乘法原理

阅读 / 问答 / 标签

小学生四年级奥数专题解析:加法原理与乘法原理

这篇关于小学生四年级奥数专题解析:加法原理与乘法原理,是 特地为大家整理的,希望对大家有所帮助! 1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?   分析:从两个极端来考虑这个问题: 为9999-1078=8921,最小为9921-1000=8921, 所以共有9999-9921+1=79个,或1078-1000+1=79个   2、一本书从第1页开始编排页码,共用数字2355个,那么这本书共有多少页?   分析:按数位分类: 一位数:1~9共用数字1*9=9个; 二位数:10~99共用数字2*90=180个; 三位数:100~999共用数字3*900=2700个, 所以所求页数不超过999页, 三位数共有:2355-9-180=2166,2166÷3=722个, 所以本书有722+99=821页。   3、上、下两册书的页码共有687个数字,且上册比下册多5页,问上册有多少页?   分析:一位数有9个数位,二位数有180个数位,所以上、下均过三位数, 利用和差问题解决:和为687,差为3*5=15,大数为:(687+15)÷2=351个 (351- 189)÷3=54,54+99=153页。   4、从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。   分析:从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55 从极端考虑分成最小和的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55 最接近的两组为27+28 所以共有27-15+1=13个不同的积。 另从15到27的任意一数是可以组合的。   5、将所有自然数,自1开始依次写下去得到:12345678910111213……,试确定第206788个位置上出现的数字。   分析:与前面的题目相似,同一个知识点: 一位数9个位置,二位数180个位置,三位数2700个位置,四位数36000个位置, 还剩:206788-9-180-2700-36000=167899,167899÷5=33579……4 所以答案为33579+100=33679的第4个数字7.   6、用1分、2分、5分的硬币凑成1元,共有多少种不同的凑法?   分析:分类再相加:只有一种硬币的组合有3种方法;1分和2分的组合:其中2分的从1枚到49枚均可,有49种方法;1分和5分的组合:其中5分的从1枚到19枚均可,有19种方法;2分和5分的组合:其中5分的有2、4、6、……、18共9种方法;1、2、5分的组合:因为5=1+2*2,10=2*5,15=1+2*7,20=2*10,……,95=1+2*47,共有2+4+7+9+12+14+17+19+22+24+27+29+32+34+37+39+42+44+47=461种方法,共有3+49+19+9+461=541种方法。   7、在图中,从“华”字开始,每次向下移动到一个相邻的字可以读出“华罗庚学校”。那么共有多少种不同的读法?

高中加法原理和乘法原理如何判别是分布还是分类

主要看 一件事能否一步做完,不能就是 分步了!加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。例如,从哈尔滨到北京有两种路线:1、哈——沈阳——北京,这两步就是分步:即一件事要通过几步才能完成2、哈——北京而这两种方法就是分类:完成一个事,有几种情况都能够完成。

六年级奥数加法原理和乘法原理知识点讲解

【 #小学奥数# 导语】做题目是也要多多牢记自己哪里容易错做个错提集是很不错的选择.对于高难度题目的错,主要是平时多做自己不会的题目,力求弄懂,并多做.只要你做的比其他同学多的多,那么你成绩肯定不会差。以下是 考 网整理的相关资料,希望对您有所帮助。 【篇一】   加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+m2.......+mn种不同的方法。   关键问题:确定工作的分类方法。   基本特征:每一种方法都可完成任务。   乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn种不同的方法。   关键问题:确定工作的完成步骤。   基本特征:每一步只能完成任务的一部分。   直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。   直线特点:没有端点,没有长度。   线段:直线上任意两点间的距离。这两点叫端点。   线段特点:有两个端点,有长度。   射线:把直线的一端无限延长。   射线特点:只有一个端点;没有长度。   ①数线段规律:总数=1+2+3+…+(点数一1);   ②数角规律=1+2+3+…+(射线数一1);   ③数长方形规律:个数=长的线段数×宽的线段数:   ④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数 【篇二】   乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn种不同的方法。   关键问题:确定工作的完成步骤。   基本特征:每一步只能完成任务的一部分。   直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。   直线特点:没有端点,没有长度。   线段:直线上任意两点间的距离。这两点叫端点。   线段特点:有两个端点,有长度。   射线:把直线的一端无限延长。   射线特点:只有一个端点;没有长度。   ①数线段规律:总数=1+2+3+…+(点数一1);   ②数角规律=1+2+3+…+(射线数一1);   ③数长方形规律:个数=长的线段数×宽的线段数:   ④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数   经典例题:   例1、一个小组有6名成员,召开一次座谈会,见面后,每两个都要握一次手,一共要握多少次手?   解:5×6÷2=15(次)   答:一共要握15次手。   例2、用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?   分析与解:组成一个三位数要分三步进行:第一步确定百位上的数字,除0以外有5种选法;第二步确定十位上的数字,因为数字可以重复,有6种选法;第三步确定个位上的数字,也有6种选法。根据乘法原理,可以组成三位数   5×6×6=180(个)。   例3、在小于10000的自然数中,含有数字1的数有多少个?   解:不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0.使之成为四位数.   先求不含数字1的这样的四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数.由于每一位都可有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为   9×9×9×9=6561,   其中包括了一个0000,它不是自然数,所以比10000小的不含数字1的自然数的个数是6560,于是,小于10000且含有数字1的自然数共有9999-6560=3439个. 【篇三】   加法原理与乘法原理的练习题   1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?   分析:从两个极端来考虑这个问题:为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个   2、一本书从第1页开始编排页码,共用数字2355个,那么这本书共有多少页?   分析:按数位分类:一位数:1~9共用数字1*9=9个;二位数:10~99共用数字2*90=180个;   三位数:100~999共用数字3*900=2700个,所以所求页数不超过999页,三位数共有:2355-9-180=2166,2166÷3=722个,所以本书有722+99=821页。   3、小学四年级奥数加法原理与乘法原理的练习题:上、下两册书的页码共有687个数字,且上册比下册多5页,问上册有多少页?   分析:一位数有9个数位,二位数有180个数位,所以上、下均过三位数,利用和差问题解决:和为687,差为3*5=15,大数为:(687+15)÷2=351个(351-189)÷3=54,54+99=153页。   4、从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。   分析:从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55从极端考虑分成最小和的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55最接近的两组为27+28所以共有27-15+1=13个不同的积。   另从15到27的任意一数是可以组合的。   5、将所有自然数,自1开始依次写下去得到:12345678910111213……,试确定第206788个位置上出现的数字。   分析:与前面的题目相似,同一个知识点:一位数9个位置,二位数180个位置,三位数2700个位置,四位数36000个位置,还剩:206788-9-180-2700-36000=167899,167899÷5=33579……4所以答案为33579+100=33679的第4个数字7.   6、用1分、2分、5分的硬币凑成1元,共有多少种不同的凑法?   分析:分类再相加:只有一种硬币的组合有3种方法;1分和2分的组合:其中2分的从1枚到49枚均可,有49种方法;1分和5分的组合:其中5分的从1枚到19枚均可,有19种方法;2分和5分的组合:其中5分的有2、4、6、……、18共9种方法;1、2、5分的组合:因为5=1+2*2,10=2*5,15=1+2*7,20=2*10,……,95=1+2*47,共有2+4+7+9+12+14+17+19+22+24+27+29+32+34+37+39+42+44+47=461种方法,共有3+49+19+9+461=541种方法。

