观察到干涉条纹,对供试品光谱产生干扰。  9、压片时,应先取供试品研细后再加入KBr再次研细研匀,这样比较容易混匀。研磨所用的应为玛瑙研钵,因玻璃研钵内表面比较粗糙,易粘附样品。研磨时应按同一方向(顺时针或逆时针)均匀用力,如不按同一方向研磨,有可能在研磨过程中使供试品产生转晶,从而影响测定结果。研磨力度不用太大,研磨到试样中不再有肉眼可见的小粒子即可。试样研好后,应通过一小的漏斗倒入到压片模具中(因模具口较小,直接倒入较难),并尽量把试样铺均匀,否则压片后试样少的地方的透明度要比试样多的地方的低,并因此对测定产生影响。另外,如压好的片子上出现不透明的小白点,则说明研好的试样中有未研细的小粒子,应重新压片。  10、压片用模具用后应立即把各部分擦干净,必要时用水清洗干净并擦干,置干燥器中保存,以免锈蚀。
2023-08-18 02:50:531

相界面的作用是什么?

复合材料界面是指复合材料的基体与增强材料之间化学成分有显著变化的、构成彼此结合的、能起载荷等传递作用的微小区域。目前的研究尚处于半定量和半经验的水平上。 最早复合材料界面曾被想像成是一层没有厚度的面(或称单分子层的面)。而事实上复合材料界面是一层具有一定厚度(纳米以上)、结构随基体和增强体而异、与基体有明显差别的新相——界面相(或称界面层)。因为增强体和基体互相接触时, 在一定条件的影响下,可能发生化学反应或物理化学作用,如两相间元素的互相扩散、溶解,从而产生不同于原来两相的新相;即使不发生反应、扩散、溶解,也会由于基体的固化、凝固所产生的内应力,或者由于组织结构的诱导效应,导致接近增强体的基体发生结构上的变化或堆砌密度上的变化,从而导致这个局部基体的性能不同于基体的本体性能,形成界面相。界面相也包括在增强体表面上预先涂覆的表面处理剂层和增强体经表面处理工艺而发生反应的表面层。因此,必须建立复合材料界面存在独立相的新概念。复合材料界面相的结构与性能对复合材料整体的性能影响大。为改善复合材料性能,必须考虑界面设计和控制。结构复合材料界面相存在的残应力,是由于基体的固化或凝固收缩和两相间热膨胀系数的失配而造成的。无论应力大小和方向,都会影响到复合材料受载时的行为,如造成复合材料拉伸和压缩性能的明显差异等。结构复合材料界面的作用,是在复合材料受到载荷时把基体上的应力传递到增强体上。这就需要界面相有 足够的粘接强度,而两相表面能够互相浸润是先决条件。但是界面层并不是粘接得越强越好,而是要有适当的粘接强度,因为界面相还有另一个作用是在一定应力条件下能够脱粘,同时使增强体在基体中拔出并互相发生摩擦。这种由脱粘而增大表面能所做的功、拔出功和摩擦功都提高了破坏功,有助于改善复合材料的破坏行为,即提高它的强度。至于功能复合材料界面相的作用,目前尚很少研究,但已有实验证实,界面相在功能复合材料中的作用也是重要的。 表征为了认识界面的作用,了解界面结构对材料整体性能的影响,必须先表征界面相的化学、物理结构,厚度和形貌,粘接强度和残余应力等,从而可以寻找它们与复合材料性能之间的关系。 界面相化学结构包括组成元素、价态及其分布。其表征可以借助许多固体物理用的先进仪器,如俄歇电子 谱(AES,SAM)、电子探针(EP)、X光电子能谱仪 (X PS)、扫描二次离子质谱仪(S SIMS)、电子能量损失谱仪(EELS,PEELS)、傅里叶红外光谱(FTIR)、显微 拉曼光谱(MRS)、扩展X射线吸收细微结构谱 (E XAFS)等。由于界面相有时仅为纳米级的微区,而且有的组成非常复杂(尤其是金属和陶瓷基复合材料), 因此迄今还不能说哪一种方法可以满意地给出有关复合材料界面相全部化学信息。这是因为这些方法有的束斑太大,远远超过界面微区的尺寸;有的仅能提供元素的信息而不能知道元素的价态;有的会对某些观察物造成 表面损伤等,存在着各式各样的局限性。所以仍需研究 合适的新方法,或几种方法的配合使用。 界面相形貌和厚度的表征也有不少方法,如透射电 镜(TEM)、扫描电镜(S EM)。新方法有角扫描X射线反射谱(GAXP),可以测定金属基和陶瓷基复合材料界 面相的厚度。但这些方法在测量上也有难度。 界面相粘接强度的表征基本上有5种方法,即单丝拔出法、埋入基体的单丝裂断长度法、微(单丝)压出 法、球形(或锥形)压头压痕法、常规三点弯剪法等。前两种方法只能表征单丝复合材料的行为;后三种虽是表 征复合材料,但又各有不足之处。而且各种方法测出 的数据相差甚远,以球形压痕法和三点弯剪法数值较高。目前尚难以决定何种方法是最为合适的。此外,还有用 动态力学法测定内耗值以表征界面结合状态的方法。界面湘残余应力的表征也很困难。对透明基体和不 透明基体都分别有其相应的方法,但是均不理想,同时 在计算处理上也较复杂。复合材料界面理论过去对于复合材料界面理论的 研究是试图提出一个能够适用于各种复合材料的理论,诸如化学反应理论、浸润理论、可形变层理论、约束层 理论、静电作用理论以及把一些理论结合起来的理论。但它们都有许多矛盾,常不能自圆其说。由于对界面认识的逐步深化,了解到界面相的复杂性与多重性是和原组成材料、加工工艺和使用环境密切有关。因此,理论研究转向针对某一具体体系,探讨界面微结构与宏观性能的关系,界面浸润过程和界面反应的热力学与动力学 关系,建立某种体系的界面相模型并作理论处理等
2023-08-18 02:51:061

