barriers / 阅读 / 详情

高中对数,指数,幂函数技巧

2023-05-20 01:02:13
共1条回复
南yi

指数函数,幂函数都比较好理解,而对数函数相对难懂一些,所以应花更多的时间掌握对数函数的概念

==================

如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.

由定义知:

①负数和零没有对数;

②a>0且a≠1,N>0;

③loga1=0,logaa=1,alogaN=N,logaab=b.

特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.

2对数式与指数式的互化

式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)

3对数的运算性质

如果a>0,a≠1,M>0,N>0,那么

(1)loga(MN)=logaM+logaN.

(2)logaMN=logaM-logaN.

(3)logaMn=nlogaM (n∈R).

问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?

②logaan=? (n∈R)

③对数式与指数式的比较.(学生填表)

式子ab=NlogaN=b名称a—幂的底数

b—

N—a—对数的底数

b—

N—运

质am·an=am+n

am÷an=

(am)n=

(a>0且a≠1,n∈R)logaMN=logaM+logaN

logaMN=

logaMn=(n∈R)

(a>0,a≠1,M>0,N>0)

难点疑点突破

对数定义中,为什么要规定a>0,,且a≠1?

理由如下:

①若a<0,则N的某些值不存在,例如log-28�

②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数�

③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数�

为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数�

解题方法技巧

1

(1)将下列指数式写成对数式:

①54=625;②2-6=164;③3x=27;④13m=5�73.

(2)将下列对数式写成指数式:

①log1216=-4;②log2128=7;

③log327=x;④lg0.01=-2;

⑤ln10=2.303;⑥lgπ=k.

解析由对数定义:ab=N�logaN=b.

解答(1)①log5625=4.②log2164=-6.

③log327=x.④log135.73=m.

解题方法

指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N�logaN=b.(2)①12-4=16.②27=128.③3x=27.

④10-2=0.01.⑤e2.303=10.⑥10k=π.

2

根据下列条件分别求x的值:

(1)log8x=-23;(2)log2(log5x)=0;

(3)logx27=31+log32;(4)logx(2+3)=-1.

解析(1)对数式化指数式,得:x=8-23=?

(2)log5x=20=1. x=?

(3)31+log32=3×3log32=?27=x?

(4)2+3=x-1=1x. x=?

解答(1)x=8-23=(23)-23=2-2=14.

(2)log5x=20=1,x=51=5.

(3)logx27=3×3log32=3×2=6,

∴x6=27=33=(3)6,故x=3.

(4)2+3=x-1=1x,∴x=12+3=2-3.

解题技巧

①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.

②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3

已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值.

解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;

思路二,对指数式的两边取同底的对数,再利用对数式的运算求值�

解答解法一∵logax=4,logay=5,

∴x=a4,y=a5,

∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.

解法二对所求指数式两边取以a为底的对数得

logaA=loga(x512y-13)

=512logax-13logay=512×4-13×5=0,

∴A=1.

解题技巧

有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4

设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围.

解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数?

解答∵x>0,y>0,x·y1+lgx=1,

两边取对数得:lgx+(1+lgx)lgy=0.

即lgy=-lgx1+lgx(x≠110,lgx≠-1).

令lgx=t, 则lgy=-t1+t(t≠-1).

∴lg(xy)=lgx+lgy=t-t1+t=t21+t.

解题规律

对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解.

∴Δ=S2+4S≥0,解得S≤-4或S≥0,

故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞).

5

求值:

(1)lg25+lg2·lg50+(lg2)2;

(2)2log32-log3329+log38-52log53;

(3)设lga+lgb=2lg(a-2b),求log2a-log2b的值;

(4)求7lg20·12lg0.7的值.

解析(1)25=52,50=5×10.都化成lg2与lg5的关系式.

(2)转化为log32的关系式.

(3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢?

(4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数,

设x=7lg20·12lg0.7能否先求出lgx,再求x?

解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2

=2lg5+lg2·(1+lg5)+(lg2)2

=lg5·(2+lg2)+lg2+(lg2)2

=lg102·(2+lg2)+lg2+(lg2)2

=(1-lg2)(2+lg2)+lg2+(lg2)2

=2-lg2-(lg2)2+lg2+(lg2)2=2.

(2)原式=2log32-(log325-log332)+log323-5log59

=2log32-5log32+2+3log32-9

=-7.

(3)由已知lgab=lg(a-2b)2 (a-2b>0),

∴ab=(a-2b)2, 即a2-5ab+4b2=0.

∴ab=1或ab=4,这里a>0,b>0.

若ab=1,则a-2b<0, ∴ab=1( 舍去).

∴ab=4,

∴log2a-log2b=log2ab=log24=2.

(4)设x=7lg20·12lg0.7,则

lgx=lg20×lg7+lg0.7×lg12

=(1+lg2)·lg7+(lg7-1)·(-lg2)

=lg7+lg2=14,

∴x=14, 故原式=14.

解题规律

①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3).

②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6

证明(1)logaN=logcNlogca(a>0,a≠1,c>0,c≠1,N>0);

(2)logab·logbc=logac;

(3)logab=1logba(b>0,b≠1);

(4)loganbm=mnlogab.

解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证.

(2)中logbc能否也换成以a为底的对数.

(3)应用(1)将logab换成以b为底的对数.

(4)应用(1)将loganbm换成以a为底的对数.

解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b·logca=logcN,

∴b=logcNlogca.∴logaN=logcNlogca.

(2)由(1)logbc=logaclogab.

所以 logab·logbc=logab·logaclogab=logac.

(3)由(1)logab=logbblogba=1logba.

解题规律

(1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用. 对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa= mnlogab.

7

已知log67=a,3b=4,求log127.

解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢?

解答已知log67=a,log34=b,

∴log127=log67log612=a1+log62.

又log62=log32log36=log321+log32,

由log34=b,得2log32=b.

∴log32=b2,∴log62=b21+b2=b2+b.

∴log127=a1+b2+b=a(2+b)2+2b.

解题技巧

利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧�8

已知x,y,z∈R+,且3x=4y=6z.

(1)求满足2x=py的p值;

(2)求与p最接近的整数值;

(3)求证:12y=1z-1x.

解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答?

解答(1)解法一3x=4y�log33x=log34y�x=ylog34�2x=2ylog34=ylog316,

∴p=log316.

解法二设3x=4y=m,取对数得:

x·lg3=lgm,ylg4=lgm,

∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4.

由2y=py, 得 2lgmlg3=plgmlg4,

∴p=2lg4lg3=lg42lg3=log316.

(2)∵2=log39<log316<log327=3,

∴2<p<3.

又3-p=log327-log316=log32716,

p-2=log316-log39=log3169,

而2716<169,

∴log32716<log3169,∴p-2>3-p.

∴与p最接近的整数是3.

解题思想

①提倡一题多解.不同的思路,不同的方法,应用了不同的知识或者是相同知识的灵活运用,既发散了思维,又提高了分析问题和解决问题的能力,何乐而不为呢?

②(2)中涉及比较两个对数的大小.这是同底的两个对数比大小.因为底3>1,所以真数大的对数就大,问题转化为比较两个真数的大小,这里超前应用了对数函数的单调性,以鼓励学生超前学习,自觉学习的学习积极性.(3)解法一令3x=4y=6z=m,由于x,y,z∈R+,

∴k>1,则 x=lgmlg3,y=lgmlg4,z=lgmlg6,

所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12·lg4lgm=lg2lgm,

故12y=1z-1x.

