barriers / 阅读 / 详情

怎么分解因式啊,,,

2023-05-20 01:29:31

怎么分解因式啊,,,怎么分解因式啊,,,比如说 分解因式 -X的平方+16

共6条回复
snjk

⑴提公因式法

  各项都含有的公共的因式叫做这个多项式各项的公因式。

  如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

  具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

  如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

  口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

  例如:-am+bm+cm=-m(a-b-c);

  a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

  注意:把2a*2+1/2变成2(a*2+1/4)不叫提公因式

  ⑵公式法

  如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

  平方差公式:a*2-b*2=(a+b)(a-b);

  完全平方公式:a*2±2ab+b*2=(a±b)*2;

  注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

  立方和公式:a*3+b*3=(a+b)(a*2-ab+b*2);

  立方差公式:a*3-b*3=(a-b)(a*2+ab+b*2);

  完全立方公式:a*3±3a*2b+3ab*2±b*3=(a±b)*3.

  其余公式请参看上边的图片。

  例如:a*2 +4ab+4b*2 =(a+2b)*2(参看右图).

  (3)分解因式技巧

  1.分解因式与整式乘法是互为逆变形。

  2.分解因式技巧掌握:

  ①等式左边必须是多项式;

  ②分解因式的结果必须是以乘积的形式表示;

  ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;

  ④分解因式必须分解到每个多项式因式都不能再分解为止。

  注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

  3.提公因式法基本步骤:

  (1)找出公因式;

  (2)提公因式并确定另一个因式:

  ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;

  ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

  ③提完公因式后,另一因式的项数与原多项式的项数相同。多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

  ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

  ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

  ④分解因式,必须进行到每一个多项式因式都不能再分解为止。

  也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。”

  几道例题

  1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.

  解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项)

  =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)

  =[(1+y)+x^2(1-y)]^2-(2x)^2

  =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]

  =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

  =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

  =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).

  2.求证:对于任何实数x,y,下式的值都不会为33:

  x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.

  解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

  =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

  =(x+3y)(x^4-5x^2y^2+4y^4)

  =(x+3y)(x^2-4y^2)(x^2-y^2)

  =(x+3y)(x+y)(x-y)(x+2y)(x-2y).

  (分解因式的过程也可以参看右图。)

  当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。

回答人的补充 2009-07-09 17:54 因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。 现举下例 可供参考

  例1 把-a2-b2+2ab+4分解因式。

  解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)

  这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误

  例2把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)

  这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。

  分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。

  考试时应注意:

  在没有说明化到实数时,一般只化到有理数就够了

  由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。

黑桃云

-x�0�5+16=16-x�0�5=(4+x)(4-x).这里用的是公式法(平方差公式)。分解因式的步骤:1.先看看有没有公因式,如果有,就要先把它提出来。2.没有公因式了,就要考虑它是不是构成了平方差或完全平方式等等,如果有,按公式分解。3.有时还要用到十字相乘法、待定系数法等。这类方法将逐步学到。

clou

你主要是要看这些式子有什么特点 或者有什么共同的倍数啊什么的 就像你写的-x+16 你可以写成16-x 这样看起来就顺眼了 然后16=4的平方 x也是x 的平方 你可以化成(4-x)(4+x) 有些比较常用的因式最好记住 就一下子就可以得出来了

慧慧

原式=(4+x)(4-x)分解因式有很多方法,如提取公因式法,十字相乘法,公式运用法等,用的多了自然也就可以记住了。

苏州马小云

-x�0�5+16=-(x�0�5-16)=-(x+4)(x-4)

gitcloud

⑴提公因式法

  各项都含有的公共的因式叫做这个多项式各项的公因式。

  如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

  具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

  如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

  口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

  例如:-am+bm+cm=-m(a-b-c);

  a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

  注意:把2a*2+1/2变成2(a*2+1/4)不叫提公因式

  ⑵公式法

  如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

  平方差公式:a*2-b*2=(a+b)(a-b);

  完全平方公式:a*2±2ab+b*2=(a±b)*2;

  注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

  立方和公式:a*3+b*3=(a+b)(a*2-ab+b*2);

  立方差公式:a*3-b*3=(a-b)(a*2+ab+b*2);

  完全立方公式:a*3±3a*2b+3ab*2±b*3=(a±b)*3.

  其余公式请参看上边的图片。

  例如:a*2 +4ab+4b*2 =(a+2b)*2(参看右图).

