barriers / 阅读 / 详情

人造太阳发明的最终目的是什么?

2023-09-24 08:33:14
TAG: 发明
共6条回复
nicehost

人造太阳发明的最终目的是解决地球能源问题

日前,有媒体从中科院合肥物质科学研究院获悉,该院有“人造太阳”之称的全超导托卡马克核聚变实验装置(EAST),将于近期完成新一轮升级改造,向芯部电子温度1亿摄氏度、100秒长脉冲等离子体的科研新目标发起挑战。

“从1亿摄氏度20秒到1亿摄氏度100秒,这是一个巨大的技术跨越,也将把人类核聚变能源研究推向一个新高度!”中科院等离子体物理研究所托卡马克物理实验研究室主任龚先祖介绍,目前升级改造工作进展顺利,预计将于4月底结束改造,向“1亿摄氏度100秒”的新目标发起冲击。

“人造太阳”并不是指我们真的打造一个像太阳类似的小太阳来照亮夜晚,而是在打造热核聚变实验堆(ITER),从而实现太阳现在进行的核聚变过程,即著名的托卡马克装置(Tokamak)。

扩展资料:

人造太阳在中国的发展历程

我国核聚变能研究开始于60年代初,尽管经历了长时间非常困难的环境,但始终能坚持稳定、逐步的发展,建成了两个在发展中国家最大的、理工结合的大型现代化专业研究所,即中国核工业集团公司所属的西南物理研究院(SWIP)及中国科学院所属的合肥等离子体物理研究所(ASIPP)。

为了培养专业人才,还在中国科技大学、大连理工大学、华中科技大学、清华大学等高等院校中建立了核聚变及等离子体物理专业或研究室。科技部依托中国科大成立“国家磁约束聚变堆总体设计组”,中国科大核科学技术学院院长万元熙院士担任组长。

我国核聚变研究从一开始,即便规模很小时,就以在我国实现受控热核聚变能为主要目标。从上世纪70年代开始,集中选择了托克马克为主要研究途径,先后建成并运行了小型CT-6(中科院物理所)、KT-5(中国科技大学)、HT-6B(ASIPP)、HL-1(SWIP)、HT-6M(ASIPP)及中型HL-1M(SWIP)。

SWIP建成的HL-2A经过进一步升级,有可能进入当前国际上正在运行的少数几个中型托克马克之列。在这些装置的成功研制过程中,组建并锻炼了一批聚变工程队伍。我国科学家在这些常规托克马克装置上开展了一系列十分有意义的研究工作。

参考资料来源:前瞻网-破韩国纪录!中国“人造太阳”将再冲新高,1亿摄氏度“燃烧”100秒

cloudcone

人造太阳并非真正意义上的制造一颗恒星出来,很显然就算把地球都拆干净了也造不出太阳来,人造太阳发明的目的是为了能源的利用,假设人类能够造出一颗很小的太阳,那所释放出的能量就够人们使用很久很久了。

clou

人造太阳发明的最终目的是太阳能,或者所需的能量进行不依靠太阳的一刻,不过还是很遥远的计划。

大鱼炖火锅

和太阳一样,都是核聚变。聚变就是原子满足一定条件,比如高温高压,碰撞融合生成更重的原子同时释放出很多能量。

常见的是氢聚变成氦。氢的同位素有氕氘氚三种,氕原子核只有一个质子,氘氚原子核分别是一个、两个中子带个质子。太阳聚变是氕,也就是普通的氢。太阳的质量是33万个地球的质量,太阳内部的高温高压可以让普通的氢,也就是氕发生聚变。聚变释放出来极大的能量,让这么大质量的太阳保持这个形状不坍缩。

而我们目前只能让氢的同位素氘氚聚变,因为这俩聚变需要的条件比单纯的普通氢聚变要求少一些。毕竟我们没办法营造太阳上的高温高压环境。

所以人工核聚变,就是要营造高温高压的环境,让电子脱离原子核的束缚,引发原子核聚合。难点也集中在怎样创造并且保持这个高温高压环境以及怎样约束这个环境。高温环境用类似变压器的原理获得,约束有两种,惯性约束核聚变和磁约束核聚变。我国的全超导托卡马克核聚变实验装置,就是超导体线圈的磁约束核聚变。

因为要发电嘛,总不能炸开吧,所以我们可以看到新闻里中科院合肥物质科学研究院的EAST近期实现1亿摄氏度等离子体运行,这其实还是在实验营造聚变的环境。可控核聚变还有很长的路需要走。

不可控的核聚变早就有了,氢弹就是。用普通核裂变释放的能量去挤压氢同位素,然后轰的一下聚变开始就是氢弹了。

wio

人造太阳最终的目的呢,还是预防资源枯竭,或者说创造一些新能源新能源来保护环境。

黑桃云

得到永恒的低投入能源

相关推荐

万元熙和万宝年什么关系

亿元熙和万宝年是两位中国著名的商业巨头,他们之间有着密切的关系。万宝年是中国著名的企业家,他是万科集团的创始人之一,也是中国房地产商业的领袖之一。而亿元熙则是万宝年的长期合作伙伴和朋友,他是深圳嘉年华集团董事长,同时也是深圳市房地产业协会的会长。虽然亿元熙和万宝年在不同的行业中发展,但两人的合作关系相当紧密。他们共同投资开发了多个商业和房地产项目,其中包括深圳湾万科中心、深圳盐田嘉年华城等等。此外,据报道,两人还在不同领域进行了合作,包括医疗、金融、酒店等多个行业。总之,亿元熙和万宝年之间存在着长期的商业合作和紧密的友谊关系。他们的合作和友谊不仅在商业上得到了展现,也成为了中国商业圈的佳话之一。
2023-09-09 05:55:291

核聚变发电详细资料大全

核聚变发电是一种利用原子核聚变反应产生热能,然后利用热能发电的技术。它是21世纪正在研究中的重要技术,主要是把聚变燃料加热到1亿度以上高温,让它产生核聚变,然后利用热能。 与核裂变相比,热核聚变不但资源无限易于获得,其安全性也是核裂变反应堆无法与之相比的。热核反应堆如果在事故状态释能增加时,电浆与放电室壁的相互作用强度则增大,由此进人电浆的杂质随之增加。核聚变发电的最终实现还需很长的时间。 基本介绍 中文名 :核聚变发电 外文名 :Nuclear fusion power 时间 :21世纪 技术 :核聚变 领域 :能源 学科 :核工程 介绍,两个条件,极高的温度,充分的约束,比较,优点,缺点,遇到的问题,相关新闻,KSTAR,发展总趋势, 介绍 核聚变,又称核融合、融合反应或聚变反应,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 聚变是轻核(主要是氢的同位素氘和氚)聚合成较重的原子核,同时释放出巨大能量的过程,太阳发光发热和氢弹爆炸就是这样的原理。聚变能的特点是:聚变反应释放出大量的能量(一升海水中的氘通过聚变反应可释放出相当于300升汽油燃烧的能量);聚变资源丰富(地球上海水中所含的氘,如果用于氘氘聚变反应可供人类用上亿年,而用于产生氚的锂也有比较丰富的储量);聚变的反应产物是比较稳定的氦。由于其固有的安全性、环境的优越性、燃料资源的丰富性,聚变能被认为是人类最理想的洁净能源之一。 早在上世纪五十年代初人类就实现了聚变核反应,这就是氢弹的爆炸。它是依靠核子弹爆炸时形成的高温高压,使得热核燃料氘氚发生聚变反应,释放巨大的能量,形成强大的破坏力。但是氢弹瞬间的猛烈爆炸是无法控制的。要把聚变时释放出的巨大能量用于社会生产和人类生活,必须对剧烈的聚变核反应加以控制。因而实现受控热核聚变一直是科学家们的梦想。 核聚变反应堆是一种满足核聚变条件从而利用其能量的装置。从目前看实现核聚变有2种方法,一种是使用托卡马克装置实现,托卡马克是一环形装置,通过约束电磁波驱动,创造氛、氖实现聚变的环境和超高温,实现对聚变反应的控制;另一种方式是通过高能雷射的方式实现。第一种方式已于20世纪90年代初实现,目前正在进行工程设计;第二种方式已接近突破的边缘。由于核聚变是在极高的温度下完成的,所以又常称其为热核反应。以下所讨论的均以第一种方式为基础进行。 两个条件 实现受控热核聚变反应应满足两个苛刻条件: 极高的温度 要使两个原子核发生聚变反应,必须使它们彼此靠得足够近,达到原子核核心子与核子之间核力的作用距离,此时核力才能将它们“粘合”成整体形成新的原子核。由于原子核都带正电,当两个原子核靠得越来越近时,它们之间的静电斥力也越来越大。静电斥力也称静电势垒,它像一座高山一样将两个轻核隔开。据实验资料估计,要使两个氘核相遇,它们的相对速度必须大于每秒1000公里。此时单个氘核具有巨大的动能,对于一团氘核整体而言,则具有极高的温度。两个氘核产生聚变反应时,温度必须高达一亿度。氘核与氚核间发生聚变反应时,温度也须达到五千万度以上。这种在极高温度下才能发生的聚变核反应也称热核反应。在如此高温下,物质已全部电离,形成高温电浆。 充分的约束 充分的约束,指将高温电浆维持相对足够长的时间,以便充分地发生聚变反应,释放出足够多的能量,使聚变反应释放的能量大于产生和加热电浆本身所需的能量及其在此过程中损失的能量。这样,利用聚变反应释放出的能量就可以维持所需的极高温度,无需再从外界吸收能量,聚变反应就能够自持进行。表征这个概念的科学术语叫做“聚变点火”。要实现聚变点火,必须达到一定的约束时间。约束时间跟密度相关,密度大,单位时间里参加反应的原子核较多,释放的能量也较多,必要的约束时间相应较短。反之,约束时间必须较长。英国科学家劳逊在五十年代详细研究了实现聚变点火必须满足的条件(点火条件也称劳逊条件或劳逊判据),它是温度T和约束时间τ跟密度n乘积的函式。从对高温粒子的约束方式看目前有磁约束和惯性约束两种。 比较 优点 (1)反应放能效率极高。(注:放能效率指单位质量的燃料所能产出的能量) 聚变反应将质量转化为能量,根据爱因斯坦著名的质能方程E=mc2可知很小的质量转化为巨大的能量,所以聚变反应的放能效率极高。 (2) 不产生核裂变所出现的长期和高水平的核辐射,不产生核废料; 反应物及产物的放射性 作为反应物的氘、锂和作为反应产物的氦4He都是没有放射性的。而反应物氚是有放射性的,但它的半衰期相对而言很短。 氚对人体的危害主要是吸入人体后的内辐照。氚的半衰期为12.3年的β-辐射,每公斤氚的放射性为9.7×106居里,平均辐射能量为5.7keV。 聚变堆中氚的释放途径有:事故释放;维修操作和运行中的泄漏;由于氚通过管壁和容器的渗透力很强,可引起氚的漏失。 若采用三级大气氚控制,从堆大厅释放到环境中的氚可控制到小于1居里/天。机率分析结果表明,若假象事故态时释放到堆大厅的氚为10×106居里。在FEB和ITER中的氚均为3kg左右,在停堆时刻,包层中氚的总放射性为3.3×107居里。 (3)原料丰富且分布广泛 聚变发电所需要的直接燃料是氘和氚。1g的氘将产生3000×1011J的电能,所以要提供当前世界上所有的能量消耗(相当于每年3×1013J)将需要每年1000t的氘。氘是很容易获得的,因为每6700份水中就有一份是氘。如果考虑到所有的海水,则有总量超过1015t的氘,足可以近乎于无限地提供我们所需要的能量。氘可以采用电解水的方法直接从水中提取,成本很低。 然而氚在地球上并不天然存在,因为它是半衰期为12.3年的放射物。所以作为一种燃料,氚只能通过人工制造得到。最方便的产氚方式是中子和锂的反应。目前,有足够的锂可以至少维持几万年。 所以,聚变燃料必须的原材料理和水的储量相当丰富,而且这些原材料分布广泛,任何一个国家不可能垄断市场。 (4)不存在对石化燃料的依赖; 聚变发电站的基本原理是利用氘氚发生聚变反应来获取能量,并使用蒸汽轮机将其转化为电能。反应的原料是氘、氚和用于氚增值的金属锂,摆脱了对石化燃料的依赖。反应所产生的能量一部分用于维持聚变反应持续进行,剩下的用于发电。所以除了最初启动聚变反应需要消耗额外的能量,接下来不再需要对其提供能量。 (5)基本不污染环境; 由聚变发电站原理可以知道聚变发电不会产生污染大气的气体,它的产物是对环境无害的氦气;另外如上所讨论,聚变电站产生的放射性物质较裂变电站而言很少,而且这些放射性产物的半衰期也是相当短的。 (5)无核事故风险。 聚变电站是固有安全的;它不会爆炸或脱离控制,不像裂变电站那样包含足够运行很多年大量铀或钸燃料,聚变电站只含有非常少量的氘和氚燃料。通常只有1克——只够维持几秒的反应。如果燃料不连续更换,聚变反应将会终止。 缺点 (1)实现太难 裂变能的利用,从开始实现“链式反应”(1943年)到形成一代“能源”(1970年)不过20余年,只因“三里岛”和“车诺比”两次核事故才使裂变能源的发展停顿下来。而对聚变能的发展来说,已研究了50年,预期还要50年才能广泛套用,原因何在?现在能回答的是: ①对电浆了解还是初步;②支持磁约束的各种技术(超导、低温、超高真空、微波、材料等)非常复杂,因为氘氚反应要产生14MeV的强中子辐射,而且还要把上亿度高温的电浆维持相当长的时间,这对人类现有的技术积累,提出了挑战;③全世界对发展巨变还没有形成一致的时间表,很难集中人力、物力和财力。 (2)第一代核反应,即氘氚反应有中子产生 遇到的问题 所需解决“自持燃烧”及“稳态运行”的关键的物理和技术问题列举如下: 自持燃烧的关键问题 (1)氘氚电浆的特征 (2)α粒子的约束 (3)α粒子的 “排灰” (4)遥控操作技术 (5)α粒子驱动的不稳定性研究 (6)自持燃烧的剖面控制 (7)高增益的燃烧控制 稳态运行的关键物理和技术问题 (1)高自举电流份额 (2)稳态运行的磁铁 (3)稳态的电流驱动 (4)氚工艺 (5)长于小时计的放电脉冲时间 (6)解决电浆的“大破裂” (7)包层工程 (8)低 “活化”材料 (9)氚“自持” (10)多于月计的运行时间 (11)电功率输出 只有在此基础上再发展实验堆和商用堆原型,才能说“商业化”。若以一代装置需10余年计,这三代就需40到50年,所以说聚变商用化(托卡马克途径)大约在2050年后实现不是没有根据的。因此,聚变能的套用是“任重而道远”。有人说裂变能的利用,从开始实现“链式反应”(1943年)到形成一代“能源”(1970年)不过20余年,只因“三里岛”和“车诺比”两次核事故才使裂变能源的发展停顿下来。而对聚变能的发展来说,已研究了50年,预期还要50年才能广泛套用,原因何在?现在能回答的是: ①对电浆了解还是初步;②支持磁约束的各种技术(超导、低温、超高真空、微波、材料等)非常复杂,因为氘氚反应要产生14MeV的强中子辐射,而且还要把上亿度高温的电浆维持相当长的时间,这对人类现有的技术积累,提出了挑战;③全世界对发展巨变还没有形成一致的时间表,很难集中人力、物力和财力。 相关新闻 新华网合肥9月28日电(记者喻菲 蔡敏 程士华)世界领先的中国新一代热核聚变装置EAST28日首次成功完成了放电实验,获得电流200千安、时间接近3秒的高温电浆放电。 负责这一项目的中国科学院电浆所所长李建刚研究员在接受新华社记者采访时说,此次实验实现了装置内部1亿度高温,电浆建立、圆截面放电等各阶段的物理实验,达到了预期效果。 工艺鉴定组专家、中科院基础科学研究局金铎研究员在实验后的新闻发布会上宣布,EAST通过国家“九五”大科学工程工艺鉴定。 参与EAST研究合作的美国通用原子能公司盖瑞·杰克逊博士说:“EAST成为世界上第一个建成并真正运行的全超导非圆截面核聚变实验装置,它将在未来10年内保持世界先进水平。” 据了解,EAST装置是中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的。 记者在实验控制室看到,这个近似圆柱形的大型物体由特种无磁不锈钢建成,高约12米、直径约5米,据介绍其总重量达400吨。 李建刚研究员说,与国际同类实验装置相比,EAST是使用资金最少、建设速度最快、投入运行最早、运行后获得等离子放电最快的先进核聚变实验装置。 “这意味着人类在核聚能研究利用领域取得重大进步,也标志著中国在这一领域进入国际先进水平”,李建刚说。 人们认识热核聚变是从氢弹爆炸开始的。氢弹爆炸时释放出极大的能量,给人类带来的是灾难。而科学家们却希望发明一种装置,可以有效地控制“氢弹爆炸”的过程,让能量持续稳定的输出,以解决人类面临的能源短缺危机。 美、法等国在20世纪80年代中期发起了耗资46亿欧元的国际热核实验反应堆(ITER)计画,旨在建立世界上第一个受控热核聚变实验反应堆,为人类输送巨大的清洁能量。这一过程与太阳产生能量的过程类似,因此受控热核聚变实验装置也被俗称为“人造太阳”。 中国于2003年加入ITER计画。位于安徽合肥的中科院电浆所是这个国际科技合作计画的国内主要承担单位,其研究建设的EAST装置稳定放电能力为创记录的1000秒,超过世界上所有正在建设的同类装置。 EAST大科学工程总经理万元熙教授说,与ITER相比,EAST在规模上小很多,但两者都是全超导非圆截面托卡马克,即两者的电浆位形及主要的工程技术基础是相似的,而EAST至少比ITER早投入实验运行10至15年。因此,无论从人才培养和奠定工程技术及物理基础的角度上说,EAST都将为ITER计画做出重要的、实质性的贡献,并进而为人类开发和最终使用核聚变能做出重要贡献。 不过,万元熙研究员说,虽然“人造太阳”的奇观在实验室中初现,但离真正的商业运行还有相当长的距离,它所发出的电能在短时间内还不可能进入人们的家中。但他预测,根据目前世界各国的研究状况,这一梦想最快有可能在2040-2060年后实现。 万元熙说,未来的稳态运行的热核聚堆用于商业运行后,所产生的能量够人类用数亿年乃至数十亿年。从长远来看,核能将是继石油、煤和天然气之后的主要能源,人类将从“石油文明”走向“核能文明”。 KSTAR KSTAR(Korea Superconducting Tokamak Advanced Research)是韩国大田研究基地国家聚变研究所的超导托卡马克核聚变装置,被称为“韩国太阳”,它是国际热核聚变实验反应堆(ITER)项目的一部分。KSTAR是世界上首一个采用新型超导磁体(Nb3Sn)材料产生磁场的全超导聚变装置,磁场强度是使用铌钛系统核聚变装置的3倍多。核聚变相比核裂变释放的能量更大,而且放射性污染几乎为零,其原料可以直接取于海水,是理想的能源方式。KSTAR的成功为韩国的利用核聚变发电奠定了基石。韩国计画在以后30年左右开始利用核聚变发电。 在2012年,它成功地维持高温电浆(约5000万摄氏度)17秒。 发展总趋势 中国正在加大能源结构调整力度。积极发展核电、风电、水电等清洁优质能源已刻不容缓。中国能源结构仍以煤炭为主体,清洁优质能源的比重偏低。 2014年中国运行核电机组22台,装机容量达2029.658万千瓦,核电发电量仅占全国发电量2.1%。在建的核电机组有26台,约2800万千瓦。预计到2020年前,中国在运核电装机达到5800万千瓦,在建3000万千瓦。到2050年,根据不同部门的估算,中国核电装机容量可以分为高中低三种方案:高方案为3.6亿千瓦(约占中国电力总装机容量的30%),中方案为2.4亿千瓦(约占中国电力总装机容量的20%),低方案为1.2亿千瓦(约占中国电力总装机容量的10%)。 中国国家发展改革委员会正在制定中国核电发展民用工业规划,准备到2020年中国电力总装机容量预计为9亿千瓦时,核电的比重将占电力总容量的4%,即是中国核电在2020年时将为3600-4000万千瓦。也就是说,到2020年中国将建成40座相当于大亚湾那样的百万千瓦级的核电站。 从核电发展总趋势来看,中国核电发展的技术路线和战略路线早已明确并正在执行,当前发展压水堆,中期发展快中子堆,远期发展聚变堆。具体地说就是,发展热中子反应堆核电站;为了充分利用铀资源,采用铀钸循环的技术路线,中期发展快中子增殖反应堆核电站;远期发展聚变堆核电站,从而基本上“永远”解决能源需求的矛盾。
2023-09-09 05:55:381

万元熙的个人简介

万元熙,男,1939年12月出生, 1958年至1964年在北京大学物理系理论物理专业学习;1964年至1968年在北京大学物理系研究生班原子核理论专业学习,师从杨立铭。1973年10月起,参加创建等离子体所,先后担任研究室副主任、主任,研究所副所长和所长;1983 至1985年在美国Texas 大学聚变研究中心工作;1997年开始担任国家九五重大科学工程EAST超导托卡马克核聚变实验装置项目总负责人(总经理)。2009年出任中国科技大学核科学技术学院首任院长。万元熙教授长期从事等离子体物理领域的研究工作,是等离子体物理学科知名科学家。特别是作为国家重大科学工程EAST项目总负责人,将聚变物理实验装置重要要求和超导关键技术成功集成,提出并主持完成总体设计,带领整个团队,用近十年时间,自主设计、研发、加工制造了所有关键部件;自主完成难度和风险极大的全系统总装,工程调试一次成功,在国际上率先在全超导托卡马克装置上获得稳定、重复和可控的高温等离子体放电,为磁约束聚变研究做出了重要贡献。   2000年被推选为全国先进工作者,2008年被选为中国共产党第十七次全国代表大会代表。
2023-09-09 05:55:461

岛屿科技要多久?