解法二3x=4y=6z=m,

则有3=m1x①,4=m1y②,6=m1z③,

③÷①,得m1z-1x=63=2=m12y.

∴1z-1x=12y.

9

已知正数a,b满足a2+b2=7ab.求证:logma+b3=12(logma+logmb)(m>0且m≠1).

解析已知a>0,b>0,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab?

解答logma+b3=logm(a+b3)212=

解题技巧

①将a+b3向二次转化以利于应用a2+b2=7ab是技巧之一.

②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9.

∵a2+b2=7ab,

∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+logmb),

即logma+b3=12(logma+logmb).

思维拓展发散

1

数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数N=a×10n.其中N>0,1≤a<10,n∈Z.这就是用科学记数法表示真数N.其科学性体现在哪里?我们只要研究数N的常用对数,就能揭示其中的奥秘.

解析由已知,对N=a×10n取常用对数得,lgN=n+lga.真数与对数有何联系?

解答lgN=lg(a×10n)=n+lga.n∈Z,1≤a<10,

∴lga∈〔0,1).

我们把整数n叫做N的常用对数的首数,把lga叫做N的常用对数的尾数,它是正的纯小数或0.

小结:①lgN的首数就是N中10n的指数,尾数就是lga,0≤lga<1;

②有效数字相同的不同正数它们的常用对数的尾数相同,只是首数不同;

③当N≥1时,lgN的首数n比它的整数位数少1,当N∈(0,1)时,lgN的首数n是负整数,|n|-1与N的小数点后第一个不是0的有效数字前的零的个数相同.

师生互动

什么叫做科学记数法?

N>0,lgN的首数和尾数与a×10n有什么联系?

有效数字相同的不同正数其常用对数的什么相同?什么不同?

2

若lgx的首数比lg1x的首数大9,lgx的尾数比lg1x的尾数小0�380 4,且lg0.203 4=1.308 3,求lgx,x,lg1x的值.

解析①lg0.203 4=1�308 3,即lg0.203 4=1+0.308 3,1是对数的首数,0.308 3是对数的尾数,是正的纯小数;②若设lgx=n+lga,则lg1x也可表出.

解答设lgx=n+lga,依题意lg1x=(n-9)+(lga+0.380 4).

又lg1x=-lgx=-(n+lga),

∴(n-9)+(lga+0�380 4)=-n-lga,其中n-9是首数,lga+0�380 4是尾数,-n-lga=-(n+1)+(1-lga),-(n+1)是首数1-lga是尾数,所以:

n-9=-(n+1)

lga+0.380 4=1-lga�n=4,

lga=0.308 3.

∴lgx=4+0.308 3=4.308 3,

∵lg0.203 4=1.308 3,∴x=2.034×104.

∴lg1x=-(4+0.308 3)=5.691 7.

解题规律

把lgx的首数和尾数,lg1x的首数和尾数都看成未知数,根据题目的等量关系列方程.再由同一对数的首数等于首数,尾数等于尾数,求出未知数的值,是解决这类问题的常用方法.3

计算:

(1)log2-3(2+3)+log6(2+3+2-3);

(2)2lg(lga100)2+lg(lga).

解析(1)中.2+3与2-3有何关系?2+3+2-3双重根号,如何化简?

(2)中分母已无法化简,分子能化简吗?

解题方法

认真审题、理解题意、抓住特点、找出明确的解题思路和方法,不要被表面的繁、难所吓倒.解答(1)原式=log2-3(2-3)-1+12log6(2+3+2-3)2

=-1+12log6(4+22+3·2-3)

=-1+12log66

=-12.

(2)原式=2lg(100lga)2+lg(lga)=2〔lg100+lg(lga)〕2+lg(lga)=2〔2+lg(lga)〕2+lg(lga)=2.

4

已知log2x=log3y=log5z<0,比较x,3y,5z的大小.

解析已知是对数等式,要比较大小的是根式,根式能转化成指数幂,所以,对数等式应设法转化为指数式.

解答设log2x=log3y=log5z=m<0.则

x=2m,y=3m,z=5m.

x=(2)m,3y=(33)m,5z=(55)m.

下面只需比较2与33,55的大小:

(2)6=23=8,(33)6=32=9,所以2<33.

又(2)10=25=32,(55)10=52=25,

∴2>55.

∴55<2<33. 又m<0,

图2-7-1考查指数函数y=(2)x,y=(33)x,y=(55)x在第二象限的图像,如图2-7-1�

解题规律

①转化的思想是一个重要的数学思想,对数与指数有着密切的关系,在解决有关问题时要充分注意这种关系及对数式与指数式的相互转化.

②比较指数相同,底不同的指数幂(底大于0)的大小,要应用多个指数函数在同一坐标系中第一象限(指数大于0)或第二象限(指数小于0)的性质进行比较�

①是y=(55)x,②是y=(2)x,③是y=(33)x.指数m<0时,图像在第二象限从下到上,底从大到小.所以(33)m<(2)m<(55)m,故3y<x<5z.

潜能挑战测试

1(1)将下列指数式化为对数式:

①73=343;②14-2=16;③e-5=m.

(2)将下列对数式化为指数式:

①log128=-3;②lg10000=4;③ln3.5=p.

2计算:

(1)24+log23;(2)2723-log32;(3)2513log527+2log52.

3(1)已知lg2=0.301 0,lg3=0.477 1,求lg45;

(2)若lg3.127=a,求lg0.031 27.

4已知a≠0,则下列各式中与log2a2总相等的是()

A若logx+1(x+1)=1 ,则x的取值范围是()

A已知ab=M(a>0,b>0,M≠1),且logMb=x,则logMa的值为()

A若log63=0.673 1,log6x=-0.326 9, 则x为()

A若log5〔log3(log2x)〕=0,则x=.

98log87·log76·log65=.

10如果方程lg2x+(lg2+lg3)lgx+lg2·lg3=0的两根为x1、x2,那么x1·x2的值为.

11生态学指出:生物系统中,每输入一个营养级的能量,大约只有10%的能量流到下一个营养级.H1→H2→H3→H4→H5→H6这条生物链中 (Hn表示第n个营养级,n=1,2,3,4,5,6).已知对H1输入了106千焦的能量,问第几个营养级能获得100千焦的能量?

12已知x,y,z∈R+且3x=4y=6z,比较3x,4y,6z的大小.

13已知a,b均为不等于1的正数,且axby=aybx=1,求证x2=y2.

14已知2a·5b=2c·5d=10,证明(a-1)(d-1)=(b-1)(c-1).

15设集合M={x|lg〔ax2-2(a+1)x-1〕>0},若M≠�,M�{x|x<0},求实数a的取值范围.

16在张江高科技园区的上海超级计算中心内,被称为“神威Ⅰ”的计算机运算速度为每秒钟384 000 000 000次.用科学记数法表示这个数为N=,若已知lg3.840=0.584 3,则lgN=.

17某工厂引进新的生产设备,预计产品的生产成本比上一年降低10%,试问经过几年,生产成本降低为原来的40%?(lg2=0.3, lg3=0.48)

18某厂为适应改革开放,完善管理机制,满足市场需求,某种产品每季度平均比上一季度增长10.4%,那么经过y季度增长到原来的x倍,则函数y=f(x)的解析式f(x)=.

名师助你成长

1.(1)①log7343=3.②log1416=-2.③lnm=-5.

(2)①12-3=8.②104=10 000.③ep=3.5.

2.(1)48点拨:先应用积的乘方,再用对数恒等式.

(2)98点拨:应用商的乘方和对数恒等式.

(3)144点拨:应用对数运算性质和积的乘方.