  (3)分解因式技巧

  1.分解因式与整式乘法是互为逆变形。

  2.分解因式技巧掌握:

  ①等式左边必须是多项式;

  ②分解因式的结果必须是以乘积的形式表示;

  ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;

  ④分解因式必须分解到每个多项式因式都不能再分解为止。

  注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

  3.提公因式法基本步骤:

  (1)找出公因式;

  (2)提公因式并确定另一个因式:

  ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;

  ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

  ③提完公因式后,另一因式的项数与原多项式的项数相同。多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

  ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

  ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

  ④分解因式,必须进行到每一个多项式因式都不能再分解为止。

  也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。”

  几道例题

  1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.

  解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项)

  =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)

  =[(1+y)+x^2(1-y)]^2-(2x)^2

  =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]

  =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

  =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

  =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).

  2.求证:对于任何实数x,y,下式的值都不会为33:

  x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.

  解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

  =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

  =(x+3y)(x^4-5x^2y^2+4y^4)

  =(x+3y)(x^2-4y^2)(x^2-y^2)

  =(x+3y)(x+y)(x-y)(x+2y)(x-2y).

  (分解因式的过程也可以参看右图。)

  当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。

回答人的补充 2009-07-09 17:54 因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。 现举下例 可供参考

  例1 把-a2-b2+2ab+4分解因式。

  解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)

  这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误

  例2把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)

  这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。

  分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。

  考试时应注意:

  在没有说明化到实数时,一般只化到有理数就够了

  由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。

相关推荐

因式分解的完整过程?

上一步到下一步的详细过程如下:请仔细看。一sinx+(1一a一x)cosⅹ一cosx+(1+a+x)sinx=[(1+a+x)sinⅹ一sinⅹ][(1一a一x)cosⅹ一cosx]=sinx(1+a+x一1)+cosⅹ(1一a一x一1)=sinx(a+x)+cosx(一a一ⅹ)=sinⅹ(a+x)一cosx(a+x)=(a+x)(sⅰnx一cosx)。
2023-01-13 16:03:111

分式因式分解怎么学?

一、把2X²-7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=1×3==(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳2 -3 1×(-3)+2×(-1)=-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3)=-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.所以等于(X-3)(2X-1)二、来一个简单的 把X²-5X+6分解因式中间X的系数是“-”,而6是“+”,说明6是由两个负数相乘得来的,并且这两个负数想家后得-5最终分解成(X-2)(X-3)
2023-01-13 16:03:141

因式分解怎么做啊?不会!

我的数学也不是很好,因式分解我有时也很迷茫,可我的老师告诉我们,做因式分解要有技巧,也要按照定义去做,送你四句话,也是我的老师给我们的:首先提取公因式,然后考虑用公式分组分的要合适结果必是连乘式如果老师讲的少,你还可以试试自学!!①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;④分解因式,必须进行到每一个多项式因式都不能再分解为止.比如...x^2+6x-7这个式子由于一次幂x前系数为6所以,我们可以想到,7-1=6那正好这个式子的常数项为-7因此我们想到将-7看成7*(-1)于是我们作十字相成x+7x-1的到(x+7)·(x-1)
2023-01-13 16:03:211

高次多项式一般怎么因式分解

高次公式:an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数; an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数 an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数 对于三次因式分解ax^3+bx^2+cx+d,整数因式必为d的约数/a的约数,(指一次因式)高次同理,一般是要先找因式,否则乱拆项是一般解不出来的。 备用招;上述方法不行用待定系数法。再不行跟它拼了,用卡尔丹公式及费拉里公式.公式如图。(不推荐)
2023-01-13 16:03:292

因式分解怎么做八年级,好急!!!!

理解因式分解应注意几点:因式分解的对象是多项式,不是多项式不能分解;因式分解是恒等变形,不是计算;分解的结果是整式积的形式。初中数学的因式分解法主要有两种,一种是提公因式法,二是公式法。至于十字相乘法一般并不做硬性要求。分解因式时,首先应考虑是否具有公因式,如果有公因式,需要先提出公因式,再考虑是否能用因式分解。在实际计算中,因式分解时需要注意如下几点:对于有互为相反数的因式,需要提负号变成公因式;提公因式时,若有一项被全部提出,括号内的项应保留1,而不是0;一定要分解到不能分解为止,对于能化简的因式要化简。
2023-01-13 16:03:461

k平方-k-2=0怎么因式分解

k²-k-2=0用十字相乘法得(k-2)(k+1)=0希望可以帮助到你!
2023-01-13 16:03:491

多项式的因式怎么分解?