怎么选择傅里叶红外吸收仪中液体池两个垫片的厚度

1mm和2mm对于水而言太厚了,红外光谱上几乎全是水的饱和吸收带,其他物质的红外吸收峰几乎都被掩盖了,不可能检测到。建议至少要用200微米厚的垫片。
2023-08-18 02:51:251

怎么选择傅里叶红外吸收仪中液体池两个垫片的厚度

1mm 和 2mm 对于水而言太厚了,红外光谱上几乎全是水的饱和吸收带,其他物质的红外吸收峰几乎都被掩盖了,不可能检测到。建议至少要用 200 微米厚的垫片。
2023-08-18 02:51:331

红外光谱仪主要使用范围有哪些

军事 成分测试
2023-08-18 02:51:442

单晶硅切片的检测指标有哪些?

电阻率(p,n杂质决定,不过太阳能现在大多数都是p型)四探针少子寿命(决定了将来太阳能电池的质量)氧碳含量:傅里叶红外光谱位错密度:这个好像都是人工检查的
2023-08-18 02:52:113

MPA型傅里叶近红外光谱仪中的MPA是什么的缩写啊??

MPA 为“Multi Purpose Analyzer”的缩写
2023-08-18 02:52:191

苯甲酸钠的各个基团的红外吸收峰是多少

1.将所有的膜具擦拭干净,在红外灯下烘烤;2.在红外灯下研钵中加入KBr进行研磨,至少十分钟;3.将KBr装入膜具,在压片机上压片,压力上升至35Mpa左右,稳定5分钟;4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试...9019
2023-08-18 02:52:281