3.(1)0.826 6点拨:lg45=12lg45=12lg902=12(lg32+lg10-lg2).

(2)lg0.031 27=lg(3.127×10-2)=-2+lg3.127=-2+a

4.C点拨:a≠0,a可能是负数,应用对数运算性质要注意对数都有意义.

5.B点拨:底x+1>0且x+1≠1;真数x+1>0.

6.A点拨:对ab=M取以M为底的对数.

7.C点拨:注意0.673 1+0.326 9=1,log61x=0.326 9,

所以log63+log61x=log63x=1.∴3x=6, x=12.

8.x=8点拨:由外向内.log3(log2x)=1, log2x=3, x=23.

9.5点拨:log87·log76·log65=log85, 8log85=5.

10.16点拨:关于lgx的一元二次方程的两根是lgx1,lgx2.

由lgx1=-lg2,lgx2=-lg3,得x1=12,x2=13.

11.设第n个营养级能获得100千焦的能量,

依题意:106·10100n-1=100,

化简得:107-n=102,利用同底幂相等,得7-n=2,

或者两边取常用对数也得7-n=2.

∴n=5,即第5个营养级能获能量100千焦.

12�设3x=4y=6z=k,因为x,y,z∈R+,

所以k>1.取以k为底的对数,得:

x=1logk3,y=1logk4,z=1logk6.

∴3x=3logk3=113logk3=1logk33,

同理得:4y=1logk44,6z=1logk66.

而33=1281,44=1264,66=1236,

∴logk33>logk44>logk66.

又k>1,33>44>66>1,

∴logk33>logk44>logk66>0,∴3x<4y<6z.

13.∵axby=aybx=1,∴lg(axby)=lg(aybx)=0,

即xlga+ylgb=ylga+xlgb=0.(※)

两式相加,得x(lga+lgb)+y(lga+lgb)=0.

即(lga+lgb)(x+y)=0.∴lga+lgb=0 或x+y=0.

当lga+lgb=0时,代入xlga+ylgb=0,得:

(x-y)lga=0, a是不为1的正数lga≠0,∴x-y=0.

∴x+y=0或x-y=0,∴x2=y2.

14.∵2a5b=10,∴2a-1=51-b.两边取以2为底的对数,得:a-1=(1-b)log25.

∴log25=a-11-b(b≠1). 同理得log25=c-11-d(d≠1).

即b≠1,d≠1时,a-11-b=c-11-d.

∴(a-1)(1-d)=(c-1)(1-b),

∴(a-1)(d-1)=(b-1)(c-1).

当b=1,c=1时显然成立.

15.设lg〔ax2-2(a+1)x-1〕=t (t>0),则

ax2-2(a+1)x-1=10t(t>0).

∴10t>1 ,ax2-2(a+1)x-1>1,∴ax2-2(a+1)x-2>0.

①当a=0时,解集{x|x<-1}�{x|x<0};

当a≠0时,M≠�且M�{x|x<0}.

∴方程ax2-2(a+1)x-2=0 必有两不等实根,设为x1,x2且x1<x2,则

②当a>0时,M={x|x<x1,或x>x2},显然不是{x|x<0}的子集;

③当a<0时,M={x|x1<x<x2}只要:

a<0,

Δ=4(a+1)2+8a>0,

x1+x2=2(a+1)a<0,

x1·x2=-2a>0.

解得3-2<a<0,综上所求,a的取值范围是:3-2<a≤0.

16.N=3.840×1011, lgN=11.584 3.

17.设经过x年,成本降为原来的40%.则

(1-10%)x=40%,两边取常用对数,得:

x·lg(1-10%)=lg40% ,

即x=lg0.4lg0.9=lg4-1lg9-1=2lg2-12lg3-1=10.

所以经过10年成本降低为原来的40%.

18.f(x)=log1.104x〔或f(x)=lgxlg1.104〕.

点拨:设原来一个季度产品为a,则a(1+10.4%)y=xa,∴y=log1.104x.

相关推荐

幂的运算六个基本公式是什么?

幂的运算六个基本公式是如下:1、同底数幂相乘:a^m·a^n=a^(m+n)2、幂的乘方:(a^m)n=a^mn3、积的乘方:(ab)^m=a^m·b^m4、同底数幂相除:a^m÷a^n=a^(m-n)(a≠0)5、a^(m+n)=a^m·a^n6、a^mn=(a^m)·n同底数幂相乘的性质:同底数幂相乘,底数不变,指数相加。同底数幂相除,底数不变,指数相减。幂的乘方,底数不变,指数相乘。通过幂的运算到多项式乘法的学习,初步理解“特殊—一般—特殊”的认识规律,发展思维能力。在学习幂的运算性质、乘法法则的过程中,培养观察、综合、类比、归纳、抽象、概括等思维能力。
2023-01-13 11:42:321

不同底数幂的运算法则是什么?

指数相同,底数不同的运算法则:a^n*b^n=(a*b)^n,这是积的乘方运算的逆运算。若底数和指数都不同,则应先转化为底数或指数相同,然后运用法则计算。若底数不同指数相同,则有(a^m)*(b^m)=(ab)^m,这是积的乘方运算的逆运算。已知中的幂和要求的幂都是2为底,x+1=( x-1)+2,根据同底数幂乘法公式的反向公式“指数相加等于幂相乘”就可以顺利求出最终结果,过程如下:一般的解法是先使用同底数幂乘法公式简化左边的式子,然后根据两个幂相等,如果底相等,那么指数也相等,列方程,最后解方程求出a的值。幂运算法则口诀:同底数幂的乘法:底数不变,指数相加幂的乘方。同底数幂的除法:底数不变,指数相减幂的乘方。幂的指数乘方:等于各因数分别乘方的积商的乘方。分式乘方:分子分母分别乘方,指数不变。
2023-01-13 11:42:441

幂次方计算公式是什么呢?

幂次方的计算公式有(a^m)^n=a^(mn),(ab)^n=a^nb^n,同底数幂的乘法法则是底数不变,指数相加幂的乘方,同底数幂的除法法则是底数不变,指数相减幂的乘方。幂(power)是指乘方运算的结果,n^m指该式意义为m个n相乘。幂函数是基本初等函数之一,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数,可以表示为y=xα。幂的大小比较法1、计算比较法先通过幂的计算,然后根据结果的大小,来进行比较的。2、底数比较法在指数相同的情况下,通过比较底数的大小,来确定两个幂的大小。
2023-01-13 11:44:431

幂怎样运算?

的高地方官地方官地方官地方官
2023-01-13 11:44:463

数学中指数函数,对数函数,幂函数的运算法则

指数a的m次方乘以a的n次方等于a的m加n次方log以a为底的m的对数乘以log以a为底的n的对数等于log以a为底的(m+n)的对数幂函数和指数运算差不多!!要把书好好看看哦!
2023-01-13 11:44:492

数学中指数函数,对数函数,幂函数的运算法则 原来学过的 现在忘了

指数a的m次方乘以a的n次方等于a的m加n次方 log以a为底的m的对数乘以log以a为底的n的对数等于log以a为底的(m+n)的对数 幂函数和指数运算差不多! 要把书好好看看哦!
2023-01-13 11:44:561

e的幂次方运算法则是什么?