加法原理和乘法原理中,分类和分布该怎么理解,怎么去应用

先乘除后加减

能不能介绍一下排列组合中的加法,乘法原理

乘法原理: 如果做一实验包含k个步骤,第一个步骤有n1种方法可供选择,第二个步骤有n2种方法可供选择,……,第k个步骤有nk种方法可供选择,则完成这个实验可能的选择共有n1 × n2 × n3 × …… × nk种. 加法原理: 如果做一实验有k类解法,第一类解法有n1种方法可供选择,第二类解法有n2种方法可供选择,……,第k类解法有nk种方法可供选择,则完成这个实验可能的选择共有n1 + n2 + n3 + …… + nk种.

什么时候用加法原理,什么时候用乘法原理

你可以这样想:加法原理就是这件事做完了,但是不知一个方法,那么就用加法原理.乘法原理就是这件事需要好几个步骤,每个步骤都有多种选择.再给你举个例子:你从自己家到姥姥家有A街、B街、C街、D街可以走,那么这是加法原理(一共四种方法),而如果你从自己家到姥姥家不是很顺畅,需要先经过一个桥,而从你家到桥可以走A街、B街、C街,从桥到姥姥家又可以走D街、E街、F街,那么这个就是乘法(3*3=9).有木有?

加法原理、乘法原理的注意

区分两个原理。要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此使用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。

概率相关问题 乘法原理和加法原理 举例说明

乘法原理即:若做完一件事情分两步,而完成第一步有二种办法,完成第二步有三种办法,则做完这件事情就有2*3=6种方案. 加法原理即:若做完一件事情有两种办法,第一种办法有二种方式可以完成,第二种办法有三种方式可以完成,则完成这件事情就有2+3=5种方法.

在古典概型中什么时候用加法原理什么时候用乘法原理?

分步时用乘法原理,分类时用加法原理

排列里什么时候要用乘法原理什么时候用加法原理啊 做题的时候什么情况下需要排列,什么情况下需要组合

乘法原理是指将事件分为N个步骤,每个步骤有N1,N2。。。Nm种方法,然后用乘法加法原理是指将事件分为N个种类,每个步骤有N1,N2。。。Nm种方法,然后用加法排列是有顺序的组合,组合是无顺序的排列。比如123和321算是两个排列,但只是一个组合。

高中生物中遗传概率计算的两个基本原理加法原理和乘法原理分别用于什么情况,在一道题目中怎样判定它应用

是同时出现就用乘法,不是就用加法如书上的题

能不能介绍一下排列组合中的加法,乘法原理

乘法原理:如果做一实验包含k个步骤,第一个步骤有n1种方法可供选择,第二个步骤有n2种方法可供选择,……,第k个步骤有nk种方法可供选择,则完成这个实验可能的选择共有n1×n2×n3×……×nk种。加法原理:如果做一实验有k类解法,第一类解法有n1种方法可供选择,第二类解法有n2种方法可供选择,……,第k类解法有nk种方法可供选择,则完成这个实验可能的选择共有n1+n2+n3+……+nk种。

概率相关问题 乘法原理和加法原理 举例说明

乘法原理即:若做完一件事情分两步,而完成第一步有二种办法,完成第二步有三种办法,则做完这件事情就有2*3=6种方案. 加法原理即:若做完一件事情有两种办法,第一种办法有二种方式可以完成,第二种办法有三种方式可以完成,则完成这件事情就有2+3=5种方法.

加法原理与乘法原理有什么区别?

加法原理,也叫分类计数原理就是:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有M(N)种不同的方法,那么完成这件事情共有M1+M2+……+M(N)种不同的方法。注意:每一类方法都能将事情做完乘法原理,也叫分步计数原理就是:做一件事,完成它需要分成n个步骤,做第一 步有m1种不同的方法,做第二步有m2不同的方法,……,做第n步有mn不同的方法.那么完成这件事共有 N=m1*m2*m3…*mn 种不同的方法注意:每一步都不能把事情做完,只有依次做完所有步骤,才能完成事情。

加乘原理:( ) 乘法原理:( )

加乘原理 : ( 先算乘除,后算加减) 乘法原理 : ( 逐步相乘)

简单乘法原理问题

可以这么想,a1, a2是两个男人,b1,b2是两个女人。a1可以娶b1,b2,生的孩子分别是a1b1,a2b2;同样,a2可以娶b1,b2,生的孩子分别是a2b1,a2b2。不就这么四种情况么

加法原理与乘法原理的区别?

加法原理,也叫分类计数原理就是:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有M(N)种不同的方法,那么完成这件事情共有M1+M2+……+M(N)种不同的方法。注意:每一类方法都能将事情做完乘法原理,也叫分步计数原理就是:做一件事,完成它需要分成n个步骤,做第一 步有m1种不同的方法,做第二步有m2不同的方法,……,做第n步有mn不同的方法.那么完成这件事共有 N=m1*m2*m3…*mn 种不同的方法注意:每一步都不能把事情做完,只有依次做完所有步骤,才能完成事情。