因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等. ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. ⑸十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax b)(cx d) a -----/b ac=k bd=n c /-----d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。 经典例题: 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2 解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y) 2.证明:对于任何数x,y,下式的值都不会为33 x^5+3x^4y-5x^3y^2+4xy^4+12y^5 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立 因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
2023-01-13 16:04:011

分数分解因式怎么分解

分解:x^5+3x^4y-5x^3y^2+4xy^4+12y^5   解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)   =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)   =(x+3y)(x^4-5x^2y^2+4y^4)   =(x+3y)(x^2-4y^2)(x^2-y^2)   =(x+3y)(x+y)(x-y)(x+2y)(x-2y)  因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。    因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。  
2023-01-13 16:04:101

平方 怎么因式分解

因式分解(factorization)因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.⑴提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. ⑸十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax b)(cx d) a -----/b ac=k bd=n c /-----d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。经典例题:1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)=[(1+y)+x^2(1-y)]^2-(2x)^2=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)2.证明:对于任何数x,y,下式的值都不会为33x^5+3x^4y-5x^3y^2+4xy^4+12y^5解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)=(x+3y)(x^4-5x^2y^2+4y^4)=(x+3y)(x^2-4y^2)(x^2-y^2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y)当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图像法 令y=f(x),做出函数y=f(x)的图像,找到函数图像与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图像,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)初学因式分解的“四个注意”因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中。学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。其中四个注意,则必须引起师生的高度重视。 因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举数例,说明如下,供参考。 例1 把-a2-b2+2ab+4分解因式。 解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2) 这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误??膊荒芗?汉啪拖取疤帷保??匀?饨?蟹治觯?/p> 如例2 △abc的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证这个三角形是等腰三角形。 分析:此题实质上是对关系式的等号左边的多项式进行因式分解。 证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0. 又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0, 即a=c,△abc为等腰三角形。 例3把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1) 这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。防止学生出现诸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2〔3(x-1)-4p〕=2p(x-1)2(3x-4p-3)的错误。 例4 在实数范围内把x4-5x2-6分解因式。 解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6) 这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。 由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。
2023-01-13 16:04:241

怎么样才能快点学会因式分解

因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,除法等。(实际上就是把见到的问题复杂化) 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1))
2023-01-13 16:04:271

因式分解方法

(a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)(a+b+c)^3=a^3+b^3+c^3+3a^2b+3ab^2+3a^c+3ac^2+3b^2c+3bc^2+6abc
2023-01-13 16:04:312

怎样学好因式分解?

不会要请教老师,老师会教你方法的
2023-01-13 16:04:348

快速学会分解因式秘诀!

因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
2023-01-13 16:04:402

怎么用因式分解法

因式分解(factorization)因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.⑴提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. ⑸十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax b)(cx d) a -----/b ac=k bd=n c /-----d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。经典例题:1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)=[(1+y)+x^2(1-y)]^2-(2x)^2=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)2.证明:对于任何数x,y,下式的值都不会为33x^5+3x^4y-5x^3y^2+4xy^4+12y^5解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)=(x+3y)(x^4-5x^2y^2+4y^4)=(x+3y)(x^2-4y^2)(x^2-y^2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y)当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图像法 令y=f(x),做出函数y=f(x)的图像,找到函数图像与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图像,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)初学因式分解的“四个注意”因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中。学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。其中四个注意,则必须引起师生的高度重视。 因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举数例,说明如下,供参考。 例1 把-a2-b2+2ab+4分解因式。 解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2) 这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误?�膊荒芗�汉啪拖取疤帷保��匀�饨�蟹治觯?/p> 如例2 △abc的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证这个三角形是等腰三角形。 分析:此题实质上是对关系式的等号左边的多项式进行因式分解。 证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0. 又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0, 即a=c,△abc为等腰三角形。 例3把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1) 这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。防止学生出现诸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2〔3(x-1)-4p〕=2p(x-1)2(3x-4p-3)的错误。 例4 在实数范围内把x4-5x2-6分解因式。 解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6) 这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。 由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。
2023-01-13 16:04:441

分解因式怎么学不会啊!

看、做几道代表性题,领会方法!
2023-01-13 16:04:512

快速学会分解因式秘诀!