(1)ln e = 1(2)ln e^x = x(3)ln e^e = e数学运算规则,完成运算,得出结果的方法、程序或途径通常叫做“运算法则”,实质上也就是“运算方法”。运算法则通常将所要求的操作程序分成几点,表述为文本。或者按化归的思想,将当前的运算归结为学生早先已掌握的运算。相关介绍数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西的布巾,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的,故这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫做幂。
2023-01-13 11:45:021

指数、对数、幂函数详解

够详细了 加油指数函数,幂函数都比较好理解,而对数函数相对难懂一些,所以应花更多的时间掌握对数函数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①若a<0,则N的某些值不存在,例如log-28� ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数� ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数� 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数� 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④13m=5�73. (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:ab=N�logaN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法 指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N�logaN=b.(2)①12-4=16.②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3. 解题技巧 ①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化. ②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3 已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值. 解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值; 思路二,对指数式的两边取同底的对数,再利用对数式的运算求值� 解答解法一∵logax=4,logay=5, ∴x=a4,y=a5, ∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1. 解法二对所求指数式两边取以a为底的对数得 logaA=loga(x512y-13) =512logax-13logay=512×4-13×5=0, ∴A=1. 解题技巧 有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4 设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围. 解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数? 解答∵x>0,y>0,x·y1+lgx=1, 两边取对数得:lgx+(1+lgx)lgy=0. 即lgy=-lgx1+lgx(x≠110,lgx≠-1). 令lgx=t, 则lgy=-t1+t(t≠-1). ∴lg(xy)=lgx+lgy=t-t1+t=t21+t. 解题规律 对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解. ∴Δ=S2+4S≥0,解得S≤-4或S≥0, 故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞). 5 求值: (1)lg25+lg2·lg50+(lg2)2; (2)2log32-log3329+log38-52log53; (3)设lga+lgb=2lg(a-2b),求log2a-log2b的值; (4)求7lg20·12lg0.7的值. 解析(1)25=52,50=5×10.都化成lg2与lg5的关系式. (2)转化为log32的关系式. (3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢? (4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数, 设x=7lg20·12lg0.7能否先求出lgx,再求x? 解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2 =2lg5+lg2·(1+lg5)+(lg2)2 =lg5·(2+lg2)+lg2+(lg2)2 =lg102·(2+lg2)+lg2+(lg2)2 =(1-lg2)(2+lg2)+lg2+(lg2)2 =2-lg2-(lg2)2+lg2+(lg2)2=2. (2)原式=2log32-(log325-log332)+log323-5log59 =2log32-5log32+2+3log32-9 =-7. (3)由已知lgab=lg(a-2b)2 (a-2b>0), ∴ab=(a-2b)2, 即a2-5ab+4b2=0. ∴ab=1或ab=4,这里a>0,b>0. 若ab=1,则a-2b<0, ∴ab=1( 舍去). ∴ab=4, ∴log2a-log2b=log2ab=log24=2. (4)设x=7lg20·12lg0.7,则 lgx=lg20×lg7+lg0.7×lg12 =(1+lg2)·lg7+(lg7-1)·(-lg2) =lg7+lg2=14, ∴x=14, 故原式=14. 解题规律 ①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3). ②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6 证明(1)logaN=logcNlogca(a>0,a≠1,c>0,c≠1,N>0); (2)logab·logbc=logac; (3)logab=1logba(b>0,b≠1); (4)loganbm=mnlogab. 解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证. (2)中logbc能否也换成以a为底的对数. (3)应用(1)将logab换成以b为底的对数. (4)应用(1)将loganbm换成以a为底的对数. 解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b·logca=logcN, ∴b=logcNlogca.∴logaN=logcNlogca. (2)由(1)logbc=logaclogab. 所以 logab·logbc=logab·logaclogab=logac. (3)由(1)logab=logbblogba=1logba. 解题规律 (1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用. 对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa= mnlogab. 7 已知log67=a,3b=4,求log127. 解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢? 解答已知log67=a,log34=b, ∴log127=log67log612=a1+log62. 又log62=log32log36=log321+log32, 由log34=b,得2log32=b. ∴log32=b2,∴log62=b21+b2=b2+b. ∴log127=a1+b2+b=a(2+b)2+2b. 解题技巧 利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧�8 已知x,y,z∈R+,且3x=4y=6z. (1)求满足2x=py的p值; (2)求与p最接近的整数值; (3)求证:12y=1z-1x. 解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答? 解答(1)解法一3x=4y�log33x=log34y�x=ylog34�2x=2ylog34=ylog316, ∴p=log316. 解法二设3x=4y=m,取对数得: x·lg3=lgm,ylg4=lgm, ∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4. 由2y=py, 得 2lgmlg3=plgmlg4, ∴p=2lg4lg3=lg42lg3=log316. (2)∵2=log39<log316<log327=3, ∴2<p<3. 又3-p=log327-log316=log32716, p-2=log316-log39=log3169, 而2716<169, ∴log32716<log3169,∴p-2>3-p. ∴与p最接近的整数是3. 解题思想 ①提倡一题多解.不同的思路,不同的方法,应用了不同的知识或者是相同知识的灵活运用,既发散了思维,又提高了分析问题和解决问题的能力,何乐而不为呢? ②(2)中涉及比较两个对数的大小.这是同底的两个对数比大小.因为底3>1,所以真数大的对数就大,问题转化为比较两个真数的大小,这里超前应用了对数函数的单调性,以鼓励学生超前学习,自觉学习的学习积极性.(3)解法一令3x=4y=6z=m,由于x,y,z∈R+, ∴k>1,则 x=lgmlg3,y=lgmlg4,z=lgmlg6, 所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12·lg4lgm=lg2lgm, 故12y=1z-1x. 解法二3x=4y=6z=m, 则有3=m1x①,4=m1y②,6=m1z③, ③÷①,得m1z-1x=63=2=m12y. ∴1z-1x=12y. 9 已知正数a,b满足a2+b2=7ab.求证:logma+b3=12(logma+logmb)(m>0且m≠1). 解析已知a>0,b>0,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab? 解答logma+b3=logm(a+b3)212= 解题技巧 ①将a+b3向二次转化以利于应用a2+b2=7ab是技巧之一. ②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9. ∵a2+b2=7ab, ∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+logmb), 即logma+b3=12(logma+logmb). 思维拓展发散 1 数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数N=a×10n.其中N>0,1≤a<10,n∈Z.这就是用科学记数法表示真数N.其科学性体现在哪里?我们只要研究数N的常用对数,就能揭示其中的奥秘. 解析由已知,对N=a×10n取常用对数得,lgN=n+lga.真数与对数有何联系? 解答lgN=lg(a×10n)=n+lga.n∈Z,1≤a<10, ∴lga∈〔0,1). 我们把整数n叫做N的常用对数的首数,把lga叫做N的常用对数的尾数,它是正的纯小数或0. 小结:①lgN的首数就是N中10n的指数,尾数就是lga,0≤lga<1; ②有效数字相同的不同正数它们的常用对数的尾数相同,只是首数不同; ③当N≥1时,lgN的首数n比它的整数位数少1,当N∈(0,1)时,lgN的首数n是负整数,|n|-1与N的小数点后第一个不是0的有效数字前的零的个数相同. 师生互动 什么叫做科学记数法? N>0,lgN的首数和尾数与a×10n有什么联系? 有效数字相同的不同正数其常用对数的什么相同?什么不同? 2 若lgx的首数比lg1x的首数大9,lgx的尾数比lg1x的尾数小0�380 4,且lg0.203 4=1.308 3,求lgx,x,lg1x的值. 解析①lg0.203 4=1�308 3,即lg0.203 4=1+0.308 3,1是对数的首数,0.308 3是对数的尾数,是正的纯小数;②若设lgx=n+lga,则lg1x也可表出. 解答设lgx=n+lga,依题意lg1x=(n-9)+(lga+0.380 4). 又lg1x=-lgx=-(n+lga), ∴(n-9)+(lga+0�380 4)=-n-lga,其中n-9是首数,lga+0�380 4是尾数,-n-lga=-(n+1)+(1-lga),-(n+1)是首数1-lga是尾数,所以: n-9=-(n+1) lga+0.380 4=1-lga�n=4, lga=0.308 3. ∴lgx=4+0.308 3=4.308 3, ∵lg0.203 4=1.308 3,∴x=2.034×104. ∴lg1x=-(4+0.308 3)=5.691 7. 解题规律 把lgx的首数和尾数,lg1x的首数和尾数都看成未知数,根据题目的等量关系列方程.再由同一对数的首数等于首数,尾数等于尾数,求出未知数的值,是解决这类问题的常用方法.3 计算: (1)log2-3(2+3)+log6(2+3+2-3); (2)2lg(lga100)2+lg(lga). 解析(1)中.2+3与2-3有何关系?2+3+2-3双重根号,如何化简? (2)中分母已无法化简,分子能化简吗? 解题方法 认真审题、理解题意、抓住特点、找出明确的解题思路和方法,不要被表面的繁、难所吓倒.解答(1)原式=log2-3(2-3)-1+12log6(2+3+2-3)2 =-1+12log6(4+22+3·2-3) =-1+12log66 =-12. (2)原式=2lg(100lga)2+lg(lga)=2〔lg100+lg(lga)〕2+lg(lga)=2〔2+lg(lga)〕2+lg(lga)=2. 4 已知log2x=log3y=log5z<0,比较x,3y,5z的大小. 解析已知是对数等式,要比较大小的是根式,根式能转化成指数幂,所以,对数等式应设法转化为指数式. 解答设log2x=log3y=log5z=m<0.则 x=2m,y=3m,z=5m. x=(2)m,3y=(33)m,5z=(55)m. 下面只需比较2与33,55的大小: (2)6=23=8,(33)6=32=9,所以2<33. 又(2)10=25=32,(55)10=52=25, ∴2>55. ∴55<2<33. 又m<0, 图2-7-1考查指数函数y=(2)x,y=(33)x,y=(55)x在第二象限的图像,如图2-7-1� 解题规律 ①转化的思想是一个重要的数学思想,对数与指数有着密切的关系,在解决有关问题时要充分注意这种关系及对数式与指数式的相互转化. ②比较指数相同,底不同的指数幂(底大于0)的大小,要应用多个指数函数在同一坐标系中第一象限(指数大于0)或第二象限(指数小于0)的性质进行比较� ①是y=(55)x,②是y=(2)x,③是y=(33)x.指数m<0时,图像在第二象限从下到上,底从大到小.所以(33)m<(2)m<(55)m,故3y<x<5z. 潜能挑战测试 1(1)将下列指数式化为对数式: ①73=343;②14-2=16;③e-5=m. (2)将下列对数式化为指数式: ①log128=-3;②lg10000=4;③ln3.5=p. 2计算: (1)24+log23;(2)2723-log32;(3)2513log527+2log52. 3(1)已知lg2=0.301 0,lg3=0.477 1,求lg45; (2)若lg3.127=a,求lg0.031 27. 4已知a≠0,则下列各式中与log2a2总相等的是() A若logx+1(x+1)=1 ,则x的取值范围是() A已知ab=M(a>0,b>0,M≠1),且logMb=x,则logMa的值为() A若log63=0.673 1,log6x=-0.326 9, 则x为() A若log5〔log3(log2x)〕=0,则x=. 98log87·log76·log65=. 10如果方程lg2x+(lg2+lg3)lgx+lg2·lg3=0的两根为x1、x2,那么x1·x2的值为. 11生态学指出:生物系统中,每输入一个营养级的能量,大约只有10%的能量流到下一个营养级.H1→H2→H3→H4→H5→H6这条生物链中 (Hn表示第n个营养级,n=1,2,3,4,5,6).已知对H1输入了106千焦的能量,问第几个营养级能获得100千焦的能量? 12已知x,y,z∈R+且3x=4y=6z,比较3x,4y,6z的大小. 13已知a,b均为不等于1的正数,且axby=aybx=1,求证x2=y2. 14已知2a·5b=2c·5d=10,证明(a-1)(d-1)=(b-1)(c-1). 15设集合M={x|lg〔ax2-2(a+1)x-1〕>0},若M≠�,M�{x|x<0},求实数a的取值范围. 16在张江高科技园区的上海超级计算中心内,被称为“神威Ⅰ”的计算机运算速度为每秒钟384 000 000 000次.用科学记数法表示这个数为N=,若已知lg3.840=0.584 3,则lgN=. 17某工厂引进新的生产设备,预计产品的生产成本比上一年降低10%,试问经过几年,生产成本降低为原来的40%?(lg2=0.3, lg3=0.48) 18某厂为适应改革开放,完善管理机制,满足市场需求,某种产品每季度平均比上一季度增长10.4%,那么经过y季度增长到原来的x倍,则函数y=f(x)的解析式f(x)=.
2023-01-13 11:45:171

