电泳

阅读 / 问答 / 标签

做电泳时忘加marker了,后面补加行吗?

不行,因为不同胶、电泳的时间、缓冲液、上样量等因素,每次上样时,这些因素都不能保证完全一致,而marker是对照,如果目的条带与marker不同时进行电泳,那么结果肯定无法进行目的条带大小的判断,所以这种情况下只能重新点样,然后电泳。

琼脂凝胶电泳图中marker是?

你作为对照的已知组成成分的标准物!

电泳时marker是什么?

电泳分为琼脂糖凝胶电泳和SDS-PAGE蛋白电泳,因此也有对应的Marker, 不管哪种Marker都是作为一个参照,通过对比来确定样品的大小.

pcr电泳marker加多少

加到6uL;根据我的经验,配制1.5%的琼脂糖凝胶电泳时,检测的加4uL,marker点到了6uL。其实每个胶孔的加样量和你配置的胶的厚度有很大关系,你可以试试,就知道了。补充点,我跑电泳的时候是PCR产物,也跑过引物,用2%的琼脂糖胶,上样量是10uM,EB染色后很亮。拓展:marker是人为的把一系列已知大小的DNA(或已知质量的蛋白,当然PCR中用的是DNA marker不是蛋白marker)混合在一起,在电泳的时候对照用.跑完电泳之后,会看到marker的有几条清楚的条带,而每条的大小都是可以在这个marker的说明书上查到的.所以,条带对照,就大体知道你需要的条带的大小范围了。

电泳maker条带依次大小都是多少

什么marker啊,是DNA的电泳marker还是蛋白电泳的marker呢?常用的DNA电泳marker:DL2000 plus的条带大小依次为5000、3000、2000、1000、750、500、250、100bp共8条带.DL2000的就是少了5000的那条,一共7条带.如果要是D1000的话,就是1000、700、500、400、300、200、100bp共6条,常用的就这些了.常用的蛋白电泳marker:蛋白预染marker大小依次为170、130、95、72、55、43、34、26、17、10KDa,其中72是红色的那条,10是绿色的那条,共10条带.其他的也是视情况而定.

请问PCR电泳分析是内参和marker有什么区别么,前者和后者的作用区别在哪儿呢,谢谢

不太一样。内参是相对定量用的,marker是定大小的。内参一般是RT-PCR用的,当底物是cDNA文库这种混合物时,除了扩增目的片段,往往还要扩增一个内参。内参一般选择细胞内的管家基因,表达量不会随着细胞状态而变化的,如U6,GAPDH等。由于PCR定量结果受底物影响较大,枪不准或者操作不当带来的很大误差,所以用目的片段的定量结果除以内参的定量结果,就能得到一个相对准确的比值,即相对定量。marker一般是用在普通pcr之后的跑电泳过程中。marker是一系列确定大小的DNA片段,跑出一个ladder,然后你的扩增片段与ladder比较,就可以知道片段的大概长度,然后判断是不是你要的片段,还是杂带。

如何选用琼脂糖凝胶电泳时的marker

琼脂糖是线性的多聚物,基本结构是1,3连结的β-D-半乳糖和1,4连结的3,6-内醚-L-半乳糖交替连接起来的长链 。琼脂果胶是由许多更小的分子组成的异质混合物。琼脂糖在水中一般加热到90℃以上溶解,温度下降到35-40℃时形成良好的半固体状的凝胶,这是它具有多种用途的主要特征和基础。琼脂糖凝胶性能通常用凝胶强度表示。强度越高,凝胶性能越好。琼脂糖在水中一般加热到90℃以上溶解,温度下降到35-40℃时形成良好的半固体状的凝胶,这是它具有多种用途的主要特征和基础。琼脂糖凝胶性能通常用凝胶强度表示。强度越高,凝胶性能越好。质量较好的琼脂糖强度通常在1200克/cm2以上(1%胶浓度)。琼脂糖的凝胶性是由存在的氢键所致,凡是能破坏氢键的因素都能导致凝胶性的破坏。琼脂糖具有亲水性,并几乎完全不存在带电基团,对敏感的生物大分子极少引起变性和吸附,是理想的惰性载体。在琼脂糖制备过程中需要把琼脂果胶尽量去除,否则琼脂糖有可能存在极微量硫酸根和丙酮酸取代电离基团,就会造成电内渗(EEO),电内渗对质点的移动产生影响。

sds凝胶电泳用什么marker

sds凝胶电泳用蛋白marker、彩虹蛋白marker就可以。蛋白marker可分为:一、未预染的Marker即宽分子量蛋白标准、高分子量蛋白标准以及低分子量蛋白标准;二、预染的Marker即单色预染和多色预染。在western Blot过程中,分子量Marker就像个螺丝钉一样没虽然是个小细节,然而就是这样一个小细节对实验结果有着不可忽视的作用。这个 Western Blot参照家族的一员的作用主要是用来指示蛋白条带所对应的分子量大小,只有标准量精确无误了,实验结果才有说服力,除此之外,蛋白标准还有表示转移成功或者蛋白在凝胶上的电泳程度等等的作用,所以选择正确的蛋白Marker也是western blot实验成功的必要条件之一。

电泳时marker是如何选择的?100bp DNA ladder是指什么

电泳时marker选择方法:如果是核酸marker比较简单吧,就是看marker条带的大小和你的目标条带的关系,尽量选择目标条带接近分子量的marker,或是在目标分子量附近条带较多的marker.另外就是,如果目标分子量很小,凝胶通常选择的浓度较大,就不能用分子量太大的marker,例如,只检测200bp的条带,那么用分子量最大到1000,或者500的marker就比较合适.如果分子量很大,例如在几k,就可能会选择向lamda HindIII这样最大到23K的marker.否则凝胶浓度不合适,marker条带分不开,影响对你目标分子分子量的判断.以前我们在实验室用得最多的是2000,和15000的marker,能覆盖大部分分子量的检测.100bp DNA ladder是由10条PCR扩增片段混合而成的。

DNA电泳时,PCR产物样品里要加maker吗

不是在样品里加marker,marker是一些标准长度的DNA,加在样品旁边的空里,给样品的DNA长度做一个比对

DNA电泳时,PCR产物样品里要加maker吗

PCR实验本身中不需要加入marker,但是在PCR过后跑电泳的时候需要加入marker.用来对比PCR产物的大小,看看产物的电泳条带是不是符合你的预期的。PCR中加marker的原因:marker是人为的把一系列已知大小的DNA(或已知质量的蛋白,当然PCR中用的是DNAmarker不是蛋白marker)混合在一起,在电泳的时候对照用.跑完电泳之后,会看到marker的有几条清楚的条带,而每条的大小都是可以在这个marker的说明书上查到的.所以,条带对照,就大体知道你需要的条带的大小范围了。PCR:PCR(聚合酶链式反应)是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5"-3")的方向合成互补链。基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。marker:标记(Marker),染色体上一个可以被识别的区域(比如限制性内切酶的酶切点,基因的位置等)。标记的遗传能够被检测出来。标记可以是染色体上有表达功能的部分(比如基因),也可以是没有编码蛋白质功能但遗传特性能够被检测出来的部分。

琼脂糖凝胶电泳marker的作用

看分子量啊

DNA限制酶切和琼脂糖凝胶电泳中常说的Marker是什么?还有Loading Dye 在实验中起到什么作用?