怎么应用,举个实际例子还有乘法原理和加法原理

1、加法原理:如果做完一件事情有几类方式,在每一类方式中又有不同的方法,那么把每类的方法数相加就得到所有的方法数。2、乘法原理:如果完成一件事分为几个步骤,在每一个步骤中又有不同的方法,那么把每步的方法数相乘就得到所有方法数。3、分类与分步的区别:分类是指完成事情的不同方法,从中任意选取一类即可,它们之间可以相互替代,任意选取一类都可以完成这件事。这些时候一般用加法原理;分布是指完成事情的不同步骤,每一步都必须执行,它们之间不可以相互替代,少一步都不能完成这件事。这种情况一般要用乘法原理。4、用乘法原理解题,分步应注意的事项:1)每步必须全部完成才能满足结论;2)必须先确定以什么来分步;3)定好第一步后,再确定第二步,第三步,??。一般是特殊优先原则,即谁的条件要求苛刻,先确定谁。4)每一步前后相互独立,前面的步骤不能影响后面的步骤,否则就不能用乘法原理解决。练习:1:阿奇一家人外出旅游,可以乘火车,也可以乘汽车,还可以坐飞机。经过网上查询,出发的那一天中火车有4班,汽车有3班,飞机有2班。他们乘坐这些交通工具,一共可以有多少种不同的选择?2:要求把abc这三个字母涂上三种不同的颜色,且每个字母只能涂一种颜色。现在有五种不同颜色的笔,按上述要求能有多少种不同颜色搭配?3:老师要求冬冬在黑板上写出一个减法算式,要求被减数必须是三位数,减数必须是两位数,冬冬共有多少种不同的写法?4:书架上有三层书,第一层放了15本小说,第二层放了10本漫画,第三层放了5本科普书,并且这些书都各不相同。请问:1)如果从所有的书中任取1本,共有多少种不同的取法?2)如果从每一层中各取1本,共有多少种不同的取法?3)如果从中取出2本不同类别的书,共有多少种不同的取法?5:如图,从甲地到乙地有3条路,从乙地到丙地有3条路,从甲地到丁地有2条路,从丁地到丙地有4条路。如果要求所走路线不能重复,那么从甲地到丙地有多少条不同的路线?8:如图,把A、B、C、D、E这五部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色。这幅图共有多少种不同的染色方法?10:甲、乙、丙、丁、戊五人要驾驶A、B、C、D、E这五辆不同型号的汽车,会驾驶汽车A的只有甲和乙,汽车E必须由甲、乙、丙三人中的某一人驾驶,一共有多少种不同的安排方案?11:如图,4枚相同的棋子放入4×4的方格内,每个方格只能放1枚,且要求每行每列最多只能放1枚,一共有多少种不同的放法?

分布乘法原理是说什么

要想完成从A到B的映射,那么在集合A中的每一个元素都需要在集合B中找到一个象,所以就分n步来做, 第一步,找a1对应的象在b1,b2,b3,b4,…bm中有m中找法; 第二部,找a2对应的象在b1,b2,b3,b4,…bm中也有m中找法; 第3步找a3对应的象在b1,b2,b3,b4,…bm中也有m中找法; 第4步………………………………, ………………………………………………………… 第n步找an对应的象在b1,b2,b3,b4,…bm中也有m中找法; 所以要想完成从A到B的映射,共有m×m×m×………………………×m×m×m,共n个m相乘, 所以从A到B的映射有m的n次方种情况 你问为什么不是m+m,因为那时分类,而这里是分步,分类还是分步的重要区别就是看你那一步(类)能不能单独完成这个任务,如能单独完成,就是分类,否则就是分步;像本题第一步找a1对应的象在b1,b2,b3,b4,…bm中有m中找法,这一步不能单独完成这个映射,还需要后面的(m-1)步才能完成,所以只能相乘,不能相加

概率论中的加法原理和乘法原理是可以证明的吗?

我觉得这象是公理,是不证自明的基本事实。就象“两点之间线段最短一样”。

高中排列组合加法原理和乘法原理

你给的这个两个问题都是分步,就是都采取乘法原理分类是分步中的其中一步,我给你举个例子,从A地到B地再到C地现在从A到B有两种交通方式B到C有三种交通方式。那么如果你从A到B就有两种让你选择,这是分类而如果是到C地那么需要经过两个过程从A到B再从B到C是乘法分步每一步里都有分类

离散数学题:若|X|=n,则|P(X)|=2^n 乘法原理证明

证明: 设 B = {1, 2, 3, · · · , s u2212 1}, A = {1, 2, 3, · · · , s}. 可知A 比B 多一个元素S,所以A 的子集中不含有s的个数为|P(B)|. 其它A的子集必然含有s,移除s,我们会得到一个B的子集。所以A 的子集中含有s的个数也为|P(B)|. 因为 每一个A的子集要不就含有要不就不含有s。 显然这样的子集共有2|P(B)|. 我们可以得出结论如果如果A比B多一个元素,|P(A)| = 2|P(B)|. 更有,,|P(空集)|=1, 显然,如果|X|=n, 则 |P(X)| = 2^n。证毕。,

小学奥数题 乘法原理

共有16个小正方形,放第一个棋子时16个空都可以放,有16种选择,放第二个时,第一个所在的一行和一列不能再放,故还有9个空可以选择放第三个第四个同上所以是16X9X4X1

乘法原理的数学描述

例1、求取矩形的面积。对于矩形,长、宽可以看做分别在二维空间的两个维内,且两个维相互正交,如果缺少长、宽中任何一个,矩形面积就失去意义,则矩形面积与长、宽的关系为:面积=长x宽。例2、求取矩形的周长。对于矩形的周长,长、宽虽然在二维空间的两个维内,且两个维相互正交,但是如果缺少长、宽中任何一个,周长仍然有意义(还是长度,只是不完整),则周长与长、宽的关系为:周长=长+宽+长+宽。例3、现有4筐苹果,每筐20千克,求总共苹果(W)有多少千克?

求加法与乘法原理的概念及公式。

加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.   乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.   注意:区分两个原理。要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.   完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.这个没有固定公式。

十字相乘法原理 什么是这样计算

十字相乘是求二元一次方程的解型如ax^2+bx+c=0(a不等于0)使用十字相乘方法,把a拆开为两数积c也拆开成两数积然后凑合出b例如x^2+4x+4我们可以把a(即1)拆成1*1把c拆成2*2然后~~列成1212左上的1*右下的2再+上左下的1*右上的2就得出1*2+1*2=4(4就是二次式的b了),这样把二次式列成(x+2)*(x+2)=0就可以解出x=-2

加法原理与乘法原理有什么区别

加法原理与乘法原理的区别:区分两个原理要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此使用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。

高中排列组合加法原理和乘法原理

你给的这个两个问题都是分步,就是都采取乘法原理分类是分步中的其中一步,我给你举个例子,从A地到B地再到C地 现在从A到B 有两种交通方式 B到C有三种交通方式。那么如果你从A到B 就有两种让你选择,这是分类而如果是到C地 那么需要经过两个过程从A到B 再从B到C 是乘法 分步 每一步里都有分类