复合材料的界面定义是什么,包括哪些部分

复合材料界面是指复合材料的基体与增强材料之间化学成分有显著变化的、构成彼此结合的、能起载荷等传递作用的微小区域。目前的研究尚处于半定量和半经验的水平上。 最早复合材料界面曾被想像成是一层没有厚度的面(或称单分子层的面)。而事实上复合材料界面是一层具有一定厚度(纳米以上)、结构随基体和增强体而异、与基体有明显差别的新相——界面相(或称界面层)。因为增强体和基体互相接触时, 在一定条件的影响下,可能发生化学反应或物理化学作用,如两相间元素的互相扩散、溶解,从而产生不同于原来两相的新相;即使不发生反应、扩散、溶解,也会由于基体的固化、凝固所产生的内应力,或者由于组织结构的诱导效应,导致接近增强体的基体发生结构上的变化或堆砌密度上的变化,从而导致这个局部基体的性能不同于基体的本体性能,形成界面相。界面相也包括在增强体表面上预先涂覆的表面处理剂层和增强体经表面处理工艺而发生反应的表面层。因此,必须建立复合材料界面存在独立相的新概念。复合材料界面相的结构与性能对复合材料整体的性能影响大。为改善复合材料性能,必须考虑界面设计和控制。结构复合材料界面相存在的残应力,是由于基体的固化或凝固收缩和两相间热膨胀系数的失配而造成的。无论应力大小和方向,都会影响到复合材料受载时的行为,如造成复合材料拉伸和压缩性能的明显差异等。结构复合材料界面的作用,是在复合材料受到载荷时把基体上的应力传递到增强体上。这就需要界面相有 足够的粘接强度,而两相表面能够互相浸润是先决条件。但是界面层并不是粘接得越强越好,而是要有适当的粘接强度,因为界面相还有另一个作用是在一定应力条件下能够脱粘,同时使增强体在基体中拔出并互相发生摩擦。这种由脱粘而增大表面能所做的功、拔出功和摩擦功都提高了破坏功,有助于改善复合材料的破坏行为,即提高它的强度。至于功能复合材料界面相的作用,目前尚很少研究,但已有实验证实,界面相在功能复合材料中的作用也是重要的。 表征为了认识界面的作用,了解界面结构对材料整体性能的影响,必须先表征界面相的化学、物理结构,厚度和形貌,粘接强度和残余应力等,从而可以寻找它们与复合材料性能之间的关系。 界面相化学结构包括组成元素、价态及其分布。其表征可以借助许多固体物理用的先进仪器,如俄歇电子 谱(AES,SAM)、电子探针(EP)、X光电子能谱仪 (X PS)、扫描二次离子质谱仪(S SIMS)、电子能量损失谱仪(EELS,PEELS)、傅里叶红外光谱(FTIR)、显微 拉曼光谱(MRS)、扩展X射线吸收细微结构谱 (E XAFS)等。由于界面相有时仅为纳米级的微区,而且有的组成非常复杂(尤其是金属和陶瓷基复合材料), 因此迄今还不能说哪一种方法可以满意地给出有关复合材料界面相全部化学信息。这是因为这些方法有的束斑太大,远远超过界面微区的尺寸;有的仅能提供元素的信息而不能知道元素的价态;有的会对某些观察物造成 表面损伤等,存在着各式各样的局限性。所以仍需研究 合适的新方法,或几种方法的配合使用。 界面相形貌和厚度的表征也有不少方法,如透射电 镜(TEM)、扫描电镜(S EM)。新方法有角扫描X射线反射谱(GAXP),可以测定金属基和陶瓷基复合材料界 面相的厚度。但这些方法在测量上也有难度。 界面相粘接强度的表征基本上有5种方法,即单丝拔出法、埋入基体的单丝裂断长度法、微(单丝)压出 法、球形(或锥形)压头压痕法、常规三点弯剪法等。前两种方法只能表征单丝复合材料的行为;后3种虽是表 征复合材料,但又各有不足之处。而且各种方法测出 的数据相差甚远,以球形压痕法和三点弯剪法数值较高。目前尚难以决定何种方法是最为合适的。此外,还有用 动态力学法测定内耗值以表征界面结合状态的方法。界面湘残余应力的表征也很困难。对透明基体和不 透明基体都分别有其相应的方法,但是均不理想,同时 在计算处理上也较复杂。复合材料界面理论过去对于复合材料界面理论的 研究是试图提出一个能够适用于各种复合材料的理论,诸如化学反应理论、浸润理论、可形变层理论、约束层 理论、静电作用理论以及把一些理论结合起来的理论。但它们都有许多矛盾,常不能自圆其说。由于对界面认识的逐步深化,了解到界面相的复杂性与多重性是和原组成材料、加工工艺和使用环境密切有关。因此,理论研究转向针对某一具体体系,探讨界面微结构与宏观性能的关系,界面浸润过程和界面反应的热力学与动力学 关系,建立某种体系的界面相模型并作理论处理等。
2023-08-18 02:52:381

红外光谱仪哪家卖的比较好

红外光谱仪器分国产和进口,国产有双光束红外分光光度计和傅里叶红外光谱仪两种。进口的只有傅里叶红外光谱仪。分光光度计在国内的企业里还是占有比较大的比重,尤其是在药厂和一些化工厂(价格较低保养方便,维护成本低廉,但就是效率较低)。傅里叶在高校或是科研单位使用率比较高,(机器精度高,扫描速度快)。如要表明哪一家的产品好,其实各有千秋。尤其是进口厂商,个人觉得完全是品牌的偏爱和先前的使用熟练与否。并无太明显的差别(同级产品及比较)。要说分别我们作为使用方(天津生机集团)先前采购产品也做了不少功课,买了一台ftir-1500.质量不错,性能稳定。具体哪个厂家不便宣传。如果有朋友需要可去各个门户网站搜索。
2023-08-18 02:52:491

简单解释量子力学的内容?

普朗克的量子力学。。。可以百度。因为一时也是说不清楚。。。这关系到很多物理理论,才会有所悟。可以看看相关书籍,或者是相对论,加油!物理是很有趣的!←_→
2023-08-18 02:45:273

陀螺仪的重要特性是什么?有什么实际应用

用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。陀螺仪被广泛用于航空、航天和航海领域。这是由于它的两个基本特性:一为定轴性(inertia or rigidity),另一是进动性(precession),这两种特性都是建立在角动量守恒的原则下。陀螺仪器最早是用于航海导航,但随着科学技术的发展,它在航空和航天事业中也得到广泛的应用。陀螺仪器不仅可以作为指示仪表,而更重要的是它可以作为自动控制系统中的一个敏感元件,即可作为信号传感器。根据需要,陀螺仪器能提供准确的方位、水平、位置、速度和加速度等信号,以便驾驶员或用自动导航仪来控制飞机、舰船或航天飞机等航行体按一定的航线飞行,而在导弹、卫星运载器或空间探测火箭等航行体的制导中,则直接利用这些信号完成航行体的姿态控制和轨道控制。作为稳定器,陀螺仪器能使列车在单轨上行驶,能减小船舶在风浪中的摇摆,能使安装在飞机或卫星上的照相机相对地面稳定等等。作为精密测试仪器,陀螺仪器能够为地面设施、矿山隧道、地下铁路、石油钻探以及导弹发射井等提供准确的方位基准。由此可见,陀螺仪器的应用范围是相当广泛的,它在现代化的国防建设和国民经济建设中均占重要的地位。
2023-08-18 02:45:273