科学岛”将超前布局颠覆性前沿技术研究到2025年,初步建成世界一流的综合性科研机构  今年,是中科院合肥物质科学研究院成立20周年。12月20日,合肥研究院举行成立20周年发展战略研讨会,国内70余位院士及专家学者齐聚“科学岛”,为该院未来发展建言献策。记者获悉,“十四五”期间,合肥研究院将着力构建性能国际先进的大科学装置集群,超前布局相关尚处“无人区”的科学研究和颠覆性前沿技术研究,力争到2025年,初步建成世界一流的综合性科研机构。  专家学者对“科学岛”充满期待  在合肥市区西北,有山水环抱一岛屿,如今的合肥人习惯把这个地方称作“科学岛”。20年前,中科院合肥研究院在这里成立,如今,“科学岛”已成为安徽乃至全国科技创新的一支重要力量。  实际上,早在1965年,这座小岛就已被划转中科院用于研究所建设,几年后,现在的中国工程院院士万元熙便来到这里开展科研工作,如今在接受记者采访时,82岁的万元熙仍习惯性地把这里称为“董铺岛”。  “我到这已经有快50年了,亲眼看着‘董铺岛"从一片比较荒凉、没有太多科研队伍的地方,成长为国家乃至世界上非常重要的一个研究基地。”万元熙说,国家以及安徽省、合肥市持续给予的支持,和岛上科研人员的不懈努力,是合肥研究院成长的关键。“我所从事的磁约束聚变能研究是一项综合性非常强的研究,既需要理论基础,又需要工程技术等。几十年来,我们在自身努力和各方支持下完成了一项项突破,现在,这里已经成为世界上极具影响力的磁约束聚变能研究基地之一。”万元熙说。  昨日的会议上,众多专家学者都表达了对合肥“科学岛”的期待。全国政协教科卫体委员会副主任曹健林表示,科学岛是一个充满朝气的地方,20年的发展造就了一个世界知名的学术圣地。“20年来这里的发展进步是非常明显的,成为中国最密集的基础研究的聚集区,也是推动中国大科学装置走在世界前列的主力军。未来,这里还将创造出更多的成果,为国家发展贡献更大的的力量。”  将推动2个新的大科学装置立项  20年来,合肥研究院在磁约束核聚变、大气环境光学与遥感、强磁场技术与交叉科学、医学物理技术等学科方向取得一系列举世瞩目的重要成果,获得国家科学技术奖励29项,多项成果入选中科院代表性成果。面向“十四五”,“科学岛”如何继续当好科技创新的“国家队”?  “到2025年,基本建立规范高效的现代化研究所治理体系,科技创新能力、国际化水平进一步提升,初步建成世界一流的综合性科研机构。”中科院合肥研究院院长刘建国介绍,未来,合肥研究院将着力构建性能国际先进、面向全球开放共享的大科学装置集群。其中,将建成聚变堆主机关键系统综合研究设施,此外,推动强光磁和大气立体环境探测设施2个大科学装置立项,培育1项由中国牵头的国际大科学工程计划。  “依托大科学装置,合肥研究院将实施更加开放包容、互惠共享的国际合作战略,构建广泛合作网络。
2023-09-09 05:56:171

为什么核聚变会产生巨大的能量?

有收获!
2023-09-09 05:56:2612

什么是核元素

“核”不是一种元素,“核元素”包括的是一些元素。比如铀、钚等元素。
2023-09-09 05:57:103

中国的人造太阳?

原子
2023-09-09 05:58:085

超导托卡马克的“HT-7U超导托卡马克装置建设”介绍

HT- 7U超导托卡马克以其具有低温超导的纵场磁体系统和极向场超导磁体系统而受到国内外聚变界的广泛关注。我们等离子体物理研究所的全体员工为我们所能承担这样一个国家级的重大科学研究工程项目而感到无比荣幸,为使我所广大科研人员特别是未能直接承担这个科研任务的同志们能较为全面的了解该科研项目的情况,进而也为完成该项目献计献策,特在此简要介绍有关该项目的立项、预研、设计等情况。我们非常欢迎所内外的广大科研人员都来关心、关注HT-7U工程项目的设计和建造,为顺利完成这一重大科学工程项目而努力。 近年来,我国的核聚变研究伴随着全面改革开放和国家的综合国力的增强从而对科学技术研究及教育投入的逐步增加而得到长足的发展,多年来陆续建成的一批核聚变实验研究装置都取得了极好的实验研究成果。其中建在我所的HT-7超导托卡马克尤其以其具有低温超导纵场磁体系统而倍受国内外聚变界的关注。为了更进一步发展、推进我国的聚变科学研究事业,探索非圆、大拉长截面、稳态的等离子体实验控制技术,更深入研究全低温超导托卡马克实验装置的设计、建造和实验技术,从而全面掌握托卡马克类核聚变实验装置各种技术,我所在HT-7投入运行并取得良好实验结果的同时,适时提出建造HT-7的升级装置“HT-7U全超导托卡马克装置”的计划。所谓全超导意为构成托卡马克装置的全部纵场系统和极向场系统都采用低温超导磁体组成。这个计划得到了世界聚变科学研究专家们的极大支持,我所为该计划的顺利实现作了大量的先期预研和设计计算工作。下面简要回顾一下HT-7U全超导托卡马克装置的立项历程:1993年10月,以欧共体聚变部名誉主任帕仑布教授为首的来自国际上各大核聚变实验室的12位著名聚变科学家,对我所当时正在建设的HT-7超导托卡马克装置和中国科学院等离子体所的聚变研究发展战略进行了评议。这是我所第一次提出分三阶段实施聚变科学研究的计划。1994年底,科学院基础局邀请了6位两院院士和8位专家在合肥召开了“HT-7U超导托卡马克计划座谈会”,这是HT-7U计划首次较正式提出。1996年初,部分两院院士在京西宾馆对“九五”国家重大科学工程项目进行初步评估,HT-7U装置建设第一次得到国家级专家的赞同并被列入前十位项目中。1997年6月,国家科技领导小组批准中国科学院关于“HT-7U大科学工程项目立项”的申请,该项目正式进入国家重大科学工程项目的立项操作程序。1997年10月,由国家计委委托中国科学院主持召开“HT-7U工程项目建议书专家评估会”;该项目的建设方案和计划获得与会专家的好评。1998年4月,正式通过国家计划发展委员会委托中国国际工程咨询公司主持召开的“HT-7U工程项目建议书专家评估会”的评估论证,这表明该项目的科学目标和技术参数及方案都得到专家们的赞许。1998年7月,国家发展计划委员会正式批复“HT-7U工程项目建议书”(批文中同意“由中科院等离子体所承担建设”,“具有超导纵场和极向场线圈,具有D形非圆截面,包括托卡马克、低温致冷等9个子系统”。批文规定“在2003年6月完成建设工作并进行鉴定验收。项目总投资控制在1.65亿元”)1998年10月,HT-7U工程项目可行性研究报告在北京获得中国科学院基建局主持的专家评估会一致通过,至此,该项目的设计方案和工程经费基本确定,国家发展计划委员会和财政部依此拨出专项经费。 受控热核聚变的实验和研究,经过50多年核聚变界科学家们的不懈努力,终于在常规Tokamak类型的装置上取得了突破性的进展。但是按照常规托卡马克装置建堆,不仅体积大、效率低,而且是脉冲运行。但是,一个经济实用的商用堆必须是高效、紧凑和稳态运行的。超导托卡马克正是在这一点有着极大的优势,即可以稳态运行。如果在超导托卡马克上实现了稳态运行又在稳态运行条件下大大改善了约束,则将为未来稳态、先进聚变反应堆奠定工程技术和物理基础,意义十分重大。HT-7U不仅是一个全超导托卡马克而且具有会改善等离子体约束状况的大拉长非圆截面的等离子体位形,它的建成将使我国在2003年左右成为世界上少数几个拥有这种类型超导托卡马克装置的国家,从而使我国磁约束核聚变研究进入世界前沿。在装置建成后的10~15年期间,能在装置上对建造稳态先进的托卡马克核聚变堆的前沿性物理问题开展探索性的实验研究。HT- 7U的建成将使中国在人类开发清洁而又无限的核聚变能的领域内做出自己应有的重大贡献。因此,HT-7U的建造具有十分重大的科学意义。本项国家级重大科学工程的主要工程目标是必须建设:可稳态运行的超导托卡马克HT-7U装置主机,该实验装置应达到如下主要设计参数:超导纵场场强BT = 3.5T等离子体大半径R = 1.78m等离子体小半径a = 0.4m等离子体拉长比K = b/a = 1.6 ~ 2加热场最大磁通变化能力△Φ = (8-10)V-S等离子体电流IP = 1 MA可稳态运行的低混杂波驱动等离子体电流系统(LHCD),该系统主要工程参数应达到:总 功 率 P = 3.5 MW工作频率 f0 = 2.45 GHz,3.7 GHz可连续运行的离子回旋波加热系统(ECRF),该系统主要工程参数应达到:总 功 率 P = 3 ~ 3.5 MW工作频率 f0 = 30 ~ 110 MHz可保证HT-7U基本运行和实验的其它工程系统:如低温、诊断、电源、真空、计算机控制、数据采集和处理、水冷系统等,这些子系统的也都毫无疑问必须满足HT- 7U超导托卡马克装置稳态运行的要求。HT-7U不是一个聚变堆,它是针对目前建造托卡马克核聚变堆尚存在的前沿性物理问题,进行探索性的实验研究,为未来稳态、安全、高效的先进商业聚变堆提供物理和工程技术基础。 HT-7U项目的最高管理机构是由中国科学院任命的“HT- 7U项目管理委员会”,中国科学院副院长白春礼任管委会主任,安徽省常务副省长汪洋任副主任,组成人员有中国科学院秘书长竺玄、副秘书长钱文藻、计财局长顾文琪、基建局长薛钟灵、基础局长金铎和合肥分院院长王绍虎以及国家发展计划委员会一人、科学技术部一人。HT-7U项目完全按照国家基建项目实施总经理负责制的组织管理,中国科学院任命的工程指挥部组成人员如下:万元熙为项目总经理(项目法人),翁佩德、谢纪康、李建刚任副总经理,翁佩德兼任总工程师;王孔嘉任总经济师;高大明任总工艺师。中国科学院还任命了HT-7U项目科技委员会的组成人员,赵仁恺院士任科技委员会主任,徐至展院士、严陆光院士和石秉仁研究员任任副主任,组成人员有阮可强院士、贺贤土院士、赵凯华教授、余昌旋教授、舒炎泰教授、陆全康教授和我所的邱励俭研究员。为便于切实抓紧、抓好HT-7U项目的建设工作和有关改项目的各项管理工作,所领导决定:1、设立HT-7U项目总经理办公会来协调、决定有关HT-7U项目的重大管理方面的决策;2、成立HT-7U工程总体组(副总工程师、副总工艺师、副总经济师等组成);任命了各分项技术负责人,设立由以上人员组成的总工程师办公会议来研究、解决HT-7U工程建设中的有关设计方案和实施方案方面的重要技术问题;还设立了依邱励俭为首王绍华、季幼章、许家治等参加的工程顾问组。工程总体组及各分项技术负责人如下:副总工程师: 武松涛(主机设计)毕延芳(低温系统、超导导体)高秉钧 (超导实验)李建刚(第一壁及真空系统)刘正之(电源及控制)副总工艺师: 王永诚、 孙世洪副总经济师: 黄贵、 姜桂萍总控制、数采及处理系统 罗家融真空抽充气及加料、第一壁处理等 辜学茂水冷系统(包括去离子水冷却系统) 张祥勤电网设计及供电系统 孙世洪、周士国诊断系统 万宝年基建(包括冷、暖) 孙世洪环保分析及安全监控 吴宜灿LHCD系统 匡光力ICRH系统 赵燕平ECRH系统 刘保华我所目前已介入HT-7U项目建设工作的科研人员大约有近200人,主要有一室和三室的全部人员,二室、五室、六室、七室、八室、十室、十一室、技术中心和研制中心以及管理部门的部分人员。目前,HT-7U项目的所有设计人员都实行严格的岗位责任制,发放岗绩津贴,全所上下都对于HT-7U项目的设计和研制倾注了满腔热情,提供了各方面的支持。 在所领导和HT-7U工程指挥部的强有力的领导下,在所有参加HT-7U项目的设计和预研工作的同志们的共同努力下(其中也包括有所外的有关工厂和研究部门的大力协作),HT-7U项目的工程设计和预研已经取得了多方面的进展,我们在此简要介绍如下:1、HT-7U装置超导磁体所使用的CICC超导导体的研制取得了重大进展,装置设计室在合肥电缆厂和西北有色金属研究院等工业部门的协作下,顺利研制出一根长度为200米的模拟CICC导体和两根总长为600米的全尺寸CICC超导导体,这是我国第一次研制出大电流的低温超导导体,继以上的包管焊管制造CICC超导导体后,装置设计室又在合肥电缆厂和所研制中心的协作下,顺利研制出穿管制作的CICC超导导体,这为降低CICC超导导体的造价和减小制造的技术难度起到了决定性的作用。2、所研制中心已经成功地研制出专用于HT- 7U装置CICC超导导体绕制的绕线机,并且已经使用该绕线机和模拟CICC导体绕制出2:3尺寸的D形纵场模拟双饼工艺试验磁体,这标志着我所研制中心具备了绕制具有较高精度的复杂D形磁体的加工能力。3、装置主机设计方案初步完成,其中超导纵场系统已经按两种超导导体的方案进行了技术方案设计,即基于采用美国SSC电缆的浸泡式超导磁体方案和基于CICC导体的迫流内冷超导磁体方案;极向场电磁参数特别是加热场参数的优化设计计算取得了比较好的设计计算结果;真空室、内外冷屏、外真空室以及装置的支撑结构等方案也已初步确定,现正在进行有关的工程设计和工艺技术方面的调研、讨论。4、装置设计室完成极向场中心螺管模拟线圈的设计,目前正在所研制中心利用自行研制的两根总长为600米的CICC超导导体进行绕制,这将是我国的第一个大电流低温超导磁体。在进行并完成以上工作的同时,为确保HT-7U装置设计既具有参数先进又稳妥可靠,有选择地将有关的设计工作作为国际合作项目征求国外专家的意见,其中对于装置的总体设计参数和装置的工程方案设计已经召开了有世界核聚变领域的著名专家参加的国际讨论会。与有着丰富超导托卡马克设计制造经验的俄罗斯库尔恰托夫研究院核聚变所和叶夫列莫夫所开展了较为广泛的合作,对有关的设计计算参数、电磁场分析计算、等离子体的平衡位形设计计算、传热和超导移能等进行了分析校核。关于装置的极向场物理设计和等离子体平衡位形的设计计算方面还与美国GA开展了合作,用美国的程序对HT-7U的设计计算进行了进一步的校核。目前,除各子系统都在进行紧张的扩大初步设计外,有关的研制工作也在紧张进行中。主要有:1、通过国际合作,对已经研制出的CICC超导导体进行超导性能方面的综合测试试验,以便为CICC超导导体的最终设计提高必要的数据,也为我们自己建立超导导体、超导磁体测试实验室提供借鉴和经验。该项工作今年必须完成。2、装置设计室完成了低温超导试验所必需的试验大杜瓦的设计,目前正在进行加工制造的询标、议标工作,今年力争基本完成加工并进行组装调试。3、中心螺管模型磁体必须完成绕制、绝缘处理等全部制造工序,装置设计室完成的大电流的CICC超导导体的接头的研制必须在上半年完成,以便确定模型磁体所采用的超导导体接头形式。4、单根长度达600米的CICC超导导体穿管生产线今年完成建造,进行试制生产。全部的装置设计资料、参考资料、设计计算报告等技术资料都已经在总师办归档保存,已经可以从网络上查阅资料名称,也可以很方便地去总师办借阅。有关项目的文件和技术合同、合作协议类资料在项目办公室保存。 承担“HT-7U超导托卡马克装置建设”项目是对我所的核聚变实验装置工程设计能力和技术加工能力以及超导托卡马克装置运行实验的检验和挑战,应该看到尽管我所有着一定的托卡马克设计、制造、运行和控制的经验,但对于HT-7U超导托卡马克装置这样的全超导托卡马克装置,非但是我们所,即便是世界上的核聚变大国(美国、西欧、日本、法国、俄罗斯等),也都未曾有这样的经历和经验,所以,可以毫不夸张地说HT-7U超导托卡马克装置的建成之日,也一定是我国进入世界核聚变研究大国的行列之日。正因为如此,HT-7U超导托卡马克装置的设计建造以及实验运行是必然的给我们带来了巨大的挑战,我们必须对此有一个清醒的认识。其中最为核心的具有挑战性的工程技术方面的难点有:HT-7U装置所使用的CICC超导导体的设计、研制和试验测试技术;较大电流变化、较高磁场变化的超导极向场磁体的设计、制造和试验测试及实验运行技术;非圆、大拉长截面、稳态的等离子体控制技术;从HT-7U超导托卡马克装置建设的立项可以看出,我国的核聚变科学研究工作已经得到国家的大力支持,该项科学研究已经有着广泛的国际合作的基础。随着我国综合国力的提高,相信国家对聚变研究的支持强度肯定会不断增加,在此基础上,中国开发聚变能的研究一定会进入世界先进行列并为人类社会的可持续发展做出重大贡献。努力做好我们的工作,把HT-7U装置早日建成,为把我国建成科技强国而奋斗,为我国的技术进步而努力。 :课题号课题名负责人U1010000主机设计武松涛U1020000低温系统毕延芳U1030000电源系统刘正之U1040000真空系统辜学茂U1050000超导实验高秉钧U1060000第一壁材料李建刚U1070000环保与防护吴宜灿U2010000物理设计虞清泉U2020000低混杂波匡光力U2030000离子回旋波赵燕平U2040000数采罗家融U2050000控制罗家融U2060000诊断万宝年U2070000电子回旋波刘保华U3010000高大明U3020000孙世洪U3030000孙世洪U3040000水冷系统张祥勤U3050000高大明U3060000高大明U4010000王孔嘉U4020000王孔嘉U4030000翁佩德U4040000王孔嘉U4050000王孔嘉U4060000高大明U4070000王孔嘉
2023-09-09 05:58:231

中国科学技术大学怎么样

全国大学排名前20,什么首批985呀,211院校啊,什么珠峰计划啊,俺们学校前面儿带的这些名头可不止这几个。向左转|向右转一听名就知道这是一个非常理工科的院校,软件工程专业,信息工程专业,自动化专业,等等,都是非常棒的专业。这里说的棒,不仅是在全国排名靠前,国家重点专业,而是说等从学校出来之后的就业率也是很高的。学生平常的学习积极性挺高的,因为如果积极性不高的话,那么期末的时候就会哀嚎成群,反正你要是不好好学的话,期末挂科是没跑的。向左转|向右转师资力量和学生素质,都是很专业很高的。而且,各方面的硬件措施,校园环境都挺好的,宿舍生活还挺愉快的。四人间上床下桌,冬天有暖气,夏天有空调。而且学校餐厅味道非常好,价钱也挺划算的,个人感觉东区餐厅味道最好。向左转|向右转
2023-09-09 05:58:4114

核聚变能的前景

与传统的化石能源相比,核聚变能具有清洁和易采集的特点。每一升水中约含有30毫克氘,通过聚变反应产生的能量相当于300升汽油的热能。地球上仅海水中就含有45万亿吨氘,足够人类使用上百亿年,比太阳的寿命还要长。万元熙代表说,由于核聚变能耗资巨大,技术难度超高,世界各国必须携手才能取得突破性进展。中国已正式加入由美国、欧洲、日本、韩国和印度等组成的国际合作项目,共同开发核聚变能反应堆。这一项目耗资100亿美元,中国投入价值40亿元人民币的自行研制的设备。
2023-09-09 06:02:071

中国科学技术大学核科学技术学院的历史沿革

中国科学技术大学核科学技术学院的前身是早在1958年中国科学技术大学建校时就创办的原子核物理和原子核工程系、物理热工系和放射化学及辐射化学系。2000年获得“核科学与技术”一级学科博士授予权,2007年被评为国家一级重点学科。期间,中国科学技术大学建成中国第一个国家实验室——国家同步辐射实验室,培养了一批杰出的毕业生,其中包括两名院士,为国家核事业发展做出了重要贡献。 中国科学技术大学核科学技术学院的另一建设单位是中国科学院合肥物质科学研究院,它是中国热核聚变研究的重要基地之一,建成世界第一台非圆截面全超导托卡试验装置,核聚变工程技术研究处于国际先进水平。 中国科学技术大学核科学技术学院于2009年1月10日在合肥举行成立暨揭牌仪式,中国工程院院士何多慧出任学院工作指导委员会主任,中国核科学学者万元熙研究员出任首任院长。
2023-09-09 06:02:211

中国科学技术大学的优势专业是什么?

电子工程与信息科学系自动化系计算机科学技术系电子科学与技术系
2023-09-09 06:02:373

中国的:'人造太阳'????????

由中国自行设计、研制的世界上第一个全超导托卡马克EAST核聚变实验装置(又称“人造太阳”)已成功完成首次工程调试。调试中,最受关注的低温调试和磁体通电测试获得通过,为年内运行及国家验收奠定了可靠基础。“EAST实验装置”旨在探索可以得到无穷尽清洁能源的途径,相当于人类为自己制造了一个小太阳。现在,让我们走近“人造太阳”。 太阳上的聚变反应是不可控的,就像在地球上看到的氢弹爆炸,巨大的能量在一瞬间释放出来,只能起到毁灭性的破坏作用。为了让这种能量为我所用,需要将能量释放过程变成一个稳定、持续并且可控制的过程。EAST正是起着这一转化作用,通过磁力线的作用,氢的同位素等离子体被约束在这个“游泳圈”中运行,发生高密度的碰撞,也就是聚变反应。人类研制“人造太阳”已经50年,30多个国家投入研究,建造上百个实验装置,科研人员1.2万多人,每年经费超过20亿美元,如此规模宏大的科研,却一直不为人知。在中国,公众对“人造太阳”更是知之甚少。核工业西南物理研究院聚变科学所300多位研究人员密造着中国的“人造太阳”。聚变科学所所长刘永掰着指头数:研究院从1965年在乐山建立开始,到1990年搬到成都,我国“人造太阳”研究已有40年。核聚变要比目前通过核裂变反应的核电站能产生更多能量;它可通过电解取之不尽、用之不竭的海水获得原料氘,并且还不像现在的核电站产生长达千年不分解的核废料,是一种清洁的环保能源。因此,核聚变被认为是未来解决世界能源和环境问题最重要的途径之一,对发展中国家和地区具有特别重要的意义:1公斤核聚变燃料相当于1万吨石油燃料。
2023-09-09 06:02:463

太阳为什么一直燃烧?