1. marker是分子量标准 你要知道电泳时 分子量越小的跑得越快 这样的你的酶切产物电泳后形成的条带 就可以对照marker知道是多大分子量的了2. loading dye 一般用溴酚蓝或二甲苯青 和混在上样缓冲液里 和 样品一起点到点样孔中,电泳过程中 dye也会往前移动。在特定浓度的凝胶里 dye的迁移率会和特定的分子量dna速度一样。目的是为了知道电泳跑到什么时候可以停止,起指示作用的。 否则一大块胶 没有指示dye,你也不知道改跑到什么时候 还得跑跑就得紫外照照

电泳过程中 为什么mark 越跑越弱

电泳的marker是作为电泳参照的,通常一种marker是由多条不同长度的DNA组成的,具体得看你的marker种类。这些东西功能都是一样的,就是给你自己的电泳做一个参照,因为marker会显示特定长度的DNA在胶里面的位置,所以你就可以对比自己DNA跑的位置来推断DNA的长度。同时marker也可以作为指示,如果跑胶连marker都没有跑出来,那这个实验应该是有问题的。对样品的需求主要还是看胶,比如琼脂糖凝胶电泳的话就是跑相对大一些的DNA片段的,那样品和marker都会用大一些的,PAGE的话就相对小一些。marker可以判断bp数就是之前说的通过看跑胶的相对位置来推断。

电泳时为什么加入DNAmaker

PCR实验本身中不需要加入marker,但是在PCR过后跑电泳的时候需要加入marker.用来对比PCR产物的大小,看看产物的电泳条带是不是符合你的预期的。PCR中加marker的原因:marker是人为的把一系列已知大小的DNA(或已知质量的蛋白,当然PCR中用的是DNAmarker不是蛋白marker)混合在一起,在电泳的时候对照用.跑完电泳之后,会看到marker的有几条清楚的条带,而每条的大小都是可以在这个marker的说明书上查到的.所以,条带对照,就大体知道你需要的条带的大小范围了。PCR:PCR(聚合酶链式反应)是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5"-3")的方向合成互补链。基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。marker:标记(Marker),染色体上一个可以被识别的区域(比如限制性内切酶的酶切点,基因的位置等)。标记的遗传能够被检测出来。标记可以是染色体上有表达功能的部分(比如基因),也可以是没有编码蛋白质功能但遗传特性能够被检测出来的部分。

marker和样品一起电泳的话结果有影响吗

没有影响,Marker有预染和普通的。上样 前,蛋白样品65°C预热是必需的,否则电泳后一些蛋白会沉积在分离胶的上沿,出现一条蛋白杂带。煮沸应该没有关系。扩展:Marker是一个英文单词,具有多种含义,一是指表面覆盖有特殊反光材料的标记物,常见形状有球形、半球形。二是生物学中指标记(Marker)等。在运动信息获取领域中(如三维动作捕捉、三维步态分析等),通常在捕捉对象上粘贴Marker,Marker可以反射设备发出的光线(通常是红外光线),反射的数据再被设备接收,然后系统对接收数据进行处理。这样,就可以实现物体/人体运动信息的获取。

电泳时marker是如何选择的?100bp DNA ladder是指什么

电泳时marker选择方法:如果是核酸marker比较简单吧,就是看marker条带的大小和你的目标条带的关系,尽量选择目标条带接近分子量的marker,或是在目标分子量附近条带较多的marker.另外就是,如果目标分子量很小,凝胶通常选择的浓度较大,就不能用分子量太大的marker,例如,只检测200bp的条带,那么用分子量最大到1000,或者500的marker就比较合适.如果分子量很大,例如在几k,就可能会选择向lamda HindIII这样最大到23K的marker.否则凝胶浓度不合适,marker条带分不开,影响对你目标分子分子量的判断.以前我们在实验室用得最多的是2000,和15000的marker,能覆盖大部分分子量的检测.100bp DNA ladder是由10条PCR扩增片段混合而成的。

tae电泳缓冲液有毒吗?

TAE有较强的致癌作用,所以操作时要记得戴手套。

TAE电泳缓冲液有没有毒

TAE电泳缓冲液本身没有毒。TAE缓冲液是由三羟甲基氨基甲烷(Tris base)、乙酸(acetic acid)和乙二胺四乙酸(EDTA)组成的缓冲液,英文名为三种组成成分的首字母。在分子生物学实验中常被用作DNA或RNA进行凝胶电泳时的缓冲液。缓冲液在电泳过程中的一个作用是维持合适的pH。扩展资料:TAE的配方50×TAE Buffer 配制方法:1、称量Tris 242g,EDTA 18.612g于1L烧杯中;2、向烧杯中加入约800ml去离子水,充分搅拌均匀;3、加入57.1ml的冰乙酸,充分溶解;4、用NaOH调pH至8.3,加去离子水定容至1L后,室温保存。使用时稀释50倍或100倍 即1×TAE Buffer 或 0.5×TAE参考资料来源:百度百科-TAE缓冲液

tae水对电泳的影响

是为了维持合适的ph值。tae水缓冲液在电泳过程中的一个作用是维持合适的pH,电泳时正极与负极都会发生电解反应,tae水对电泳影响ph值的情况。AE电泳缓冲液本身没有毒,TAE缓冲液是由三羟甲基氨基甲烷(Trisbase)、乙酸(aceticacid)和乙二胺四乙酸(EDTA)组成的缓冲液,英文名为三种组成成分的首字母。

DNA琼脂糖电泳缓冲液可用TAE或TBE缓冲液?

TAE是使用最广泛的缓冲液。其特点是超螺旋在其中电泳时更符合实际相对分子质量(TBE中电泳时测出的相对分子质量会大于实际分子质量),且双链线状DNA在其中的迁移率较其他两种缓冲液快约10%,电泳大于13kb的片段时用TAE缓冲液将取得更好的分离效果,此外,回收DNA片段时也易用TAE缓冲系统进行电泳。TAE的缺点是缓冲容量小,长时间电泳(如过夜)不可选用,除非有循环装置使两极的缓冲液得到交换。就看你的DNA样品的片段大小和实验的时间问题来综合选择了

琼脂糖凝胶电泳中凝胶中加TAE有什么用?有时候不加怎么也能跑出来? 如题

确实,用水配胶也能跑出来,但你不觉得跑的条带很难看么? 因为你的电泳缓冲液是TAE,那么用TAE配胶就使胶体中的离子环境与缓冲液相同,使核酸携带的电荷更稳定,用水,整个电泳过程溶液都在变化,核酸的迁移速度也在变化,条带就难看了.

1.DNA双向电泳定位复制起点原理 2.TdR可以标记细胞内核酸,为什么又能抑制细胞生长进行同步化到S期?