矩阵乘法原理

乘法原理是指乘法的运算结果成为积,是数学概率方面的基本原理。做一件事,完成它需要分成n个步骤,做第一 步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法。那么完成这件事共有 N=m1×m2×m3×…×mn种不同的方法。对于矩形,长、宽可以看做分别在二维空间的两个维内,且两个维相互正交,如果缺少长、宽中任何一个,矩形面积就失去意义,则矩形面积与长、宽的关系为:面积=长x宽。

数学:乘法原理弄不懂

四把椅子四个人坐,随便一个人坐都有四种坐法,对不?第一个人坐下了,剩下三把,和前面一样,最后得出4*3*2*1的结论。

急!!!!!!!!详细的乘法原理介绍

2分,走人

乘法原理的例题

例如,从A城到B城中间必须经过C城,从A城到C城共有3条路线(设为a,b,c),从C城到B城共有2条路线(设为m,t),那么,从A城到B城共有3×2=6条路线,它们是:am,at,bm,bt,cm,ct.点击此处添加图片说明下面我们通过一些例子来说明这两个原理在计数中的应用. 利用数字1,2,3,4,5共可组成⑴多少个数字不重复的三位数?⑵多少个数字不重复的三位偶数?⑶多少个数字不重复的偶数?解:⑴百位数有5种选择;十位数有4种选择;个位数有3种选择.所以共有5×4×3=60个数字不重复的三位数.⑵ 先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数.⑶ 分为5种情况:一位偶数,只有两个:2和4.二位偶数,共有8个:12,32,42,52,14,24,34,54.三位偶数由上述⑵中求得为24个.四位偶数共有2×(4×3×2)=48个.括号外面的2表示个位数有2种选择(2或4).五位偶数共有2×(4×3×2×1)=48个.由加法原理,偶数的个数共有2+8+24+48+48=130. 从1到300的自然数中,完全不含有数字3的有多少个?解法1: 将符合要求的自然数分为以下三类:⑴一位数,有1,2,4,5,6,7,8,9共8个.⑵二位数,在十位上出现的数字有1,2,4,5,6,7,8,9 8种情形,在个位上出现的数字除以上八个数字外还有0,共9种情形,故二位数有8×9=72个.⑶三位数,在百位上出现的数字有1,2两种情形,在十位、个位上出现的数字则有0,1,2,4,5,6,7,8,9九种情形,故三位数有2×9×9=162个.因此,从1到300的自然数中完全不含数字3的共有8+72+162=242个.解法2: 将0到299的整数都看成三位数,其中数字3不出现的,百位数字可以是0,1或2三种情况.十位数字与个位数字均有九种,因此除去0共有3×9×9-1=242(个). 在小于10000的自然数中,含有数字1的数有多少个?解: 不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0.使之成为四位数.先求不含数字1的这样的四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数.由于每一位都可有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为9×9×9×9=6561,所以比10000小的不含数字1的自然数的个数是6561,于是,小于10000且含有数字1的自然数共有9999-6561=3438个.纠正一下:最后一步的答案应是10000-6561=3439 ,因为小于10000的自然数有10000个(包括0)而非9999个。 求正整数1400的正因数的个数.解: 因为任何一个正整数的任何一个正因数(除1外)都是这个数的一些质因数的积,因此,我们先把1400分解成质因数的连乘积1400=2×2×2×5×5×7所以这个数的任何一个正因数都是由2,5,7中的n个相乘而得到(有的可重复).于是取1400的一个正因数,这件事情是分如下三个步骤完成的:⑴ 取2×2×2的正因数是1,2,2×2,2×2×2,共3+1种;『注:1表示取0个;2表示取1个2;2×2表示取2个2;2×2×2表示取3个2.下面同理』⑵ 取5×5的正因数是1,5,5×5,共2+1种;⑶ 取7的正因数是1,7,共1+1种.所以1400的正因数个数为(3+1)×(2+1)×(1+1)=24.说明: 利用本题的方法,可得如下结论:若将正整数a分解成质因数pi(i=1,2,…,r)的连乘积时,其中质因数pi的个数是ai(i=1,2,…,r),则正整数a的不同的正因数的个数是(a1+1)×(a2+1)×…×(ar+1). 求五位数中至少出现一个6,且能被3整除的数的个数.解答如下:⑴ 从左向右计,如果最后一个6出现在第5位,即a5=6,那么a2,a3,a4可以是0,1,2,3,4,5,6,7,8,9这十个数字之一,但a1不能是任意的,它是由a2+a3+a4+a5被3除后的余数所决定.因此,为了保证a1+a2+a3+a4+a5能被3整除,a1只有3种可能,根据乘法原理,5位数中最后一位是6,而被3整除的数有3×10×10×10=3000(个).⑵ 最后一个6出现在第四位,即a4=6,于是a5只有9种可能(因为a5不能等于6),a2,a3各有10种可能,为了保证a1+a2+a3+a4+a5被3整除,a1有3种可能.根据乘法原理,属于这一类的5位数有3×10×10×9=2700(个).⑶ 最后一个6出现在第3位,即a3=6,被3整除的数应有3×10×9×9=2430(个).⑷ 最后一个6出现在第2位,即a2=6,被3整除的数应有3×9×9×9=2187(个).⑸ a1=6,被3整除的数应有3×9×9×9=2187(个).根据加法原理,5位数中至少出现一个6而被3整除的数应有3000+2700+2430+2187+2187=12504(个). 在6×6的棋盘上剪下一个由四个小方格组成的凸字形,有多少种不同的剪法?解: 我们把凸字形上面那个小方格称为它的头,每个凸字形有并且只有一个头.凸字形可以分为两类:第一类凸字形的头在棋盘的边框,但是棋盘的四个角是不能充当凸字形的头的.于是,边框上(不是角)的小方格共有4×4=16个,每一个都是一个凸字形的头,所以,这类凸字形有16个.第二类凸字形的头在棋盘的内部,棋盘内部的每一个小方格可以作为4个凸字形的头(即头朝上,头朝下,头朝左,头朝右),所以,这类凸字形有4×(4×4)=64(个).由加法原理知,有16+64=80种不同的凸字形剪法.

排列组合的乘法原理是怎么来的

加法原理做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.每一种方法都能够直接达成目标.乘法原理做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.注意区分两个原理.要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此使用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.