宇宙大爆炸,无稽之谈。
2023-09-09 06:02:587

人造太阳是什么?

http://news.sohu.com/20060406/n242675110.shtml
2023-09-09 06:05:406

谁能帮我解释一下核裂变及核聚变

核裂变(Nuclear fission)又称核分裂,是一个原子核分裂成几个原子核的变化。是指由重的原子,主要是指铀或钚,分裂成较轻的原子的一种核反应形式。 只有一些质量非常大的原子核像铀(yóu)、钍(tǔ)等才能发生核裂变。这些原子的原子核在吸收一个中子以后会分裂成两个或更多个质量较小的原子核,同时放出二个到三个中子和很大的能量,又能使别的原子核接着发生核裂变……,使过程持续进行下去,这种过程称作链式反应。原子核在发生核裂变时,释放出巨大的能量称为原子核能,俗称原子能。1千克铀-235的全部核的裂变将产生20,000兆瓦小时的能量(足以让20兆瓦的发电站运转1,000小时),与燃烧300万吨煤释放的能量一样多。另见裂变和聚变。 核裂变是在1938年发现的,由于当时第二次世界大战的需要,核裂变被首先用于制造威力巨大的原子武器——原子弹。原子弹的巨大威力就是来自核裂变产生的巨大能量。目前,人们除了将核裂变用于制造原子弹外,更努力研究利用核裂变产生的巨大能量为人类造福,让核裂变始终在人们的控制下进行,核电站就是这样的装置。 裂变释放能量是因为原子核中质量-能量的储存方式以铁及相关元素(见核合成)的核的形态最为有效。从最重的元素一直到铁,能量储存效率基本上是连续变化的,所以,重核能够分裂为较轻核(到铁为止)的任何过程在能量关系上都是有利的。如果较重元素的核能够分裂并形成较轻的核,就会有能量释放出来。然而,很多这类重元素的核一旦在恒星内部形成,即使在形成时要求输入能量(取自超新星爆发),它们却是很稳定的。不稳定的重核,比如铀-235的核,可以自发裂变。快速运动的中子撞击不稳定核时,也能触发裂变。由于裂变本身释放分裂的核内中子,所以如果将足够数量的放射性物质(如铀-235)堆在一起,那么一个核的自发裂变将触发近旁两个或更多核的裂变,其中每一个至少又触发另外两个核的裂变,依此类推而发生所谓的链式反应。这就是称之为原子弹(实际上是核弹)和用于发电的核反应堆(通过受控的缓慢方式)的能量释放过程。对于核弹,链式反应是失控的爆炸,因为每个核的裂变引起另外好几个核的裂变。对于核反应堆,反应进行的速率用插入铀(或其他放射性物质)堆的可吸收部分中子的物质来控制,使得平均起来每个核的裂变正好引发另外一个核的裂变。 核裂变所释放的高能量中子移动速度极高(快中子),因此必须透过减速,以增加其撞击原子的机会,同时引发更多核裂变。一般商用核反应堆多使用慢化剂将高能量中子速度减慢,变成低能量的中子(热中子) 。商营核反应堆普遍采用普通水、石墨和较昂贵的重水作为慢化剂。 核裂变是一个原子核分裂成几个原子核的变化。只有一些质量非常大的原子核像铀、钍等才能发生核裂变。这些原子的原子核在吸收一个中子以后会分裂成两个或更多个质量较小的原子核,同时放出二个到三个中子和很大的能量,又能使别的原子核接着发生核裂变……,使过程持续进行下去,这种过程称作链式反应。原子核在发生核裂变时,释放出巨大的能量称为原子核能,俗称原子能。1克铀235完全发生核裂变后放出的能量相当于燃烧2.5吨煤所产生的能量。比原子弹威力更大的核武器是氢弹,就是利用核聚变来发挥作用的。核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才能发生核聚变,比如氢的同位素氘、氚等。核聚变也会放出巨大的能量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的。核聚变核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。 相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。 目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走。 目前主要的几种可控核聚变方式: 超声波核聚变 激光约束(惯性约束)核聚变 磁约束核聚变(托卡马克) 核聚变的另一定义 比原子弹威力更大的核武器—氢弹,就是利用核聚变来发挥作用的。核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才能发生核聚变,比如氢的同位素氘(dao)、氚(chuan)等。核聚变也会放出巨大的能量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的。 核聚变能释放出巨大的能量,但目前人们只能在氢弹爆炸的一瞬间实现非受控的人工核聚变。而要利用人工核聚变产生的巨大能量为人类服务,就必须使核聚变在人们的控制下进行,这就是受控核聚变。 实现受控核聚变具有极其诱人的前景。不仅因为核聚变能放出巨大的能量,而且由于核聚变所需的原料——氢的同位素氘可以从海水中提取。经过计算,1升海水中提取出的氘进行核聚变放出的能量相当于100升汽油燃烧释放的能量。全世界的海水几乎是“取之不尽”的,因此受控核聚变的研究成功将使人类摆脱能源危机的困扰。 但是人们现在还不能进行受控核聚变,这主要是因为进行核聚变需要的条件非常苛刻。发生核聚变需要在1亿度的高温下才能进行,因此又叫热核反应。可以想象,没有什么材料能经受得起1亿度的高温。此外还有许多难以想象的困难需要去克服。尽管存在着许多困难,人们经过不断研究已取得了可喜的进展。科学家们设计了许多巧妙的方法,如用强大的磁场来约束反应,用强大的激光来加热原子等。可以预计,人们最终将掌握控制核聚变的方法,让核聚变为人类服务。利用核能的最终目标是要实现受控核聚变。裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的较重的原子核而释出能量。最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读"川",又叫超重氢)聚合成较重的原子核如氦而释出能量。 核聚变较之核裂变有两个重大优点。一是地球上蕴藏的核聚变能远比核裂变能丰富得多。据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘。1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量。地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂。 第二个优点是既干净又安全。因为它不会产生污染环境的放射性物质,所以是干净的。同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的。 目前实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近于成功,但要达到工业应用还差得远。按照目前技术水平,要建立托卡马克型核聚变装置,需要几千亿美元。 另一种实现核聚变的方法是惯性约束法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。 原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的。 尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登。补充内容:每克氘聚变时所释放的能量为5.8×10^8kJ,大于每克U-235裂变时所释放的能量(8.2×10^7KJ)。从能源的角度考虑,核聚变有几个方面比核裂变优越:其一,聚变产物是稳定的氦核,没有放射性污染产生,没有难于处理的废料;其二,聚变原料氘的资源比较丰富,在海水中氘和氢之比为1.5×10^-4∶1,地球上海水总量约为10^18吨,其中蕴藏着大量的氘,提炼氘比提炼铀容易得多。遗憾的是这个聚变反应需要非常高的温度,以克服两个带正电的氘核之间的巨大排斥力(从理论计算,要克服这种库仑斥力需要10^9℃的高温)。氢弹的制造原理,就是利用一个小的原子弹作为引爆装置,产生瞬间高温引发上述聚变反应发生强烈爆炸。氢元素的几种同位素之间能发生多种聚变反应,这种变化过程存在于宇宙之间,太阳辐射出来的巨大能量就来源于这类核聚变。但我们目前尚没有办法在地球上利用这类核聚变发电,怎样能取得这样高的温度?用什么材料制造反应器?怎样控制聚变过程等各种问题尚无答案。补充:我国核聚变装置的最新消息:新华网合肥9月28日电(记者喻菲 蔡敏 程士华)世界领先的中国新一代热核聚变装置EAST28日首次成功完成了放电实验,获得电流200千安、时间接近3秒的高温等离子体放电。 负责这一项目的中国科学院等离子体所所长李建刚研究员在接受新华社记者采访时说,此次实验实现了装置内部1亿度高温,等离子体建立、圆截面放电等各阶段的物理实验,达到了预期效果。 工艺鉴定组专家、中科院基础科学研究局金铎研究员在实验后的新闻发布会上宣布,EAST通过国家“九五”大科学工程工艺鉴定。 参与EAST研究合作的美国通用原子能公司盖瑞·杰克逊博士说:“EAST成为世界上第一个建成并真正运行的全超导非圆截面核聚变实验装置,它将在未来10年内保持世界先进水平。” 据了解,EAST装置是中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的。 记者在实验控制室看到,这个近似圆柱形的大型物体由特种无磁不锈钢建成,高约12米、直径约5米,据介绍其总重量达400吨。 李建刚研究员说,与国际同类实验装置相比,EAST是使用资金最少、建设速度最快、投入运行最早、运行后获得等离子放电最快的先进核聚变实验装置。 “这意味着人类在核聚能研究利用领域取得重大进步,也标志着中国在这一领域进入国际先进水平”,李建刚说。 人们认识热核聚变是从氢弹爆炸开始的。氢弹爆炸时释放出极大的能量,给人类带来的是灾难。而科学家们却希望发明一种装置,可以有效地控制“氢弹爆炸”的过程,让能量持续稳定的输出,以解决人类面临的能源短缺危机。 美、法等国在20世纪80年代中期发起了耗资46亿欧元的国际热核实验反应堆(ITER)计划,旨在建立世界上第一个受控热核聚变实验反应堆,为人类输送巨大的清洁能量。这一过程与太阳产生能量的过程类似,因此受控热核聚变实验装置也被俗称为“人造太阳”。 中国于2003年加入ITER计划。位于安徽合肥的中科院等离子体所是这个国际科技合作计划的国内主要承担单位,其研究建设的EAST装置稳定放电能力为创记录的1000秒,超过世界上所有正在建设的同类装置。 EAST大科学工程总经理万元熙教授说,与ITER相比,EAST在规模上小很多,但两者都是全超导非圆截面托卡马克,即两者的等离子体位形及主要的工程技术基础是相似的,而EAST至少比ITER早投入实验运行10至15年。因此,无论从人才培养和奠定工程技术及物理基础的角度上说,EAST都将为ITER计划做出重要的、实质性的贡献,并进而为人类开发和最终使用核聚变能做出重要贡献。 不过,万元熙研究员说,虽然“人造太阳”的奇观在实验室中初现,但离真正的商业运行还有相当长的距离,它所发出的电能在短时间内还不可能进入人们的家中。但他预测,根据目前世界各国的研究状况,这一梦想最快有可能在30-50年后实现。 万元熙说,未来的稳态运行的热核聚堆用于商业运行后,所产生的能量够人类用数亿年乃至数十亿年。从长远来看,核能将是继石油、煤和天然气之后的主要能源,人类将从“石油文明”走向“核能文明” 聚变反应到底是怎么进行的?简单的回答:根据爱因斯坦质能方程E=mc2. 原子核发生聚变时,有一部分质量转化为能量释放出来. 只要微量的质量就可以转化成很大的能量. 两个轻的原子核相碰,可以形成一个原子核并释放出能量,这就是聚变反应,在这种反应中所释放的能量称聚变能。聚变能是核能利用的又一重要途径。 最重要的聚变反应有: 式中D是氘核(重氢)、T是氚核(超重氢)。以上两组反应总的效果是: 即每“烧"掉6个氘核共放出43.24MeV能量,相当于每个核子平均放出3.6MeV。它比n+裂变反应中每个核子平均放出200/236=0.85MeV高4倍。因此聚变能是比裂变能更为巨大的一种核能。 核聚变能利用的燃料是氘(D)和氚。氘在海水中大量存在。海水中大约每600个氢原子中就有一个氘原子,海水中氘的总量约40万亿吨。每升海水中所含的氘完全聚变所释放的聚变能相当于300升汽油燃料的能量。按目前世界消耗的能量计算,海水中氘的聚变能可用几百亿年。氚可以有锂制造。锂主要有锂-6和锂-7两种同位素。锂-6吸收一个热中子后,可以变成氚并放出能量。锂-7要吸收快中子才能变成氚。地球上锂的储量虽比氘少得多,也有两千多亿吨。用它来制造氚,足够用到人类使用氘、氘聚变的年代。因此,核聚变能是一种取之不尽用之不竭的新能源。 在可以预见的地球上人类生存的时间内,水的氘,足以满足人类未来几十亿年对能源的需要。从这个意义上说,地球上的聚变燃料,对于满足未来的需要说来,是无限丰富的,聚变能源的开发,将“一劳永逸”地解决人类的能源需要。六十多年来科学家们不懈的努力,已在这方面为人类展现出美好的前景。 典型的聚变反应是 411H—→42He+20-1e+2.67×107eV 21H+21H—→32He+10n+3.2×106eV 21H+21H—→31H+11H+4×106eV 31H+21H—→42He+10n+1.76×107eV 后三个反应的净反应是 521H—→42He+32He+11H+210n+2.48×107eV 即每5个21H聚变后放出2.48×107eV能量。 氘是相当丰富的氢同位素,在海洋中每6500个氢原子就有1个氘原子,这意味着海洋是极大量氘的潜在来源。仅在1L海水中就有1.03×1022个氘原子,就是说每1Km3海水中氘原子所具有的潜在能量相当于燃烧13600亿桶原油的能量,这个数字约为地球上蕴藏的石油总储量。 要使原子核之间发生聚变,必须使它们接近到飞米级。要达到这个距离,就要使核具有很大的动能,以克服电荷间极大的斥力。要使核具有足够的动能,必须把它们加热到很高的温度(几百万摄氏度以上)。因此,核聚变反应又叫热核反应。原子弹爆炸产生的高温可引起热核反应,氢弹就是这样爆炸的。 受控核聚变是等离子态的原子核在高温下有控制地发生大量原子核聚变的反应,同时释放出能量。氘是最重要的聚变燃料,海洋是氘的潜在来源,一旦能实现以氘为基本燃料的受控核聚变,人们就几乎拥有了取之不尽、用之不竭的能源。氢弹爆炸释放出来的大量聚变能、原子弹爆炸释放出来的大量裂变能,都是不可控制的。在第一颗原子弹爆炸后仅十多年,人们就找到控制裂变反应的办法,并建成了裂变电站。原以为氢弹炸爆后能建成聚变电站,但并不如此简单,即使在地球条件下能发生的聚变反应: 31H+21H—→42He+10n+1.76×107eV 也只能在极高的温度(>4000℃)和足够大的碰撞几率条件下,才能大量发生。因此实际可作为能源使用的受控热核聚变反应,必须在产生并加热等离子体到亿万摄氏度高温的同时,还要有效约束这一高温等离子体。这就是近几十年内研究的难题和期望攻克的目标。我国的中科院物理所、中科院等离子物理所、西南物理研究院在实验工程和理论研究各方面都做了许多的工作,也取得了许多重要的进展。
2023-09-09 06:05:585