TdR 是细胞DNA合成不可缺少的前体, 但向培养基中加入过量的TdR, 能形成过量的三磷酸腺苷, 后者能负反馈抑制其他核苷的磷酸化, 从而抑制DNA合成。

双向电泳中,TCA丙酮法提蛋白的注意事项

2D-clean up Kit 3000元,可用50次。

电泳中的input和pulldown是什么意思

inputwithinternalpull-down:带内部下拉(电阻)的输入outputwithinternalpull-up:带内部上拉(电阻)的输出上拉就是将不确定的信号通过一个电阻嵌位在高电平,电阻同时起限流作用,下拉同理。

电泳中的input和pulldown是什么意思

input英-["u026anpu028at]美-["u026an"pu028at]释义n. 投入;输入电路vt. [自][电子] 输入;将…输入电脑pulldown英-["pu028al,dau028an]美-["pu028al,dau028an]释义adj. 折叠式的

聚丙烯酰胺凝胶电泳和琼脂糖凝胶电泳载体凝固条件

1、聚丙烯酰胺凝胶的凝结是化学过程,其中的丙烯酰胺单体通过化学反应聚合成高聚物,化学反应的特点就是温度越高,反应速度越快。2、琼脂糖凝胶凝结是物理过程,其中的琼脂糖长链在整个过程中没有变化,有所变化的是氢键等次级键的结合情况.温度越低,氢键结合越牢固。

琼脂糖电泳有何优缺点?

琼脂糖凝胶电泳是用琼脂或琼脂糖作支持介质的一种电泳方法。对于分子量较大的样品,如大分子核酸、病毒等,一般可采用孔径较大的琼脂糖凝胶进行电泳分离。琼脂糖凝胶约可区分相差100bp的DNA片段,其分辨率虽比聚丙烯酰胺凝胶低,但它制备容易,分离范围广,尤其适于分离大片段DNA。普通琼脂糖凝胶分离DNA的范围为0.2-20kb,利用脉冲电泳,可分离高达10^7bp的DNA片段。琼脂糖凝胶的特点天然琼脂(agar)是一种多聚糖,主要由琼脂糖(agarose,约占80%)及琼脂胶(agaropectin)组成。琼脂糖是由半乳糖及其衍生物构成的中性物质,不带电荷,而琼脂胶是一种含硫酸根和羧基的强酸性多糖,由于这些基团带有电荷,在电场作用下能产生较强的电渗现象,加之硫酸根可与某些蛋白质作用而影响电泳速度及分离效果。因此,目前多用琼脂糖为电泳支持物进行平板电泳,其优点如下。(1)琼脂糖凝胶电泳操作简单,电泳速度快,样品不需事先处理就可以进行电泳。(2)琼脂糖凝胶结构均匀,含水量大(约占98%~99%),近似自由电泳,样品扩散较自由电流,对样品吸附极微,因此电泳图谱清晰,分辨率高,重复性好。(3)琼脂糖透明无紫外吸收,电泳过程和结果可直接用紫外光灯检测及定量测定。(4)电泳后区带易染色,样品极易洗脱,便于定量测定。制成干膜可长期保存。目前,常用琼脂糖作为电泳支持物,分离蛋白质和同工酶。将琼脂糖电泳与免疫化学相结合,发展成免疫电泳技术,能鉴别其他方法不能鉴别的复杂体系,由于建立了超微量技术,0.1ug蛋白质就可检出。

EB(溴乙锭)在荧光灯下的成像原理(用于凝胶电泳)

不清楚啊

几种蛋白质凝胶电泳方法的区别和用途

1、醋酸纤维素薄膜电泳 :醋酸纤维素薄膜电泳是以醋酸纤维素薄膜为支持物,它是纤维素的醋酸酯,由纤维素的羟基经乙酰化而制成.醋酸纤维素膜薄是一种细密而又薄的微孔膜.醋酸纤维素膜对样品的吸附性较小,因此,少量的样品,甚至大分子物质都能得以较高的分辨率.又由于醋酸纤维素薄膜亲水性较小,故电渗作用也较小,并且它所容纳的缓冲液也较少,因此电流的大部分由样品传导,可以加速样品分离,大大节约电泳时间.醋酸纤维素具有操作简单、快速、价廉、定量容易等优点,尤其较纸电泳分辨力强、区带清晰、灵敏度高和便于保存、照相等,目前醋酸纤维素薄膜电泳己取代纸电泳而被广泛应用于科学实验、生化产品分析和临床化验,如分析检测血浆蛋白、脂蛋白、糖蛋白、胎儿甲种球蛋白、体液、脊髓液、脱氢酶、多肽、核酸及其他生物大分子,为心血管疾病、肝硬化及某些癌症鉴别诊断提供了可靠的依据,因而已成为医学和临床检验的常规技术.2、 琼脂糖凝胶电泳 :琼脂糖凝胶电泳是一种以琼脂糖凝胶为支持物的凝胶电泳,其分析原理与其它支持物电泳的最主要区别是:它兼有“分子筛”和“电泳”的双重作用.琼脂糖凝胶具有网络结构,直接参与带电颗粒的分离过程,在电泳中,物质分子通过空隙时会受到阻力,大分子物质在泳动时受到的阻力比小分子大,因此在凝胶电泳中,带电颗粒的分离不仅依赖于净电荷的性质和数量,而且还取决于分子大小,这就大大地提高了分辨能力.琼脂糖系天然的琼脂加工制得,天然琼脂是一种多聚糖,主要由琼脂糖(约占80%)及琼脂胶组成.琼脂糖是由半乳糖及其衍生物构成的中性物质,不带电荷.而琼脂胶是一种含硫酸根和羧基的强酸性多糖,由于这些基团带有电荷,在电场作用下能产生较强的电渗现象.所以常用于血清蛋白、血红蛋白、脂蛋白、糖蛋白、乳酸脱氢酶、碱性磷酸酶等同工酶的分离和鉴定,为临床某些疾病的鉴别诊断提供了可靠的依据.与免疫化学反应相结合发展成为免疫电泳技术,用于分离和检测抗原.可对目前常用的琼脂糖进行某些修饰,如引入化学基团羟乙基,则可使琼脂糖在65℃左右便能熔化,被称为低熔点琼脂糖.该温度低于DNA的熔点,而且凝胶强度又无明显改变.以此为支持物进行电泳,称为低熔点琼脂糖凝胶电泳,主要应用于DNA研究.如DNA鉴定,DNA限制性内切酶图谱制作等,为DNA分子及其片段分子量测定和DNA分子构象的分析提供了重要手段.3、聚丙烯酰胺凝胶电泳 :聚丙烯酰胺凝胶是由单体丙烯酰胺和交联剂又称为共聚体的N,N"-甲叉双丙烯酰胺(简称Bis)在加速剂和催化剂的作用下聚合交联成三维网状结构的凝胶,以此凝胶为支持物的电泳称为聚丙烯酰胺凝胶电泳(简称PAGE).应用范围广,可用于蛋白质、酶、核酸等生物大分子的分离、定性、定量及少量的制备,还可测定分子量、等电点等. 4、等电聚焦电泳 :等电聚焦电泳是利用具有pH梯度的电泳介质来分离等电点(pI)不同的蛋白质的电泳技术.这是六十年代后期才发展起来的新技术,基本原理是在制备聚丙烯胺胶凝胶时,在胶的混合液中加入载体两性电解质(商品名Ampholine).这种载体两性电解质是一系列含有不同比例氨基及羧基的氨羧酸混合物,其分子量在300~1000范围内,它们在pH2.5~11.0之间具有依次递变但相距很近的等电点,并且在水溶液中能够充分溶解.含有载体两性电解质的凝胶,当通以直流电时,载体两性电解质即形成一个从正极到负极连续增加的pH梯度.如果把蛋白质加人此体系中进行电泳时,不同的蛋白质即移动并聚焦于相当其等电点的位置.好的载体两性电解质应具有以下特点:在等电点处有足够的缓冲能力,不易被样品等改变其pH梯度;必须有均匀的足够高的电导,以便使一定的电流通过;分子量不宜太大,便于快速形成梯度并从被分离的高分子物质中除去;不与被分离物质发生化学反应或使之变性等.Ampholine是一种常用的载体两性电解质.要取得满意的等电聚焦电泳分离结果,除有好的载体两性电解质外,还应有抗对流的措施,使已分离的蛋白质区带不致发生再混合.要消除这种现象,办法之一加入抗对流介质,用得最多的抗对流支持介质是聚丙烯酰胺凝胶. 等电聚焦电泳与其它区带电泳比较具有更高的分辨率,等电点仅差0.01pH的物质即可分开;具有更好的浓缩效应,很稀的样品也可进行分离,并且可直接测出蛋白质的等电点.所以此技术在高分子物质的分离、提纯和鉴定中的应用日益广泛.但是等电聚焦电泳技术要求有稳定的pH梯度和使用无盐溶液,而在无盐溶液中蛋白质易发生沉淀.