对数函数和幂函数的转换是什么?

 
2023-01-13 11:45:213

幂的四则运算法则

等于R和不小于R不都是正确的吗?不小于R并不代表大于R。这就是我觉得考试最恶心的地方,数学问题玩文字游戏最套路了
2023-01-13 11:45:312

幂次方的加减乘除

同底数幂的乘法:底数不变,指数相加幂的乘方。同底数幂的除法:底数不变,指数相减幂的乘方。幂的指数乘方:等于各因数分别乘方的积商的乘方。分式乘方:分子分母分别乘方,指数不变。同底数幂的除法是整式除法的基础,要熟练掌握。同底数幂的除法法则是根据除法是乘法的逆运算归纳总结出来的,和前面讲的幂的运算的三个法则相比,在这里底数a是不能为零的,否则除数为零,除法就没有意义了。又因为在这里没有引入负指数和零指数,所以又规定m>n。能从特殊到一般地归纳出同底数幂的除法法则。扩展资料:同底数幂的两个幂相除,如果被除式的指数小于除式的指数,即m-n<0时,指数部分为负整数则转化成负整数指数幂,再用负整数指数幂法则。掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法),能用字母式子和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。
2023-01-13 11:45:376

分数指数幂的运算法则是什么?

分数指数幂的运算法则如下:指数相乘底数不变,幂的乘方相乘除。指数加减底数不变,同底数幂相乘除。积商乘方原指数,换底乘方再乘除。负整数的指数幂,指数转正求倒数。非零数的零次幂,常值为 1不相乘除。看到分数指数幂,底数必为非负数。乘方指数是分子,根指数要当分母。对于任意有理数r,s,均有下面的运算性质:(1)ar×as=a(r+s) (a>0,r,s∈Q)。(2) (ar)s=ars (a>0,r,s∈Q)。(3) (ab)r=ar×br (a>0,b>0,r∈Q)。分数指数幂的意义:分数指数幂是一个数的指数为分数,如2的1/2次幂就是根号2。分数指数幂是根式的另一种表示形式,即n次根号(a的m次幂)可以写成a的m/n次幂。幂是指数值,如8的1/3次幂=2,一个数的b分之a次方等于b次根号下这个数的a次方。正数的正分数指数幂的意义是——a的n分之m次方=n√a的m次方(a>0,m、n属于正整数,n>1),0的正分数指数幂等于0,0的负分数指数幂没有意义。规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
2023-01-13 11:45:511

幂函数的平方怎么算

幂函数的平方等于两个一样分幂函数相乘。1、同底数幂的乘法:2、幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n。3、 同底数幂的除法:(1)同底数幂的除法:am÷an=a(m-n) (a≠0, m, n均为正整数,并且m>n)。(2)零指数:a0=1 (a≠0)(3)负整数指数幂:a-p= (a≠0, p是正整数)①当a=0时没有意义,0-2, 0-3都无意义。正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0)。b、函数的图像在区间[0,+∞)上是增函数。c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。
2023-01-13 11:45:591

同底数幂运算法则是什么?