各位高手 救命翻译一下合同 谢谢

Entrust to investigate the contractEntrust the square:The company of A( the first party)Entrust the square:The company of B( the second party)A B the both parties entrusts the second party for the first party to reach this contract for the ex- period in item investigation affair now through consultation from the both parties" common observance......1 Entrust to investigate an itemsThe first party entrusts the second party investigates an item name as" xxx item foundation this circumstance investigates" item concrete work scope time method sees the enclosure" xxx"2 StandardThis investigate the item with the xxx examines council establishment a xxx is check before acceptance the standard.......4 Investigation fee and its payThe first party should pay the second party an investigation fee is a xxx and should pay in day that this contract sign rose 5 work days a the time turns with cash or banks the method of 账 pays5 The both parties helps to makeA B both parties should work the way proceeds at any time to negotiate the second party as well the first party provides necessaryly pileup and make the work is smoothly progress the essential condition6 Force majeure7 Circular with send to reachAny with this contract relevantly both parties" a circular or other communications in A B have dealings with to should the written form form( include to send to reach the postal delivery and FAX personally) in adoption and send to reach to be advised according to following mailing address or communication numbers the person combines to note following and each contact the person a name the square constitute a notifies availablyAmong them there is an address is:The international mansion in No.3218 in avenue in second 泰 in the provincial governor spring City of Jilin b an economy circulates department8 Break contract the dutyThe first party not according to this contract the 4 treaty definite direction the second party pays to investigate the expenses overdue not over 30 a the first party should implement the contract continuously and should pay to the second party the penalty fee overdue according to contract amount of money a 25% over the 30 a the second party has the power to relieve this contract the first party should still pay to the second party the penalty fee according to contract amount of money a 25%The second party not according to this contract the first treaty settles the second party of the proceeding work needs the total amount sends back the contract gold and pay to the first party the penalty fee according to contract amount of money a 25%9 Dispute solution........ consultation not the ground is any a the square all there is power initiating public prosecution to both parties" located court of the people10 not exhausted affairThis contract did not do the affair be solved by both parties" consultation and sign complement agreement complement negotiate to have with this contract the equal effect
2023-08-18 02:45:321

我想知道什么地是陀螺的进动性、定轴性,怎么定义的,它在地平仪、航向仪上的应用原理?谢谢

说到陀螺仪,先要说说陀螺。绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺(它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴)。 大家小时候都玩过的陀螺就是一例。陀螺一边自转,一边绕一个固定轴旋转(这个固定轴一般是虚的哦),这就叫“旋进”(precession),又称为回转效应(gyroscopic effect)。旋进要在一定的初始条件和一定的外力矩在作用下产生,比如游戏陀螺快要“坏了”时,还有旋转的硬币快要停下时,都是旋进的实例。陀螺旋进是日常生活中常见的现象。 人们利用陀螺的力学性质所制成的各种功能的陀螺装置属于机械陀螺仪(gyroscope),它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪等。 比如飞机、轮船或导弹中的指示仪,其核心部分就是定向指示仪,它是一个装在能自由转向的小框架上的小飞轮(陀螺啦)。在这个装置中,轴承的摩擦力矩很小,可以忽略不计。另一方面,刚体结构高度对称,其质心集中在连杆中心处。这样,当飞轮绕自身对称轴高速转动时,无论如何改变框架的方位,其中心轴的空间取向都始终保持不变。(专业说法是:定向指示仪所受到的合外力矩为零,其角动量守恒)这是定向指示仪的重要特性。 如果在飞机上装上三个定向指示仪,并使三个小飞轮的自转轴相互垂直,飞行员就可以通过飞轮轴相对于机身的指向来确定飞机的空间取向。船舶上装上定向指示仪,海员可用它来确定海轮的航向。鱼雷,火箭中也装有定向指示仪,起到自动导航的作用。在鱼雷前进的过程中,定向指示仪的轴线方向保持不变。当鱼雷因风浪等影响,前进方向改变时,鱼雷的纵轴与定向指示仪之间就出现了偏差,这时可启动有关器械改变舵的角度,使鱼雷回复到原来的前进方向。火箭中,则采用改变喷气方向的方法来校正飞行方向。 在工程上,陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年 等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性
2023-08-18 02:45:361

平板触屏笔可以用什么代替家里都有的?