琼脂糖凝胶电泳具体操作步骤是什么?需要注意什么事项?

一、操作步骤:1、电泳方法一般的核酸检测只需要琼脂糖凝胶电泳就可以;如果需要分辨率高的电泳,特别是只有几个bp的差别应该选择聚丙烯酰胺凝胶电泳;用普通电泳不合适的巨大DNA链应该使用脉冲凝胶电泳。2、凝胶浓度对于琼脂糖凝胶电泳,浓度通常在0.5~2%之间,低浓度的用来进行大片段核酸的电泳,高浓度的用来进行小片段分析。低浓度胶易碎,小心操作和使用质量好的琼脂糖是解决办法。3、缓冲液常用的缓冲液有TAE和TBE,而TBE比TAE有着更好的缓冲能力。电泳时使用新制的缓冲液可以明显提高电泳效果。4、电压和温度电泳时电场强度不应该超过20V/cm,电泳温度应该低于30℃,对于巨大的DNA电泳,温度应该低于15℃。5、DNA样品的纯度和状态注意样品中含盐量太高和含杂质蛋白均可以产生条带模糊和条带缺失的现象。乙醇沉淀可以去除多余的盐,用酚可以去除蛋白。6、DNA的上样正确的DNA上样量是条带清晰的保证。注意太多的DNA上样量可能导致DNA带型模糊,而太小的DNA上样量则导致带信号弱甚至缺失。7、Marker的选择DNA电泳一定要使用DNA Marker或已知大小的正对照DNA来估计DNA片段大小。Marker应该选择在目标片段大小附近ladder较密的,这样对目标片段大小的估计才比较准确。8、凝胶的染色和观察实验室常用的核酸染色剂是溴化乙锭(EB),染色效果好,操作方便,但是稳定性差,具有毒性。注意观察凝胶时应根据染料不同使用合适的光源和激发波长,如果激发波长不对,条带则不易观察,出现条带模糊的现象。二、注意事项:1、巨大的DNA链用普通电泳可能跑不出胶孔导致缺带。2、高浓度的胶可能使分子大小相近的DNA带不易分辨,造成条带缺失现象。3、电泳缓冲液多次使用后,离子强度降低,pH值上升,缓冲性能下降,可能使DNA电泳产生条带模糊和不规则的DNA带迁移的现象。4、如果电泳时电压和温度过高,可能导致出现条带模糊和不规则的DNA带迁移的现象。特别是电压太大可能导致小片段跑出胶而出现缺带现象。5、变性的DNA样品可能导致条带模糊和缺失,也可能出现不规则的DNA条带迁移。在上样前不要对DNA样品加热,用20mM NaCl缓冲液稀释可以防止DNA变性。6、太多的DNA上样量可能导致DNA带型模糊,而太小的DNA上样量则导致带信号弱甚至缺失。扩展资料琼脂糖凝胶具有网络结构,物质分子通过时会受到阻力,大分子物质在涌动时受到的阻力大,因此在凝胶电泳中,带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。但由于其孔径相比于蛋白质太大,对大多数蛋白质来说其分子筛效应微不足道,现广泛应用于核酸的研究中。蛋白质和核酸会根据pH不同带有不同电荷,在电场中受力大小不同,因此跑的速度不同,根据这个原理可将其分开。电泳缓冲液的pH在6~9之间,离子强度0.02~0.05为最适。常用1%的琼脂糖作为电泳支持物。琼脂糖凝胶约可区分相差100bp的DNA片段,其分辨率虽比聚丙烯酰胺凝胶低,但它制备容易,分离范围广。普通琼脂糖凝胶分离DNA的范围为0.2-20kb,利用脉冲电泳,可分离高达10^7bp的DNA片段。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速率向正极方向移动。参考资料来源:百度百科-琼脂糖凝胶电泳

琼脂糖凝胶电泳原理

1、琼脂糖凝胶电泳原理:琼脂糖凝胶具络,物质分子通过时到阻力,大分子物质在涌动时受到的阻力大,因此在凝胶电泳中,带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。但由于其孔径相比于蛋白质太大,对大多数蛋白质来说其分子筛效应微不足道,现广泛应用于核酸的研究中。琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。其分析原理与其他支持物电泳最主要区别是:它兼有“分子筛”和“电泳”的双重作用。2、核酸是两性电解质,其等电点为pH2-2.5,在常规的电泳缓冲液中(pH约8.5),核酸分子带负电荷,在电场中向正极移动。核酸分子在琼脂糖凝胶中泳动时,具有电荷效应和分子筛效应,但主要为分子筛效应。线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,也越难于在凝胶孔隙中移动,因而迁移得越慢。

DNA凝胶电泳检测原理及方法是什么?里面的试剂和其浓度各是多少?

发现楼下的原理解释的不对啊 DNA和SDS 有什么关系啊 ,蛋白才和SDS有关。DNA带负电所以向正极走,做胶时加入,这个东西会插入到DNA的碱基上,然后在紫外灯下显示颜色。ps:EB和goldenview会致癌,做实验时一定要注意。祝好!