因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
2023-01-13 16:04:542

怎么做,请告诉我 谢谢 是因式分解

十字相乘法十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。如:a²x²+ax-42首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(ax+?)×(ax+?),然后我们再看第二项, +ax这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2。首先,21和2无论正负,通过任意加减后都不可能是1,只可能是-19或者19,所以排除后者。然后,再确定是-7×6还是7×-6。(ax-7)×(ax+6)=a²x²-ax-42(计算过程省略)得到结果与原来结果不相符,原式+ax 变成了-ax。再算:(ax+7)×(ax+(-6))=a²x²+ax-42正确,所以a²x²+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式。公式法公式法,即运用公式分解因式。公式一般有1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²±2ab+b²=(a±b)²对应的还可以有一个口诀:“首平方,尾平方,首尾二倍放中央”因式分解编辑十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。注意三原则:1.分解要彻底(是否有公因式,是否可用公式)2.最后结果只有小括号3.最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=-x(2+3y+4z)归纳方法:1.提公因式法。2.运用公式法。3.拼凑法。提取公因式法各项都含有的公共的因式叫做这个多项式各项的公因式.公因式可以是单项式,也可以是多项式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。例如:注意:把变成不叫提公因式公式法根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。平方差公式:反过来为完全平方公式:反过来为反过来为注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。两根式:立方和公式:a3+b3=(a+b)(a2-ab+b2)立方差公式:a3-b3=(a-b)(a2+ab+b2)完全立方公式:(a±b)3=a3±3a2b+3ab2±b3=(a±b)3公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)例如:a2+4ab+4b2 =(a+2b)21.分解因式技巧掌握:①分解因式是多项式的恒等变形,要求等式左边必须是多项式。②分解因式的结果必须是以乘积的形式表示。③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。④分解因式必须分解到每个多项式因式都不能再分解为止。注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。2.提公因式法基本步骤:(1)找出公因式(2)提公因式并确定另一个因式①第一步找公因式可按照确定公因式的方法先确定系数再确定字母②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式③提完公因式后,另一因式的项数与原多项式的项数相同解方程法通过解方程来进行因式分解,如:X2-6X+8=0 ,解,得X1=2,X2=4,就得到原式=(X-2)(X-4)
2023-01-13 16:04:571

数学书9.5多项式因式分解怎么做

因式分解的十二种方法 :把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
2023-01-13 16:05:001

怎么做因式分解

1.提取公因式 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x3 -2x 2-xx3 -2x2 -x=x(x2 -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a2 +4ab+4b2 解:a2 +4ab+4b2 =(a+2b)2 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m2 +5n-mn-5m 解:m2 +5n-mn-5m= m 2-5m -mn+5n = (m2 -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x2 -19x-6 分析: 1 ×7=7, 2×(-3)=-61×2+7×(-3)=-19 解:7x2 -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x2 +6x-40 解x2 +6x-40=x2 +6x+( 9) -(9 ) -40 =(x+ 3)2 -(7 ) 2=[(x+3)+7]*[(x+3) – 7] =(x+10)(x-4) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x4 –x3 -6x2 -x+2(也叫相反式,在这里以二次项系数为中心对称项的系数是相等的,如四次项与常数项对称,系数相等,解法也是把对称项结合在一起) 解:2x 4–x3 -6x2 -x+2=2(x4 +1)-x(x2 +1)-6x2 =x2 {2[x2 + ()2]-(x+ )-6}令y=x+ , x2 {2[x2 +( )2]-(x+)-6} = x2 [2(y2 -2)-y-6] = x2 (2y2 -y-10) =x 2(y+2)(2y-5) =x2 (x+ +2)(2x+ -5) = (x2 +2x+1) (2x2 -5x+2) =(x+1)2 (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x1,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)=(x-x1 )(x-x 2)(x-x3 )……(x-xn ) (一般情况下是试根法,并且一般试-3,-2,-1,0,1,2,3这些数是不是方程的根)例8、分解因式2x4 +7x3 -2x2 -13x+6 解:令f(x)=2x4 +7x3 -2x2 -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 ,则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法(这种方法在以后学函数的时候会用到。现在只是作为了解内容,它和第八种方法是类似的) 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1 )(x-x2 )(x-x3)……(x-xn ) 例9、因式分解x3 +2x2 -5x-6 解:令y= x3 +2x2 -5x-6 作出其图象,可知与x轴交点为-3,-1,2 则x3 +2x 2-5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a2 (b-c)+b2 (c-a)+c2 (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a2 (b-c)+b2 (c-a)+c2 (a-b)=a2 (b-c)-a(b2 -c 2)+bc(b-c) =(b-c) [a2 -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10(或其它数)代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。例11、分解因式x 3+9x2 +23x+15 解:令x=2,则x3 +9x 2+23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x3 +9x2 +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x4 –x3 -5x2 -6x-4 如果已知道这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x4 –x3 -5x2 -6x-4=(x2 +ax+b)(x2 +cx+d) = x4 +(a+c)x3 +(ac+b+d)x2 +(ad+bc)x+bd从而a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4所以 解得 则x4 –x3 -5x2 -6x-4 =(x 2+x+1)(x2 -2x-4)
2023-01-13 16:05:041

数学高手请进!关于因式分解

2023-01-13 16:05:126

怎么做因式分解?