平板触屏笔可以用家里的物品自己做一个主要找张锡纸就可以了因为锡纸的尖就能代替平板触屏笔只不过不加工一下不好使用就用白纸卷成普通笔的形状在一端用锡纸包裹再用胶带固定住只露出锡纸的尖部这样就能使用了也可以代替平板触控笔
2023-08-18 02:45:376

信用证翻译,高手帮帮忙,急用

附加条款:如果提交的单据存在不符点,将会扣减80美元或等值金额,尽管有相反规定,这项费用以及可能有的电讯通知费用均由受益人支付。本信用证项下的汇票须背书并注明出票依据为: industrial bank of Korea. SEOUL Letter of credit No9070NS0032 Dated 2009-06-28本信用证项下要求的单据须另复印一套供开证行存档之用,如果没有这样子做,可能会导致单据拒付并会扣减20美元的复印处理费用。数量与金额5%的上下浮动可接受。银行费用:所有在韩国以外的银行费用,包括偿付费用均由受益人支付。保兑指示:不加具对议付行/承兑行/偿付行的指示:所要求的单据须以快递的方式一次性地寄给我行(开证行),SWIFT地址:ibkokrsexx在收到与本证条款与条件相符的单据与汇票后我行将按照贵行的指示进行偿付。
2023-08-18 02:45:241

SDT是什么币?

加密货币。。。。Terra SDT,简称为SDT币。Terra是一种价格稳定的加密货币,旨在大规模采用。 随着规模的扩大,我们看到Terra正在发展成为下一代分散式应用程序的新金融基础架构。Terra是一种货币协议,通过算法扩展和收缩供应来确保价格稳定。 Terra使用其铸造作业创造的铸币税作为交易刺激,从而促进采用。
2023-08-18 02:45:202

量子到底是什么?是比原子、电子更小的粒子,还是一种理论?