同底数幂运算法则:同底数幂相乘,底数不变,指数相加。同底数幂相除,底数不变,指数相减。幂的乘方,底数不变,指数相乘。同底数幂定义:多个幂的底数相同。同底数幂的乘法公式:a^m×a^n=a^(m+n))(m、n都是整数)。同底数幂的乘法的前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式。同底数幂运算口诀指数加减底不变,同底数幂相乘除。指数相乘底不变,幂的乘方要清楚。积商乘方原指数,换底乘方再乘除。非零数的零次幂,常值为1不糊涂。负整数的指数幂,指数转正求倒数。看到分数指数幂,想到底数必非负。乘方指数是分子,根指数要当分母。
2023-01-13 11:46:121

多重幂运算顺序

多重幂运算顺序:先是幂的运算,再是数的运算。y的n+1次方·y的2n-2(n是大于1的整数)=y^(n+1)·y^(2n-2)=y^(3n-1)(-2)2n×(-2n)(n是正整数)=-4n×(-2n)=8n²(a+b)三次方(a+b)(a+b)四次方=(a+b)³ (a+b)(a+b)^4=(a+b)^8(X-Y)二次方(y-x)三次方=(y-x)²(y-x)³=(y-x)^5法则1、同底数幂相乘,底数不变,指数相加,即a^m*a^n=a^(m+n)。2、同底数幂相除,底数不变,指数相减,即a^m/a^n=a^(m-n)。3、幂的乘方,底数不变,指数相乘,即(a^m)^n=a^(mn)。4、积的乘方,等于积里的每个因式分别乘方,然后再把所得的幂相乘,即(a^mb^n)^p=a^(mp)*b^(np)(其中m,n,p都是整数,且a,b均不为0)。
2023-01-13 11:46:201

复数幂函数

设z1=ae^(iθ1)=a(cos(θ1)+isin(θ1)) z2=be^(iθ2)=b(cos(θ2)+isin(θ2)) z1/z2=(a/b)[(cos(θ1)+isin(θ1))]/[(cos(θ2)+isin(θ2))] [(cos(θ1)+isin(θ1))]/[(cos(θ2)+isin(θ2))] =[(cos(θ1)+isin(θ1))][(cos(θ2)-isin(θ2))]/[(cos(θ2))^2+(sin(θ2))^2] =[(cos(θ1)cos(θ2)+sin(θ1)sin(θ2))+i(sin(θ1)cos(θ2)-cos(θ1)sin(θ2))/1 =cos(θ1-θ2)+isin(θ1-θ2) =e^(i(θ1-θ2)) 所以z1/z2=a/b*e^(i(θ1-θ2)) 例如Z1=3e^(iθ1),Z2=4^(iθ2) Z1/Z2=3/4*e^(i(θ1-θ2))
2023-01-13 11:46:561

负指数幂的运算法则是什么?

负指数幂的运算法则:1、同底数幂相乘,底数不变,指数相加。即 (m,n都是正整数)。2、幂的乘方,底数不变,指数相乘。即 (m,n都是正整数)。3、积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。即=(m,n都是正整数)。4、分式乘方, 分子分母各自乘方。当幂的指数为负数时,称为“负指数幂”。正数a的-r次幂(r为任何正数)定义为a的r次幂的倒数。乘法运算法则:1.同底数幂相乘,底数不变,指数相加。即 (m,n都是正整数)。2.幂的乘方,底数不变,指数相乘。即 (m,n都是正整数)。3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。即=(m,n都是正整数)。4.分式乘方, 分子分母各自乘方。
2023-01-13 11:46:591

负指数幂的运算法则是什么?

乘法运算法则:1.同底数幂相乘,底数不变,指数相加。即 (m,n都是正整数)。2.幂的乘方,底数不变,指数相乘。即 (m,n都是正整数)。3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。即=(m,n都是正整数)。4.分式乘方, 分子分母各自乘方。除法运算法则:1.同底数幂相除,底数不变,指数相减。即(a≠0,m,n都是正整数,且m>n)。2.规定:(1) 任何不等于零的数的零次幂都等于1。即(a≠0)。(2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数 即(a≠0,p是正整数)。混合运算法则:对于乘除和乘方的混合运算,应先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算。相关概念:正整数指数幂、负整数指数幂、零指数幂统称为整数指数幂。正整数指数幂的运算法则对整数指数幂仍然是成立的。当幂的指数为负数时,称为“负指数幂”。正数a的-r次幂(r为任何正数)定义为a的r次幂的倒数。
2023-01-13 11:47:021

幂函数的算法

1、同底数幂的乘法:搜狗问问2、幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n。3、同底数幂的除法:(1)同底数幂的除法:am÷an=a(m-n) (a≠0, m, n均为正整数,并且m>n)。(2)零指数:a0=1 (a≠0)。(3)负整数指数幂:a-p= (a≠0, p是正整数)①当a=0时没有意义,0-2, 0-3都无意义。法则口诀:同底数幂的乘法:底数不变,指数相加幂的乘方;同底数幂的除法:底数不变,指数相减幂的乘方;幂的指数乘方:等于各因数分别乘方的积商的乘方分式乘方:分子分母分别乘方,指数不变。扩展资料计算:x5·xn-3·x4-3x2·xn·x4解:x^5·x^n-3·x^4-3x^2·x^n·x^4 分析:①先做乘法再做减法=x(5+n-3+4)-3x(2+n+4 )②运算结果指数能合并的要合并=x(6+n)-3x(6+n) ③3x2即为3·(x2)=(1-3)x6+n ④x 6+n,与-3x6+n是同类项,=-2x 6+n合并时将系数进行运算(1-3)=-2。
2023-01-13 11:47:131

急!要幂函数的运算法则,注意不是指数函数(高

同底数幂相乘,底数不变,指数相加,即a^m*a^n=a^(m+n)同底数幂相除,底数不变,指数相减,即a^m/a^n=a^(m-n),幂的乘方,底数不变,指数相乘,即(a^m)^n=a^(mn),积的乘方,等于积里的每个因式分别乘方,然后再把所得的幂相乘,即(a^mb^n)^p=a^(mp)*b^(np).(其中m,n,p都是整数,且a,b均不为0.)
2023-01-13 11:47:161

3的3x次和3的x次方是什么关系

成三倍关系。幂函数(power function)是基本初等函数之一。一般地,y=x^α(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。幂函数运算法则:同底数幂相乘,底数不变,指数相加,即a^m*a^n=a^(m+n);同底数幂相除,底数不变,指数相减,即a^m/a^n=a^(m-n)等。
2023-01-13 11:48:511