简述蛋白电泳的原理及血清蛋白电泳各组分从正极到负极的排列顺序

蛋白电泳的原理:血清中各种蛋白质都有其特有的等电点,在高于其等电点PH的缓冲液中,将形成带负电荷的质点,在电场中向正极泳动,在同一条件下,不同蛋白质带电荷有差异,分子量大小也不同,所以泳动速度不同,血清蛋白质可分成五条区带。血清蛋白电泳各组分从正极到负极的排列顺序:血清蛋白质的电泳,蛋白质从负极向正极进行,按其泳动速度可将血清蛋白质分为五条区带,从正极到负极依次为白蛋白和α1、α2、β、γ-球蛋白。

高中生物电泳知识点

在琼脂糖凝胶不同的空中加入不同的DNA片段样品。通常第一个空为Marker,因为在同样的条件下,DNA片段在电场中的迁移速率是一样的,因此可以使用Marker来对照自己的目的片段大小。通常使用电压120V,电流100mA对第一步的琼脂糖凝胶进行电泳实验。俗称“跑胶”。大约20分钟就可以完成。将凝胶放到凝胶成像仪中观察,拍照,通常可以得到下图。

琼脂糖凝胶电泳时胶中dna是靠什么发出荧光的

琼脂糖凝胶电泳时胶中dna是靠荧光染色剂溴化乙锭发出荧光的。溴化乙锭为一种高度灵敏的荧光染色剂,用于观察琼脂糖和聚丙烯酰胺凝胶中的DNA。溴化乙锭用标准302nm紫外光透射仪激发并放射出橙红色信号,可用Polaroid底片或带CCD成像头的凝胶成像处理系统拍摄。溴化乙锭含有一个可以嵌入DNA堆积碱基之间的一个三环平面基团,它与DNA的结合几乎没有碱基序列特异性。扩展资料观察凝胶中DNA的最简便、最常用的方法就是利用荧光染料溴化乙锭进行染色。溴化乙锭是一种具有扁平分子的核酸染料,在高离子强度下,大约每2.5个碱基插入一个溴化乙锭分子。在DNA溴化乙锭复合物中,DNA吸收254nm处的紫外辐射并传递给染料,而结合的染料分子本身吸收302nm和399nm的光辐射,因此吸收的能量可在可见光谱红橙区的590nm处重新发射出来。因此对核酸分子染色之后,将电泳标本放置在紫外光下观察,便可以十分敏感而方便地检测出凝胶介质中DNA的谱带部位,即使每条DNA带中仅含有0.05g的微量DNA,也可以被清晰地显现出来。在适当的染色条件下,荧光的强度是同DNA片段的大小或数量成正比的。在包含有几种DNA片段的电泳谱带中,每一条带的荧光强度是随着从最大的DNA片段到最小的DNA片段方向逐渐降低的。参考资料来源:百度百科-凝胶电泳参考资料来源:百度百科-溴化乙锭

几种蛋白质凝胶电泳方法的区别和用途

1、醋酸纤维素薄膜电泳 :醋酸纤维素薄膜电泳是以醋酸纤维素薄膜为支持物,它是纤维素的醋酸酯,由纤维素的羟基经乙酰化而制成.醋酸纤维素膜薄是一种细密而又薄的微孔膜.醋酸纤维素膜对样品的吸附性较小,因此,少量的样品,甚至大分子物质都能得以较高的分辨率.又由于醋酸纤维素薄膜亲水性较小,故电渗作用也较小,并且它所容纳的缓冲液也较少,因此电流的大部分由样品传导,可以加速样品分离,大大节约电泳时间.醋酸纤维素具有操作简单、快速、价廉、定量容易等优点,尤其较纸电泳分辨力强、区带清晰、灵敏度高和便于保存、照相等,目前醋酸纤维素薄膜电泳己取代纸电泳而被广泛应用于科学实验、生化产品分析和临床化验,如分析检测血浆蛋白、脂蛋白、糖蛋白、胎儿甲种球蛋白、体液、脊髓液、脱氢酶、多肽、核酸及其他生物大分子,为心血管疾病、肝硬化及某些癌症鉴别诊断提供了可靠的依据,因而已成为医学和临床检验的常规技术. 2、 琼脂糖凝胶电泳 :琼脂糖凝胶电泳是一种以琼脂糖凝胶为支持物的凝胶电泳,其分析原理与其它支持物电泳的最主要区别是:它兼有“分子筛”和“电泳”的双重作用.琼脂糖凝胶具有网络结构,直接参与带电颗粒的分离过程,在电泳中,物质分子通过空隙时会受到阻力,大分子物质在泳动时受到的阻力比小分子大,因此在凝胶电泳中,带电颗粒的分离不仅依赖于净电荷的性质和数量,而且还取决于分子大小,这就大大地提高了分辨能力.琼脂糖系天然的琼脂加工制得,天然琼脂是一种多聚糖,主要由琼脂糖(约占80%)及琼脂胶组成.琼脂糖是由半乳糖及其衍生物构成的中性物质,不带电荷.而琼脂胶是一种含硫酸根和羧基的强酸性多糖,由于这些基团带有电荷,在电场作用下能产生较强的电渗现象.所以常用于血清蛋白、血红蛋白、脂蛋白、糖蛋白、乳酸脱氢酶、碱性磷酸酶等同工酶的分离和鉴定,为临床某些疾病的鉴别诊断提供了可靠的依据.与免疫化学反应相结合发展成为免疫电泳技术,用于分离和检测抗原.可对目前常用的琼脂糖进行某些修饰,如引入化学基团羟乙基,则可使琼脂糖在65℃左右便能熔化,被称为低熔点琼脂糖.该温度低于DNA的熔点,而且凝胶强度又无明显改变.以此为支持物进行电泳,称为低熔点琼脂糖凝胶电泳,主要应用于DNA研究.如DNA鉴定,DNA限制性内切酶图谱制作等,为DNA分子及其片段分子量测定和DNA分子构象的分析提供了重要手段. 3、聚丙烯酰胺凝胶电泳 :聚丙烯酰胺凝胶是由单体丙烯酰胺和交联剂又称为共聚体的N,N"-甲叉双丙烯酰胺(简称Bis)在加速剂和催化剂的作用下聚合交联成三维网状结构的凝胶,以此凝胶为支持物的电泳称为聚丙烯酰胺凝胶电泳(简称PAGE).应用范围广,可用于蛋白质、酶、核酸等生物大分子的分离、定性、定量及少量的制备,还可测定分子量、等电点等. 4、等电聚焦电泳 :等电聚焦电泳是利用具有pH梯度的电泳介质来分离等电点(pI)不同的蛋白质的电泳技术.这是六十年代后期才发展起来的新技术,基本原理是在制备聚丙烯胺胶凝胶时,在胶的混合液中加入载体两性电解质(商品名Ampholine).这种载体两性电解质是一系列含有不同比例氨基及羧基的氨羧酸混合物,其分子量在300~1000范围内,它们在pH2.5~11.0之间具有依次递变但相距很近的等电点,并且在水溶液中能够充分溶解.含有载体两性电解质的凝胶,当通以直流电时,载体两性电解质即形成一个从正极到负极连续增加的pH梯度.如果把蛋白质加人此体系中进行电泳时,不同的蛋白质即移动并聚焦于相当其等电点的位置.好的载体两性电解质应具有以下特点:在等电点处有足够的缓冲能力,不易被样品等改变其pH梯度;必须有均匀的足够高的电导,以便使一定的电流通过;分子量不宜太大,便于快速形成梯度并从被分离的高分子物质中除去;不与被分离物质发生化学反应或使之变性等.Ampholine是一种常用的载体两性电解质.要取得满意的等电聚焦电泳分离结果,除有好的载体两性电解质外,还应有抗对流的措施,使已分离的蛋白质区带不致发生再混合.要消除这种现象,办法之一加入抗对流介质,用得最多的抗对流支持介质是聚丙烯酰胺凝胶. 等电聚焦电泳与其它区带电泳比较具有更高的分辨率,等电点仅差0.01pH的物质即可分开;具有更好的浓缩效应,很稀的样品也可进行分离,并且可直接测出蛋白质的等电点.所以此技术在高分子物质的分离、提纯和鉴定中的应用日益广泛.但是等电聚焦电泳技术要求有稳定的pH梯度和使用无盐溶液,而在无盐溶液中蛋白质易发生沉淀.