这是个很有意思的问题。看到“量子”这个词,许多人在“不明觉厉”之余,第一反应就是把它理解成某种粒子。但是只要是上过中学的人,都知道我们日常见到的物质是由原子组成的,原子又是由原子核与电子组成的,原子核是由质子和中子组成的。那么问题来了,量子究竟是个什么鬼?难道是比原子、电子更小的粒子吗? 其实不是。量子跟原子、电子根本不能比较大小,因为它的本意是一个 数学概念 。好比说“5”是一个数字,“3个苹果”是一个实物,你问“5”和“3个苹果”哪个大,这让人怎么回答?正确的回答只能是:它们不是同一范畴的概念,无法比较。 那么,量子这个数学概念的意思究竟是什么呢?就是“ 离散变化的最小单元 ”。 举个例子。我们上台阶时,只能上一个台阶、两个台阶,而不能上半个台阶、1/3 个台阶。这就是“离散变化”,对于上台阶这件事来说,一个台阶就是一个量子。跟“离散变化”相对的叫做“连续变化”。例如你在一段平路上,你可以走到1米的位置,也可以走到1.1米的位置,也可以走到1.11米的位置,如此等等,中间任何一个距离都可以走到,这就是“连续变化”。 显然,离散变化和连续变化在日常生活中都大量存在,这两个概念本身都很容易理解,没有什么特别之处。那么,为什么“量子”这个词会变得如此重要呢? 因为人们发现, 离散变化是微观世界的一个本质特征 。 微观世界中的离散变化可以分为两类,一类是物质组成的离散变化,一类是物理量的离散变化。 先来看第一类。例如光是由一个个光子组成的,你不能分出半个光子、1/3个光子,所以光子就是光的量子。阴极射线是由一个个电子组成的,你不能分出半个电子、1/3个电子,所以电子就是阴极射线的量子。 在这种情况下,你似乎可以拿量子去跟原子、电子比较了,但这并没有多大意义,因为它是随你的问题而变的。你需要分清,原子、电子、质子、中子、中微子这些词本身就对应某些粒子,而量子这个词在不同的语境下对应不同的粒子(如果它对应粒子的话)。 并没有某种粒子专门叫做“量子”! 再来看第二类。例如氢原子中电子的能量只能取-13.6 eV(eV 是“电子伏特”,一种能量单位)或者它的1/4、1/9、1/16 等等,总之是这个值除以某个自然数的平方(-13.6/n^2 eV,n可以取1、2、3、4、5等等),而不能取-13.6 eV的2 倍、1/2 或1/3等等。这时我们不好说氢原子中电子能量的量子是什么,但会说氢原子中电子的能量是“ 量子化 ”的。 说某个东西是量子化的,意思就是这个东西只能离散变化。这是一种普遍现象,每一种原子中电子的能量都是量子化的,也就是说它只能取某些值,不能取这些值之间的值。 发现“离散变化是微观世界的一个本质特征”后,科学家创立了一门准确描述微观世界的物理学理论,就是“ 量子力学 ”。现在你可以明白,这个名称是怎么来的,它其实是为了强调离散变化在微观世界中的普遍性。量子力学出现后,人们把传统的牛顿力学称为经典力学。 对普通民众来说,量子力学听起来似乎很前沿。但对相关专业(物理、化学)的研究者来说,量子力学的相关发展已经超过了一个世纪。 量子力学起源于1900 年,当普朗克在研究“黑体辐射”问题时,发现必须把辐射携带的能量当作离散变化的,才能推出跟实验一致的公式。在此基础上,爱因斯坦、玻尔、德布罗意、海森堡、薛定谔、狄拉克等人提出了一个又一个新概念,大大扩展了量子力学的应用范围。到20 世纪20 年代末,量子力学的理论大厦已基本建立起来,能够对微观世界的很多现象作出定量描述了。 许多最基本的问题,是量子力学出现后才能回答的。 例如: 为什么原子能保持稳定,例如氢原子中的电子不落到原子核上? 为什么原子能形成分子,例如两个氢原子聚成氢气分子? 为什么原子有不同的组合方式,例如碳原子能组合成石墨、金刚石、足球烯、碳纳米管、石墨烯?为什么食盐会形成离子晶体? 为什么有些物质很稳定,而有些物质很容易发生化学反应? 为什么有些物质,如铜,能导电?有些物质,如塑料,不导电?为什么有些物质如硅,是半导体?为什么有些物质,如水银,在低温下变成超导体? 为什么会有相变,例如水在0 以下结冰,0 100 是液体,100 以上气化? 为什么改变钢铁的组成,能制造出各种特种钢? 为什么激光器和发光二极管能够发光? 为什么化学家能合成比大自然原有物质种类多得多的新物质? 为什么通过观察宇宙中的光谱线能知道远处星球的元素组成? 现代 社会 硕果累累的技术成就,几乎全都与量子力学有关。你打开一个电器,导电性是由量子力学解释的,电源、芯片、存储器、显示器的工作原理是基于量子力学的。走进一个房间,钢铁、水泥、玻璃、塑料、纤维、橡胶的性质是由量子力学决定的。登上飞机、轮船、 汽车 ,燃料的燃烧过程是由量子力学决定的。研制新的化学工艺、新材料、新药,都离不开量子力学。可以这么说:与其问量子力学能用来干什么,不如问它不能干什么! 量子最初由普朗克提出,当时的本意就是一份一份的、不连续的辐射能量,注意最开始量子只描述能量。 后来随着研究深入,量子的定义发展为:一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。注意这时的量子不再只描述能量,也可以说是物质的最小单元。通俗而简单的说,量子是能表现出某物质或物理量特性的最小单元。 再说粒子,也是非常复杂的问题,在微观世界里,原子算是庞然大物了,我们都知道原子由中子和质子构成,而中子和质子的大小只是原子的十万分之一,中子和质子由夸克构成,而夸克的大小还不到中子、质子的万分之一。当然粒子界还有很多其他成员,电子、光子、介子、强子、中微子等等等等。 