EAST的EAST项目进展

1993年10月,以欧共体聚变部名誉主任帕仑布教授为首的来自国际上各大核聚变实验室的12位著名聚变科学家,对等离子体所当时正在建设的HT-7超导托卡马克装置和研究所聚变研究发展战略进行了评议,等离子体所在会上第一次提出分三阶段实施聚变科学研究的计划。1994年底,中科院基础局邀请6位院士和8位专家在合肥召开了“HT-7U超导托卡马克计划座谈会”,HT-7U计划首次较正式提出。1996年初,部分两院院士在北京京西宾馆对“九五”国家重大科学工程项目进行初步评估,HT-7U装置建设第一次得到国家级专家的赞同并被列入前十位项目中。1997年6月,国家科技领导小组批准中国科学院关于“HT-7U大科学工程项目立项”的申请,该项目正式进入国家重大科学工程项目的立项操作程序。1997年10月,国家计委委托中科院主持召开“HT-7U工程项目建议书专家评估会”;该项目的建设方案和计划获得与会专家的好评。1998年4月10-11日,HT-7U正式通过了国家计委委托中国国际工程咨询公司主持召开的HT-7U项目建议书专家评估会的评估论证。1998年7月8日,国家计委正式批复HT-7U项目建议书(计投资[1998]1303号文),同意由中国科学院主持,中科院等离子体所承担国家重大科学工程项目“HT-7U超导托卡马克核聚变实验装置”的建造,投资1.65亿元。1998年10月,HT-7U可行性研究报告通过了中科院基建局主持的专家评估会。1998年12月,HT-7U可行性报告被批准。1999年10月,HT-7U扩初设计和概算被批准 。2000年10月,国家计委正式批准HT-7U开工建设(计投资[2000]1656号文)。2000年11月4日,来自俄罗斯的2号制冷机经过一年的改造,在为超导线圈实验供冷的首轮调试中一次获得成功。4日凌晨1时,制冷机降至氦液化温度并生产出液氦。2001年5月31日,HT-7U主机的两个大部件--外真空、真空室本体的外协加工合同举行了签字仪式(右图),标志着HT-7U主机正式进入加工制造阶段。2001年8月20日,HT-7U电流引线装入实验杜瓦(左图)。2001年8月22日,HT-7U纵场线圈的重要加工设备—XK2425/IB数控龙门铣 (武汉机床厂提供)经过安装、调试,成功通过验收(右图)。纵场超导磁体的最外面是一个设计尺寸精度高,体积大、超薄、槽深、全焊接的大型D形截面线圈盒。通过外协单位加工的线圈盒焊接毛坯件在放入一次VPI处理的纵场线圈后经过封焊,将在数控机床上进行精加工。2001年8月26日,HT-7U的600米CICC哑导体试制成功。2001年10月29日,HT-7U大型超导模型线圈(左 图)实验成功。22日晚7:00超导实验系统开始降温,27日2:20进入超导状态,14:00模型线圈达到接近工作温度的5.5k,14:20模型线圈开始进行多种模式的加电流实验,28日连续进行的大电流、较大电流变化率等实验均获得成功,各系统工作状态基本正常。2001年11月27-28日,经过现场测试,VPI-1000型环氧树脂真空-压力浸渍设备(右图)已达到并优于合同规定的各项技术指标,顺利通过设备验收。2002年2月6日,HT-7U第一饼1:1的代用料纵场线圈绕制完毕(左图)。2002年3月11日,HT-7U第一根用于超导纵场线圈的604米的CICC导管顺利诞生。20日该导体压方成型(右图)。HT-7U需要生产58根,长32公里的导体,共有2900多个接头。为了确保接头质量,使用了六种检测方法(X光、超声、着色、内窥镜加塞规、真空检漏和打压),严格按要求逐一对接头进行检测。为解决缆线从要求1毫米间隙的600米长管中穿过,特别设计了一种小直径的拉绳卡头,获得了国家专利权。CICC导体预压成形的工艺通过不断摸索实践,最终达到了0.1毫米的尺寸控制精度。2002年4月3日,HT-7U超导中心螺管模型线圈成功脱模,标志着中心螺管模型线圈VPI成功结束。2002年4月9日,HT-7U第二根600米CICC导体完成穿缆后顺利压方成型。2002年7月13日,龙门结构CICC导体予弯成型机已开始绕制TF002A线圈(左图),它可与悬臂结构成型机同时进行绕制,绕线进度能提高一倍。2002年8月21日,绕线车间第一条生产线的悬臂结构CICC导体予弯成型机上的TF001B下线。8月27日,第二条生产线的龙门结构CICC导体予弯成型机上的TF002A线圈下线(右图)。2002年12月9日,HT-7U超导线圈VPI设备—4200型环氧树脂真空压力浸渍设备通过验收(左图)。这套为HT-7U专门研制的设备,是国内第一套集真空、压力、浇注功能于一体的VPI设备,是国内目前最大的真空压力浇注设备,也是同类设备中技术要求最高、技术含量最高的VPI设备。它具有高真空度,较先进的薄膜脱气,安全、易控、均温的导热油加热系统和性能可靠,自动化程度高的液压、错齿、氟橡胶密封结构。该设备在沈阳出厂前已进行了严格的检验,并获得了压力容器合格证。2003年3月16日,HT-7U纵场哑缆线圈完成VPI固化(右图)。2003年5月12日,HT-7U第一个纵场线圈VPI处理成功。VPI处理成功后的纵场线圈,外观规整,色泽透明。其整体性,绝缘强度,尺寸误差等完全符合设计要求。2003年5月12日,HT-7U取得了重大进展――第一个超导中心螺管原型线圈(左图为电脑设计图)成功通过性能测试。中心螺管线圈是HT-7U最关键的部件,其作用是通过快速磁通变化产生初始阶段的等离子体电流。“五一”期间在实验杜瓦内安装连接了超导中心螺管线圈。6日实验系统开始降温。11日达到超导工作温区后开始了性能测试。由于性能测试必须在快速变化的大电流条件下完成,对失超保护技术、电源及其控制技术、低温、真空以及测量等都提出了很高的要求。12日完成了全部预期的性能测试,获得了一系列鼓舞人心的重要结果。实验显示极向场电源系统完全达到设计要求,为未来HT-7U装置的成功运行奠定了坚实基础。这次实验的成功表明HT-7U难度最大,最具挑战性的超导中心螺管线圈已经全面达到了设计要求。2003年6月30日-7月7日,HT-7U成功进行了纵场原型线圈超导电磁性能、机械性能、热工水力性能测试(右图)。经过100小时的降温,线圈成功进入超导状态。此后模拟HT-7U装置纵场的工作条件,分别进行了纵场原型线圈在14.3千安和16千安电流下的超导实验,并在6.8K温度下测试了该线圈的失超电流。结果显示,线圈的性能达到设计参数,完全满足未来HT-7U运行的要求。HT-7U的纵场线圈外形为D型,共16个,沿环向排列组成纵场线圈系统,提供稳定的环形磁场以约束等离子体。2003年7月28日,HT-7U超大型的第3台绕线机正式投入生产(左图)。2003年8月7日,HT-7U的TF005超导磁体开始性能测试实验。2003年10月,项目名称由HT-7U改为EAST。2003年10月10-11日,25名来自英、德、美、日、俄、法、印等国的著名聚变研究所所长和国际聚变研究组织负责人以及“国际热核聚变试验堆”计划负责人组成的国际顾问委员会对EAST进行了考察评估。专家们认为:EAST将是一个对世界聚变研究产生重要影响的先进科学设备、是世界上第一个同时具有全超导磁体和灵活的冷却结构的托卡马克,能实现稳态运行。EAST是中国聚变研究向前迈出的一大步,使中国新一代聚变研究人才的培养取得了巨大成功。EAST具有先进的等离子体形状(非圆截面)、偏滤器功率和杂质处理能力,能开展稳态条件下的关键物理和工程问题研究,与聚变堆和ITER的建设直接相关。2003年10月15日,EAST第一个极向场大线圈完成绕制。2004年3月2日,EAST第一个极向场大偏滤线圈完成绕制。2004年3月30日,EAST极向场超导大线圈的真空压力浸渍获得成功(左图)。这是一项高技术、高难度、高风险的创新性工作,属国内首创。该项目的研制成功,标志着EAST大科学工程重大技术难题又一次获得突破。2004年4月1日,EAST首件纵场超导磁体通过专家评审组的验收(右图)。该大型D形超导磁体为EAST装置的TF3号纵场磁体。研制过程中采用了多种属国内创新性的关键技术和独到工艺。经严格检验表明磁体质量优良,完全达到了设计指标要求。该磁体打研制填补了国内大型超导磁体的空白,为国际聚变界做出了重要贡献。研究中取得的经验和教训,为以后的ITER(国际热核聚变试验堆)积累了宝贵的经验。2004年6月12日,随着最后一根管内铠装电缆超导导体(CICC)的收缆成功,CICC生产线高质量地完成EAST所需的全部CICC导体。2004年9月2日,由芜湖造船厂研制加工的EAST的核心部件、超导磁体最重要的结构部件之一--超导纵场线圈盒焊接坯件通过了验收。芜湖造船厂已经完成了所承担的EAST所有坯件的加工,比原计划提前了4个月零10天(左图为2002年6月18日纵场线圈盒在芜湖造船厂正式开工)。经过多次成型和焊接工艺实验,攻克了316LN超低碳高氮无磁不锈钢的大面积施焊、大型复杂轮廓焊接组件的焊接应力消除及变形控制等大量的重大工艺技术难关,填补了国内的空白,达到了国际先进水平,对EAST的建设做出了重要贡献。2004年9月底,EAST按工程进度要求高质量完成了全部34个纵场线圈,7个中心螺管线圈,4个极向场大线圈,4个偏滤器线圈和2个试验线圈,总共51个大型超导线圈的绕制任务,线圈外形尺寸偏差小于1.5毫米,达到了国际先进水平。2004年10月14日,EAST组成的验收小组赴上海锅炉厂核化公司 ,对完成加工的EAST外真空杜瓦的中环、封头两组件的检验数据报告和表面处理状况进行了检查复核(右图)。验收组认为,杜瓦两组件的总体质量优良,达到了设计要求 ,尤其在窗口位置和分度等精度控制方面达到较高水平,同意验收。2005年3月18日,EAST顺利完成第九个TF线圈的套装,开始第四组纵场线圈预组装(16个TF线圈,共分四组预装)。2005年8月22日,EAST重达15.7吨的中心螺管组件和重8.7吨的上部偏滤线圈安装到位(左图)。2006年1月,EAST完成了预总装,2月20日进入抽真空和降温、通电实验阶段。2006年3月13日21点55分,EAST第12号极向场线圈通电获得成功(右图为通电实验波形图)。本次实验目的是检测磁体、线圈盒、传输线等部分的热工水力特性,失超检测对极向场线圈补偿调试,电磁测量系统调试,接头电阻调试以及极向场电源控制系统优化等等。采集到的实验数据显示,12号极向场线圈首次通电的最大电流为1千安,通电时间为45秒,上升、下降率为50安/秒。实验中对12号和14号极向场磁体共进行了22次通电实验。参加本次实验的有真空、低温、极向场电源、纵场电源、技术诊断、电磁测量、水电供给、总控等8大系统,各系统不同程度地达到了实验目标。次日起对其余的极向场线圈分别进行通电实验,成功后将进行极向场线圈整体通电实验,并进行纵场线圈通电实验。2006年3月17日,EAST完成了首次工程调试(左图)。首次工程调试的主要目的是检验主机的性能以及相关分系统的能力,探索未来可行的运行模式,测量主机和主要分系统的关键技术参数,验证各种安全保护系统的可靠性,为成功运行提供必要的数据和积累经验。在调试中,最受关注的低温调试和磁体通电测试获得圆满成功。在真空和低温条件就位后,从3月13日到3月17日对纵场磁体和12个极向场磁体分别进行了260次通电测试。最长通电时间达到5000秒,最大电流达到8200安培,相对应的装置中心场强已达到2特斯拉。总控系统、真空系统、低温系统、数据采集系统、水冷系统、电源系统、装置技术诊断系统、失超保护、真空磁位形测量系统、超导传输线、高温超导电流引线、铜电流引线以及等离子体控制系统运行正常,保证了通电测试的安全和成功。2006年9月26日,EAST在第一次等离子体放电实验过程中,成功获得了电流大于200千安,时间接近3秒的高温等离子体放电(左图),标志着世界上第一个全超导非圆截面托卡马克核聚变实验装置已在中国首先建成并正式投入运行。EAST开始转入物理实验阶段,在全超导磁体稳定运行条件下,获得了最大电流500千安、9秒重复放电、大拉长比偏滤器等离子体等多项实验成果。相关的设计理念和工艺技术创新还包括大型超导磁体的设计和制造、大规模超低温制冷技术、任意可控的急剧变化大电流设备技术等都属国内首创并达到了国际先进水平。2006年10月13-14日,EAST国际顾问委员会第二次会议在合肥召开(右图)。29位来自国际热核聚变试验堆(ITER)计划和欧、美、俄、日、韩、印等世界一流聚变研究机构的负责人及资深科学家参加了会议。会议听取了EAST工程总论、工程进展、首次实验结果和未来实验计划等报告,并到实验大厅现场参观了放电实验和各子系统。国际顾问们对EAST工程的建设、系统改进、今后的实验计划和研究等进行了长达10个小时的深入讨论, 所形成的会议报告指出:EAST是世界上唯一类似ITER全超导磁场设计的托克马克装置。委员会对EAST的高质量建设留下了深刻印象。在如此短暂的时间内自主完成设计、预研、建设和试运行,成就了世界聚变工程的一个非凡业绩。这一杰出成就是全世界聚变能开发的重要里程碑。高功率加热、电流驱动和更完善的诊断是EAST是未来深入研究计划所必须的。这些计划一旦实现,EAST将会在发展稳态高性能等离子体物理的科学研究计划中处于世界前沿地位,进而为支持ITER和聚变能发展作出贡献。建议给予足够的资源支持来尽快实现这些科学目标。2006年10月16-22日,被誉为“核聚变奥运会”的第21届世界聚变能大会(IAEA)在成都举行(左图)。世界聚变能大会是国际核聚变研究领域的最高水平学术会议, 每两年一届,这是是第一次在发展中国家举行。包括国际原子能机构副总干事Burkart教授以及国际聚变研究理事会主席等在内的800余位中外科学家参加了会议。以往的IAEA大会通常只有欧洲的JET,美国的DIII-D,和日本的JT-60U三个托卡马克被列在第一节报告中。EAST总经理万元熙在本次会议上做了首个报告(key note),可见国际聚变界对第一个全超导托卡马克EAST的高度关注。报告结束后,全场起立热烈鼓掌,这是聚变能大会历史上的第一次。会议期间,众多国外研究所与大学除了祝贺以外,纷纷表示了强烈地与EAST合作的意愿,已达成了十多项双边合作项目并签署一项双边合作协议。路院长的贺信指出:全超导非圆截面托卡马克EAST核聚变实验装置实现首次放电实验,标志着EAST装置工程实验进入了新的阶段,也表明了中国科技工作者有能力自主实现具有国际先进水平的大型科学工程实验装置的建设和运行。EAST投入实验运行将为我国乃至世界核聚变研究提供了一座新的实验平台 。2007年1月14日23时-15日1时,EAST连续放电四次,单次时间长约50毫秒,第二轮物理实验开始。这轮实验的主要目标不是追求放电时间的长短,而是旨在2006年获得圆形截面等离子体的基础上获得非圆截面等离子体,具有重要意义。2007年1月29日,中国科学技术协会所属的科技核心期刊《科技导报》评选的2006年中国重大技术与工程进展在北京揭晓,EAST装置建成与“太行”发动机研制成功、秦山二期核电站通过验收等14个项目入选。2007年2月15日,科技部基础研究管理中心和中国科学技术协会学会学术部公布了2006年度“中国基础研究十大新闻”的评选结果,EAST项目因具有原创性、新闻性和广泛社会影响的代表性入选。2007年3月1日,EAST顺利通过国家验收。国家发展改革委在合肥主持召开了EAST国家验收会(左图)。验收委员会听取了项目建设情况、专家测试、专家鉴定和中科院的预验收意见,审阅了有关专业验收材料,并实地考察了EAST装置,一致认为:项目技术工艺符合设计要求,装置主机及其各子系统均达到或超过设计指标,成为世界上成功运行的第一个全超导非圆截面托卡马克核聚变实验装置。项目全面优质地完成了建设任务,实现了预定的各项指标,同意该项目通过国家验收。2007年4月10日,等离子体所承担的“中美托卡马克先进运行模式联合研究”项目通过验收(右图),核工业西南物理研究院参加了这个项目。验收专家组审阅了项目结题验收材料,听取了项目执行情况的总结报告,并进行了现场考察和咨询。专家组认为:项目全面完成了合同书的规定内容,达到了预期目标,同意该项目通过验收,建议项目承担单位坚持有效的国际合作方式,扩大合作领域,希望相关部门给予进一步的支持。该项目的实施有效地利用了美国磁约束聚变科学和技术资源,掌握了诊断、数值模拟和控制等关键技术,解决了制约我国磁约束聚变研究中部分瓶颈问题,提高了我国核聚变领域的技术和物理研究水平,缩短了与国际聚变研究的差距,并培养了一批磁约束聚变领域急需的人才,锻炼了队伍,为更广泛的国际合作打下了良好的基础。2007年8月27日,EAST从俄罗斯ISTOK研究所低杂波系统末批KU-2.45型微波速调管成功通过验收(左图)。2007年12月3日,经过数月的努力,EAST内部部件改造已完成了加热衬套、硼化水管、高场侧单匝环固定支架等的安装,进行了热沉材料超声探伤全检,完成了在模拟1/16段工装上进行热沉支撑和模拟热沉的试装,热沉冷却水管的成型、开孔及转接喇叭口的焊接,还完成了高场侧、外靶板首件热沉的加工,并陆续开展工艺评审和首件验收,内部部件改造已开始进入总体安装阶段。2007年12月31日,EAST内部部件1/16段预装工程通过了验收。1/16段预装采用1:1真实模拟EAST真空室内热沉组件、冷却水管安装全过程(右图)。本次预装使EAST真空室内部部件改造安装的工艺、工序、工装、工具的合理性和实用性得到了验证。2008年3月26日,中科院2008年度工作会议上传来好消息,EAST大科学工程研究集体荣获中国科学院2007年杰出科技成就奖。2008年4月23-24日,ITER最重要的事务会议IO(International Organization)-DA(Domestic Agency)协调会在等离子体所召开(左图)。ITER国际组第一副总干事Norbert Holtkamp及ITER项目办公室主任Eisuke TADA等ITER国际组织高层代表主持会议,中国、欧盟、印度、日本、韩国、俄罗斯、美国的各DA方高层代表参加了会议。该会议是IO与各成员国的DA负责人进行重大事务沟通和协调的例会,会议通报和讨论各重大设计更改和评审、通报和研究科技顾问委员会(STAC)和技术咨询委员会(TAG)会议的建议,讨论和准备向ITER理事会提交的报告以及讨论了各国采购包的计划进度、资源计划、经费调整等事项。会议代表参观了EAST装置和正在建设的ITER CICC穿管线工程。2008年5月12日,在EAST装置真空室内部组件安装总体验收会上,等离子体所李建刚所长宣布EAST装置真空室内部组件安装全面胜利完成。真空室内部组件安装涉及到九大课题项目,共计零部件五万九千多件。安装工程于2008年元月14日开工,5月8日结束,经过3个多月的艰苦奋战,EAST装置真空室内部组件安装任务以其高质量、高速度圆满划上句号。这是EAST装置建立以来第一项大工程。2008年12月3日,EAST内部部件第二次改造工程全面完成,顺利通过验收。各相关部门做了工作汇报,介绍了责任工程师和施工单位精诚合作、协力攻关,突破众多工艺技术难点,制定出安全可靠、切实可行的解决方案并严格贯彻实施等情况。(右图为改造后的真空室) 此次改造工程从10月13日开始,历经53天,涉及机械安装、真空检漏、准直测量等多个学科,工程量大,技术复杂,在聚能公司、科烨公司、总体设计室、六室等部门的努力下,最终比计划提前7天,优质高速地完成了这项光荣而艰巨的使命,为顺利实现下一轮放电实验争取了宝贵时间,也为未来的聚变工程建设积累了经验;此次内部部件改造不是简单的安装重复而是一场技术攻坚战,在诸如防松紧固、位移测量、石墨瓦改造、拆装维修等方面取得了重要突破,为未来的工作积累了宝贵的工程实践。”与会专家对改造工程完成的质量和速度给予充分肯定,对改造过程中体现出的良好合作和协同攻关以及质量管理工作等给予了很高评价,同时对各方面的工作提出了希望和要求。会议通过了对改造工程同意验收的验收意见。2009年11月13日,EAST/HT-7低温系统改造工程的子工程“液氮传输线改造工程”顺利竣工,已成功实现液氮传输功能。改造后的液氮传输线跨度约150米(改造前约30米),传输线越长越容易产生气堵、漏液、真空难抽等困难;改造后的输液线最大落差将近10米(从地沟到桥架),落差大容易产生气阻、液氮传输消耗大等问题。
2023-09-09 06:06:241

于润沧的主要论著

1 童光煦,于润沧,王恭敏,等.有底部结构强制崩落采矿法.北京:冶金工业出版社,19742 刘大荣,于润沧.中国有色金属矿山技术发展概况.有色金属,1980(1):1~63 于润沧.关于胶结充填工艺设计中的若干问题.19824 于润沧.料浆浓度对细砂胶结充填的影响.有色金属,1984(2):6~115 于润沧.北京勘察设计行业科技进步研讨会论文集·关于可行性研究的思考.19946 于润沧.用新技术开拓改善矿山经济效益之路.矿业研究与开发,1996 (16增刊):162~1647 于润沧.中国铜工业的潜在危机和发展战略建议.世界有色金属,1998 (2):13~178 于润沧.硬岩地下开采发展特点及前景展望.有色金属采矿,1998(1):1~79 彭怀生,于润沧.有色矿山的无废开采实践.有色金属,1998(3):28~3210 郭然,于润沧.冬瓜山铜矿岩爆倾向分析.有色金属,1998(4):16~2011 于润沧,刘大荣,魏孔章.第二届中日浆体输送技术交流会论文集·全尾砂膏体充填料泵压管输的流变特性.199812 郭然,于润沧,张文荣.Mathew法在采矿方法设计中的应用.金属矿山,1999(9):22~25中国工程院能源与矿业工程学部院士 >>>进入技术百科                   于润沧 毛用泽 王仲奇 王思敬 王德民 古德生 叶奇蓁 乔登江 刘广志 刘宝琛 多吉 孙才新 孙玉发 孙承纬 安继刚 朱光亚 朱建士 汤中立 衣宝廉 许绍燮 阮可强 何多慧 何继善 余贻鑫 岑可法 张光斗 张宗祜 张勇传 张信威 张铁岗 李立浧 李庆忠 李焯芬 杜祥琬 杨奇逊 杨裕生 沈国荣 沈忠厚 苏义脑 邱中建 邱爱慈 陈念念 陈森玉 陈清泉 陈毓川 周世宁 周永茂 周邦新 罗平亚 范维唐 范维澄 郑健超 郑绵平 金庆焕 洪伯潜 胡见义 胡思得 赵仁恺 赵文津 闻雪友 倪维斗 唐西生 徐大懋 徐旭常 秦裕琨 翁史烈 袁士义 钱绍钧 钱鸣高 钱皋韵 顾心怿 顾金才 傅依备 彭士禄 彭先觉 彭苏萍 曾恒一 童晓光 蒋洪德 谢克昌 谢和平 韩大匡 韩英铎 常印佛 康玉柱 梁维燕 黄其励 雷清泉 翟光明 裴荣富 鲜学福 樊明武 潘自强 潘垣 薛禹胜 马永生 万元熙 于俊崇 袁亮 岳光溪 周守为
2023-09-09 06:06:541

什么是热核聚变与人造太阳?

什么是人造太阳所谓“人造太阳”,即先进超导托卡马克实验装置,也即国际热核聚变实验堆计划(ITER)建设工程,是当今世界迄今为止最大的热核聚变实验项目,旨在地球上模拟太阳的核聚变,利用热核聚变为人类提供源源不断的清洁能源。核聚变能以氘氚为燃料,具有安全、洁净、资源无限三大优点,是最终解决全人类能源问题的战略新能源。多年来的热核聚变研究一直围绕着一个主题,就是要实现可控的核聚变反应,造出一个人造太阳,一劳永逸地解决人类的能源之需。万物生长靠太阳,人类生存自然也离不开太阳。我们生火煮饭的柴草来自太阳,水力发电来自太阳,汽车里燃烧的汽油来自太阳……太阳像所有的恒星一样进行着简单的热核聚变,向外无休止地辐射着能量。我们现今所使用的能源,有些直接来自太阳,有些是太阳能转化的能源,像水能、风能、生物能,有些是早期由太阳能转化来的一直储存在地球上的能源,像煤炭、石油这样的化石燃料。人类社会发展到今天,仅靠太阳给予的可用能源已经不够用了。人类能源消耗快速增加,水能的开发几近到达极限,风能、太阳能无法形成规模。我们今天使用的主要能源是化石燃料,再有100多年即将用尽。人们还抱怨化石燃料对大气造成了污染,增加了温室气体。要知道它们是太阳和地球用了上亿年才形成的,但只够人类使用三四百年,而且它们是不可再生的。另外,煤炭、石油等是人类重要的自然资源,作为燃料烧掉是非常可惜的。人们无不担心,煤和石油烧完了,而其他能源又接替不上该怎么办?能源危机开始困扰着人类,促使人们寻找各种可能的未来能源,以维持人类社会的持续发展。细心的人会发现,在元素周期表中,虽然元素是由质子和中子成对增加依次构成的,但是原子的重量却不是按质子和中子的增加而等量增加的。在较轻的原子中,质子和中子的重量偏重,如果两个轻的原子合成一个重原子,两个轻原子的原子量之和往往重于合成的重原子。同样,在较重的原子中,质子和中子的重量也偏重,一个重原子分裂为两个轻原子,重原子的原子量一般重于两个轻原子之和。只是在铁元素附近的原子中,质子和中子的重量偏轻。由此可见,在原子核反应中,质量是不守恒的,即出现了所谓的质量亏损。这些质量到哪里去了呢?按照爱因斯坦的质能关系公式E=mc2,亏损的质量转换为能量,由于c2是个巨大的系数,很小的质量就可释放出巨大的能量。科学家正是基于这一点,利用重金属的核裂变制造出了原子弹,利用轻元素的核聚变制造出了氢弹。原子弹和氢弹的巨大威力令人惧怕,同时也让人们兴奋,因为原子中蕴藏的能量太大了,能否利用这种能源是人们自然想到的问题。原子弹和氢弹中的巨大能量是在瞬间释放出来的,而要作为常规能源使用,就必须实现可控制的核裂变和核聚变。对于核裂变来说,控制起来相对比较容易,裂变核电站早已经实现商业运行。但能用来产生核裂变的铀235等重金属元素在地球上含量稀少,而且常规裂变反应堆会产生长寿命的放射性较强的核废料,这些因素限制了裂变能的发展。对人们来说,最具诱惑力的自然是核聚变,它的单位质量产生的能量比核裂变还要大几倍。实际上,宇宙中最常见的就是氢元素的聚变反应,所有的恒星几乎都在燃烧着氢,因为氢是宇宙中最丰富的元素。氢的聚变反映在太阳上(还有少量其他核聚变)已经持续了近50亿年,至少还可以再燃烧50亿年。氢在地球上也是非常丰富的,每个水分子中都有2个氢原子,但最容易实现的聚变反应是氢的同位素——氘与氚的聚变(氢弹就是这种形式的聚变)。氘和氚发生聚变后,2个原子核结合成1个氦原子核,并放出1个中子和17.6兆电子伏特能量。就氘来说,它是海水中重水(水分子为H2O,重水为D2O,只占海水中的一小部分)的组成元素,海水中大约每6500个氢原子中有1个氘原子。每升水约含30毫克氘(产生的聚变能量相当于300升汽油),其储量就多达40万亿吨。一座1000兆瓦的核聚变电站,每年耗氘量只需304千克,海水中的氘足够人类使用上百亿年,这就比太阳的寿命还要长了,更不要说再使用氢了。另外,除氚具有放射性危险之外,氘-氚聚变反应不产生长寿命的强放射性核废料,其少量放射性废料也很快失去放射性。氘—氘反应没有任何放射性。可以说氢及其同位素的聚变反应能是一种高效清洁的能源,而且真正是用之不竭。既然恒星上都在进行着这样的核聚变,地球上也不缺这种核聚变的原料,只要实现可控的核聚变,就可以造出一个供人们永久使用的“太阳”。实际上,自从人们揭开太阳燃烧的秘密以来,就一直希望模仿太阳在地球上实现核聚变从而为人类提供无尽的能源。尽管多年过去了,人们只见到了氢弹的爆炸,而没有看到一座核聚变发电站的出现,但它诱人的前景依然是人们心中一个割舍不去的梦。中国的人造太阳中国科学家率先建成了世界上第一个全超导核聚变“人造太阳”实验装置,模拟太阳产生能量。该装置从内到外一共有五层部件构成,最内层的环行磁容器像一个巨大的游泳圈,进入实验状态后,“游泳圈”内部将达到上亿度的高温,这也正是模拟太阳核聚变反应的关键部位。国家“九五”大科学工程EAST(先进超导托卡马克实验装置)建设项目总负责人万元熙解释说,在高压高温下面,太阳从里面到表面都在发生聚变反应,释放出大量能量。但是太阳上的聚变反应是不可控的,为了让这种能量释放过程变成一个稳定、持续并且可控制的过程,EAST正是起着这一转化作用,通过磁力线的作用,氢的同位素等离子体被约束在这个“游泳圈”中运行,发生高密度的碰撞,也就是聚变反应。从1升海水中提取的氢的同位素,实现完全的聚变反应,放出来的能量等同于燃烧300升的汽油所获得的能量。制造一个装置实现受控热核聚变反应,可以得到无穷尽的清洁能源,就相当于人类为自己制造一个或数个小太阳,源源不断地从核聚变中得到能量。“人造太阳”彻底改变世界能源格局根据“可控热核聚变”原理研发的“人造太阳”将带来人类能源供应格局的根本性变革。一旦这一成果投入商业运行,将彻底变革世界能源供应格局。中科院等离子体物理研究所于1994年底在合肥建成中国第一个超导托卡马克ht-7装置,在该装置的基础上,研究所研制了“east”实验装置,被称为世界上第一个全超导核聚变“人造太阳”实验装置。 2005年4月27日,EAST总装完成了难度最大的工作——三环套装。三环从里到外的顺序为真空室、内冷屏和纵场磁体,是整个装置的内三层。 2006年1月10日,EAST外杜瓦安装成功,这标志着EAST总装第一阶段的全面竣工,为EAST降温通电实验创造了良好的条件。 外真空杜瓦是EAST装置最外层的结构部件。它主要为真空室等内部部件提供真空工作环境,隔绝内部部件与环境的自由热交换,以实现对运行温度的控制,从而满足总体设计要求。根据核聚变发生的机理,要实现可控制的核聚变实际上比造个太阳要难多了。我们知道,所有原子核都带正电,两个原子核要聚到一起,必须克服静电斥力。两个核之间靠得越近,静电产生的斥力就越大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。要使它们联起手来并不难,难的是既要让它们有拉手的机会又不能让它们过于频繁地拉手。要使它们有机会拉手,就要使粒子间有足够的高速碰撞的机会,这可以增加原子核的密度和运动速度。但增加原子核的密度是有限制的,否则一旦反应加速,自身放出的能量会使反应瞬间爆发。据计算,在维持一定的密度下,粒子的温度要达到1亿~2亿摄氏度才行,这要比太阳上的温度(中心温度1500万℃,表面也有6000℃)还要高许多。但这样高的温度拿什么容器来装它们呢? 这个问题并没有难倒科学家,20世纪50年代初,前苏联科学家塔姆和萨哈罗夫提出磁约束的概念。前苏联库尔恰托夫原子能研究所的阿奇莫维奇按照这样的思路,不断进行研究和改进,于1954年建成了第一个磁约束装置。他将这一形如面包圈的环形容器命名为托卡马克(tokamak)。托卡马克是“磁线圈圆环室”的俄文缩写,又称环流器。这是一个由封闭磁场组成的“容器”,像一个中空的面包圈,可用来约束电离了的等离子体。我们知道,一般物质到达10万℃时,原子中的电子就脱离了原子核的束缚,形成等离子体。等离子体是由带正电的原子核和带负电的电子组成的气体,整体是电中性的。在磁场中,它们的每个粒子都是显电性的,带电粒子会沿磁力线做螺旋式运动,所以等离子体就这样被约束在这种环形的磁场中。这种环形的磁场又叫磁瓶或磁笼,看不见,摸不着,也不接触有形的物体,因而也就不怕什么高温了,它可以把炙热的等离子体托举在空中。人们本来设想,有了“面包炉”,只需把氘、氚放入炉内加火烤制,把握好火候,能量就应该流出来。其实不然,人们接着遇到的麻烦是,在加热等离子体的过程中能量耗散严重,温度越高,耗散越大。一方面,高温下粒子的碰撞使等离子体的粒子会一步一步地横越磁力线,携带能量逃逸;另一方面,高温下的电磁辐射也要带走能量。这样,要想把氘、氚等离子体加热到所需的温度,不是件容易的事。另外,磁场和等离子体之间的边界会逐渐模糊,等离子体会从磁笼里钻出去,而且当约束等离子体的磁场一旦出现变形,就会变得极不稳定,造成磁笼断开或等离子体碰到聚变反应室的内壁上。 托卡马克中等离子体的束缚是靠纵场(环向场)线圈,产生环向磁场,约束等离子体,极向场控制等离子体的位置和形状,中心螺管也产生垂直场,形成环向高电压,激发等离子体,同时加热等离子体,也起到控制等离子体的作用。几十年来,人们一直在研究和改进磁场的形态和性质,以达到长时间的等离子体的稳定约束;还要解决等离子体的加热方法和手段,以达到聚变所要求的温度;在此基础上,还要解决维持运转所耗费的能量大于输出能量的问题。每一次等离子体放电时间的延长,人们都为之兴奋;每一次温度的提高,人们都为之欢呼;每一次输出能量的提高,都意味着我们离聚变能的应用更近了一步。尽管取得了很大进步,但障碍还是没有克服。到目前为止,托卡马克装置都是脉冲式的,等离子体约束时间很短,大多以毫秒计算,个别可达到分钟级,还没有一台托卡马克装置实现长时间的稳态运行,而且在能量输出上也没有做到不赔本运转。为了维持强大的约束磁场,电流的强度非常大,时间长了,线圈就要发热。从这个角度来说,常规托卡马克装置不可能长时间运转。为了解决这个问题,人们把最新的超导技术引入到托卡马克装置中,也许这是解决托卡马克稳态运转的有效手段之一。目前,法国、英国、俄罗斯和中国共有4个超导的托卡马克装置在运行,它们都只有纵向场线圈采用超导技术,属于部分超导。其中法国的超导托卡马克Tore?Supra体积较大,它是世界上第一个真正实现高参数准稳态运行的装置,在放电时间长达120秒的条件下,等离子体温度为2000万℃,中心粒子密度每立方米1.5×1019个。中国和韩国正在建造全超导的托卡马克装置,目标是实现托卡马克更长时间的稳态运行。多年来,全世界共建造了上百个托卡马克装置,在改善磁场约束和等离子体加热上下足了工夫。人们对约束磁场研究有了重大进展,通过改变约束磁场的分布和位形,解决了等离子体粒子的侧向漂移问题。世界范围内掀起了托卡马克的研究热潮。美国1982年在普林斯顿大学建成的托卡马克聚变实验反应堆(TFTR),欧洲1983年6月在英国建成更大装置的欧洲联合环(JET),1985年建成JT-60,前苏联1982年建成超导磁体的T-15,它们后来在磁约束聚变研究中作出了决定性的贡献。特别是欧洲的JET已经实现了氘—氚的聚变反应。1991年11月,JET将含有14%的氚和86%的氘混合燃料加热到了3亿摄氏度,聚变能量约束时间达2秒。反应持续1分钟,产生了1018个聚变反应中子,聚变反应输出功率约1.8兆瓦。1997年9月22日创造了核聚变输出功率12.9兆瓦的新纪录。这一输出功率已达到当时输入功率的60%。不久输出功率又提高到16.1兆瓦。在托卡马克上最高输出与输入功率比已达1.25。中国的核聚变研究也有较快的发展,西南物理研究院1984年建成中国环流器一号(HL-1),1995年建成中国环流器新一号。中国科学院等离子体物理研究所1995年建成超导装置HT-7。HT-7是前苏联无偿赠送给中国的一套纵向超导的托卡马克实验装置,经等离子体物理研究所的不断改进,它已成为一个庞大的实验系统。它包括HT-7超导托卡马克装置本体、大型超高真空系统、大型计算机控制和数据采集处理系统、大型高功率脉冲电源及其回路系统、全国规模最大的低温氦制冷系统、兆瓦级低杂波电流驱动和射频波加热系统以及数十种复杂的诊断测量系统。在十几次实验中,取得若干具有国际影响的重大科研成果。特别是在2003年3月31日,实验取得了重大突破,获得超过1分钟的等离子体放电,这是继法国之后第二个能产生分钟量级高温等离子体放电的托卡马克装置。在HT-7的基础上,等离子体物理研究所研制和设计了全超导托卡马克装置HT-7U(后来名字更改为EAST(Experimental Advanced Superconducting Tokamak))。
2023-09-09 06:07:131