试述凝胶电泳检测DNA的基本原理。

DNA片段属于带电质点。在一定电场作用下,一定大小的DNA片段以不同的速度通过不同浓度的琼脂糖凝胶,DNA的迁移率(u03bc)对数和凝胶浓度之间的线性关系遵循下列关系,即:lgu03bc0=lgu03bc-KrC,u03bc0的为自由电泳迁移率,Kr为滞留系数,是与凝胶性质和迁移分子大小及形状有关的常数。因此利用不同浓度的凝胶可以分辨不同大小的DNA片段。溴化乙锭(BB)是一种荧光染料,这种物质含有插入DNA积叠碱基之间的平面结构。这一结构的位置固定,与碱基很接近,使染料与DNA紧密结合。在紫外线照射下,可产生较强的荧光,故可以使用该方法进行DNA的鉴别。

如何用琼脂糖凝胶电泳测定DNA片段大小?其根据是什么?

步骤:1.制备1%琼脂糖凝胶(大胶用70ml,小胶用50ml):称取0.7g(0.5g)琼脂糖置于锥形瓶中,加入70ml(50ml)1×TAE,瓶口倒扣小烧杯.微波炉加热煮沸3次至琼脂糖全部融化,摇匀,即成1.0%琼脂糖凝胶液.2.胶板制备:取电泳槽内的有机玻璃内槽(制胶槽)洗干净,晾干,放入制胶玻璃板.取透明胶带将玻璃板与内槽两端边缘封好,形成模子.将内槽置于水平位置,并在固定位置放好梳子.将冷却到65℃左右的琼脂糖凝胶液混匀小心地倒入内槽玻璃板上,使胶液缓慢展开,直到整个玻璃板表面形成均匀胶层.室温下静置直至凝胶完全凝固,垂直轻拔梳子,取下胶带,将凝胶及内槽放入电泳槽中.添加1×TAE电泳缓冲液至没过胶板为止.3.加样:在点样板或parafilm上混合DNA样品和上样缓冲液,上样缓冲液的最终稀释倍数应不小于1X.用10ul微量移液器分别将样品加入胶板的样品小槽内,每加完一个样品,应更换一个加样头,以防污染,加样时勿碰坏样品孔周围的凝胶面.(注意:加样前要先记下加样的顺序).4.电泳:加样后的凝胶板立即通电进行电泳,电压60-100V,样品由负极(黑色)向正极(红色)方向移动.电压升高,琼脂糖凝胶的有效分离范围降低.当溴酚蓝移动到距离胶板下沿约1cm处时,停止电泳.5.电泳完毕后,取出凝胶,用含有0.5ug/ml的溴化乙锭1×TAE溶液染色约20min,再用清水漂洗10min.6.观察照相:在紫外灯下观察,DNA存在则显示出红色荧光条带,采用凝胶成像系统拍照保存.原理:借助琼脂糖凝胶的分子筛作用,核酸片段因其分子量或分子形状不同,电泳移动速度有差异而分离。

电泳迁移率变动(EMSA)实验原理

凝胶阻滞或电泳迁移率变动实验(Electrophoretic mobility shift assay,EMSA) (来自《养鲤鱼》微信公众号) 1、为什么看不到迁移带? 1)蛋白样本提取质量不高,蛋白降解或者提取量不足。 2)样本中没有可以与探针结合的蛋白。 3)探针与蛋白无特异性的相互作用。 4)转膜效率低,蛋白或者探针未转移到膜上。 5)曝光或者成像时间过短。 在Super-Shift EMSA测定中看不到Super-Shift DNA/蛋白复合物带还可能有以下原因: 6)抗体没有工作。不是所有的抗体都可以用于Super-Shift EMSA,只有对非变性蛋白的表面抗原决定簇起反应的抗体才能够用于Super-Shift EMSA。 7)测定的活化的DNA/蛋白复合物中没有希望检测的构成成分存在。此时既看不到Super-Shift的带,也看不到DNA/蛋白复合物的量的减少。 8)使用的抗体过度稀释。一般10-20ul的反应液需要使用0.5-1ul原倍的抗体。 9)多抗与DNA/蛋白复合物形成大的聚集物而不进胶。在这种情况下,虽然看不到Super-Shift的带,但应当可以看到DAN/蛋白复合物的电泳带明显减少。 2、为什么实验背景高? 1)曝光或者成像时间过长。 2)封闭时间不足或者效率不高。 3)洗涤效果不佳 4)实验过程中膜没有一直处于湿润状态。 3、EMSA测定需要多少量的蛋白与标记的探针? 对每一个特定的结合蛋白和探针,所用的纯化蛋白,部分纯化蛋白,粗制核抽提液需作优化:一般所用纯化蛋白的量在20-2000ng间,可将蛋白:DNA的等摩尔比调整为蛋白的摩尔数是DNA的5倍;用粗制核抽提液,需要2-10ug蛋白形成特异的复合物。 部分纯化蛋白与粗制核抽提液应保存在-80℃、探针应保存在-20℃以防止降解。 无论探针或是结合蛋白都应避免多次冻融。 4、Poly(dI:dC),非特异性竞争DNA,特异性竞争DNA在EMSA测定中的作用? Poly(dI:dC)由肌苷和胞嘧啶组成。在EMSA反应中加入poly(dI:dC),可抑制粗制核抽提液中转录调节因子与标记探针的非特异结合。结合溶液中的poly(dI:dC)的用量需在正式实验前进行优化,一般用量大约在0.05mg/ml左右。当用纯化的蛋白作凝胶迁移反应时,不必一定加入poly(dI:dC),如加入,则普通反应中所用终浓度不超过50-100ng。对核抽提液,每2-3ug核抽提液用1 ug poly(dI:dC)。 为确定所形成的复合物的特异性,在含或不含增量的特异竞争DNA或非特异的竞争DNA时,作结合反应的竞争实验。一般,特异竞争探针是非标记的DNA,其序列与标记探针相同,故能与标记探针竞争与结合蛋白的反应。非特异竞争探针的长度组成和DNA探针相同,但序列不同。如果结合蛋白与标记探针的结合被特异竞争探针抑制,而不受非特异探针的影响表明靶结合蛋白的存在。特异与非特异性竞争DNA的用量也需优化或滴定,但竞争DNA通常是标记的探针用量的30-100倍(w/w)。 5、用什么凝胶条件将蛋白质/探针复合物和游离的探针分离开? 将结合蛋白或粗制核抽提液和目的探针结合,蛋白/探针复合物和游离探针可在非变性聚丙烯酰胺凝胶中经电泳分离。聚丙烯酰胺的浓度一般为6%,在特定条件下可用高或低的浓度。也可将TGE缓冲液(12.5mM Tris,pH8.3,95mM 甘氨酸,0.5mM EDTA)用于不稳定的蛋白/DNA复合物。在4℃进行结合和电泳实验以阻止不稳定复合物和探针的解离。 当带型不紧密出现拖尾时,表明复合物存在解离。凝胶必需完全聚合,以避免带型拖尾。如复合物不进入凝胶则表明所用的蛋白或探针过量,或盐的浓度过量不适用于这一反应。在含抽提液的带中不含游离探针或复合物,但只含探针的带中有探针表明抽提物有核酸或磷酸酶污染,应在抽提液中和结合反应中加入相应的抑制剂。

电泳除尘的原理是什么 ?