高中的幂函数

 幂函数的一般形式为y=x^a。  如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:  首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;  排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数;  排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。  总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:  如果a为任意实数,则函数的定义域为大于0的所有实数;  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。  在x大于0时,函数的值域总是大于0的实数。  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。  而只有a为正数,0才进入函数的值域。  由于x大于0是对a的任意取值都有意义的,  必须指出的是,当x<0时,幂函数存在一个相当棘手的内在矛盾:[x^(a/b)]^(c/d)、[x^(c/d)]^(a/b)、x^(ac/bd)这三者相等吗?若p/q是ac/bd的既约分数,x^(ac/bd)与x^(p/q)以及x^(kp/kq)(k为正整数)又能相等吗?也就是说,在x<0时,幂函数值的唯一性与幂指数的运算法则发生不可调和的冲突。对此,现在有两种观点:一种坚持通过约定既约分数来处理这一矛盾,能很好解决幂函数值的唯一性问题,但米指数的运算法则较难维系;另一种观点则认为,直接取消x<0这种情况,即规定幂函数的定义域为[0,+∞)或(0,+∞)。看来这一问题有待专家学者们认真讨论后予以解决。  因此下面给出幂函数在第一象限的各自情况.  可以看到:  (1)所有的图形都通过(1,1)这点.(a≠0)  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。  (3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸。  (4)当a小于0时,a越小,图形倾斜程度越大。  (5)显然幂函数无界限。   (6)a=0,该函数为偶函数 {x|x≠0}。
2023-01-13 11:48:571

怎么解幂函数哦???帮帮忙啦!明天数学考试!!妈呀 呜~~~~(>_

(1)x的3分之2次方=三次根号下x的平方,所以x的平方=25的立方,x=125(2)4的负x次方=64=4的立方,x=-3(3)五次根号下x=2分之1的平方,x=2分之1的10次方,x=1024分之一 一般解幂函数就是要掌握幂函数的性质,记住幂函数的运算法则
2023-01-13 11:49:042

2的5次方加2的6次方这么快速算

不能快速算,只能一步一步算,除非你知道2的5次方和2的6次方等于多少就能直接加2的5次方等于322的6次方等于6432+64=96
2023-01-13 11:49:183

指数相同,底数不同的运算法则是什么?

指数相同,底数不同的运算法则:a^n*b^n=(a*b)^n。其实这是幂运算,例如:a^5·a^2=a^(5+2)=a^7,如a的负二次方乘a的负三次方等于a的负五次方。a的0次方乘a的0次方等于a的0次方,如不是同底数,应先变成同底数,注意符号。幂运算法则口诀:同底数幂的乘法:底数不变,指数相加幂的乘方;同底数幂的除法:底数不变,指数相减幂的乘方;幂的指数乘方:等于各因数分别乘方的积商的乘方;分式乘方:分子分母分别乘方,指数不变。
2023-01-13 11:49:201

负指数幂的运算法则是什么?

负指数幂的运算法则:指数加减底不变,同底数幂相乘除。指数相乘底不变,幂的乘方要清楚。积商乘方原指数,换底乘方再乘除。 非零数的零次幂,常值为 1不糊涂。 负整数的指数幂,指数转正求倒数。 看到分数指数幂,想到底数必非负。 乘方指数是分子,根指数要当分母。幂的指数当幂的指数为负数时,称为“负指数幂”。正数a的-r次幂(r为任何正数)定义为a的r次幂的倒数。如:3的4次方=3^4=3×3×3×3=9×3×3=27×3=81如上面的式子所示,2的6次方,就是6个2相乘,3的4次方,就是4个3相乘。如果是比较大的数相乘,还可以结算计算器、计算机等计算工具来进行计算。
2023-01-13 11:49:261

多项式转化问题。如图,第一步到第三步之间如何转化的?另外第二行中为什么那三个多项式都>1?求详细过程

第一步到第三步的转化主要是幂函数的运算,幂函数相乘时,指数是可以相加减的,你自己算算就出来了。至于第二行中,因为a>b>c,即a/b>1,a-b>0,所以根据幂函数的运算,是大于1的,第二个是一样的道理,第三个因为正好都相反的,所以也是大于1的。整个题目主要就是运用的幂函数的运算法则,很简单的,把书多看看就会了。。。
2023-01-13 11:49:291

谁能帮我总结一下函数f(x)的运算法则呢?

f(a+b)=f(a)*f(b) 指数函数型f(a+b)=f(a)+f(b) 正比例函数型f(ab)=f(a)f(b) 幂函数型f(ab)=f(a)+f(b) 对数函数型:f(x+y)+f(x-y)=2f(x)f(y) 三角函数f(x)=f(x+T) 周期为T的周期函数: f(a-x)=f(a+x) f(x)关于x=a对称 f(a-x)=-f(a+x) f(x)关于(a,0)对称 希望帮到你!
2023-01-13 11:49:321

高中数学学习幂函数的口诀。解释下。

幂函数的单调性与奇偶性的口诀奇偶性:看幂函数的指数(分数形式已化为最简形式) (1)分母为奇数分子为奇数,则该幂函数为奇函数 (2)分母为奇数分子为偶数,则该幂函数为偶函数 (3)分母为偶数,则该幂函数为非奇非偶函数第一象限的单调性 (1)指数为正数,则该幂函数为增函数 (2)指数为负数,则该幂函数为减函数
2023-01-13 11:49:353

同指数幂相乘的法则

乘法1.同底数幂相乘,底数不变,指数相加。即a^m·a^n=a^(m+n)(m,n都是有理数)。2.幂的乘方,底数不变,指数相乘。即(a^m)^n=a^mn(m,n都是有理数)。3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。即 (ab)^n=a^n·b^n (m,n都是有理数)。4.分式乘方,分子分母各自乘方。即(a/b)^n=a^n/b^n(b≠0)。除法1.同底数幂相除,底数不变,指数相减。即a^m/a^n=a^(m-n)(a≠0,m,n都是有理数)。2.规定:(1)任何不等于零的数的零次幂都等于1。即a^0=1(a≠0)。(2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。即a^(-p)=1/(a^(-p))(a≠0,p是正整数)。(规定了零指数幂与负整数指数幂的意义,就把指数的概念从正整数推广到了整数。正整数指数幂的各种运算法则对整数指数幂都适用。)混合运算对于乘除和乘方的混合运算,应先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算幂的底数是分数或负数时,底数应该添上括号,如(-5)^2 (1/4)^4
2023-01-13 11:49:384

2014高考数学必备公式

海伦定律,
2023-01-13 11:49:413

100的lg2次方怎么算

lg100的2次方=lg100^2=lg10^4=4
2023-01-13 11:49:482

幂运算与根号?

n次根号a就是a的1/n次方,n次根号a的m次方等于a的m/n次方。
2023-01-13 11:49:513

数学]急求高中数学大佬,想知道标记的这些步骤是怎么来的qwq?

幂函数的运算法则
2023-01-13 11:49:592

指数相同,底数不同的运算法则是什么?

指数相同,底数不同的运算法则是a^n*b^n=(a*b)^n。指数相同,底数不同的运算法则就是,加减法是没有运算法则的,乘法的运算法则,就是它们的底数不同意味着它们属于积的乘方的积,它也是一个逆运算的,还有就是除法运算,就是底数不能为0,相除的时候,就是商的乘方,等于乘方的商。幂运算法则口诀同底数幂的乘法,底数不变,指数相加幂的乘方,同底数幂的除法,底数不变,指数相减幂的乘方,幂的指数乘方,等于各因数分别乘方的积商的乘方,分式乘方,分子分母分别乘方,指数不变。在这里指数相同底数不同的是属于积的乘方,也就是说它们的乘积等于底数的积的乘方,也就是积的乘方等于底数相乘指数变变,也就是积的乘方等于乘方的积,同样相除的时候就是底数相除指数不变,至于相加减是不能运算的。
2023-01-13 11:50:051

判断幂函数!!!急!!!