中科大核专业怎么样?

中国科学技术大学核工程与核技术专业介绍: 本专业的前身——原子核工程、原子能动力等两个专业创办于1958年建校之初,分别培养过十几届本科生,分别输送从事国家原子能事业,为国家核事业发展做出重要贡献。 上世纪七十年代末以来,本学科相关单位开始着手同步辐射加速器物理设计与预制研究、磁约束高温等离子体物理学研究等工作,及研究生培养教育工作。1981~1983年期间,学校的加速器专业和核电子学专业,及等离子体物理研究所先后获得博士学位授予权。经国家计委批准,本学科研究人员及研究生于1983年开始投入国内首个专用同步辐射加速器建设研究,1991年同步辐射光源建成投入运行,1995年获国家科技进步一等奖。1993年我校获“加速器物理及应用”工学博士学位授予权。1997年我校的加速器物理及应用、核电子学与辐射技术及应用,组成二级学科专业“核技术及应用”工学博士点。我校的“核能科学与工程”和“核技术及应用”学科专业,1997至1998年中科院先后批准为中科院博士生重点培养基地。2001年国家学位委员会批准我校获得《核科学与技术》一级学科工学博士学位授予权;2002年二级学科“核技术及应用”进入国家重点学科;2003年教育部批准我校二级学科《核技术及应用》学科点为教育部同步辐射博士生创新基地。改革开放以来本学科专业毕业的研究生,分布在国内外大学、研究机构、国内大科学工程、国际合作大科学工程或国内外企业公司,多数成为学术骨干或领军人。 2007年,我校的二级学科《核技术及应用》,再次被国家批准进入国家重点学科,我校的一级学科《核科学与技术》首次被国家批准为国家重点学科。同年九月十日,我校就新增(恢复)的本科专业《核工程与核技术》专业经主管单位中国科学院上报教育部备案,2008年获得教育部批准在全国招收优秀高中生就读本科学士,并在“全院办校,所系结合”格局下与国内核电企业集团、原子能科学研究院等单位建立长期合作关系,基本上形成了以本硕博教育一体化的较完备的《核科学与技术》的教育体系。2009年初,学校宣布成立核科学技术学院。目前新成立核学院内在读本科生有一、三年级两个班,计51名学生(06级25人与08级26人),代培学生3名,毕业时将授予核工程与核技术专业,或应用物理学专业工学学士学位。 核工程与核技术本科专业依托单位,设有核科学与技术一级学科研究生硕士点和博士点,内设五个二级学科专业:核能科学与工程082701,核燃料循环与材料082702,核技术及应用082703,辐射防护及环境保护082704,同步辐射及应用082720。学科专业发展方向拥有核技术(加速器)与同步辐射应用相结合,核裂变工程与核聚变工程结合,临界堆技术与次临界堆技术相结合的三大特色,优秀本科生有机会直接免试攻读这些方向领域的硕博连读研究生或直博研究生学位。目前,随着国家核能源战略起步,以及改革开放以来的一批国家大科学工程上马,有深厚学科基础的毕业生,深受科学技术发展的国家种子队(中国科学院,中国工程物理研究院,中国原子能科学研究院等)、核能源发展的国家主力军(中国核工业集团总公司,中国广东核电集团公司,中国核电技术公司等)、政府相关部门、民营核事业单位及跨国公司等单位的欢迎,就业前景绩优。新时代的大学生肩负着民族的希望,进入核科学技术的国家科研机构和国家控股公司,创造伟业,为中华民族的伟大复兴,为国家核事业的美好明天贡献智慧和力量,是核工程与核技术专业发展的历史必然。目前国内大学培养的本科生,远远不能满足国内能源战略发展对人才市场的旺盛需求。国内某单位从事人力资源工作的一位工作人员说过这样的话:中国科学技术大学毕业的核工程与核技术专业毕业的本科生,有多少,要多少。因此,核工程与核技术专业毕业的本科生,要么直接进入国家骨干企业公司就业,要么直接免试攻读研究生学位,或者到本人看中的岗位就业。科大的这个学科非常强悍,只是以前只招收研究生,不招收本科生;今年才开始招收本科生。核科学和技术,教育部搞的一级学科评比中,清华第一,科大第二。科大的这个学科的教学科研条件非常好,有院士(何多慧),有我国最顶级的实验室 国家实验室---国家同步辐射实验室(关于国家实验室,可以看这个帖子 http://zsb.ustc.edu.cn/bbs/viewthread.php?tid=5353&extra=page%3D1),有国家重点学科......而且更重要的是,核聚变是核能未来的发展方向,科大在这个领域更是有得天独厚的优势。世界上第一个全超导非圆截面托卡马克核聚变实验装置(英文名:EAST,俗名:人造太阳)就是位于合肥的中科院等离子体研究研制成功的,也是我国最大的托卡马克。科大和中科院等离子所的合作非常密切,两者联合共建我国的稳态强磁场,这是我国 磁约束核聚变国家实验室的重要部分。科大核工程和技术专业,不但面向国际科研的最前沿,也面向国内的核电就业市场。例如,科大与中国广东核电集团签订人才培养和科研合作框架协议:http://news.ustc.edu.cn/Article_Show.asp?ArticleID=14396 为了给我国核电发展培养人才,中国科大和中科院合肥物质科学研究院联合建设核科学技术学院,专门培养高端的技术和管理人才。今年,学院计划招收100名本科生。万元熙说,合肥极具“地利”优势。“与核科学技术直接相关的两个国家大科学工程——同步辐射光源和 ESAT实验装置都在合肥,而且合肥相对安静和优美的环境,也适合高水平人才培养。”
2023-09-09 06:07:242

太阳为什么会燃烧,是有空气存在吗?

不是 是核反应放出的热
2023-09-09 06:07:336

国际热核聚变实验堆计划的中国情况

我国核聚变能研究开始于60年代初,尽管经历了长时间非常困难的环境,但始终能坚持稳定、逐步的发展,建成了两个在发展中国家最大的、理工结合的大型现代化专业研究所,即中国核工业集团公司所属的西南物理研究院(SWIP)及中国科学院所属的合肥等离子体物理研究所(ASIPP)。为了培养专业人才,还在中国科技大学、大连理工大学、华中科技大学、清华大学等高等院校中建立了核聚变及等离子体物理专业或研究室。科技部依托中国科大成立“国家磁约束聚变堆总体设计组”,中国科大核科学技术学院院长万元熙院士担任组长。我国核聚变研究从一开始,即便规模很小时,就以在我国实现受控热核聚变能为主要目标。从上世纪70年代开始,集中选择了托克马克为主要研究途径,先后建成并运行了小型CT-6(中科院物理所)、KT-5(中国科技大学)、HT-6B(ASIPP)、HL-1(SWIP)、HT-6M(ASIPP)及中型HL-1M(SWIP)。SWIP建成的HL-2A经过进一步升级,有可能进入当前国际上正在运行的少数几个中型托克马克之列。在这些装置的成功研制过程中,组建并锻炼了一批聚变工程队伍。我国科学家在这些常规托克马克装置上开展了一系列十分有意义的研究工作。自1991年,我国开展了超导托克马克发展计划(ASIPP),探索解决托克马克稳态运行问题。1994年建成并运行了世界上同类装置中第二大的HT-7装置,最近初步建成了首个与ITER位形相似(规模小很多)的全超导托克马克EAST。超导托克马克计划无疑为我国参加ITER计划在技术与人才方面做了进一步的准备。聚变-裂变混合堆项目于1987年正式列入我国863计划,目的是探索利用核聚变反应的另一类有效途径,其中主要安排了一些与未来核聚变堆有关技术的研发。2000年由于诸多原因,聚变-裂变混合堆项目被中止,但核聚变堆概念设计以及堆材料和某些特殊堆技术的研究仍在两个专业院所继续进行。尽管就规模和水平来说,我国核聚变能的研究和美、欧、日等发达国家还有不小的差距,但是我们有自已的特点,也在技术和人才等方面为参加ITER计划做了相当的准备。这使得我们有能力完成约定的ITER部件制造任务,为ITER计划做出相应的贡献,并有可能在合作过程中全面掌握聚变实验堆的技术,达到我国参加ITER计划总的目的。我国是一个能源大国,在本世纪内每年的能耗都将是数十亿吨标煤。由于条件限制,在长时间内我国能源生产都将以煤为主,所占比例高达70%。考虑到我国社会经济的长期可持续发展,我们必须尽快用可靠的非化石能源(如核裂变或核聚变能、太阳能、水能等)来取代大部分煤或石油的消耗。因此,必然应该在能力许可范围内积极开展核聚变能的研究,尽可能地参加国际核聚变能的大型合作研发计划(如ITER计划)。我国参加ITER计划是基于能源长远的基本需求。核聚变能的研发对每个大国都是必要的,但又是一个长期、大规模、高投入而且又是高风险的过程。我国核聚变研究目前距离发达国家还有很大差距,还须经过若干年的努力才能接近实验堆建设和研究阶段。如果采取单独建造实验堆,则又须花费上百亿资金和十数年时间,我国和国际的差距会进一步扩大。因此,参加ITER计划,参加ITER的建设和实验,从而全面掌握ITER的知识和技术,培养一批聚变工程和科研人才,使其成为我国聚变研究的一部分。再配合国内安排必要的基础研究、聚变反应堆材料的研究、聚变堆某些必要技术的研究等,则有可能在较短时间、用较小投资使我国核聚变能研究在整体上进入世界前沿,为我国自主地开展核聚变示范电站的研发奠定基础。由中国自行设计、研制的世界上第一个全超导托卡马克EAST(原名HT--7U)核聚变实验装置(又称“人造太阳”)2006年成功完成首次工程调试,2007年3月通过国家验收。我们在一些战略高技术和产业关键核心技术取得重大突破,取得了一批重大原创成果,一些学科领域走到世界前列。科技创新能力大幅提升,有力支撑了中国经济社会发展。 我们还必须看到,ITER本身就是当代各类高新技术的综合,中国科技人员长期、全面地参加ITER的建设和研究工作,直接接触和了解各类技术,必将有利于我国高新技术及相应产业的发展。事实上,参加ITER计划已开始推动我国超导技术与相关产业的发展。由于ITER计划本身的重要性,我国作为完全的伙伴全面参加ITER计划,就成为我国参加国际科技合作走上更高层次的一个明显的标志。这也在国际上展示了我国在科技领域坚持开放的决心。我国聚变研究的中心目标,是促使核聚变能在可能的条件下,尽早在中国实现。因此参加ITER计划应该也只能是我国整体聚变能研发计划中的一个重要组成部分。国家将在参加ITER计划的同时支持与之配套或与之互补的一系列重要研究工作,如托克马克等离子体物理的基础研究、聚变堆第一壁等关键部件所需材料的开发、示范聚变堆的设计及必要技术或关键部件的研制等。参加ITER计划将是我国聚变能研究的一个重大机遇。 12日从中科院合肥物质科学研究院获悉,由中科院等离子体所研制的国际热核聚变实验堆计划(ITER)极向场导体采购包第二阶段PF5导体日前运抵法国福斯港,交付ITER现场。国际热核聚变实验堆计划,简称ITER计划,是目前全球规模最大、影响最深远的国际科研合作项目之一。由中国与欧盟、印度、日本、韩国、俄罗斯和美国等七方共同实施。据悉,此次中方交付ITER现场中国制造任务的首件产品,也是ITER七方中首件交付ITER现场的大件产品。PF导体采购包由中科院等离子体所负责研制。ITERPF导体是外方内圆的异型导体,其制造工艺复杂,包括焊接工艺、无损检测技术、导体成型及收绕技术等。等离子体所的研究院先后完成铠甲及焊缝无损检测、导体成型及收绕型技术等研发,并完成各种接收测试。2013年4月25日导体首先经过500公里的陆路从合肥到达上海港,然后经过10000海里从上海港口到达福斯港,到达离福斯港100公里外的ITER总部,整个行程共38天。美、法等国在20世纪80年代中期发起ITER计划,旨在建立世界上第一个受控热核聚变实验反应堆,为人类输送巨大的清洁能量。中国是参与这个计划的七方成员之一,承担了ITER装置近10%的采购包。
2023-09-09 06:07:591

核聚变的具体含义以及内容?

1个氚(2个中子的氢,又叫超重氢)和1个氢(没有中子的氢),高温高压,聚变成一个氦.同时放出大量的热
2023-09-09 06:08:182

什么是 核聚变?