向量乘法原理

向量乘法分向量积,数量积1.向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b平行,则a×b=0,a、b垂直,则a×b=|a|*|b|(此处与数量积不同,请注意)。向量积即两个不共线非零向量所在平面的一组法向量。运算法则:运用三阶行列式设a,b,c分别为沿x,y,z轴的单位向量A=(x1,y1,z1)B=(x2,y2,z2)则A*B=a b cx1 y1 z1x2 y2 z2向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。a×a=0。a平行b〈=〉a×b=0向量的向量积运算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.上两个分配律分别称为左分配律和右分配律。在演算中应注意不能交换“×”号两侧向量的次序。如:a×(2b)=b×(2a)和c×(a+b)=a×c+b×c都是错误的!注:向量没有除法,“向量AB/向量CD”是没有意义的。2.数量积定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉(依定义有:cos〈a,b〉=a·b / |a|·|b|);若a、b共线,则a·b=±∣a∣∣b∣。向量的数量积的坐标表示:a·b=x·x"+y·y"。向量的数量积的运算律a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的数量积的性质a·a=|a|的平方。a⊥b〈=〉a·b=0。|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

小学生奥数题乘法原理、不定方程

【 #小学奥数# 导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。以下是 整理的《小学生奥数题乘法原理、不定方程》相关资料,希望帮助到您。 1.2小学生奥数题乘法原理   1、王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的"情形?   解答:三人报名参加比赛,彼此互不影响独立报名。所以可以看成是分三步完成,即一个人一个人地去报名。首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法。其次,赵明去报名,也有4种不同的报名方法。同样,李刚也有4种不同的报名方法。满足乘法原理的条件,可由乘法原理解决。   解:由乘法原理,报名的结果共有4×4×4=64种不同的情形。   2、由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?   解答:   分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决。   解:由1、2、3、4、5、6共可组成   3×4×5×3=180   个没有重复数字的四位奇数。  2.小学生奥数题乘法原理   求正整数1400的正因数的个数。   解因为任何一个正整数的任何一个正因数(除1外)都是这个数的一些质因数的积,因此,我们先把1400分解成质因数的连乘积   1400=23527   所以这个数的任何一个正因数都是由2,5,7中的n个相乘而得到(有的可重复)。于是取1400的一个正因数,这件事情是分如下三个步骤完成的:   (1)取23的正因数是20,21,22,33,共3+1种;   (2)取52的正因数是50,51,52,共2+1种;   (3)取7的正因数是70,71,共1+1种。   所以1400的正因数个数为   (3+1)×(2+1)×(1+1)=24。   说明利用本题的方法,可得如下结果:   若p是质数,a是正整数(i=1,2,…,r),则数的不同的正因数的个数是(a1+1)(a2+1)…(ar+1)。 3.小学生奥数题不定方程   1、装热水批瓶的盒子有大、小两种,大的能装7个,小的能装4个,要把41个热水瓶装入盒内,问需要大、小盒子各多少个?   2、说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何?”。设x,y,z分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。   3、某种笔记本大号1元钱3本,中号1元钱4本,小号1元钱5本,今用6元钱买得笔记本25本,问大、中、小号笔记本各几本?   4、有甲、乙两种卡车,甲车每次可装煤6吨,乙车每次可装煤8吨,现在有煤130吨,要求一次运完,而且每一辆卡车都要满载,问甲、乙两种卡车各多少辆?   5、一轧元钱买12张邮票,其中有四分的、八分的,也有二角的,问各买了几张?   6、红、黄、蓝三种皮球共26只,其中蓝皮球的只数是黄皮球的9倍,蓝皮球有多少只?   7、“有一个水库,在单位时间里有一定的水流进,同时也有一定的水向外流,水库的水可以使用40天,因最近降雨大,流入水库的水增加20%,如果放水量增加10%,则仍可以使用40天,如果按原来的防水量,可以使用多少天? 4.小学生奥数题不定方程   1、求不定方程2x+3y=18的自然数的解。(0除外)   分析:所谓“自然数解”,就是要使方程的解为自然数,这道题有两个未知数,我们可以采用尝试法,假设当x=1时,y无解;当x=2时,y无解······如果我们将方程适当变形,把其中一个未知数用另一个未知数表示出来,即将方程变形为:y=(18-2x)÷3,我们就可以推断等式右边的被除数“(18-2x)”必须是3的倍数,而且它不能为0,这样就可以相对方便地找出结果。   所以x=3,y=4或x=6,y=2。   2、超市有甲、乙两种手套出售,甲种手套每副16元,乙种手套每副10元,某天这两种手套的销售额一共是200元,你知道这个超市该天两种手套各卖多少副吗?   分析:这道题甲种手套和乙种手套卖出多少副都不知道,我们可以考虑分别设甲种手套卖出x副,乙种手套卖出y副,尝试用不定方程的方法来求解,仔细分析题意,不难发现这道题有一个隐含条件,即手套的副数只能是自然数。   解:设超市卖出甲种手套x副,卖出乙种手套y副,则16x+10y=200。   由于手套的副数只能是自然数,因此这个不定方程有两组解:   (1)x=5,y=12;   (2)x=10,y=4。 5.小学生奥数题不定方程   1、在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的数有多少个?   2、某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加。男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树。那么其中有多少名男职工?   3、甲级铅笔7分钱一支,乙级铅笔3分钱一支。张明用5角钱恰好可以买这两种不同的铅笔共多少支?   4、有纸币60张,其中1分、1角、1元和10元各有若干张。问这些纸币的总面值是否能够恰好是100元?   5、将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损耗忽略不计。问:剩余部分的管子最少是多少厘米?

小学乘法原理

小学乘法这样教入门:习惯逐步背诵乘法口诀。 给孩子简单说说乘法是怎么一回事,重点观察乘法口诀规律,有规律地背诵记忆,最终学会背诵。督促孩子抓紧课余时间,充分理解乘法的本源和使用意义。 让孩子了解加法和乘法的对应关系,同时多练习、多举例,可以让孩子用“故事”的方法自己创造乘法公式对应的背景。 也就是说,感觉是自己做小应用题。及时更新知识,与老师所教内容和最新规定相统一,避免孩子混淆。小学乘法速算技巧:一位是“1”。 快嘴战术:头骑在头上,头戴在头上,尾为1 (头戴在头上超过10就会上升) )。10位是“1”。 快嘴战术:头部为1,尾部为正,尾部为负(超过10则进位) ) )。一位都是“9”。 快语战术:人头数加1,乘法后乘以10,减去加数,最后加1。10位都是“9”。 快语战术:从100中减去前面的数,接受后面的减数。 100减去大家,结果互乘,占第二位。头相同,尾互补(尾数加10 )早算口诀)头乘头加1,尾乘尾占第二位。头互补,尾同。 快嘴战术:头乘头加尾、尾乘尾占第2位。相补数重叠数。 快嘴战术:头加1再骑在头上。 尾巴占第二位。其中之一是11。 快语战术:首尾不动,合在一起放在中间。