它们都是幂函数.幂函数的一般形式为y=x^a。如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的, 必须指出的是,当x<0时,幂函数存在一个相当棘手的内在矛盾:[x^(a/b)]^(c/d)、[x^(c/d)]^(a/b)、x^(ac/bd)这三者相等吗?若p/q是ac/bd的既约分数,x^(ac/bd)与x^(p/q)以及x^(kp/kq)(k为正整数)又能相等吗?也就是说,在x<0时,幂函数值的唯一性与幂指数的运算法则发生不可调和的冲突。对此,现在有两种观点:一种坚持通过约定既约分数来处理这一矛盾,能很好解决幂函数值的唯一性问题,但米指数的运算法则较难维系;另一种观点则认为,直接取消x<0这种情况,即规定幂函数的定义域为[0,+∞)或(0,+∞)。看来这一问题有待专家学者们认真讨论后予以解决。 因此下面给出幂函数在第一象限的各自情况. 可以看到: (1)所有的图形都通过(1,1)这点.(a≠0) (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)a大于0或小于0,函数都不过点(0,0)。 (6)显然幂函数无界限。 (7)a=0,该函数为偶函数 {x|x≠0}。
2023-01-13 11:50:132

x^6+1是幂函数吗

是幂函数,因为x的指数是6,所以x是以6为指数的幂函数
2023-01-13 11:50:162

求分数指数幂的含义,以及它为什么适用于幂的运算法则,整数幂和分数指数幂含义不是不同么? 新高一

开学老师会讲到,不是重点
2023-01-13 11:50:192

幂函数怎么微分

肿么可以冷落度娘……当函数为单项式y=ax^n(a和n为常数)的形式时,有基本公式:dy/dx=anx^(n-1)或d/dx(ax^n)=anx^(n-1)如d(x^2)/dx=2x,d(3X^5)/dx=15x^4。 当a为常数时,d(ax)/dx=a且d(a)/dx=0。 注意:基本公式极为重要,在学习更为复杂的运算法则前请务必牢记。
2023-01-13 11:50:271

数学题:(1/2)²*(-1/2)³*(1/2)

=(1/2)^3×[-(1/2)^3]=-(1/2)^6鉴定完毕
2023-01-13 11:50:305

求解。我有点没懂复合函数与运算法则怎么用

要区分“复合”的概念与”四则运算“的概念。1)这是幂函数x^n与对数函数lgx的乘法运算,不是复合,所以用(uv)"=uv"+u"v的公式2)这是3个幂函数的相加(第2项其实得看成是2与幂函数的相乘),要用(u+v+w)"=u"+v"+w"的公式。
2023-01-13 11:50:361

y=x的x次方 和y=x的0次方都是幂函数吗

都不是
2023-01-13 11:50:392

负次幂的运算方法是什么?

负次幂的运算方法是a^(-p)=1/a^p,(a≠0)。负次幂也是不能用正次幂的意义来解释。一个不为零的数的负整数指数幂等于这个数正整数指数幂的倒数,也可以等于这个数倒数的正整数指数幂。。也就是a^(-p)=1/a^p,(a≠0)。当同底数幂相除时,被除式指数小于除式指数时即转化成负指数幂。扩展资料:同底数幂的两个幂相除,如果被除式的指数与除式的指数相等,那么商等于1,即am÷an=1,m是任意自然数。a≠0,即转化成a^0=1(a≠0)。同底数幂的两个幂相除,如果被除式的指数小于除式的指数,即m-n<0时,指数部分为负整数则转化成负整数指数幂,再用负整数指数幂法则。
2023-01-13 11:50:421

指数函数运算法则是什么?

01 运算法则是同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于每一个因式分别乘方。 指数函数是重要的基本初等函数之一。一般地,指数函数定义域是R。对于一切指数函数来讲,值域为(0, +∞)。指数函数前系数为3,故不是指数函数。运算法则是同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于每一个因式分别乘方。 应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0作为实数变量x的函数,它的图像总是正的(在x轴之上)并递增(从左向右看)。它永不触及x轴,尽管它可以无限程度地靠近x轴(所以,x轴是这个图像的水平渐近线。它的反函数是自然对数ln(x),它定义在所有正数x上。 有时,尤其是在科学中,术语指数函数更一般性的用于形如(k属于R) 的函数,从上面关于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得a>0且a≠1。
2023-01-13 11:50:451

指数函数和对数函数的运算法则是什么?

指数函数 指数函数的一般形式为y=a^x(a>0且不=1) ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得   如图所示为a的不同大小影响函数图形的情况.   在函数y=a^x中可以看到:   (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,   同时a等于0一般也不考虑.   (2) 指数函数的值域为大于0的实数集合.   (3) 函数图形都是下凹的.   (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的.   (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置.其中水平直线y=1是从递减到递增的一个过渡位置.   (6) 函数总是在某一个方向上无限趋向于X轴,永不相交.   (7) 函数总是通过(0,1)这点   (8) 显然指数函数无界.   (9) 指数函数既不是奇函数也不是偶函数.   (10)当两个指数函数中的a互为倒数是,此函数图像是偶函数.   例1:下列函数在R上是增函数还是减函数?说明理由.   ⑴y=4^x   因为4>1,所以y=4^x在R上是增函数;   ⑵y=(1/4)^x   因为00且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R).
2023-01-13 11:50:481

导数的公式法则和法则有哪些?

导数公式和求导法则总结。求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
2023-01-13 11:51:022

指数函数运算法则

 指数函数指数函数的一般形式为y=a^x(a>0且不=1) ,要想使得x能够取整个实数集合为定义域,则只有使得 如图所示为a的不同大小影响函数图形的情况。   在函数y=a^x中可以看到:   (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0一般也不考虑。   (2) 指数函数的值域为大于0的实数集合。   (3) 函数图形都是下凹的。   (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。   (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。   (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。   (7) 函数总是通过(0,1)这点   (8) 显然指数函数无界。   (9) 指数函数既不是奇函数也不是偶函数。   (10)当两个指数函数中的a互为倒数时,此函数图像是偶函数。 例1:下列函数在R上是增函数还是减函数?说明理由. ⑴y=4^x 因为4>1,所以y=4^x在R上是增函数; ⑵y=(1/4)^x 因为0<1/4<1,所以y=(1/4)^x在R上是减函数1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 记忆口决  有理数的指数幂,运算法则要记住。   指数加减底不变,同底数幂相乘除。   指数相乘底不变,幂的乘方要清楚。   积商乘方原指数,换底乘方再乘除。   非零数的零次幂,常值为 1不糊涂。   负整数的指数幂,指数转正求倒数。   看到分数指数幂,想到底数必非负。   乘方指数是分子,根指数要当分母。   看到分数指数幂,想到底数必非负。   乘方指数是分子,根指数要当分母。
2023-01-13 11:51:267

矩阵的幂怎么算?

2023-01-13 11:51:326

2log32-log3329+log38-5^2log53 3,3,3,5是底,2,32,8是真数

先算前3项得1在-最后一项
2023-01-13 11:51:442

e指数函数四则运算是什么?

e指数函数四则运算是:loga(AB)=loga A+loga B,loga(A/B)=loga A-loga B,logaN^x=xloga N。其它幂函数公式:1、换底公式:logM N=loga M/loga N2、换底公式导出:logM N=-logN M3、对数恒等式:a^(loga M)=M具体意义指数函数的一般形式为y=a^x(a>0且≠1) (x∈R)。 一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。一般地,形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
2023-01-13 11:52:521