提公因式法  各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。公式法  如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。   平方差公式: (a+b)(a-b)=a^2-b^2 反过来为a^2-b^2=(a+b)(a-b)   完全平方公式:(a+b)^2=a^2+2ab+b^2 反过来为a^2+2ab+b^2=(a+b)^2   (a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2 分解因式技巧  1.分解因式技巧掌握:   ①分解因式是多项式的恒等变形,要求等式左边必须是多项式   ②分解因式的结果必须是以乘积的形式表示   ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;    ④分解因式必须分解到每个多项式因式都不能再分解为止。   注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。   2.提公因式法基本步骤:   (1)找出公因式   (2)提公因式并确定另一个因式:   ①第一步找公因式可按照确定公因式的方法先确定系数再确定字母   ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式   ③提完公因式后,另一因式的项数与原多项式的项数相同。
2023-01-13 16:05:281

因式分解怎么样才算分到底了

(a^2+b^2+2ab)(a^2-b^2) =(a+b)^3(a-b) 要分解到每一个因式不能再分解为止 刚才的分解也是因式分解,但因为分解的不彻底,考试要扣分的.
2023-01-13 16:05:391

怎么将任意的多项式因式分解有无理数

因式分解的十二种方法 :把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式. 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式. 例2、分解因式a +4ab+4b (2003南通市中考题) a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解. 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解. 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来. 例7、分解因式2x -x -6x -x+2 2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解. 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式. 例11、分解因式x +9x +23x+15 令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解. 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式. 设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
2023-01-13 16:05:471

怎么因式分解?

5
2023-01-13 16:05:502

等式左边有三个数的因式分解怎么解?

①分解因式是多项式的恒等变形,要求等式左边必须是多项式②分解因式的结果必须是以乘积的形式表示③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数④分解因式必须分解到每个多项式因式都不能再分解为止。注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。分解步骤:①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解④分解因式,必须进行到每一个多项式因式都不能再分解为止。也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”扩展资料主要方法:1、提取公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。提公因式法基本步骤:(1)找出公因式(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式③提完公因式后,另一因式的项数与原多项式的项数相同。2、公式法:把乘法公式的平方差公式和完全平方公式反过来,得到因式分解的公式:平方差公式:a2-b2=(a+b)·(a-b);完全平方式:a2±2ab+b2=(a±b)2;3、分组分解法:利用分组分解因式的方法叫做分组分解法,ac+ad+bc+bd=a·(c+d)+b·(c+d)=(a+b)·(c+d)其原则:①连续提取公因式法:分组后每组能够分解因式,每组分解因式后,组与组之间又有公因式可提。②分组后直接运用公式法:分组后各组内可以直接应用公式,各组分解因式后,使组与组之间构成公式的形式,然后用公式法分解因式。4、十字相乘法:a2+(p+q)·a+p·q=(a+p)·(a+q)。5、解方程法:通过解方程来进行因式分解,如x2+2x+1=0 ,解,得x1=-1,x2=-1,就得到原式=(x+1)×(x+1)6、待定系数法:首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
2023-01-13 16:05:561

-α2-4怎么因式分解

分解因式:-2a-4= .答案:-2(a+2).-2a-4=-2(a+2).
2023-01-13 16:05:591

计算弧长的最简便公式

弧长公式l = n(圆心角)× π(圆周率)× r(半径)/180=α(圆心角弧度数)× r(半径)在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πr,所以n°圆心角所对的弧长为l=n°πr÷180°(l=n°x2πr/360°)例:半径为1cm,45°的圆心角所对的弧长为l=nπr/180=45×π×1/180=45×3.14×1/180约等于0.785弧长公式推导弧长的计算公式L=的推导过程:因为360°的圆心角所对的弧长就是圆周长C=2πR(R为圆的半径)所以1°的圆心角所对的弧长是2πR/360,即。这样n°的圆心角所对的弧长的计算公式是L=n*2πR/360,也就是l=n°πr÷180°。
2023-01-13 16:05:332

一立方米等于多少立方分米?

2023-01-13 16:05:342

等字是什么结构的字?

什么是上下结构的字
2023-01-13 16:05:3612

分式计算化简要求

初二数学分式一章中,经常有分式的化简与求值类题目。对于计算求值题目。方法通常是,先化简,再求值。      一、化简技巧和注意   (1)分母为“1”的“分式”;   (2)注意:   能分解因式的分解因式;   括号内通分;   括号外除号改乘号(除式的分子分母需要颠倒位置后);   虽然有运算顺序,但是我们可以简化一些:例如分解因式和除法变乘法同时进行,约分和通分同时进行等   (3)化简的最终结果:为最简分式或整式        二、常考的已知条件分类   (1)给出所需字母的值,求代数式运算的结果   先化简,后代入!把字母的值直接代入化简后的式子即可,注意化简到最终结果        (2)选合适的数求值;   需要满足原式子中出现的分式、化简的最终结果有意义、除式的分子分母不为0,例如:        (3)已知条件是一个复杂的等式   这个时候往往是整体代入,可能是直接的整体代入,也可能是条件变形后的整体带入。例如:        (4)已知条件是需要解的不等式或方程   得到解集后,结合分式有意义需要的条件,筛选x的值即可。例如:        练习拔高               
2023-01-13 16:05:381

等字五笔怎么打

tffutffutffu
2023-01-13 16:05:454

一立方米等于多少立方分米

1000立方分米
2023-01-13 16:05:464

为什么很多列举说完全部了还加“等”字?“等”字不是列举不完才加吗?