乘法原理

2*2*2*2=16

小学奥数题 乘法原理

5*4*4*4+5*4*4*3

计算机计算乘法原理

乘数、被乘数都要先转化为二进制,二进制的乘法远比十进制简单,比如乘数是1011,只需将将被乘数分别左移3位、1位,移动后补入0,并将这三个数(被乘数左移3位的、被乘数左移1位的及未移位的被乘数)在累加器中相加,所得总和就是积,根据需要积可再转化为十进制。除法与乘法类似,只不过将左移改为右移,加改成减。实际上减也是通过取补码后再加,因此计算机芯片上的累加器是最繁忙的部分。三角函数我猜是用级数的方法变成四则运算

乘法原理的证明

乘法原理是加法原理的一个推论,令 , ,…, 是对元素a的p个不同的选择。将S划分成部分 , ,…, ,其中 是S内第一个元素为 (i=1,2,…,p)的有序偶的集合。每个 的大小为q,因此由加法有上述推导用到了整数的乘法就是重复的加法这一事实。

数学乘法原理问题

不重复是:P33=3*2*1=6个569,596,659,695,965,956允许重复就复杂多了。用次方解决也挺累的,因为还要排除很多,数字相同的重复情况。这里用穷举法比较合适。不重复有6个,再加上:555556559565595655955数字5重复情况有7种,数字6、数字9情况相同,所以7*3=21允许重复的情况就是6+21=27个

乘法原理是几年级学的

四年级,交换律结合律分配律,都是四年级学的。乘法运算定律是四年级开始学的。

排列组合的公式,和加法.乘法原理

加法原理,处理的是“分类”而“不分先后”的问题,具体到你提的问题当中,先选男生还是先选女生是没有关系的,所以应是男生的分法+女生的分法。相应的,乘法原理,处理的是分先后的问题。在选男生或女生的过程中,是有先后顺序的,先被选着的后来就不能被选了。具体问题常常是这两种原理的综合运用。答案应为c(10,2)+c(15,3)=10*9/(2*1)+15*14*13/(3*2*1)=20475.你琢磨琢磨吧。第二个问题类似的,自己尝试解解吧~

计算机计算乘法原理

sin cos的话 你可以去看一下泰勒公式 可能就清楚了 反正就是转化成加法、乘法来运算

数学:乘法原理弄不懂

很荣幸为您解答问题。这是到排列组合问题。首先甲从4个椅子中选一把去坐有4种选法,所以有4,然后因为这个作为被甲占据了,所以只剩下3个空闲的椅子供乙选择,所以有3,同理,丙和丁分别有两种和一种选法,所以有2和1.那么现在解释为什么是乘法。假设甲选座位A,那么单纯考虑甲和乙,乙有三种选法,那么假设甲选座位B,乙同样有3种选法,以此类推,所以仅仅考虑甲和乙的情况,就有3+3+3+3种选法,即4*3。同理可得其他的情况,所以使用乘法相连接的~希望为您解答了问题~玩采纳~

200分解答数学的乘法原理!~200分啊

高二数学必修5排列组合。。。。。。。。

乘法原理是什么?

乘法表1×1=11×2=2、2×2=41×3=3、2×3=6、3×3=91×4=4、2×4=8、3×4=12、4×4=161×5=5、2×5=10、3×5=15、4×5=20、5×5=251×6=6、2×6=12、3×6=18、4×6=24、5×6=30、6×6=361×7=7、2×7=14、3×7=21、4×7=28、5×7=35、6×7=42、7×7=491×8=8、2×8=16、3×8=24、4×8=32、5×8=40、6×8=48、7×8=56、8×8=641×9=9、2×9=18、3×9=27、4×9=36、5×9=45、6×9=54、7×9=63、8×9=72、9×9=81乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。乘法发展在各种文明的算术发展过程中,乘法运算的产生是很重要的一步。一个文明可以比较顺利地发展出计数方法和加减法运算,但要想创造一套简单可行的乘法运算方法却不那么容易。我们使用的乘法竖式计算看似简便,实际上这需要我们事先掌握九九乘法口诀表;考虑到这一点,这种竖式计算并不是完美的。我们即将看到,在数学的发展过程中,不同的文明创造出了哪些不同的乘法运算方法,其中有的运算法甚至可以完全抛弃乘法表。

加法原理和乘法原理有哪些?

加法: 把两个数合并成一个数的运算/把两个小数合并成一个小数的运算/把两个分数合并成一个分数的运算减法: 已知两个加数的和与其中一个加数,求另一个加数的运算。乘法 :求几个相同加数的和的简便运算。小数乘整数的意义与整数乘法意义相同。一个数乘纯小数就是求这个数的十分之几,百分之几…… 分数乘整数的意义与整数乘法意义相同。除法: 已知两个因数的积与其中一个因数,求另一个因数的运算。与整数除法的意义相同。扩展资料1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、 同分母分数:分母不变分子相加;异分母分数:先通分,再相加。2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减退一当十再减b、 同分母分数:分母不变,分子相减;分母分数:先通分,再相减。3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数用哪一-位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分结果要化简。4、除法a、整数和小数:除数有几位先看被除数的前几位, (不够就多看一位) ,除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数( 0除外)等于甲数除以乙数的倒数。

最小二乘法原理

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。

什么是最小二乘法原理

最小二乘法:是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 最小二乘法原理:是以不同精度多次观测一个或多个未知量,为了求定各未知量的最可靠值,各观测量必须加改正数,使其各改正数的平方乘以观测值的权数的总和为最小。

什么是最小二乘法原理

  最小二乘法:是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。   最小二乘法原理:是以不同精度多次观测一个或多个未知量,为了求定各未知量的最可靠值,各观测量必须加改正数,使其各改正数的平方乘以观测值的权数的总和为最小。