核聚变 开放分类: 物理、科技、核反应、核聚变 核聚变的定义:核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。 相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。 目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走。 目前主要的几种可控核聚变方式: 超声波核聚变 激光约束(惯性约束)核聚变 磁约束核聚变(托卡马克) 核聚变的另一定义 比原子弹威力更大的核武器—氢弹,就是利用核聚变来发挥作用的。核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才能发生核聚变,比如氢的同位素氘(dao)、氚(chuan)等。核聚变也会放出巨大的能量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的。 核聚变能释放出巨大的能量,但目前人们只能在氢弹爆炸的一瞬间实现非受控的人工核聚变。而要利用人工核聚变产生的巨大能量为人类服务,就必须使核聚变在人们的控制下进行,这就是受控核聚变。 实现受控核聚变具有极其诱人的前景。不仅因为核聚变能放出巨大的能量,而且由于核聚变所需的原料——氢的同位素氘可以从海水中提取。经过计算,1升海水中提取出的氘进行核聚变放出的能量相当于300升汽油燃烧释放的能量。全世界的海水几乎是“取之不尽”的,因此受控核聚变的研究成功将使人类摆脱能源危机的困扰。 但是人们现在还不能进行受控核聚变,这主要是因为进行核聚变需要的条件非常苛刻。发生核聚变需要在1亿度的高温下才能进行,因此又叫热核反应。可以想象,没有什么材料能经受得起1亿度的高温。此外还有许多难以想象的困难需要去克服。尽管存在着许多困难,人们经过不断研究已取得了可喜的进展。科学家们设计了许多巧妙的方法,如用强大的磁场来约束反应,用强大的激光来加热原子等。可以预计,人们最终将掌握控制核聚变的方法,让核聚变为人类服务。利用核能的最终目标是要实现受控核聚变。裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的较重的原子核而释出能量。最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读"川",又叫超重氢)聚合成较重的原子核如氦而释出能量。 核聚变较之核裂变有两个重大优点。一是地球上蕴藏的核聚变能远比核裂变能丰富得多。据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘。1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量。地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂。 第二个优点是既干净又安全。因为它不会产生污染环境的放射性物质,所以是干净的。同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的。 目前实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近于成功,但要达到工业应用还差得远。按照目前技术水平,要建立托卡马克型核聚变装置,需要几千亿美元。 另一种实现核聚变的方法是惯性约束法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。 原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的。 尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登。补充内容:每克氘聚变时所释放的能量为5.8×10^8kJ,大于每克U-235裂变时所释放的能量(8.2×10^7KJ)。从能源的角度考虑,核聚变有几个方面比核裂变优越:其一,聚变产物是稳定的氦核,没有放射性污染产生,没有难于处理的废料;其二,聚变原料氘的资源比较丰富,在海水中氘和氢之比为1.5×10^-4∶1,地球上海水总量约为10^18吨,其中蕴藏着大量的氘,提炼氘比提炼铀容易得多。遗憾的是这个聚变反应需要非常高的温度,以克服两个带正电的氘核之间的巨大排斥力(从理论计算,要克服这种库仑斥力需要10^9℃的高温)。氢弹的制造原理,就是利用一个小的原子弹作为引爆装置,产生瞬间高温引发上述聚变反应发生强烈爆炸。氢元素的几种同位素之间能发生多种聚变反应,这种变化过程存在于宇宙之间,太阳辐射出来的巨大能量就来源于这类核聚变。但我们目前尚没有办法在地球上利用这类核聚变发电,怎样能取得这样高的温度?用什么材料制造反应器?怎样控制聚变过程等各种问题尚无答案。补充:我国核聚变装置的最新消息:新华网合肥9月28日电(记者喻菲 蔡敏 程士华)世界领先的中国新一代热核聚变装置EAST28日首次成功完成了放电实验,获得电流200千安、时间接近3秒的高温等离子体放电。 负责这一项目的中国科学院等离子体所所长李建刚研究员在接受新华社记者采访时说,此次实验实现了装置内部1亿度高温,等离子体建立、圆截面放电等各阶段的物理实验,达到了预期效果。 工艺鉴定组专家、中科院基础科学研究局金铎研究员在实验后的新闻发布会上宣布,EAST通过国家“九五”大科学工程工艺鉴定。 参与EAST研究合作的美国通用原子能公司盖瑞·杰克逊博士说:“EAST成为世界上第一个建成并真正运行的全超导非圆截面核聚变实验装置,它将在未来10年内保持世界先进水平。” 据了解,EAST装置是中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的。 记者在实验控制室看到,这个近似圆柱形的大型物体由特种无磁不锈钢建成,高约12米、直径约5米,据介绍其总重量达400吨。 李建刚研究员说,与国际同类实验装置相比,EAST是使用资金最少、建设速度最快、投入运行最早、运行后获得等离子放电最快的先进核聚变实验装置。 “这意味着人类在核聚能研究利用领域取得重大进步,也标志着中国在这一领域进入国际先进水平”,李建刚说。 人们认识热核聚变是从氢弹爆炸开始的。氢弹爆炸时释放出极大的能量,给人类带来的是灾难。而科学家们却希望发明一种装置,可以有效地控制“氢弹爆炸”的过程,让能量持续稳定的输出,以解决人类面临的能源短缺危机。 美、法等国在20世纪80年代中期发起了耗资46亿欧元的国际热核实验反应堆(ITER)计划,旨在建立世界上第一个受控热核聚变实验反应堆,为人类输送巨大的清洁能量。这一过程与太阳产生能量的过程类似,因此受控热核聚变实验装置也被俗称为“人造太阳”。 中国于2003年加入ITER计划。位于安徽合肥的中科院等离子体所是这个国际科技合作计划的国内主要承担单位,其研究建设的EAST装置稳定放电能力为创记录的1000秒,超过世界上所有正在建设的同类装置。 EAST大科学工程总经理万元熙教授说,与ITER相比,EAST在规模上小很多,但两者都是全超导非圆截面托卡马克,即两者的等离子体位形及主要的工程技术基础是相似的,而EAST至少比ITER早投入实验运行10至15年。因此,无论从人才培养和奠定工程技术及物理基础的角度上说,EAST都将为ITER计划做出重要的、实质性的贡献,并进而为人类开发和最终使用核聚变能做出重要贡献。 不过,万元熙研究员说,虽然“人造太阳”的奇观在实验室中初现,但离真正的商业运行还有相当长的距离,它所发出的电能在短时间内还不可能进入人们的家中。但他预测,根据目前世界各国的研究状况,这一梦想最快有可能在30-50年后实现。 万元熙说,未来的稳态运行的热核聚堆用于商业运行后,所产生的能量够人类用数亿年乃至数十亿年。从长远来看,核能将是继石油、煤和天然气之后的主要能源,人类将从“石油文明”走向“核能文明” 聚变反应到底是怎么进行的?简单的回答:根据爱因斯坦质能方程E=mc2. 原子核发生聚变时,有一部分质量转化为能量释放出来. 只要微量的质量就可以转化成很大的能量. 两个轻的原子核相碰,可以形成一个原子核并释放出能量,这就是聚变反应,在这种反应中所释放的能量称聚变能。聚变能是核能利用的又一重要途径。 最重要的聚变反应有: 式中D是氘核(重氢)、T是氚核(超重氢)。以上两组反应总的效果是: 即每“烧"掉6个氘核共放出43.24MeV能量,相当于每个核子平均放出3.6MeV。它比n+裂变反应中每个核子平均放出200/236=0.85MeV高4倍。因此聚变能是比裂变能更为巨大的一种核能。 核聚变能利用的燃料是氘(D)和氚。氘在海水中大量存在。海水中大约每600个氢原子中就有一个氘原子,海水中氘的总量约40万亿吨。每升海水中所含的氘完全聚变所释放的聚变能相当于300升汽油燃料的能量。按目前世界消耗的能量计算,海水中氘的聚变能可用几百亿年。氚可以有锂制造。锂主要有锂-6和锂-7两种同位素。锂-6吸收一个热中子后,可以变成氚并放出能量。锂-7要吸收快中子才能变成氚。地球上锂的储量虽比氘少得多,也有两千多亿吨。用它来制造氚,足够用到人类使用氘、氘聚变的年代。因此,核聚变能是一种取之不尽用之不竭的新能源。 在可以预见的地球上人类生存的时间内,水的氘,足以满足人类未来几十亿年对能源的需要。从这个意义上说,地球上的聚变燃料,对于满足未来的需要说来,是无限丰富的,聚变能源的开发,将“一劳永逸”地解决人类的能源需要。六十多年来科学家们不懈的努力,已在这方面为人类展现出美好的前景。 典型的聚变反应是 411H—→42He+20-1e+2.67×107eV 21H+21H—→32He+10n+3.2×106eV 21H+21H—→31H+11H+4×106eV 31H+21H—→42He+10n+1.76×107eV 后三个反应的净反应是 521H—→42He+32He+11H+210n+2.48×107eV 即每5个21H聚变后放出2.48×107eV能量。 氘是相当丰富的氢同位素,在海洋中每6500个氢原子就有1个氘原子,这意味着海洋是极大量氘的潜在来源。仅在1L海水中就有1.03×1022个氘原子,就是说每1Km3海水中氘原子所具有的潜在能量相当于燃烧13600亿桶原油的能量,这个数字约为地球上蕴藏的石油总储量。 要使原子核之间发生聚变,必须使它们接近到飞米级。要达到这个距离,就要使核具有很大的动能,以克服电荷间极大的斥力。要使核具有足够的动能,必须把它们加热到很高的温度(几百万摄氏度以上)。因此,核聚变反应又叫热核反应。原子弹爆炸产生的高温可引起热核反应,氢弹就是这样爆炸的。 受控核聚变是等离子态的原子核在高温下有控制地发生大量原子核聚变的反应,同时释放出能量。氘是最重要的聚变燃料,海洋是氘的潜在来源,一旦能实现以氘为基本燃料的受控核聚变,人们就几乎拥有了取之不尽、用之不竭的能源。氢弹爆炸释放出来的大量聚变能、原子弹爆炸释放出来的大量裂变能,都是不可控制的。在第一颗原子弹爆炸后仅十多年,人们就找到控制裂变反应的办法,并建成了裂变电站。原以为氢弹炸爆后能建成聚变电站,但并不如此简单,即使在地球条件下能发生的聚变反应: 31H+21H—→42He+10n+1.76×107eV 也只能在极高的温度(>4000℃)和足够大的碰撞几率条件下,才能大量发生。因此实际可作为能源使用的受控热核聚变反应,必须在产生并加热等离子体到亿万摄氏度高温的同时,还要有效约束这一高温等离子体。这就是近几十年内研究的难题和期望攻克的目标。我国的中科院物理所、中科院等离子物理所、西南物理研究院在实验工程和理论研究各方面都做了许多的工作,也取得了许多重要的进展。
2023-09-09 06:08:301

重核裂变与轻核聚变

当然有,这两个过程释放的能量就是由质量转化过来的。算法。E=mc^2.损失多少质量,代入公式,就可算出释放的能量。肯定是损失质量,因为释放能量。具体怎么减少我就不知道了。
2023-09-09 06:08:401

传说中的人造太阳什么时候能实现?技术上还有哪些不足?

从这个高大上的名字就可以看出来:这是一项很高精尖的科技,不是轻易就能完成的。实际上,从1955年钱三强提出这个计划的原型到现在,六十多多年过去了,我们依然还在探索的路上。有一些关键的难题,依旧还等着我们解决。首先我们要知道:究竟是什么原因导致核聚变难以实现。那就是对于核聚变的控制。如果不对核聚变加以控制,任由其肆意进行,那么就会变成氢弹,只能带来灾难。所以,如何约束住核聚变的能量,就是一个问题了。同时,核聚变的发生,也是一个难关。要知道,原子弹需要TNT烈性炸药来引爆,而引爆氢弹的,是原子弹。想要让核聚变反应发生,需要5000万到1亿摄氏度的超高温。那么问题来了:虽然我们现在把粒子升温到1亿摄氏度并非不可能,但是要用什么来装它们呢?再耐高温的材料,也会被烧成气体啊!二十世纪五十年代,前苏联科学家提出了一种解决方案,那就是利用电磁学的原理,将反应原料加以束缚。他们根据这个方案的设计装置所包含的部分(“环形”、“真空”、“磁”、“线圈”)为其命名,这就是托卡马克装置。托卡马克装置的原理,就是利用强大的磁场,将被升到超高温、处于等离子态的粒子束缚在线圈之间的真空腔内。在这里,粒子会被加速到每秒5公里的速度,从而为核聚变提供条件。由于核聚变反应仅仅发生在真空腔的核心区域,而真空是很难导热的,所以实现了对超高温粒子的约束。即便如此,在真空腔周围,温度依然有上千摄氏度,需要耐高温的材料来制作才行。但是,这也会带来一个问题:温度越高的粒子,就越不稳定。我们知道,温度是粒子无规则运动剧烈程度的宏观表现。1亿摄氏度,是太阳核心温度的近7倍,因此粒子的运动将极其剧烈。因此,人类虽然可以实现这个温度,却很难将其完美地控制住,这也就是目前全世界托卡马克装置所面临的最大问题之一。毕竟,我们需要的是一个持续不断功能的核电站,而不是抽风一样隔三差五给一次巨大能量的装置。于是,实现对核聚变反应的控制,成为了所有科学家面临、需要携手攻克的最重要难关。2006年的时候,国际热核聚变实验堆(ITER)计划正式签署,我国和美国、欧盟、俄罗斯、日本、韩国和印度加入其中。我国的托卡马克装置,叫做全超导托卡马克核聚变实验装置,简称EAST。令人欣喜的是,在这个方面,我国走在了世界的前列。2017年,EAST实现了长达101.2秒的稳态长脉冲高约束等离子体运行,这也是全世界范围内第一次实现超过100秒的稳态运行。不过,我们也要意识到,这个时间长度,也并不是终点。只有一直稳定运行下去,才可能真正实现核聚变发电。为此,我们还有很长的路要走。除此之外,还有很多问题,需要科学家们解决。我们说了,EAST是超导托卡马克,也就是说要利用超导体。而目前人类发现的超导体,都需要在极低温才会出现。装置外只比绝对零度高几个摄氏度,内部又要达到一亿摄氏度,这个温度差的控制也是极大的挑战。据中科院万元熙院士介绍,我国计划的第一个原型聚变工程堆的时间点,大约是2050年。也就是说,这还需要30年的时间。看起来,这是一个愚公移山的项目。前人栽树,后人乘凉。为了人类发展事业而奋斗的人们,才是人类真正的英雄。当然,托卡马克也未必就是可控核聚变反应的唯一解。条条大道通罗马,也许未来的某一天,就会有新的装置可以完美地解决这个问题。而且,即使是在现在,科学家也不止有这一个方案。目前来说,还有一种仿星器装置,虽然还不像托卡马克这么被寄予厚望,但也不能排除它未来逆袭的可能。总之,人类对于新能源的探索已经刻不容缓。早日实现清洁能源的全面利用,就可以早一天拯救地球于水火之中,也是人类自救的重要一步。
2023-09-09 06:09:011

核聚变的研究进展

中国新一代热核聚变装置EAST2010年9月28日首次成功完成了放电实验,获得电流200千安、时间接近3秒的高温等离子体放电。 负责这一项目的中国科学院等离子体所所长李建刚研究员说,此次实验实现了装置内部1亿度高温,等离子体建立、圆截面放电等各阶段的物理实验,达到了预期效果。EAST装置是中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的。美、法等国在20世纪80年代中期发起了耗资46亿欧元的国际热核实验反应堆(ITER)计划,旨在建立世界上第一个受控热核聚变实验反应堆,为人类输送巨大的清洁能量。这一过程与太阳产生能量的过程类似,因此受控热核聚变实验装置也被俗称为“人造太阳”。 中国于2003年加入ITER计划。位于安徽合肥的中科院等离子体所是这个国际科技合作计划的国内主要承担单位,其研究建设的EAST装置稳定放电能力为创记录的1000秒,超过世界上所有正在建设的同类装置。EAST大科学工程总经理万元熙教授说,与ITER相比,EAST在规模上小很多,但两者都是全超导非圆截面托卡马克,即两者的等离子体位形及主要的工程技术基础是相似的,而EAST至少比ITER早投入实验运行10至15年。据科技日报2014年10月17日消息,美国老牌军工巨头洛克希德马丁公司近日宣布,其已在开发一种基于核聚变技术的能源方面取得技术突破,第一个小至可安装在卡车后端的小型反应堆有望在十年内诞生。 从长远来看,核能将是继石油、煤和天然气之后的主要能源,人类将从“石油文明”走向“核能文明”。
2023-09-09 06:09:501

如果太阳熄灭,人造太阳对人类有什么好处呢?

“人造太阳”名字来源于“国际热核聚变实验堆(ITER)计划”,这个计划是目前全球规模最大、影响最深远的国际科研合作项目之一,建造约需10年,耗资50亿美元(1998年值)。ITER装置是一个能产生大规模核聚变反应的超导托克马克,俗称“人造太阳”。2003年1月,国务院批准我国参加ITER计划谈判,2006年5月,经国务院批准,中国ITER谈判联合小组代表我国政府与欧盟、印度、日本、韩国、俄罗斯和美国共同草签了ITER计划协定。这七方包括了全世界主要的核国家和主要的亚洲国家,覆盖的人口接近全球一半。我国参加ITER计划是基于能源长远的基本需求。2013年1月5日中科院合肥物质研究院宣布,“人造太阳”实验装置辅助加热工程的中性束注入系统在综合测试平台上成功实现100秒长脉冲氢中性束引出。ITER计划是目前世界上仅次于国际空间站的又一个国际大科学工程计划。该计划将集成当今国际上受控磁约束核聚变的主要科学和技术成果,首次建造可实现大规模聚变反应的聚变实验堆,将研究解决大量技术难题,是人类受控核聚变研究走向实用的关键一步,因此备受各国政府与科技界的高度重视和支持。核聚变研究是当今世界科技界为解决人类未来能源问题而开展的重大国际合作计划。与不可再生能源和常规清洁能源不同,聚变能具有资源无限,不污染环境,不产生高放射性核废料等优点,是人类未来能源的主导形式之一,也是目前认识到的可以最终解决人类社会能源问题和环境问题、推动人类社会可持续发展的重要途径之一。”人造太阳“的研发,是为了全人类的能源问题,ITER计划的实施结果将决定人类能否迅速地、大规模地使用聚变能,从而可能影响人类从根本上解决能源问题的进程。(本文内容由百度知道网友0o哒丫梨o0贡献)
2023-09-09 06:10:083

中国科技大学效果怎样啊?

  中国科学技术大学是中国科学院直属的一所以前沿科学和高新技术为主、兼有特色管理和人文学科的理工类全国重点大学,是国家首批“211工程”、“985工程”重点建设院校,入选“珠峰计划”、“111计划”、“2011计划”、“卓越工程师教育培养计划”、“中国科学院知识创新工程”、“国家海外高层次人才创新创业基地”,是九校联盟(C9)、中国大学校长联谊会、东亚研究型大学协会、环太平洋大学联盟成员,为中管副部级高校,由中国科学院、教育部、安徽省人民政府共同建设 。  中国科大1958年创办于北京,1970年迁至安徽省合肥市,首任校长由郭沫若兼任。该校有中国“科技英才的摇篮”之称,在国内外均享有较高声誉,俄罗斯总理梅德韦杰夫曾称赞其为“世界一流大学”。  截至2014年,学校在校学生15500余人,其中博士生1900余人,硕士生6200余人,本科生7400余人 。  截止2014年,学校建有国家实验室2个,国家重大科技基础设施1个,牵头协同创新中心1个,国家重点实验室4个,国家工程(技术)研究中心及国家工程实验室2个,院、省、部级重点科研机构30余个。  截止2013年,学校有15个学院、30个系,设有研究生院,以及苏州研究院、上海研究院、中国科大先进技术研究院,在37个本科专业招生。  两院院士:  中国科学院院士:  刘有成、朱清时、王 水、钱逸泰、施蕴渝、伍小平、周又元、郭光灿、侯建国、陈国良、吴 奇、李曙光、张家铝、张裕恒、俞昌旋、郑永飞、潘建伟、杨学明、李亚栋、万卫星、陈 颙、童秉纲、杨国桢、石耀霖、洪茂椿、吴一戎、李 灿、欧阳钟灿、包信和、马志明、沈保根、赵政国、谢毅。  中国工程院院士:  何多慧、范维澄、李国杰、万元熙、许祖彦、杜善义、魏复盛、刘文清、吴以成。
2023-09-09 06:11:471

核聚变的机理是什么?

核聚变核聚变的定义:核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走。目前主要的几种可控核聚变方式:超声波核聚变激光约束(惯性约束)核聚变磁约束核聚变(托卡马克)核聚变的另一定义比原子弹威力更大的核武器—氢弹,就是利用核聚变来发挥作用的。核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才能发生核聚变,比如氢的同位素氘(dao)、氚(chuan)等。核聚变也会放出巨大的能量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的。核聚变能释放出巨大的能量,但目前人们只能在氢弹爆炸的一瞬间实现非受控的人工核聚变。而要利用人工核聚变产生的巨大能量为人类服务,就必须使核聚变在人们的控制下进行,这就是受控核聚变。实现受控核聚变具有极其诱人的前景。不仅因为核聚变能放出巨大的能量,而且由于核聚变所需的原料——氢的同位素氘可以从海水中提取。经过计算,1升海水中提取出的氘进行核聚变放出的能量相当于100升汽油燃烧释放的能量。全世界的海水几乎是“取之不尽”的,因此受控核聚变的研究成功将使人类摆脱能源危机的困扰。但是人们现在还不能进行受控核聚变,这主要是因为进行核聚变需要的条件非常苛刻。发生核聚变需要在1亿度的高温下才能进行,因此又叫热核反应。可以想象,没有什么材料能经受得起1亿度的高温。此外还有许多难以想象的困难需要去克服。尽管存在着许多困难,人们经过不断研究已取得了可喜的进展。科学家们设计了许多巧妙的方法,如用强大的磁场来约束反应,用强大的激光来加热原子等。可以预计,人们最终将掌握控制核聚变的方法,让核聚变为人类服务。利用核能的最终目标是要实现受控核聚变。裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的较重的原子核而释出能量。最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读"川",又叫超重氢)聚合成较重的原子核如氦而释出能量。核聚变较之核裂变有两个重大优点。一是地球上蕴藏的核聚变能远比核裂变能丰富得多。据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘。1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量。地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂。第二个优点是既干净又安全。因为它不会产生污染环境的放射性物质,所以是干净的。同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的。目前实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近于成功,但要达到工业应用还差得远。按照目前技术水平,要建立托卡马克型核聚变装置,需要几千亿美元。另一种实现核聚变的方法是惯性约束法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的。尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登。补充内容:每克氘聚变时所释放的能量为5.8×108kJ,大于每克U-235裂变时所释放的能量(8.2×107KJ)。从能源的角度考虑,核聚变有几个方面比核裂变优越:其一,聚变产物是稳定的氦核,没有放射性污染产生,没有难于处理的废料;其二,聚变原料氘的资源比较丰富,在海水中氘和氢之比为1.5×10- 4∶1,地球上海水总量约为1018吨,其中蕴藏着大量的氘,提炼氘比提炼铀容易得多。遗憾的是这个聚变反应需要非常高的温度,以克服两个带正电的氘核之间的巨大排斥力(从理论计算,要克服这种库仑斥力需要109℃的高温)。氢弹的制造原理,就是利用一个小的原子弹作为引爆装置,产生瞬间高温引发上述聚变反应发生强烈爆炸。氢元素的几种同位素之间能发生多种聚变反应,这种变化过程存在于宇宙之间,太阳辐射出来的巨大能量就来源于这类核聚变。但我们目前尚没有办法在地球上利用这类核聚变发电,怎样能取得这样高的温度?用什么材料制造反应器?怎样控制聚变过程等各种问题尚无答案。补充:我国核聚变装置的最新消息:新华网合肥9月28日电(记者喻菲 蔡敏 程士华)世界领先的中国新一代热核聚变装置EAST28日首次成功完成了放电实验,获得电流200千安、时间接近3秒的高温等离子体放电。 负责这一项目的中国科学院等离子体所所长李建刚研究员在接受新华社记者采访时说,此次实验实现了装置内部1亿度高温,等离子体建立、圆截面放电等各阶段的物理实验,达到了预期效果。 工艺鉴定组专家、中科院基础科学研究局金铎研究员在实验后的新闻发布会上宣布,EAST通过国家“九五”大科学工程工艺鉴定。 参与EAST研究合作的美国通用原子能公司盖瑞·杰克逊博士说:“EAST成为世界上第一个建成并真正运行的全超导非圆截面核聚变实验装置,它将在未来10年内保持世界先进水平。” 据了解,EAST装置是中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的。 记者在实验控制室看到,这个近似圆柱形的大型物体由特种无磁不锈钢建成,高约12米、直径约5米,据介绍其总重量达400吨。 李建刚研究员说,与国际同类实验装置相比,EAST是使用资金最少、建设速度最快、投入运行最早、运行后获得等离子放电最快的先进核聚变实验装置。 “这意味着人类在核聚能研究利用领域取得重大进步,也标志着中国在这一领域进入国际先进水平”,李建刚说。 人们认识热核聚变是从氢弹爆炸开始的。氢弹爆炸时释放出极大的能量,给人类带来的是灾难。而科学家们却希望发明一种装置,可以有效地控制“氢弹爆炸”的过程,让能量持续稳定的输出,以解决人类面临的能源短缺危机。 美、法等国在20世纪80年代中期发起了耗资46亿欧元的国际热核实验反应堆(ITER)计划,旨在建立世界上第一个受控热核聚变实验反应堆,为人类输送巨大的清洁能量。这一过程与太阳产生能量的过程类似,因此受控热核聚变实验装置也被俗称为“人造太阳”。 中国于2003年加入ITER计划。位于安徽合肥的中科院等离子体所是这个国际科技合作计划的国内主要承担单位,其研究建设的EAST装置稳定放电能力为创记录的1000秒,超过世界上所有正在建设的同类装置。 EAST大科学工程总经理万元熙教授说,与ITER相比,EAST在规模上小很多,但两者都是全超导非圆截面托卡马克,即两者的等离子体位形及主要的工程技术基础是相似的,而EAST至少比ITER早投入实验运行10至15年。因此,无论从人才培养和奠定工程技术及物理基础的角度上说,EAST都将为ITER计划做出重要的、实质性的贡献,并进而为人类开发和最终使用核聚变能做出重要贡献。 不过,万元熙研究员说,虽然“人造太阳”的奇观在实验室中初现,但离真正的商业运行还有相当长的距离,它所发出的电能在短时间内还不可能进入人们的家中。但他预测,根据目前世界各国的研究状况,这一梦想最快有可能在30-50年后实现。 万元熙说,未来的稳态运行的热核聚堆用于商业运行后,所产生的能量够人类用数亿年乃至数十亿年。从长远来看,核能将是继石油、煤和天然气之后的主要能源,人类将从“石油文明”走向“核能文明”
2023-09-09 06:11:577

核工程与核技术专业国内著名教授

万元熙万元熙,1964年北大本科毕业,1967年北大研究生毕业。现任国家九五重大科学工程项目“大型非圆截面超导托卡马克装置”项目总经理;亚洲等离子体协会执行理事;国际核聚变期刊(NF)中国编委;中国核学会理事;中国等离子体物理学会常务理事;是等离子体物理学科知名科学家。院士、现中科大核院院长够强吗?
2023-09-09 06:12:131

人类能否用人造太阳改造木卫二和土卫六?