助词“等”常放在两个或两个以上并列的词或短语之后,其作用有二:表示列举未完。运用情况是:被省略的部分因不重要或不必要而不一一列出,或因知道得不确切而无法说出。表示列举后煞尾。这种用法的“等”,后面经常带有前列各项总计的确切数字,这种用法的“等”字可以去掉而不影响原意的表达。例如:我国有长江、黄河、黑龙江、珠江等四大河流。
2023-01-13 16:05:487

1立方米等于多少立方分米多少立方厘米

2023-01-13 16:05:525

圆弧的弧长公式和面积公式是什么?

圆弧的弧长公式和面积公式:1、已知弧长L与半径R:S扇形=1/2LR。2、已知弧所对的圆心角n°与半径。S扇形=nπR^2/360。弧形计算公式:S=1/2LR=nπR²/360(L是弧长,R是半径)。弧长计算公式:L=n(圆心角度数)×π(1)× r(半径)/180(角度制),L=α(弧度)× r(半径)(弧度制)。其中n是圆心角度数,r是半径,L是圆心角弧长。弧形面积的计算方法弧长、两弧点间的距离、弧高这三个条件知道任意两个就够了。(1)由已知弧长和已知弦长(两弧点间的距离)求得圆半径和弧所对的圆心角的度数。(2)由半径和圆心角求得扇形面积和三角形面积。(3)扇形面积减去三角形的面积的弧形的面积。
2023-01-13 16:05:561

“等”字的用法!

省略·
2023-01-13 16:05:576

一方是多少立方米?

1方。1立方米=1方这里的方是体积单位,方一般是土木工程中对材料体积的测量所用的单位,例如,1方土,2方沙。“一方”是生活中的口语,是“一个立方”即“一个立方米”的缩略用法。常用来计算水费。因为1立方米水刚好1吨,口语中就经常吧一吨水说成“一方水”。生活中我们还总听到“一个平方”的说法。立方米和平方米是两个不同的单位,一个是体积单位,一个是面积单位。一立方米等于一平方米乘以一米,即一立方米的容量相当于一个长、宽、高都等于1米的立方体的体积。在生活中平方米通常简称为平米或平方。立方米体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米。1立方分米=1升 1立方厘米=1毫升。1立方米=1000升 1升=1000毫升。1平方千米=100公顷 1公顷=10000平方米。1平方米=100平方分米 1平方分米=100平方厘米。1平方厘米=100平方毫米 1平方公里 =100 公顷。
2023-01-13 16:05:581

等字怎么组词?

等一等
2023-01-13 16:06:038

等字繁体字

等的繁体字是等
2023-01-13 16:05:312

什么是泰勒级数并且解释概念和定理

泰勒级数的定义:若函数f(x)在点的某一临域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式为:其中:,称为拉格朗日余项.以上函数展开式称为泰勒级数.泰勒级数在幂级数展开中的作用:在泰勒公式中,取,得:这个级数称为麦克劳林级数.函数f(x)的麦克劳林级数是x的幂级数,那么这种展开是唯一的,且必然与f(x)的麦克劳林级数一致.注意:如果f(x)的麦克劳林级数在点的某一临域内收敛,它不一定收敛于f(x).因此,如果f(x)在处有各阶导数,则f(x)的麦克劳林级数虽然能做出来,但这个级数能否在某个区域内收敛,以及是否收敛于f(x)都需要进一步验证.泰勒级数的重要性体现在以下三个方面:首先,幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易.第二,一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行.第三,泰勒级数可以用来近似计算函数的值.对于一些无穷可微函数f(x) 虽然它们的展开式收敛,但是并不等于f(x).例如,分段函数f(x) = exp(−1/x²) 当 x ≠ 0 且 f(0) = 0 ,则当x = 0所有的导数都为零,所以这个f(x)的泰勒级数为零,且其收敛半径为无穷大,虽然这个函数 f 仅在 x = 0 处为零.而这个问题在复变函数内并不成立,因为当 z 沿虚轴趋于零时 exp(−1/z²) 并不趋于零.一些函数无法被展开为泰勒级数因为那里存在一些奇点.但是如果变量x是负指数幂的话,我们仍然可以将其展开为一个级数.例如,f(x) = exp(−1/x²) 就可以被展开为一个洛朗级数.基本原理:多项式的k重不可约因式是其微商的k-1重不可约因式; 进而得出多项式函数的泰勒展开,然后再由Peano,通过 Peano定理推广至任意函数的泰勒展开 基本思想:通过系数为微商的多项式来研究任意函数的性质(本科主 要是收敛性)幂级数 c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞) c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法):f(x)=f(a)+f"(a)/1!*(x-a)+f""(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...实用幂级数:ex = 1+x+x2/2!+x3/3!+...+xn/n!+...ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+...(|x|
2023-01-13 16:05:302