电除尘器是一种烟气净化设备,它的工作原理是:烟气中灰尘尘粒通过高压静电场时,与电极间的正负离子和电子发生碰撞而荷电(或在离子扩散运动中荷电),带上电子和离子的尘粒在电场力的作用下向异性电极运动并积附在异性电极上,通过振打等方式使电极上的灰尘落入收集灰斗中,使通过电除尘器的烟气得到净化,达到保护大气,保护环境的目的。

工厂里采用静电除尘为什么是利用了胶体电泳的性质

首先应该了解,空气与灰尘实际上形成了气态胶体.静电除尘原理是.含尘气体经过高压静电场时被电分离,尘粒与负离子结合带上负电后,趋向阳极表面放电而沉积. 这与胶体电泳的情形是相同的,电泳是带电胶粒,向与胶粒带电荷相反的电极游动,放电后沉积与电极上.

工厂里采用静电除尘为什么是利用了胶体电泳的性质

首先应该了解,空气与灰尘实际上形成了气态胶体.静电除尘原理是.含尘气体经过高压静电场时被电分离,尘粒与负离子结合带上负电后,趋向阳极表面放电而沉积.这与胶体电泳的情形是相同的,电泳是带电胶粒,向与胶粒带电荷相反的电极游动,放电后沉积与电极上.

工厂里采用静电除尘为什么是利用了胶体电泳的性质

首先应该了解,空气与灰尘实际上形成了气态胶体。静电除尘原理是。含尘气体经过高压静电场时被电分离,尘粒与负离子结合带上负电后,趋向阳极表面放电而沉积。这与胶体电泳的情形是相同的,电泳是带电胶粒,向与胶粒带电荷相反的电极游动,放电后沉积与电极上。

血液透析是渗析还是电泳

电泳。血液是胶体物质,血液透析的工作原理是将人体的血液引流出来,进行研究内部成分,会出现电泳现象。血液透析是急慢性肾功能衰竭患者肾脏替代治疗方式之一。

科勒的白色恒温花洒是电泳工艺吗

不是。科勒的花洒价格相对比较亲民,电镀工艺一流,不是电泳工艺,长久使用花洒表面都不会有水垢。电泳(electrophoresis,EP)是电泳现象的简称,指的是带电颗粒在电场作用下,向着与其电性相反的电极移动的现象。电镀就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。

凝胶过滤层析中和凝胶电泳中的分子筛效应有什么不同,请尽量全面

真不好意思,如果是分子筛的物理应用我还较懂,但你这个问题是生物学关于分离细胞及其他介质的问题,我就爱莫能助了,呵呵

为什么聚丙烯酰胺凝胶电泳小分子先出来?不适合凝胶过滤一样都是分子筛原理吗?看过你以前的回答 谢谢啦

凝胶层析的固定相是惰性的珠状凝胶颗粒,凝胶颗粒的内部具有立体网状结构,形成很多孔穴。当含有不同分子大小的组分的样品进入凝胶层析柱后,各个组分就向固定相的孔穴内扩散,组分的扩散程度取决于孔穴的大小和组分分子大小。比孔穴孔径大的分子不能扩散到孔穴内部,完全被排阻在孔外,只能在凝胶颗粒外的空间随流动相向下流动,它们经历的流程短,流动速度快,所以首先流出;而较小的分子则可以完全渗透进入凝胶颗粒内部,经历的流程长,流动速度慢,所以最后流出;分子越大的组分越先流出,分子越小的组分越后流出。聚丙烯酰胺凝胶电泳不是通过凝胶颗粒内部的孔穴保留小分子的,聚丙烯酰胺凝胶是通过三维网状结构分离,所以小分子先出,大分子比较慢出。不一样的原理

试分析电渗析分离法与离子交换分离法和电泳分离法的区别与联系

一类单元操作的传质为各种均匀混合物的主要理论依据。早在公元前,人们会知道从矿石,这是最早的传质应用中的分离过程的植物提取金属和药品的方法。在现代化工产业的发展过程中,质量分离过程中发挥了特别重要的作用。如:传质分离,得到氮纯氢气体混合物,氨的工业生产,能够;的原油被分离,以获得各种燃料油,润滑油和石化原料,这是基础石化;类似地,无分离和纯化,以获得高纯度的乙烯,丙烯,丁二烯,氯乙烯单体,就不可能生产出各种合成树脂,合成橡胶,纤维和合成纤维。几乎没有一个化学生产过程中不需要的原料或反应产物分离和纯化。用作传质分离装置参天塔是化工厂的最明显的迹象,并在分离过程的传质的应用不限于化学工业中,范围例如核工业用各种分离方法提取核燃料,以及治疗后的废物。它可以在现代生活中可以说,从航天飞机到海底,从生物的化学物质对环境的保护,从所述混合物分离分不开的。 通过物理和化学原理,在工业和质量分离的分离过程通常使用可分为平衡和速率分离分为两类:由单独的媒体的装置平衡分离方法(如热,溶剂和吸附剂) ,以使所有相混合物体系的两相系统中,然后在混合物中的成分是在这两个阶段的相位平衡是不等同于根据所取得的分离的分配。根据状态可分为两个阶段:①气体(蒸汽)的液体传质过程,如蒸馏,吸收; ②液 - 液传质过程,诸如萃取; ③气(汽)固传质过程,如吸附,色层分离,分离泵参数; ④液固传质过程,如浸出,吸附,离子交换层析,分离和泵的其它参数。在这两个阶段的时候平衡,您可以使用平衡的比例(或分配系数)文的关系,组分浓度,说:其中yi和喜表示分两期组分i的浓度。对于命名为x和y相,根据气体或称为相汽相,萃取液萃取为y相的吸收,蒸馏的习惯。在一般情况下,平衡比取决于两相的组合物的温度和压力线的特性。 Ki和KJ的比例的两种组分的i和j平衡比称为分离因子αij:在一些传质分离的过程中,该分离因子往往有专门的名称。例如:被称为蒸馏的相对挥发;被称为选择性提取系数。平衡一般比文价值观的分子较大,所以αij大于一。只要这两种组分的平衡比是不相等的(即αij≠1),可以通过平衡分离方法来分离,αij越大越容易分离。均衡的比例,最系统的分离系数并不大,平衡,可实现一次接触分离是非常有限的,你需要采取行动,以提高多级逆流分离。以适应各种系统和操作条件和分离的要求,以提供多种不同类型的传质设备中的相应的使用。下,在分离过程中的驱动力率(密度差,压力差,温度差,像差量的电势)的效果,有时具有选择性渗透膜,利用各成分的扩散率,实现组间差异的分离点。原料及这些方法的加工产品通常属于相同的相位,只在该组合物的差异。的分离方法的速率可分为:①膜分离,如超滤,反渗透,渗析和电渗析。 ②场分离,如电泳,热扩散,超速离心分离。 差分分离膜分离和场:前者与分离两种流体的膜,后者不被挪用。不同类型的分离过程率,分别使用不同的设备和不同的方法来设计的计算和操作控制。 Outlook和质量分离过程蒸馏,吸附,萃取,有些单位已与经营的非常广泛的悠久历史,并进行了大量的研究,积累了丰富的运作经验和信息。但是,进一步研究这些过程的机理和传质规律,高效传质设备,研究开发和掌握他们的放大规律,改进和其他设备的设计计算方法,仍然有许多工作要做。能耗和大规模分离过程,并且常常构成了单位能耗的主要部分,因此降低了能源消耗和质量分离的过程中,引起了普遍的关注。膜分离是一个新的领域,一类分离,稀溶液处理的分离,生化产品,节约能源,不污染产品,已显示出其优越性。研究和开发新的分离方法的开发,在组合使用,以提高工作效率,以及利用化学反应的要被分离的各种分离方法,是非常值得关注的发展方向。