真的,我个人认为没可能。
2023-09-09 06:12:222

"人造太阳"的非圆截面特性有什么进步意义?

不要停留在太阳是圆的就观念
2023-09-09 06:12:502

人为什么造太阳?连这个问题都没人提?

……
2023-09-09 06:12:5910

人造太阳,会否 使 海水 减少,

人造太阳是可控核聚变,你可以根据这个关键词去万方数据库等查找就知道了
2023-09-09 06:13:266

什么是人造太阳

核聚变反应堆又称为“人造小太阳”,因为太阳和其他恒星本身就是一个巨大的核聚变反应堆,它们内部有大量氢的同位素氘(又叫重氢)和氚(又叫超重氢)。在太阳高温高压的环境下,这些氘原子和氚原子不停地撞击而进行聚变反应,因此产生了照亮整个太阳系的巨大热量。
2023-09-09 06:13:462

人造太阳 是用什么东西做出一亿度的温度的

人造太阳??没听说过。只听说过人造月亮。
2023-09-09 06:13:562

「人造太阳」核聚变发电,要等到 2050 才实现 ?

国外已经研制成功了,其产生的电能可以提供一座城市10年`!
2023-09-09 06:14:095

科大理科试验班

我有一个同学和你面临同样的选择
2023-09-09 06:14:373

计算机考研择校问题,请帮帮我~~~~~

你好,这样的问题你得了解上面三所高校的计算机专业的实际情况,具体情况具体分析,我这里有有关全国考研热门专业汇总及相应基本情况,和上面三所高校各专业自主划线的一些基本情况,你可以关注一下,网址给你留一下吧http://wenda.tianya.cn/wenda/user?hl=zh-CN&userid=01647242921745540081应该对你有些帮助
2023-09-09 06:14:492

英镑纸币的冠字号码组合是什么?

这个号码组合是什么?真不清楚,不过你可以联系一下度娘
2023-09-09 05:57:307

《水浒传》的来源?

来源:《水浒传》的故事源起于北宋宣和年间,出现了话本《大宋宣和遗事》描述了宋江、吴用、晁盖等36人起义造反的故事,初步具有了《水浒传》的故事梗概,流传下来的根据说书人编成的话本中就有“青面兽”,“花和尚”,“武行者”等。而从南宋之史籍《东都事略》以后,已成为了民间文学的主要题材。到了元朝,元杂剧中出现了有关水浒故事的剧本,流传后世的有高文秀的《黑旋风双献功》,李文蔚的《燕青博鱼》和康进之的《李逵负荆》等。《水浒传》全书是到了明朝,经许多作者不断增添情节乃至定型。也有观点认为,《水浒传》中梁山好汉的生活原型是与作者施耐庵关系甚密的张士诚领导的盐民起义。扩展资料:《水浒传》为中国古典四大文学名著之一,六才子书之一。其内容讲述北宋山东梁山泊以宋江为首的梁山好汉,由被逼落草,发展壮大,直至受到朝廷招安,东征西讨的历程。又称《忠义水浒全传》、《江湖豪客传》、《水浒全传》,一般简称《水浒》,全书定型于明朝。作者历来有争议,一般认为是施耐庵所著,而罗贯中则做了整理,金圣叹删减为七十回本。
2023-09-09 05:57:312

刑事案件,通知受害方去写刑事附带民事诉状归检察院还是法院管?写完了等通知还是开庭,需要找个律师吗

《刑事诉讼法》第一百零一条规定 被害人由于被告人的犯罪行为而遭受物质损失的,在刑事诉讼过程中,有权提起附带民事诉讼。被害人死亡或者丧失行为能力的,被害人的法定代理人、近亲属有权提起附带民事诉讼。所以,在公安机关正式刑事立案后,被害人可随时提起附带民事诉讼。《最高人民法院关于适用〈中华人民共和国刑事诉讼法〉的解释》(以下简称《解释》)第一百七十八条规定,人民法院受理刑事案件后,对符合刑事诉讼法第一百零一条和本解释第一百七十五条第一款规定的,可以告知被害人或者其法定代理人、近亲属有权提起附带民事诉讼。《解释》第二百条规定 被害人或者其法定代理人、近亲属在刑事诉讼过程中未提起附带民事诉讼,另行提起民事诉讼的,人民法院可以进行调解,或者根据本解释第一百九十二条第二款、第三款的规定作出判决。综上,被害人有权在刑事诉讼当中的每个阶段提起附带民事诉讼,只有最高人民法院的《解释》中规定人民法院可以通知被害人及时提起民事诉讼。
2023-09-09 05:57:322

播音主持培训班费用一般是多少

播音主持培训班费用从千元到十几万元不等。1、培训费用。现如今,绝大多数艺考生都经历了周期或长或短的播音艺考培训,不同的机构、老师的培训的费用相距甚远,费用从千元到十几万元不等,培训的周期、教师的优劣、服务的内容、地域的差别的不同导致培训的收费不同。2、带考费。带考费是指请在播音考生艺考阶段,有带考老师或者机构带队考生参与考试,陪同考生完成考试,解决突发情况,并且在带考过程中进行辅导,有很多机构将带考的费用计算在培训费用之中。注意:很多机构的报名时会说明,学费包含带考费,有些机构是不含的,你在报名机构前一定要问清楚,避免日后产生纠纷。播音主持专业前景:中国的传媒行业在近些年一直处于一个大力发展的阶段,播音主持专业也变得越来越受大家的关注,随着播音以及相关职业的在社会上的作用越来越大,相信播音主持专业的就业也会有一个更好的环境。很多企业对宣传以及公关的人员都有很大的需求,播音主持除了播音的专业技能之外,还可以在沟通上面有一个不错的发展,在这块是很多企业急需的,在一些企业的形象宣传中,播音主持专业也是一个很抢手的,有较好的沟通能力,也有不错的表现能力,这样的人才是大部分企业都急需的。
2023-09-09 05:57:321

关于环境危机的资料

  人们一直以为地球上的水、空气是无穷无尽的,所以不担心把千万吨废气送到天空去,又把数以亿吨计的垃圾倒进江河湖海。大家都认为世界这么大,这一点废物算什么?我们错了,其实地球虽大(半径6300多公里),但生物只能在海拔8千米到海底11千米的范围内生活,而占了95%的生物都只能生存在中间约3公里的范围内,人们竟肆意地从三方面来弄污这有限的生活环境。 陆地污染:垃圾的清理成了各大城市的重要问题,每天千万吨的垃圾中,好些是不能焚化或腐化的,如塑料、橡胶、玻璃等人类的第一号敌人。 海洋污染:主要是从油船与油井漏出来的原油,农田用的杀虫剂和化肥,工厂排出的污水,矿场流出的酸性溶液;它们使得大部分的海洋湖泊都受到污染,结果不但海洋生物受害,就是鸟类和人类也可能因吃了这些生物而中毒。 空气污染:这是最为直接与严重的了,主要来自工厂、汽车、发电厂等等放出的一氧化碳和硫化氢等,每天都有人因接触了这些污浊空气而染上呼吸器官或视觉器官的疾病。我们若仍然漠视专家的警告,将来一定会落到无半寸净土可住的地步。 水污染是指水体因某种物质的介入,而导致其化学、物理、生物或者放射性污染等方面特性的改变,从而影响水的有效利用,危害人体健康或者破坏生态环境,造成水质恶化的现象。 大气污染是指空气中污染物的浓度达到或超过了有害程度,导致破坏生态系统和人类的正常生存和发展,对人和生物造成危害。 噪声污染是指所产生的环境噪声超过国家规定的环境噪声排放标准,并干扰他人正常工作、学习、生活的现象。 放射性污染是指由于人类活动造成物料、人体、场所、环境介质表面或者内部出现超过国家标准的放射性物质或者射线。 例如,超过国家和地方政府制定的排放污染物的标准,超种类、超量、超浓度排放污染物;未采取防止溢流和渗漏措施而装载运输油类或者有毒货物致使货物 落水造成水污染;非法向大气中排放有毒有害物质,造成大气污染事故,等等。 环境污染  由于人们对工业高度发达的负面影响预料不够,预防不利,导致了全球性的 三大危机:资源短缺、环境污染、生态破坏 . 人类不断的向环境排放污染物质。但由于大气、水、土壤等的扩散、稀释、氧化还原、生物降解等的作用。污染物质的浓度和毒性会自然降低,这种现象叫做 环境自净 。如果排放的物质超过了环境的自净能力,环境质量就会发生不良变化,危害人类健康和生存,这就发生了环境污染 。 环境污染会降低生物生产量,加剧环境破坏。  编辑本段环境污染的分类  大气污染  按环境要素分 :大气污染、坏境污染(3张)土壤污染、固体污染。 按人类活动分:工业环境污染、城市环境污染、农业环境污染。 按造成环境污染的性质来源分:化学污染、生物污染、物理污染(噪声污染、放射性、电磁波)固体废物污染、能源污染。  编辑本段环境污染的危害  环境污染会给生态系统造成直接的破坏和影响,比如:沙漠化、森林破坏,也会给生态系统和人类社会造成间接的危害,有时这种间接的环境效应的危害比当时造成的直接危害更大,也更难消除。例如,温室效应、酸雨、和臭氧层破坏就是由大气污染衍生出的环境效应。这种由环境污染衍生的环境效应具有滞后性,往往在污染发生的当时不易被察觉或预料到,然而一旦发生就表示环境污染已经发展到相当严重的地步。当然,环境污染的最直接、最容易被人所感受的后果是使人类环境的质量下降,影响人类的生活质量、身体健康和生产活动。例如城市的空气污染造成空气污浊,人们的发病率上升等等;水污染使水环境质量恶化,饮用水源的质量普遍下降,威胁人的身体健康,引起胎儿早产或畸形等等。严重的污染事件不仅带来健康问题,也造成社会问题。随着污染的加剧和人们环境意识的提高,由于污染引起 的人群纠纷和冲突逐年增加。 目前在全球范围内都不同程度地出现了环境污染问题,具有全球影响的方面有大气环境污染、海洋污染、城市环境问题等。随着经济和贸易的全球化,环境污染也日益呈现国际化趋势,近年来出现的危险废物越境转移问题就是这方面的突出表现。
2023-09-09 05:57:341

2022端午节家长祝福语100条

端午节 是纪念屈原的日子,是我国的传统节日之一,端午节要送什么祝福合适呢?下面就是我给大家带来的2022端午节家长 祝福语 100条,希望大家喜欢,欢迎阅读。 更多端午节相关内容推荐↓↓↓ 介绍传统节日端午节作文10篇 小学生必背端午节古诗句 2022端午节主题标语大全 2022年端午节高速免费吗 端午节祝福语 1、您打开的是幸运,收到的是祝福,看到的是希望,按下的是吉祥,体会的是美好,感觉的是温馨。祝您端午快乐! 2、送你一个幸运粽,看到的人欢乐附体,愉快甜蜜;闻到的人好运上身,事事顺心;吃到的人幸福永久,健康相守。祝你端午节快乐! 3、最富诗意:寻一地风景,坐观云絮之变幻,觅一处茶居,品生活之清雅,会一席昔日之朋友,笑谈人生得失,唯人间真情永不退色,忙碌中别忘了关爱自己,端午节快乐! 4、发出的是文字,收到的是快乐,见到的是短信,不见的是牵挂,打开的是健康,读出的是吉利,默默的是祝福,祝端午节快乐。 5、一粒米就是一个愿望,一个祝福,我把愿望和祝福统统都包了起来,在端午节的那一天送给你,愿你的日子像五彩线一样五彩斑斓,事业像龙舟一样永争上游。 6、居家和睦出入平安,风度潇洒似神仙;音乐升平心情舒缓,对酒当歌舞翩跹,日月同辉彩云间,短信祝福情意无限,微风送爽如你愿。祝你梦想成真福禄双全,开心快乐每一天! 7、香香的糯米粘住我浓浓的深情,将祝福的红枣紧紧包裹。一片片粽叶散发出诱人的清香,将深情和祝福统统送达。端午节到了,祝你阖家团聚,幸福安康! 8、淡淡棕叶香,浓浓世间情;根根丝线连,切切情意牵;端午至,粽香千里;鹤起湖湘,衔棕而飞;用真诚的心把快乐。平安与幸福全包给你!端午快乐! 9、想念你的微笑,回味你的味道,脱掉你的外套,露出你的美妙,压抑我的狂躁,想想我的需要,还是早点把你干掉啊,粽子!端午快乐! 10、端午节工作方针:以友谊为基础,以手机为平台,以短信为手段,以祝福为目标,以你为工作对象,以笑容为考核标准,工作完成以后请吃粽子宴。 11、五月五,粽飘香,端午呈祥,一声问候幸福安康;插艾叶,赛龙舟,喜庆节日,万水千山粽是真情。愿你在端午节,粽是开心,粽是快乐,粽是好运,粽是幸福,粽是健康。 12、屈原用怀石沉江成就了一个温馨的节日,粽叶用清香深蕴裹住了一种永远的情思,当粽香又一次在大街冷巷迷离,愿您的糊口如蜜芳醇!家人永远幸福平安!孩子健康快乐成长! 13、绿绿粽叶包吉利,欢欢喜喜过端阳;长长丝线绑健康,无病无灾身体棒;甜甜粽馅溢飘香,幸福糊口万年长;端午祝福来送上,愿你平安又愉快! 14、洗个艾叶澡,泡个艾叶脚,舒舒服服烦恼都赶跑;对你“爱也”真,对你“爱也”深,生活有你就不闷。端午,帮你挂艾叶,能爱你真好。 15、五月初五端午到,心中思念更甚前。艾草萋萋门前挂,粽子迷香鼻尖传。十全十美心盼望,举家团圆日夜期。短信祝福悄来到,愿你端午合家欢。 16、“今天端午节!我收集世上一切美好的东西为原料,用无忧为外衣,以我的真心祝福为丝带为你包了一个特别的粽子送给你!吃了它你永远快乐,幸福。 17、娱乐越来越多,快乐越来越少;食品越来越多,食欲越来越小;同居越来越多,爱情越来越少。 18、端午即到,愿你“端”起“五”好:端起快乐,烦恼全消;端起吉利,好运不倒;端起财运,广纳钱宝;端起前途,事业走高;端起幸福,如意逍遥! 19、端午佳节到,粽子可以不会包,买了味道也挺好;龙舟可以不会划,岸边观赏也很妙;深深的祝福可以不会写,转了心意也殷勤。端午节,祝快乐心田来萦绕! 20、端午节到了,愿你事业像龙舟一样快进,家庭像香包一样温馨,个性像粽叶一样飘逸,气势像雄黄一样劲霸,快乐像糯米一样粘上就不掉! 21、蒲月五,是端午。吃粽子,看龙舟。齐欢聚,贺佳节。祝你节日快乐!蒲月节,扒龙船,龙鼓响,大江边,呵呵,你那儿可以看到赛龙舟吗?祝你端午节快乐! 22、卖萌短信合集(搞笑类别)我绝望了,紫霞离开了我,师傅太唠叨,牛魔王欠的钱又不还,好不容易买下水帘洞又被菩萨恶意收购,只剩下一毛钱发条短信祝二师弟端午快乐! 23、喝酒可以喝醉,跳舞可以摸背,无论怎么勾对,耍完快点撤退;走时小心防备,不然打成龟背。记得忠魂屈原,多吃三角粽子。喝口端午黄酒,保你会赋离骚。祝你端午快乐! 24、长夜盼望天亮,寒冬盼望太阳,酷夏喜欢的是凉爽,端午节爱吃香甜的粽子,想起的是你可爱的模样。五月初五“粽”情于你,祝幸福地久天长。 25、假如你不乐我会给你买可乐!要乐咱俩一起乐,别背着我偷着乐;假如你还不太乐,我会在你家门口摆摊卖可乐,祝你端午节快乐! 26、端午节,五月五,衷心祝你五个“无”:身体无病绕,工作无疲劳,生活无烦恼,家庭无纷扰,发达无阻挠,一直阳关道,得势人气高。 27、端午短信莫要藏,群众眼光贼雪亮,粽子到哪哪飘香,送你粽子短信道声:端午节,吃粽香,快快乐乐朋友莫忘。 28、听说今年端午节期间出了个怪事,我当时正好途经,但我不相信我所见到的一切:那只猪居然真地像人一样拿着手机在看短信!亲爱的,端午节快乐。 29、让阳光走进你的窗,让欢快飞到你身旁!在开心中抽根愉悦的线,为你织件好运衣裳;在幸福里磨根如意的针,为你缝上永远吉祥,祝端午节欢快! 30、端午节到了,我要送你一件外套:口袋叫温暖,领子叫关怀,袖子叫体贴,扣子叫思念;让这件外套紧紧伴着你度过每分每秒,祝爸爸妈妈端午节快乐! 31、粽子神功:欲练神功,水火来攻。第一层,粽叶附体,嫁衣神功;第二层,糯米擀皮,打包神功;第三层,鲜肉作馅,肉丸神功。端午节,祝你马到成功! 32、端午就是+,朋友心意十万火意送祝福:祝你情人浪漫,十步芳草。兄弟情深,十指连心。掌控机会,十拿九稳。写意生活,十全十美! 33、闻,闻,闻艾香,闻到了幸福;吃,吃,吃粽子,吃出了快乐;赛,赛,赛龙舟,赛得了活力;发,发,发信息,发出了祝福;收,收,收喜气,收到了心意。端午开心! 34、端来一盘粽子,香香的馅料,美美的滋味;端来一份惬意,阵阵的舒适,种.种的开怀;端来一个祝福,深深的情谊,大大的关心。端午来到,祝今天开心,永远快乐! 35、曾几何时,屈原用血肉之躯表明一颗爱国真心;时至今日,后人用端午纪念一片赤诚忠心;龙舟大赛寄托怀念之心,粽子寓意崇敬之心,祝节日舒心。 36、工作者是美丽的。当你以勤勉奉献社会时,犒劳一下自己吧,多多吃粽子。如果有来生,每年的今日我都会把你拥在怀里诚挚的祝福你:端午节快乐! 37、上帝送我一只粽子,沾满了喜气、财气、运气,我舍不得吃,把它送给你,希望你事业顺利,生活如意,爱情甜蜜。端午节吃下去,会带给你一生的幸福。 38、粽子飘香,引来一切美好;龙舟划划,赶走所有烦恼;大家齐聚,共度欢乐时刻;快乐日子,祝福多多,愿你端午节快乐,好运粽在身边,幸福满舟围! 39、送你一个香甜的粽子,以芬芳的祝福为叶,以温柔的叮咛作馅,再用友情的丝线缠绕,愿你品尝出人生美好的五月天!提前祝你端午节快乐! 40、有一种快乐,漂漂洒洒,有一种自在,平平淡淡,有一种幸福,安安静静,有一种拥有,实实在在,有一种友谊,长长久久,有一个你,我天天祝福,祝端午节快乐! 41、轻轻龙粽香,飘来一阵温柔;浓浓赛舟意,比出一场激情;深深敬佩情,话过一生忠孝;乐乐假期到,玩出一番新意。亲爱的朋友,端午节来临,愿你小长假快乐! 42、端午粽儿提前香,祝福红运满芬芳。端午粽儿提前圆,福禄金钱汇成团。端午粽儿提前满,温馨短信来回转。端午粽儿提前甜,快乐长寿延年年。端午节即将道来,提前祝你端午节快乐,愿粽子的美味让你的人生精精彩彩。 43、粘粘的糯米粘粘的情,粘粘的思念诉纷呈;红红的枣儿红红的运,红红的祝福飘美味;长长的苇叶长长的彩,长长的人生乐满怀;浓浓的节日浓浓的香,浓浓的短信送悠长。端午节将至,提前送你一颗美味的粽子,愿你笑口常开,人生精彩 44、端午小长假到啦!祝你拥有超人的人气,狮子王的霸气,功夫熊猫的勇气,憨豆先生的运气,蜘蛛侠的侠气。不要对自己太小气:出门逛逛,快乐非常! 45、黏黏的粽子香,祝福散出浓郁的芬芳;黏黏的粽子满,真情的陷儿包一箩筐;黏黏的粽子甜,快乐甜到你心坎儿里。黏黏的粽子送给你,祝你端午快乐好运连连! 46、说心里话,我真不想给你发这个短信,但是我怕你又说我不祝你节日快乐。你看,你都这么大了,还让我每年 儿童 节都给你发祝福语。算了吧,我跟你也不多计较了,就永远把你当一个小孩算了,最后还要说一句:端阳节快乐! 47、一层一层粽叶,包裹化不开的深情,一道一道丝线,缠绕剪不断的思念,一颗一颗米粒,飘洒最诱人的芳香,一口一口品尝,传递最深情的祝福,端午节快乐! 48、阳光,搁浅心灵的惆怅,一盏明灯,寄托童时的梦想。夏的号角吹着端午的激情与渴望,送给你浓浓的粽香;让假日的温馨抒写精美的篇章,带来节日的.浓妆。用幸福的米,甜蜜的枣,温馨的叶包一碗粽,送去我真情的向往,愿你在这个假期心情更加舒畅。 49、我用芬芳的祝福制成苇叶,以温馨的叮咛碾作白米,以诚挚的祈祷晒熟红枣,再以友谊的丝线紧紧缠绕,端午小长假,送你香甜的粽子,愿你人生更美好! 50、端午节到了,送你一个香甜的粽子:以芬芳祝福为叶,以宽厚包容为米,以温柔叮咛为馅,再用友情丝线缠绕,愿你品尝出人生的美好和这五月五的情怀! 端午节经典祝福语 1、又到端午节,又闻粽飘香。糯米加红枣,穿上艾叶衣。扎个红腰带,漂亮又大方。洗个热水澡,清爽又宜人。端午送祝福,实惠又吉祥。端午节快乐。 2、黄冈市端午节巴河镇迎傩人,花冠文身,鸣金逐疫。宜昌县端午竞渡,但以五月十三、十四、十五三日特盛。五月十五又称“大端阳”,食粽、饮蒲酒,例同端午。 3、好酒清清淡淡,越久越醇;好朋友简简单单,越久越真;好缘份久久长长,地老天荒.真诚的友谊叫人终身难忘.祝端午节快乐! 4、今天我到处给你买礼物,买好玩的没有适合你的,买好吃的没有你爱吃的,买开裆裤没有你的尺寸的,只好提前送你祝福啦:端午节快乐! 5、粽子甜,愿你工作顺利忙中有闲;粽子香,愿你经常锻炼身体健康;粽子咸,愿你生活幸福常有余钱;粽子黏,愿朋友四海时时挂念!祝你端午节快乐! 6、若一粒米代表想你,我愿是一把米,时时刻刻想着你;若一颗枣代表爱你,我愿是一颗蜜枣,分分秒秒甜着你。端午我要长长久久包着你 7、不管天多高,海多深,钢多硬,风多大,尺多长,河多宽,酒多烈,冰多冷,火多热……我只想告诉你,这些都不关你的事! 8、无数代表快乐的糯米,里面藏着代表甜蜜的枣馅,我用欢乐的粽子叶把这一切紧紧包在一起,系上幸福的红丝带,捎去我美好的祝福,端午节快乐。 9、偶尔的繁忙,不代表遗忘;夏日的到来,愿你心情舒畅,曾落下的问候,这一刻一起补偿,所有的关心,凝聚这条短信,祝端午节快乐。 10、睁开眼晴时,希望你能看到我祝福,祝你有个阳光般的心情;闭上眼睛前,要你收到我的问候,晚上做个好梦,祝端午节快乐! 11、我是棕叶你是米,层层叠叠裹住你;你是嘴巴我是米,美味香粽勾引你;香粽包了多少米,代表我有多想你;记得转发短信息,不然粽子噎死你,端午节快乐! 12、端午是夕阳中远山的剪影,你还停在我的画布中;只是我怕,今天疾驶而过,明天飞奔地来,而所有昨天的细节,早已支离破碎…… 13、去你的外衣,你是那样白嫩,发着淡淡的幽香,舔一舔再咬上一口,我心飞上九霄云外,啊,粽子我的至爱! 14、大家都夸你敏而好学,学什么像什么,我记得那天你学刘德华 唱歌 ,真的很像耶。端午节来了,我想你也应该给大家模仿一下屈原跳江自杀,如何? 15、艾叶扬,粽子尝,欣然佳节逢端阳;佩香囊,饮雄黄,豪情龙舟争渡忙;情意长,蜜如糖,朋友祝福到身旁:愿吉祥,祈安康,快乐幸福你珍藏。 16、送个香囊带个荷包,自制几斤粽子,托人到山里采了艾叶,街头买了瓶雄黄酒,加上内心深处的几许关怀,作为礼物送给你,祝端午节快乐! 17、端午节到了,悄悄的一条信息,带去我的一份最真的祝福,一份深情,一份情谊,一份如意,一份温馨,一份守望,一份牵挂,一份安康都给你。 18、掉你的手机,慢慢的闭上眼睛,想想我,想想粽子,你会发现我和粽子一样可爱。端午节快乐! 19、端午节,家家户户都悬起了钟馗像,挂上了艾叶菖蒲,赛龙舟,吃粽子,饮雄黄酒,游百病,佩香囊,备牲醴。热热闹闹真好玩。 20、层层粽叶层层情,一层一层送予你:一层送你身体健,二层送你事业顺,三层送你生活美,四层送你爱情甜,五层送你财源丰,六层送你家和美,端午节快乐! 端午节短信祝福语 1、蒲月五,是端午;吃粽子,看龙舟。祝你端午节快乐! 2、齐欢聚,贺佳节;祝你端午节节日快乐!天天开心! 3、蒲月节,扒龙船,龙鼓响,大江边,呵呵,你那儿可以看到赛龙舟吗?祝你端午节快乐! 4、工作者是美丽的。当你以勤勉奉献社会时,犒劳一下自己吧,多多吃粽子。 5、蓝天代表着渴望,鸟儿代表着欢笑,风儿代表着我从你身边慢慢的走过,端午节将至,我把幸福送给你,愿你快乐每一天! 6、缝个香囊锈个荷包,自制几斤粽子,托人到山里采了艾叶,街头买了瓶雄黄酒,加上内心深处的几许关怀与牵挂,作为礼物送给你们,祝朋友们端午节快乐! 7、古人屈原投江自杀,源于报国无门。今朝你深深的闯进我的心房,那是因为我爱你至真至纯!祝福端午!祝福我们的爱情就像粽子蔫蔫乎乎! 8、粽子黏黏,思念甜甜;粽子软软,祝福闪闪;粽子香香,健健康康;粽子大大,财运佳佳;粽子多多,快乐多多。端午要快乐哟~ 9、叶叶层叠,好运不绝;米米紧粘,幸福绵绵;线线缠绕,快乐拥抱;水水相融,情意浓浓;粽粽连结,祝福不歇! 10、天天盼着见你,却总遥遥无期,夜夜盼着亲你,梦里为你着迷。今天见到你,忍不住狂喜,扒开你的衣,慢慢吃掉你,让你再也不能离。爱粽子的你,端午快乐! 11、若一粒米代表想你,我愿是一把米,时时刻刻想着你;若一颗枣代表爱你,我愿是一颗蜜枣,分分秒秒甜着你。端午我要长长久久包着你! 12、龙舟粽子端午的喜庆,别忘了爱护一下自己的眼睛。世界 爱眼日 ,借着端午的歌声,放松一下自己的心灵,少看一分钟电视,远眺一次天空,保护一下我们的眼睛! 13、端午颂诉着古老的 传说 ,粽子包裹着古老的风俗,艾叶凝聚着神秘的色彩,屈原坚守着民族的气节,让我们记住特殊的日子,时刻提醒勉励自己,幸福生活,努力工作,开心每一天。 14、粽子飘香端午到,五彩香囊身边挂,驱邪避灾福相伴,敬上一杯雄黄酒,宾朋举杯迎端阳,龙舟赛出情悠扬,一年更比一年强,生活美妙更辉煌,愿你端午快乐,幸福万年长! 15、张灯结彩喜气浓,艾叶高悬端午到;龙舟竞驰浪花翻,粽叶飘香精神爽;欢歌笑语连不断,乐享端午好佳节;举杯同庆送祝福,绵绵情谊润你心;祝你端午乐开怀,幸福快乐到永久! 16、想念,不要太满,只要让我看得见;祝福,不要太多,发条短信即可;粽子,不要太大,只要肚子装的下。怎么样,要求不多吧?端午到了,记得吃粽子啊! 17、糯米粘,蜜枣甜,怀念无声润心田。艾草香,菖蒲扬,思念连连满胸腔。龙舟舞,粽叶绿,祝福绵绵入心湖。屈原事,古今情,传统节日文明凝。端午时节到了,愿你快乐。 18、端午节祝福心意全送到:愿你“粽”是微笑,“粽”是快乐,“粽”是喜悦,“粽”是好运,“粽”是成功,“粽”是幸福,“粽”是美好。 19、端午到,好运随着你我笑。赛龙舟,甜蜜幸福一起收。吃粽子,缅怀屈原游古寺。我祝你,每天快乐在一起。端午节到了,祝你端午快乐。 20、端午节到了,送枚粽子给您。爱情是外皮,里面第一层是想你,第二层是爱你,第三层是呵护着你。吃下去让你幸福无比!亲爱的,预祝端午节快乐! 21、无数代表快乐的糯米,里面藏着代表甜蜜的枣馅,我用欢欣的粽子叶把这一切紧紧包在一起,系上幸福的红丝带,充满吉祥,捎去我美好的祝福:端午节快乐! 22、沙渺渺,水依依,思念如芳草,随雁向你飞;月珊珊,星淡淡,问候穿云端,祝福送身边。端午节,浓浓情,传诚挚祝福,送美好心愿;祝端午节快乐,朋友! 23、米与米相粘,快乐温馨伴;叶与叶相叠,钞票叠不绝;线与线缠绕,好运跑不了;粽与粽相结,祝福不停歇。端午节,我给你祝愿,祝你总如愿,快乐每一天! 24、每逢佳节“粽”思你,好友之间“粽”是情,端午节即将临,“粽”言“粽”语祝福你,愿万事‘粽"顺利,生活“粽”快乐,“粽”之,样样“粽”比我好! 25、快端午节了,我在酝酿一个大胆的计划,就是我也要“投江”,但别害怕!我是将福气运气喜气,投进你美好的江河,汇聚成祝福,祝你节日快乐,幸福安康! 26、端午闻见粽叶香,你我欢喜买来尝。红线拴着贵如银,吉祥如意好心情;蓝线拴着福如海,团团圆圆好家庭;绿线拴着寿如山,活力四射好身体。端午节快乐! 27、端午来临百花香,粽子清香飘四方,东方送你摇钱树,南方送你贵人扶,西方送你工作好,北方送你没烦恼,方方好运方方行,信息传达粽子情,端午节快乐。 28、端午节快到了,我送你十棵心:学习要用心,工作要上心,生活要平心,待人要真心,处事要细心,做事要专心,困难要耐心;祝你时时都开心,事事都顺心。 29、一句平淡如水的问候,很轻;一声平常如纸的祝福,很真;采一片清香的粽叶,包一颗香甜的粽子,装入真情的信息里,送给你:祝端午节快乐! 30、轻轻的问候融入了我所有的心愿,淡淡的祝福倾注了我无限的真诚,静静的一则短信悄悄地地填满屏幕!永远开开心心快快乐乐,祝端午节快乐! 2022端午节家长祝福语100条相关 文章 : ★ 端午节家人祝福语100条 ★ 2022商场端午节祝福语100条 ★ 端午节的家长感言大全 ★ 2022端午节问候语 ★ 端午节福利院祝福语100条 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?6732713c8049618d4dd9c9b08bf57682"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
2023-09-09 05:57:281