任意三角函数的计算方法

三角函数正弦(sin)等于对边比斜边;余弦(cos)等于邻边比斜边;正切(tan)等于对边比邻边;余切(cot)等于邻边比对边;正割(sec)等于斜边比邻边;余割(csc)等于斜边比对边。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。本质是任意角的集合与一个比值的集合的变量之间的映射。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。1、正弦(sin)等于对边比斜边,sin(A)=a/c;2、余弦(cos)等于邻边比斜边,cos(A)=b/c;3、正切(tan)等于对边比邻边,tan(A)=a/b;4、余切(cot)等于邻边比对边,cot(A)=b/a;5、正割(sec)等于斜边比邻边,sec(A)=c/b;6、余割(csc)等于斜边比对边,csc(A)=c/a。其中a为对边,b为邻边,c为斜边。三角函数起源:公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。三角学中“正弦”和“余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是“全弦表”,而是“正弦表”了。印度人称连结弧(AB)的两端的弦(AB)为“吉瓦”,是弓弦的意思;称AB的一半(AC)为“阿尔哈吉瓦”。后来“吉瓦”这个词译成阿拉伯文时被误解为“弯曲”、“凹处”,阿拉伯语是“dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了“sinus”。
2023-01-13 16:05:291

等字拼音是什么

你好。等;音:děng。释义;1. 古代指顿齐竹简(书)。2. 数量、程度相同,或地位一般高:相~。平~。~于。~同。~值。~量齐观。3. 表示数量或程度的级别:~级。~次。~第。~而下之。4. 特指台阶的级。5. 种,类:这~事。
2023-01-13 16:05:252

cot15度,等于多少啊

2+√3
2023-01-13 16:05:233

cot30 cot45 cot60等于多少

cot30=V3cot45=1cot60=V3/3很高兴为您解答!有不明白的可以追问!如果您认可我的回答。请点击下面的【选为满意回答】按钮,谢谢!
2023-01-13 16:05:191

分式化简求值

分式化简求值有很多题型,举几个例子。分式化简的第一个题型是,分式化简之后,把题目已知的未知数的值直接代入式中计算。在做题时一定要做到先化简再求值,按照题目的要求来做;化简过程中一定要按着分式化简的运算法则来进行,化简的结果一定要最简,像这种直接带值进去计算的题目,往往都牵扯到无理数的计算,一定要注意掌握分母有理化的方法。分式化简求值的第二个题型与一元二次方程结合。很多学生解决这个问题的时候,往往是把一元二次方程的根解出来,在带入的化简的结果中。一般情况下,这种题目一元二次方程的根,都不是太好解,解的时候既费时,还容易出错。这种题目比较巧妙的处理方法是对一元二次方程进行变形,整体代入。希望我的回答对你有帮助。
2023-01-13 16:05:171

(1+x)^a的泰勒展开式是什么?

直接根据定义展开即可:(1+x)^a=1+a*x+1/2*a*(a-1)*x^2+1/6*a*(a-1)*(a-2)*x^3+1/24*a*(a-1)*(a-2)*(a-3)*x^4+1/120*a*(a-1)*(a-2)*(a-3)*(a-4)*x^5+ o(x^5)泰勒级数展开式将简单的函数式子化为无穷多项幂函数,看似化简为繁。但事实上泰勒级数可以解决很多数学问题。如:1、求极限时可以用函数的麦克劳林公式(泰勒展开式的特殊形式)。2、一些难以积分的函数,将函数泰勒展开变为幂级数,使其容易积分。3、复杂离散函数的多项式拟合,用于统计学和预测算法。4、一些数学证明,有时需要将复杂函数化为格式高度统一的幂级数来证明。
2023-01-13 16:05:171

cot0和cotπ/2和cotπ等于什么?

cot0没有意义 cot(π/2) =cos(π/2)/sin(π/2) =0/1 =0
2023-01-13 16:05:171

圆柱体的体积计算公式?