一段时期基本确定夸克、电子、光子、中微子等为自然界最小粒子,后来,又出来一个“弦理论”,认为以上粒子不是单个粒子,不是自然界最小单元,这些粒子是由很小很小的弦(有线性的有闭合的)构成。弦理论已经成为人类探寻宇宙奥秘的一个非常重要的理论,还很有可能成为终极理论。 再回到量子的问题,量子力学是研究物质世界微观粒子运动规律的物理学分支,目前我们的量子力学只是停留在发现了一些神奇现象,现在一些最懂量子力学的科学家依然说不懂量子力学,包括主导研制量子通信卫星(去年8月份发射上天)的潘建伟这样的牛人依然说不懂。这个不懂也有必要解释一下,就好比一份产品的使用说明书,你看明白了会利用了,可是依然停留在现象,是什么样的本质导致了如此现象与功能呢?这才是这些牛人的不懂? 最后说一下弦理论,它是继续深入的研究微观粒子的理论,随着发展很有可能会发现粒子的真正构成以及粒子相互作用(或联系)的本质,这或许是宇宙的本质,自然也是量子力学的本质。 “量子”一词最初是普朗克于1900年发明的,他以此驱散当时物理学天空中的一朵乌云:受热物体发出的电磁辐射能量与波长之间的关系。电磁辐射即电磁波,在不同频率范围分别称作可见光、红外线、可见光、紫外线等等。普朗克假设物体发射出的电磁辐射能量是一份一份的,其中每份能量总是一个基本单位的整数倍。这个能量基本单位被他称作能量量子,等于频率乘以一个常数(后称普朗克常数)。1905年,爱因斯坦进一步提出,电磁波本身就是由能量量子组成的,称作光量子(后简称为光子)。这是唯一被爱因斯坦自己称作“革命性”的工作。1913年,玻尔提出,原子中电子的能量只能取一些分立的值,叫作能量量子化。 所以在量子论早期,“量子”的主要含义是分立和非连续。这种含义也被用于当代物理中,比如,“量子霍尔效应”就是指霍尔电导只能取一些分立值。另外,现代物理学中,与光量子类似,每种基本粒子都是一个量子场的振动激发,也叫量子。它们与牛顿力学的粒子观念不同,但依然是客观物质。 1925至1927年,海森堡、玻恩、约旦、薛定谔、狄拉克等人创立了系统的量子力学,取代了早期量子论。量子力学是整个一套理论体系,其特征并不能简单归结于分立和非连续。 现在更多情况下,“量子”是作为一个形容词或者前缀在使用,“量子X”是指在将量子力学基本原理用于X,比如量子光学、量子统计、量子凝聚态物理、量子磁学、量子化学、量子电动力学、量子场论、量子宇宙学、量子信息、量子计算等等。量子是什么?或许在大多数人的潜意识里量子就像原子电子一样是一种粒子,它与原子电子的区别就是大小不一样。但是这个理解是错误的,首先量子并不是一种粒子,它是一个概念;其次量子是没有大小的,它的定义就是不可分割的最小微元。量子的概念是怎么来的呢?这就要说到量子概念的提出者——普朗克。 这首先来自于人们对黑体辐射问题的研究。黑体是什么呢?这是一个理想状态下的概念,即在任何条件下,对任何波长的辐射完全吸收而不任何反射的物体。但是事实上这种物体是不存在的。19世纪末的时候,关于黑体辐射问题的研究变得火热起来,大批的科学家投入到了黑体辐射问题的研究,这其中就包括普朗克。黑体不一定就是黑色的,它虽然不能反射光,但是却可以发出电磁波,而电磁波的能量和波长只与黑体的温度有关。 当时人们试图用一种用经典物理学的方程来描述这种关系,可是要么只是在波长较小时,要么只在波长较大时才跟实验所得的曲线拟合得较好,无论如何都无法跟实验数据完全吻合,这被称为是“紫外线灾难”,这里面就有瑞利——金斯曲线还有后来维恩的修复曲线,都无法很好的吻合。 这时候普朗克就提出了一个大胆的假设,即黑体辐射的能量是一份一份的不连续的,他提出了能量量子提化的概念,辐射频率是v的能量的最小数值E=hv,其中h被称为普朗克常量。 而后爱因斯坦在解释光电效应的时候直接提出了光子的概念,他指出电磁辐射在本质上就是一份一份不连续的,无论是原子在发射和吸收它们的时候都是这样。到此,量子的概念才被完整的建立起来。虽然量子建立概念很早,但是作为量子的发现者,普朗克一直对他的发现持怀疑态度,这也造成了量子力学的发展有所推迟。直到几十年以后薛定谔、海森堡等一批杰出的量子物理学家出现才使得量子物理有所发展,近几十年量子力学的发展很是迅速。其实量子的概念十分广阔,它不是一种粒子,自然界的一切粒子都具有波粒二象性,而量子则是联系二者的桥梁。从现在在网上了解到的解说,量子是研究量子的科学家们正在实验室进行量子实验的一种感应性的物质! 因为量子不同于现在科学以知所有能产生能量中的物质。也可以说,量子在宇宙空间内的运行中,它是一种不受认何大小物质阻当的物质。打个比方说,人们日常看到的光粒子,只要有不透光的东西就会阻当光子的前行的。 量子是以本量子原作为起点,原量子的分子不管离原量子多少光年和千万里以外的距离,只要两端的量子有一方移动,分离的对方就会不受认何阻当的同时感知到对方在移动的地点和位置了。 这就是近代一百多年至今,各国尖端的科学家,都在尽力想对量子科研取得抢先研发利用的苦战了!这也是科学家们说的,量子分子移动一但被科学家真证的实验成功后,量子运用,将对现在的智能大数据运算和智能手机的网络提速,快上亿亿亿倍和千万倍的! 量子的解释:是衡量单位,是微观学对;原子核、分子、光子、中子、电子、粒子、暗子、微微子、超微微子、超微微基子、量的单位。 什么子不就是名吗?一切皆因,成功失败皆果。因者道也,果者得(德)也。成功,失败,有交幸和无奈,成功和失败在天之意,如成吉司汉,命走一玄,霸王虽勇,丧命乌江。说明不是人完全可掌控的必须面对,孔明多材回天乏术,阿曼虽狠计败于司马。 老子有几个乐德之,就是修道保身。 量子科学之所以显得神秘,首先这个名字就是一大原因。 看到“量子”这个词,许多人在“不明觉厉”之余,第一反应就是把它理解成某种粒子。