最小二乘法原理及应用

是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。

什么是最小二乘法原理求回归方程

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。做统计与对所得结果的评价时用得上,日常生活中不太用

乘法原理是什么意思

乘法原理是指乘法的运算结果成为积,是数学概率方面的基本原理。乘法原理(Multiplicatio)是指乘法的运算结果成为积,是数学概率方面的基本原理。做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法。那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。若某个对象分为n个环节,第1个环节有m1个元素,第2个环节有m2个元素,……,第n个环节有mn个元素,则该对象有N=m1×m2×m3×…×mn种序列。对于矩形,长、宽可以看做分别在二维空间的两个维内,且两个维相互正交,如果缺少长、宽中任何一个,矩形面积就失去意义,则矩形面积与长、宽的关系为:面积=长x宽。例题:利用数字1,2,3,4,5共可组成多少个数字不重复的三位数、多少个数字不重复的三位偶数、多少个数字不重复的偶数。解:百位数有5种选择;十位数有4种选择;个位数有3种选择.所以共有5×4×3=60个数字不重复的三位数。先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数。分为5种情况:一位偶数,只有两个:2和4。二位偶数,共有8个:12,32,42,52,14,24,34,54。三位偶数由上述⑵中求得为24个。四位偶数共有2×(4×3×2)=48个.括号外面的2表示个位数有2种选择(2或4)。五位偶数共有2×(4×3×2×1)=48个。由加法原理,偶数的个数共有2+8+24+48+48=130。

一道乘法原理题,小学奥数。

这一题的答案是9×4×1=36种

加法原理与乘法原理有什么区别?