圆柱体的体积=圆柱底面积×圆柱高或底面半径×底面半径×π×高。
2023-01-13 16:05:154

cot45等于多少

sin30°=1/2,cos30°=√3/2,tan30°=√3/3,cot30°=√3; sin45°=√2/2,cos45°=√2/2,tan45°=1,cot45°=1; sin60°=√3/2,cos60°=1/2,tan60°=√3,cot60°=√3/3; sin90°=1,cos90°=0,tan90°不存在,cot90°=0; sin135°=√2/2,cos135°=-√2/2,tan135°=-1,cot135°=-1; sin150°=1/2,cos150°=-√3/2,tan150°=-√3/3,cot150°=-√3; sin180°=0,cos180°=-1,tan180°=0,cot180°不存在.
2023-01-13 16:05:141

泰勒公式是怎么的

泰勒级数的定义:  若函数f(x)在点的某一临域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式为:  f(x)=f(x0)+f`(x0)(x-x0)+f``(x0)(x-x0)²/2!+f```(x0)(x-x0)³/3!+...fn(x0)(x-x0)n/n!+....  其中:fn(x0)(x-x0)n/n!,称为拉格朗日余项。  以上函数展开式称为泰勒级数。  泰勒级数在幂级数展开中的作用:  在泰勒公式中,取,得:  这个级数称为麦克劳林级数。函数f(x)的麦克劳林级数是x的幂级数,那么这种展开是唯一的,且必然与f(x)的麦克劳林级数一致。  注意:如果f(x)的麦克劳林级数在点的某一临域内收敛,它不一定收敛于f(x)。因此,如果f(x)在处有各阶导数,则f(x)的麦克劳林级数虽然能做出来,但这个级数能否在某个区域内收敛,以及是否收敛于f(x)都需要进一步验证。  泰勒级数的重要性体现在以下三个方面:首先,幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。第二,一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。第三,泰勒级数可以用来近似计算函数的值。  对于一些无穷可微函数f(x)虽然它们的展开式收敛,但是并不等于f(x)。例如,分段函数f(x)=exp(−1/x²)当x≠0且f(0)=0,则当x=0所有的导数都为零,所以这个f(x)的泰勒级数为零,且其收敛半径为无穷大,虽然这个函数f仅在x=0处为零。而这个问题在复变函数内并不成立,因为当z沿虚轴趋于零时exp(−1/z²)并不趋于零。  一些函数无法被展开为泰勒级数因为那里存在一些奇点。但是如果变量x是负指数幂的话,我们仍然可以将其展开为一个级数。例如,f(x)=exp(−1/x²)就可以被展开为一个洛朗级数。  基本原理:多项式的k重不可约因式是其微商的k-1重不可约因式;  进而得出多项式函数的泰勒展开,然后再由Peano,通过  Peano定理推广至任意函数的泰勒展开  基本思想:通过系数为微商的多项式来研究任意函数的性质(本科主  要是收敛性)  幂级数  c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)  c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)  它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.  泰勒展开式(幂级数展开法):  f(x)=f(a)+f"(a)/1!*(x-a)+f""(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...  实用幂级数:  ex=1+x+x2/2!+x3/3!+...+xn/n!+...  ln(1+x)=x-x2/3+x3/3-...(-1)k-1*xk/k+...(|x|<1)  sinx=x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+...(-∞<x<∞)  cosx=1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+...(-∞<x<∞)  arcsinx=x+1/2*x3/3+1*3/(2*4)*x5/5+...(|x|<1)  arccosx=π-(x+1/2*x3/3+1*3/(2*4)*x5/5+...)(|x|<1)  arctanx=x-x^3/3+x^5/5-...(x≤1)  sinhx=x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+...(-∞<x<∞)  coshx=1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+...(-∞<x<∞)  arcsinhx=x-1/2*x3/3+1*3/(2*4)*x5/5-...(|x|<1)  arctanhx=x+x^3/3+x^5/5+...(|x|<1)  --------------------------------------------------------------------------------  傅立叶级数(三角级数)  f(x)=a0/2+∑(n=0..∞)(ancosnx+bnsinnx)  a0=1/π∫(π..-π)(f(x))dx  an=1/π∫(π..-π)(f(x)cosnx)dx  bn=1/π∫(π..-π)(f(x)sinnx)dx  当周期为T时,  a0=2/T∫(T/2..-T/2)(f(x))dx  an=2/T∫(T/2..-T/2)(f(x)cos2nπx/T)dx  bn=2/T∫(T/2..-T/2)(f(x)sin2nπx/T)dx
2023-01-13 16:05:132