我要申诉怎么写呢

申诉书包括首部、正文、尾部三部分。1、首部应写明以下内容:①标题:仲裁申诉书。②争议当事人:申诉人与被诉人。个人应写明姓名、性别、年龄、民族或国籍、用工性质、工作单位、住址、通信地址等。单位应写明名称、单位性质、地址、法定代表人姓名、职务。有委托代理人的,应写明代理人的姓名、工作单位等情况。2、正文应包括:①请求事项:指申诉要达到的目的和要求。请求事项要具体明确。②事实和理由:应简要说明双方建立劳动关系的时间、方式以及劳动合同的主要内容;双方争议的形成过程和争议的焦点;主要证据(应说明证人姓名、住址、物证、书证的来源等);提出请求事项的主要法律依据。3、尾部应包括:申诉书提送的仲裁机构名称、申诉人姓名或名称(签章)、申请时间(年月日)。同时写明提交的副本份数(按被申诉人人数提交),物证、书证件数。当事人提出申诉状需要具备一定条件,如出现新的证据、一审程序有误等。当事人要熟悉申诉状该怎么写的相关知识,申诉状主要得写清请求事项和事实与理由,并且应该附上相关证据。拓展资料:申请重审的条件是什么?民事案件的申诉人,只能是当事人及其法定代理人。其再审的申请应当在判决、裁定或者调解书发生法律效力后六个月内提出。申请再审要符合下列条件:1、有新的证据,足以推翻原判决、裁定的。2、原判决、裁定认定事实的主要证据不足的。3、原判决、裁定适用法律确有错误的。4、人民法院违反法定程序,可能影响案件正确判决、裁定的。5、审判人员在审理该案件时有贪污受贿、营私舞弊、枉法裁判行为的。此外,当事人对违反自愿原则的调解协议和调解协议内容违法的,也可申请再审。法律依据:《民事诉讼法》第一百七十条二审裁判第二审人民法院对上诉案件,经过审理,按照下列情形,分别处理:(一)原判决、裁定认定事实清楚,适用法律正确的,以判决、裁定方式驳回上诉,维持原判决、裁定;(二)原判决、裁定认定事实错误或者适用法律错误的,以判决、裁定方式依法改判、撤销或者变更;(三)原判决认定基本事实不清的,裁定撤销原判决,发回原审人民法院重审,或者查清事实后改判;(四)原判决遗漏当事人或者违法缺席判决等严重违反法定程序的,裁定撤销原判决,发回原审人民法院重审。原审人民法院对发回重审的案件作出判决后,当事人提起上诉的,第二审人民法院不得再次发回重审。
2023-09-09 05:57:271

企业展厅设计要点

1、明确主题主题是参展商想要传达给参观者的基本信息和印象,通常是参展商自己或产品。要表达清晰的主题,一方面要使用焦点,另一方面要使用适当的颜色、图表和安排,以协调的方式创造出统一的印象。预算良好的参展商往往建造豪华的展厅,给参观者留下深刻的印象,但可能无法传达明确的主题和信息。设计师往往注重吸引力、震撼,而忽略了明确的商业意图的表达,或者忽略了产品的推广。设计、布局和用品的使用应服务于展览的目标,并应与展览的内容保持一致。2、空间规划企业展厅是一项系统工程,根据企业展厅在企业内部所处的具体位置、空间造型、面积大小等客观因素,合理布局,使有限的空间产生最理想的展示效果,是展厅设计公司需要着重研究的课题。展厅设计公司了解客户需求后,应反复规划,多次论证,以取得最佳的布局方案,为后期展厅设计打好基础。3、特点聚焦企业展厅力求表现的是企业的整体形象,既要有时代感,又要有企业的特色,因此将企业标志在展厅设计中合理、规范运用,必能很好的体现企业的特性,同时又能取得特色鲜明的展厅设计效果。展厅的主色调也可结合企业标准色的应用,或在标准色系的范围内进行合理的延伸,那么整个展厅的风格将与企业的整体风格相符,同时又能在展厅中得到进一步的提升和优化。根据这些展厅设计的原则去发挥想象,会得到更好的展示效果,毕竟对于整个展厅设计而言,核心目的就是最后的实际参观效果。广州大黄蜂展览设计有限公司是一家集展示创意设计、大型工程制作搭建·活动策划执行、会议主场承办、活动巡回路演等于一体的一站式服务平台。想了解更多设计技巧、搭建技巧可关注大黄蜂展览官网
2023-09-09 05:57:261

拒绝毒品,珍爱生命的目录

第一章 生命诚可贵第一节 生命是来之不易的第二节 生命承载浓浓的关爱第三节 认识毒品,珍爱生命第二章 毒品之害无穷第一节 毒品损害身体健康第二节 毒品拆散幸福家庭第三节 毒品带人走上犯罪之路第三章 青少年为何吸毒第一节 易染毒瘾的青少年第二节 娱乐场上的毒品第三节 如何识别瘾君子第四章 不上毒品的当第一节 认清毒品真面目第二节 以健康的精神状态抵挡毒品第三节 教育能让青少年远离毒品第五章 从毒瘾中走出来第一节 戒毒的阶段及体系保障第二节 在家庭关爱中走出毒瘾第三节 警惕反弹,远离毒品第四节 戒毒成功的案例第六章 禁毒是我国一直以来的工作第一节 我国鸦片问题的渊源第二节 清朝政府对鸦片的态度第三节 辛亥革命到新中国成立前夕第四节 新中国成立后的禁毒成果第七章 关于禁毒的法律法规第一节 毒品的法律管制第二节 毒品交易害人害己第三节 国外禁毒案例
2023-09-09 05:57:251

环境危机面前人类如何化解危机

人们一直以为地球上的水、空气是无穷无尽的,所以不担心把千万吨废气送到天空去,又把数以亿吨计的垃圾倒进江河湖海.大家都认为世界这么大,这一点废物算什么?我们错了,其实地球虽大(半径6300多公里),但生物只能在海拔8千米到海底11千米的范围内生活,而占了95%的生物都只能生存在中间约3公里的范围内,人们竟肆意地弄污这有限的生活环境.马克思说过,文明如果是自然地发展,而不是自觉地发展,那么留给我们人类自己的只能是荒漠.中国正处在生态环境的危机点.中国巨大无比的环境欠账总归要还的——无论以哪种形式.中国必须高瞻远瞩,趁还可以控制的时候就开始偿还债务,而不是让债台高筑,最终威胁到全人类.    根据国家环保总局发布的中国因环境损失而下调的GDP估计,清理2004年所产生的环境污染就需要840亿美元,相当于当年GDP的3%.但是,更现实的估计认为,环境损失占中国每年GDP增长的8%-13%.这就意味着,由于环境污染,中国几乎失去改革开放以来所取得的一切经济成就.中国人口的四分之一饮用低于标准的水;三分之一的城市居民呼吸严重污染的空气;中国平均每两天就会发生一起严重的水污染事件.尽管新的五年规划制定了精确的目标,许多省份却还没有实现上一个五年计划的主要环保目标.中国人民在环保问题上最利益攸关,尽管环境危机如此严重,但是只要我们每人出一份力,就能为这个世界多增添一丝美好,就能够成为环境保护的推动力量.我们要保护这个地球,主要是以低碳为主.我们可以做一些力所能及的事情,比如日常生活中,我们可以少开私家车,多乘坐公交车;丢垃圾时进行垃圾分类,可回收的垃圾可以再重复利用;在用水时也可以重复利用,洗过脸的水可以用来擦地板;减少煤炭的使用,减少对树木的砍伐,减少土地的开垦,多利用太阳能,风能等可再生资源等等.这都是我们可以为环境保护出力的地方,虽然只是杯水车薪,但是只要人人都这样做,便会变成一份强大的力量.政府方面,可以呼吁人们保护环境,让人们意识到保护环境的重要性,多做些公益广告和宣传活动,对保护环境出力多的人进行嘉奖.另外可以适当的提高水电的费用,这样人们自然会节约用水,并且少用空调等大功率家电,这样便会减少废气的排放.但这并不是主要的,对大气污染最严重的是那些化工厂排出的废气,大型的化工厂每天要排放大量的污染气体,这不仅影响周围居民的身体健康,更严重污染了环境.政府应该限制这些工厂的运作时间、它们的建造数量,还应该限制它们的建造地点,不能离居民居住的地方太近,这样会严重影响人们的健康.这些工厂排出的水也要经过检验,确认没有污染物质才能排出,否则直接排出到附近的河流中,不但会污染河水,更危害了河水中的生物.然而这并不能保证环境危机彻底解决,要解决环境危机,需要从长远制定可持续发展的战略.科学技术在实现可持续发展战略中的作用是无可替代的.它是最终解决资源、环境危机,实现可持续发展的手段和途径.面对即将到来的能源危机,必须制定可持续的科技发展战略,为化解危机作好充分的准备.首先,科学技术是第一生产力,是现代经济增长的主要源泉.科技进步会提高资源的利用效率,扩大生产的可能性边界.如节能技术、节材技术、节水技术、科学的种养技术,会节约各种资源、能源,减少废弃物的排放.而资源、能源的低消耗又会延缓资源危机的到来,减轻废弃物的排放对自然环境的污染.科技进步还会导致一大批高新技术产业的诞生和教育、科研等知识产业的发展,拓展产业发展的空间.如信息技术的发展带动微电子产业、通信产品、计算机等电子产品的制造和发展,带动软件、信息传播、信息咨询与信息服务业的发展,成为推动经济高速增长的主导产业.生物技术将分离出生物农业、生物化工、生物材料、生物能源、生物制药、生物食品、生物信息等十余个门类的技术,并孕育出众多的生物产业.21世纪类似信息技术、生物技术的高新技术还有新能源技术、新材料技术、航空航天技术等.这些高技术产业和知识产业的发展,不仅具有广阔的发展空间,成为21世纪最有前途的主导产业,而且会促使资源消耗型的经济体系转换为资源节约型经济体系.其次,可持续发展的物质基础是资源的可持续.当经济发展所依赖的资源尤其是不可再生资源枯竭时,必须及时找到替代资源,尤其是用可再生资源替代不可再生资源.从长远看,非再生资源终究要枯竭,物质生产所依赖的资源、能源终究要向可再生资源和能源转换.而科技进步是寻找替代资源、实现经济可持续发展的最终手段.最后,保护生态环境、治理环境污染,要依靠科学技术.科学技术,如环境化学、分析化学、生态学的发展,为人类认识环境问题提供了科学依据.而生态技术、清洁生产的工艺技术,各种有毒物质的分离技术、节能节材技术,则大大减少了生产过程中排放的各种废弃物和有毒物质,或者直接为环境的治理提供了技术手段.此外,地球科学和空间遥感技术在探测自然资源、监测自然灾害和环境恶化方面,有着巨大的应用前景.可持续的科技发展战略,必须把新能源技术和生物技术的开发放在首位.因为,在二十一世纪,最紧迫、对人类生存影响至为重要的资源危机是生化能源危机.石油、天然气、煤炭等生化能源的可开采时间不太长久.一旦枯竭,目前技术条件下替代石化能源的可再生能源——水电、风力发电、地热能发电、潮汐能反电及生物质能,远远不能满足现代工业、农业、交通运输、城乡居民生活对能源的需求.而太阳能、氢能、核聚变能等潜力巨大的新能源,其利用技术还远不成熟,离商业用途还十分遥远.如作为地球最后、也最有潜力的可再生能源——太阳能,其大规模利用技术、尤其是储备技术,短期内还无法开发出来.因此,要实现可持续发展,化解能源危机,必须大力开发新能源技术.此外,矿物燃料(石化能源)是地球气候变暖、灾害频繁发生、臭氧层被破坏的主要原因.如果人类能开发出包括太阳能、氢能、核聚变能和生物质能等无害环境的新能源利用技术,减少二氧化碳的排放量,地球环境状况将得到根本改观.美国进口普卫欣天 猫石油、天然气、煤炭还是重要的化工原料.目前,全球大约1/3的生化资源被用作化工原料,而非动力原料或燃料.各种工业原料,比如重要化学纤维、化学材料,及农业生产大量使用的化肥、农药、农膜,都依赖于石油、天然气、煤炭等化工原料.生化资源的枯竭,不仅打击能源供应和化学工业的发展,而且导致化肥、农药供应中断,农业大规模减产,形成全球性食品危机和饥荒.而生物技术的发展,既可从生物质中提取各种生物质原料,以替代石化原料,满足工业原料的需要;又可通过开发各种生物肥料、生物农药,如种植固氮作物、开发固氮微生物、用生物技术抑制农作物的病虫害,来满足农业发展的需要.因此,防止农业危机、尤其是粮食危机,必须紧紧依靠生物技术的发展.生物技术的发展还将使人类摆脱以大型农业机械为代表的石油农业的道路,使农业走上可持续发展的道路.总之,生态、经济、社会的可持续发展,最终离不开科学技术.我们应根据资源、环境与经济发展的需要,制定可持续的科技发展战略,重点发展新能源技术、生物技术及清洁生产的工艺技术、资源循环利用技术、生态环境技术,以保证人类的可持续发展能力.世界经济和人类生存面临的危机表明,要实现可持续发展,我们必须制定积极的、全面的、有远见的可持续发展战略——不仅要有有远见的科技发展战略,还应有政府的计划调节、对人口增长的控制等.中国的社会主义市场经济体制,在不否定市场调节配置资源的优点的同时,坚持对经济发展实施计划调节.面对21世纪的环境危机,我坚信,中国有能力担当起可持续发展的重任.
2023-09-09 05:57:231