但是只要是上过中学的人,都知道我们日常见到的物质是由原子组成的,原子又是由原子核与电子组成的,原子核是由质子和中子组成的。那么量子究竟是个什么鬼?难道是比原子、电子更小的粒子吗? 其实不是。量子跟原子、电子根本不能比较大小,因为它的本意是一个数学概念。正如“5”是一个数字,“3个苹果”是一个实物,你问“5”和“3个苹果”哪个大,这让人怎么回答?正确的回答只能是:它们不是同一范畴的概念,无法比较。原子结构示意图量子这个数学概念的意思究竟是什么呢?就是“离散变化的最小单元”。 什么叫“离散变化”?我们统计人数时,可以有一个人、两个人,但不可能有半个人、1/3个人。我们上台阶时,只能上一个台阶、两个台阶,而不能上半个台阶、1/3 个台阶。这些就是“离散变化”。对于统计人数来说,一个人就是一个量子。对于上台阶来说,一个台阶就是一个量子。如果某个东西只能离散变化,我们就说它是“量子化”的。上台阶跟“离散变化”相对的叫做“连续变化”。例如你在一段平路上,你可以走到1米的位置,也可以走到1.1米的位置,也可以走到1.11米的位置,如此等等,中间任何一个距离都可以走到,这就是“连续变化”。 显然,离散变化和连续变化在日常生活中都大量存在,这两个概念本身都很容易理解。那么,为什么“量子”这个词会变得如此重要呢? 因为人们发现,离散变化是微观世界的一个本质特征。 微观世界中的离散变化包括两类,一类是物质组成的离散变化,一类是物理量的离散变化。 先来看第一类,物质组成的离散变化。例如光是由一个个光子组成的,你不能分出半个光子、1/3个光子,所以光子就是光的量子。阴极射线是由一个个电子组成的,你不能分出半个电子、1/3个电子,所以电子就是阴极射线的量子。 在这种情况下,你似乎可以拿量子去跟原子、电子比较了,但这并没有多大意义,因为它是随你的问题而变的。原子、电子、质子、中子、中微子这些词本身就对应某些粒子,而量子这个词在不同的语境下对应不同的粒子(如果它对应粒子的话)。并没有某种粒子专门叫做“量子”! 再来看第二类,物理量的离散变化。例如氢原子中电子的能量只能取-13.6 eV(eV 是“电子伏特”,一种能量单位)或者它的1/4、1/9、1/16 等等,总之就是-13.6 eV除以某个自然数的平方(-13.6/n2 eV,n可以取1、2、3、4、5等),而不能取其他值,例如-10 eV、-20 eV。我们不好说氢原子中电子能量的量子是什么(因为不是等间距的变化),但会说氢原子中电子的能量是量子化的,位于一个个“能级”上面。每一种原子中电子的能量都是量子化的,这是一种普遍现象。氢原子能级发现离散变化是微观世界的一个本质特征后,科学家创立了一门准确描述微观世界的物理学理论,就是“量子力学”。现在你可以明白,这个名称是怎么来的,它其实是为了强调离散变化在微观世界中的普遍性。量子力学出现后,人们把传统的牛顿力学称为“经典力学”。 对普通民众来说,量子力学听起来似乎很前沿。但对相关专业(物理、化学)的研究者来说,量子力学是个很古老的理论,——已经超过一个世纪了! 量子力学的起源是在1900年,德国科学家普朗克(Max Planck)在研究“黑体辐射”问题时,发现必须把辐射携带的能量当作离散变化的,才能推出跟实验一致的公式。在此基础上,爱因斯坦(Albert Einstein)、玻尔(Niels H. D . Bohr)、德布罗意(Louis V. de Broglie)、海森堡(Werner K. Heisenberg)、薛定谔(Erwin R. J. A. Schrodinger)、狄拉克(Paul A. M. Dirac)等人提出了一个又一个新概念,一步一步扩展了量子力学的应用范围。到1930年代,量子力学的理论大厦已经基本建立起来,能够对微观世界的大部分现象做出定量描述了。一个物理量如果存在最小的不可分割的基本单位 我认为,量子只是描述微观世界粒子性的一个笼统概念,它包函可以独立存在的任何形式粒子,如质子、中子、电子,光子等都可以在各自的研究领域内称为“量子”。 量子有几个重要的物理属性值得关注: 1、能量不连续性,即普朗克所描述的粒子传递能量是“一份一份进行的”; 2、角动量不连续性,比如电子在核外分别时,其轨道角动量是不连续的,具有“跳跃性”; 3、运动的自旋性,量子描述的世界是一个带有自旋运动的世界,这与经典粒子概念不同; 4、自旋磁矩性,任何粒子都有自旋性,同时也都有自旋磁矩性,“自旋生磁”是我“自旋场理论”的重要组成部分(当然,磁的产生还包括“公转生磁”——这说明磁的产生有二种形式,即“自旋生磁”和“公转生磁”,电磁学和目前的量子力学只强调“公转生磁”,却忽略了自旋生磁性,这是当今物理学存在严重“疏漏”的地方)。
2023-08-18 02:45:181

电池的负极能否代替触屏笔呢?

电池的负极可以代替触屏笔。触发电容屏工作的不是压感而是利用人体的电流感应进行工作,因此触发电容式触摸屏需要导电的材料才能完成。由于电池负极可以导电,则可以用作触屏笔。想要替代手指,需要选用导电材料,专业的触控笔都会采用导电橡胶、导电海绵等,而电池的负极则可以满足导电的性能。扩展资料:触摸笔及其替代物的原理:当触摸笔或其他替代物触摸在金属层上时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,电容是直接导体,手指从接触点吸走一个很小的电流。这个电流分别从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。参考资料:河北新闻网——废电池先别丢了,它还有这5大妙用,用来当手写笔
2023-08-18 02:45:161