排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法. 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个 这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的. 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。 (二)每一步是向上还是向右,决定了不同的走法。 (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数, ∴ 本题答案为:=56。 2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合 例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换 ,共12种。 例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。 (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。 (一)从6双中选出一双同色的手套,有种方法; (二)从剩下的十只手套中任选一只,有种方法。 (三)从除前所涉及的两双手套之外的八只手套中任选一只,有种方法; (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。 例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。 分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有=90种。 例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法? 分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。 以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。 第一类:这两个人都去当钳工,有种; 第二类:这两人有一个去当钳工,有种; 第三类:这两人都不去当钳工,有种。 因而共有185种。 例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数? 分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。 抽出的三数含0,含9,有种方法; 抽出的三数含0不含9,有种方法; 抽出的三数含9不含0,有种方法; 抽出的三数不含9也不含0,有种方法。 又因为数字9可以当6用,因此共有2×(+)++=144种方法。 例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种。 分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有种停车方法。 3.特殊元素,优先处理;特殊位置,优先考虑 例9.六人站成一排,求 (1)甲不在排头,乙不在排尾的排列数 (2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数 分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。 第一类:乙在排头,有种站法。 第二类:乙不在排头,当然他也不能在排尾,有种站法, 共+种站法。 (2)第一类:甲在排尾,乙在排头,有种方法。 第二类:甲在排尾,乙不在排头,有种方法。 第三类:乙在排头,甲不在排头,有种方法。 第四类:甲不在排尾,乙不在排头,有种方法。 共+2+=312种。 例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能? 分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。 第一步:第五次测试的有种可能; 第二步:前四次有一件正品有中可能。 第三步:前四次有种可能。 ∴ 共有种可能。 4.捆绑与插空 例11. 8人排成一队 (1)甲乙必须相邻 (2)甲乙不相邻 (3)甲乙必须相邻且与丙不相邻 (4)甲乙必须相邻,丙丁必须相邻 (5)甲乙不相邻,丙丁不相邻 分析:(1)有种方法。 (2)有种方法。 (3)有种方法。 (4)有种方法。 (5)本题不能用插空法,不能连续进行插空。 用间接解法:全排列-甲乙相邻-丙丁相邻+甲乙相邻且丙丁相邻,共--+=23040种方法。 例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况? 分析:∵ 连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即。 例13. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种? 分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。 ∴ 共=20种方法。 4.间接计数法.(1)排除法 例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形? 分析:有些问题正面求解有一定困难,可以采用间接法。 所求问题的方法数=任意三个点的组合数-共线三点的方法数, ∴ 共种。 例15.正方体8个顶点中取出4个,可组成多少个四面体? 分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数, ∴ 共-12=70-12=58个。 例16. l,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数? 分析:由于底数不能为1。 (1)当1选上时,1必为真数,∴ 有一种情况。 (2)当不选1时,从2--9中任取两个分别作为底数,真数,共,其中log24=log39,log42=log93, log23=log49, log32=log94. 因而一共有53个。 (3)补上一个阶段,转化为熟悉的问题 例17. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢? 分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。因而有=360种。 (二)先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种, ∴ 共=120种。 例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法? 分析:首先不考虑男生的站位要求,共种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。因而有=9×8×7×6=3024种。 若男生从右至左按从高到矮的顺序,只有一种站法, 同理也有3024种,综上,有6048种。 例19. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法? 分析:先认为三个红球互不相同,共种方法。而由于三个红球所占位置相同的情况下,共有变化,因而共=20种。 5.挡板的使用 例20.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法? 分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式。因而共36种。 6.注意排列组合的区别与联系:所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题。 例21. 从0,l,2,……,9中取出2个偶数数字,3个奇数数字,可组成多少个无重复数字的五位数? 分析:先选后排。另外还要考虑特殊元素0的选取。 (一)两个选出的偶数含0,则有种。 (二)两个选出的偶数字不含0,则有种。 例22. 电梯有7位乘客,在10层楼房的每一层停留,如果三位乘客从同一层出去,另外两位在同一层出去,最后两人各从不同的楼层出去,有多少种不同的下楼方法? 分析:(一)先把7位乘客分成3人,2人,一人,一人四组,有种。 (二)选择10层中的四层下楼有种。 ∴ 共有种。 例23. 用数字0,1,2,3,4,5组成没有重复数字的四位数, (1)可组成多少个不同的四位数? (2)可组成多少个不同的四位偶数? (3)可组成多少个能被3整除的四位数? (4)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么? 分析:(1)有个。 (2)分为两类:0在末位,则有种:0不在末位,则有种。 ∴ 共+种。 (3)先把四个相加能被3整除的四个数从小到大列举出来,即先选 0,1,2,3 0,1,3,5 0,2,3,4 0,3,4,5 1,2,4,5 它们排列出来的数一定可以被3整除,再排列,有:4×()+=96种。 (4)首位为1的有=60个。 前两位为20的有=12个。 前两位为21的有=12个。 因而第85项是前两位为23的最小数,即为2301。 7.分组问题 例24. 6本不同的书 (1) 分给甲乙丙三人,每人两本,有多少种不同的分法? (2) 分成三堆,每堆两本,有多少种不同的分法? (3) 分成三堆,一堆一本,一堆两本,一堆三本,有多少种不同的分法? (4) 甲一本,乙两本,丙三本,有多少种不同的分法? (5) 分给甲乙丙三人,其中一人一本,一人两本,第三人三本,有多少种不同的分法? 分析:(1)有中。 (2)即在(1)的基础上除去顺序,有种。 (3)有种。由于这是不平均分组,因而不包含顺序。 (4)有种。同(3),原因是甲,乙,丙持有量确定。 (5)有种。 例25. 6人分乘两辆不同的车,每车最多乘4人,则不同的乘车方法为_______。 分析:(一)考虑先把6人分成2人和4人,3人和3人各两组。 第一类:平均分成3人一组,有种方法。 第二类:分成2人,4人各一组,有种方法。 (二)再考虑分别上两辆不同的车。 综合(一)(二),有种。 例26. 5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有________种. 分析:(一)先把5个学生分成二人,一人,一人,一人各一组。 其中涉及到平均分成四组,有=种分组方法。 (二)再考虑分配到四个不同的科技小组,有种, 由(一)(二)可知,共=240种。 概率: 从随机现象说起 在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成截然不同的两大类:一类是确定性的现象。这类现象是在一定条件下,必定会导致某种确定的结果。举例来说,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。通常的自然科学各学科就是专门研究和认识这种必然性的,寻求这类必然现象的因果关系,把握它们之间的数量规律。 另一类是不确定性的现象。这类现象是在一定条件下,它的结果是不确定的。举例来说,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各棵种子的发芽情况也不尽相同,有强弱和早晚的分别等等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素又是人们无法事先一一能够掌握的。正因为这样,我们在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。 在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在的。比如:每期体育彩票的中奖号码、同一条生产线上生产的灯泡的寿命等,都是随机现象。因此,我们说:随机现象就是:在同样条件下,多次进行同一试验或调查同一现象,所的结果不完全一样,而且无法准确地预测下一次所得结果的现象。随机现象这种结果的不确定性,是由于一些次要的、偶然的因素影响所造成的。 随机现象从表面上看,似乎是杂乱无章的、没有什么规律的现象。但实践证明,如果同类的随机现象大量重复出现,它的总体就呈现出一定的规律性。大量同类随机现象所呈现的这种规律性,随着我们观察的次数的增多而愈加明显。比如掷硬币,每一次投掷很难判断是那一面朝上,但是如果多次重复的掷这枚硬币,就会越来越清楚的发现它们朝上的次数大体相同。 我们把这种由大量同类随机现象所呈现出来的集体规律性,叫做统计规律性。概率论和数理统计就是研究大量同类随机现象的统计规律性的数学学科。 概率论的产生和发展 概率论产生于十七世纪,本来是又保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。 早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m局就算赢,全部赌本就归谁。但是当其中一个人赢了 a (a<m)局,另一个人赢了 b(b<m)局的时候,赌博中止。问:赌本应该如何分法才合理?”后者曾在1642年发明了世界上第一台机械加法计算机。 三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。 近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。 概率论和数理统计是一门随机数学分支,它们是密切联系的同类学科。但是应该指出,概率论、数理统计、统计方法又都各有它们自己所包含的不同内容。 概率论——是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性大小做出数量上的描述;比较这些可能性的大小、研究它们之间的联系,从而形成一整套数学理论和方法。 数理统计——是应用概率的理论来研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明;并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性。使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。 统计方法——是一上提供的方法在各种具体问题中的应用,它不去注意这些方法的的理论根据、数学论证。 应该指出,概率统计在研究方法上有它的特殊性,和其它数学学科的主要不同点有: 第一,由于随机现象的统计规律是一种集体规律,必须在大量同类随机现象中才能呈现出来,所以,观察、试验、调查就是概率统计这门学科研究方法的基石。但是,作为数学学科的一个分支,它依然具有本学科的定义、公理、定理的,这些定义、公理、定理是来源于自然界的随机规律,但这些定义、公理、定理是确定的,不存在任何随机性。 第二,在研究概率统计中,使用的是“由部分推断全体”的统计推断方法。这是因为它研究的对象——随机现象的范围是很大的,在进行试验、观测的时候,不可能也不必要全部进行。但是由这一部分资料所得出的一些结论,要全体范围内推断这些结论的可靠性。 第三,随机现象的随机性,是指试验、调查之前来说的。而真正得出结果后,对于每一次试验,它只可能得到这些不确定结果中的某一种确定结果。我们在研究这一现象时,应当注意在试验前能不能对这一现象找出它本身的内在规律。 概率论的内容 概率论作为一门数学分支,它所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性。 概率是随机事件发生的可能性的数量指标。在独立随机事件中,如果某一事件在全部事件中出现的频率,在更大的范围内比较明显的稳定在某一固定常数附近。就可以认为这个事件发生的概率为这个常数。对于任何事件的概率值一定介于 0和 1之间。 有一类随机事件,它具有两个特点:第一,只有有限个可能的结果;第二,各个结果发生的可能性相同。具有这两个特点的随机现象叫做“古典概型”。 在客观世界中,存在大量的随机现象,随机现象产生的结果构成了随机事件。如果用变量来描述随机现象的各个结果,就叫做随机变量。 随机变量有有限和无限的区分,一般又根据变量的取值情况分成离散型随机变量和非离散型随机变量。一切可能的取值能够按一定次序一一列举,这样的随机变量叫做离散型随机变量;如果可能的取值充满了一个区间,无法按次序一一列举,这种随机变量就叫做非离散型随机变量。 在离散型随机变量的概率分布中,比较简单而应用广泛的是二项式分布。如果随机变量是连续的,都有一个分布曲线,实践和理论都证明:有一种特殊而常用的分布,它的分布曲线是有规律的,这就是正态分布。正态分布曲线取决于这个随机变量的一些表征数,其中最重要的是平均值和差异度。平均值也叫数学期望,差异度也就是标准方差。 参考资料:http://www.ikepu.com/maths/maths_branch/probability_total.htm

分步乘法原理公式

分步乘法原理公式原理是:完成一件事有几类办法,各类办法相互独立,每类办法中又有多种不同的办法,则完度成这件事的不同办法数是各类不同方法种数的和。 计数原理是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。在本章中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题。

怎么区别概率中的加法原理,和乘法原理

1、加法原理,又称分类计数原理:如果做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。 加法原理中的每一种方法都是独立、完整且互斥的,只有满足这个条件,才能用加法原理。2、乘法原理又称分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。 乘法原理中的每一步都 不能独立完成任务,且各步都不可缺少,需要依次完成所有步骤才能完成一个独立事件,只有满足这个条件,才能用乘法原理。

教学中怎样让学生区分分类计数原理和分步乘法原理?

解决时直接完成时分类,否则为分步