用超纯水跑琼脂糖凝胶电泳行不行?

琼脂糖凝胶电泳要在专用的TAE电泳液里跑。超纯水怎么能拿来跑电泳?这种基本原理还需要问吗?

电泳时决定凝胶浓度的参数是什么

一般要根据要电泳分离的核酸的分子量大小:分子量大的核酸电泳时使用浓度较小的凝胶,分子量小的核酸电泳时使用浓度较大的凝胶。核酸在浓度越大的凝胶中电泳速度越小。如果胶浓度偏高,可能跑不动,如果胶浓度偏低,可能跑得太快,分不开。可以查到核酸分子大小与琼脂糖浓度范围的对应关系。

在凝胶层析中,大分子物质先析出,而在核酸凝胶电泳中,小分子核酸跑的更快,都是凝胶介质,为什么不一样?

一个是电泳,一个是层析,两种方法本质都是不一样的,凝胶层析法的话,大分子因为进不去那些小轨道,所以路径比较短,出来得更快。而电泳法的话,如果不考虑所带电荷量的话,看作电荷量都相同的话,因为小分子物质轻,受力都是一样的,自然小分子更快。答案仅供参考,望采纳

琼脂糖凝胶电泳marker的作用

看分子量啊

琼脂糖电泳检测质粒dna的现象有哪些

DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。DNA分子在高于等电点的pH溶液中带负电荷在电场中向正极移动。由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此他们能以相同的速度向正极方向移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即DNA分子本身的大小和构型。具有不同的相对分子质量的DNA片段泳动速度不一样,可进行分离。DNA分子的迁移速度与相对分子质量对数值成反比关系。凝胶电泳不仅可以分离不同相对分子质量的DNA, 也可以分离相对分子质量相同,但构型不同的DNA分子。如上次实验提取的pUC19质粒,有3种构型:超螺旋的共价闭合环状质粒DNA(covalently closed circular DNA,简称 CCCDNA);开环质粒DNA,即共价闭合环状质粒DNA 1条链断裂,(open circular DNA, 简称OCDNA);线状质粒DNA ,即共价闭合环状质粒DNA 2条链发生断裂,(linear DNA,简称L DNA)。这3种构型的质粒DNA分子在凝胶电泳中的迁移率不同。因此电泳后呈3条带,超螺旋质粒DNA泳动最快,其次为线状DNA和开环质粒DNA。

琼脂糖凝胶电泳跑的DNA为什么会拖尾

电泳出现拖尾现象,英文成为smear,就是弥散。其原因,主要从以下两个方面考虑: 1、PCR产物自身原因:往往由于酶量过多或酶的质量差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多,而造成PCR的非特异性产物 过多。对策:①减少Taq酶的量,或调换另一来源的酶。②减少dNTP的浓度。③适当降低Mg2+浓度。④增加模板量,减少引物的用量 ,减少循环次数,提高退火温度。2、电泳体系的问题:(1)电泳缓冲液TAE或者TBE的污染,建议更换缓冲液。(2)上样时样品漂了,建议增加上样缓冲液的用量,以及小心加样。(3)电压太高。(4)适当把你的胶的浓度加大。(根据你的片断大小而定)(5)观察你的marker是否也存在拖尾现象,作为对照。 以前有挺多人问过这个问题了 借用下以往问题的最佳答案

rna电泳实验的目的?或者作用(意义)?为什么要做这个实验?

分离不同的RNA

为什么分离DNA电泳用琼脂糖凝胶代替聚丙烯酰胺?

一定要看到dna吗?聚丙烯酰胺凝胶电泳是可以分离那么小的片段的。不过marker的话,我就不知道用什么了。。。50bpladder?好像有这种marker诶

蛋白质电泳电泳有哪几种?最好比较全啊。谢谢了!

1、醋酸纤维素薄膜电泳 :醋酸纤维素薄膜电泳是以醋酸纤维素薄膜为支持物,它是纤维素的醋酸酯,由纤维素的羟基经乙酰化而制成。醋酸纤维素膜薄是一种细密而又薄的微孔膜。醋酸纤维素膜对样品的吸附性较小,因此,少量的样品,甚至大分子物质都能得以较高的分辨率。又由于醋酸纤维素薄膜亲水性较小,故电渗作用也较小,并且它所容纳的缓冲液也较少,因此电流的大部分由样品传导,可以加速样品分离,大大节约电泳时间。醋酸纤维素具有操作简单、快速、价廉、定量容易等优点,尤其较纸电泳分辨力强、区带清晰、灵敏度高和便于保存、照相等,目前醋酸纤维素薄膜电泳己取代纸电泳而被广泛应用于科学实验、生化产品分析和临床化验,如分析检测血浆蛋白、脂蛋白、糖蛋白、胎儿甲种球蛋白、体液、脊髓液、脱氢酶、多肽、核酸及其他生物大分子,为心血管疾病、肝硬化及某些癌症鉴别诊断提供了可靠的依据,因而已成为医学和临床检验的常规技术。2、 琼脂糖凝胶电泳 :琼脂糖凝胶电泳是一种以琼脂糖凝胶为支持物的凝胶电泳,其分析原理与其它支持物电泳的最主要区别是:它兼有“分子筛”和“电泳”的双重作用。琼脂糖凝胶具有网络结构,直接参与带电颗粒的分离过程,在电泳中,物质分子通过空隙时会受到阻力,大分子物质在泳动时受到的阻力比小分子大,因此在凝胶电泳中,带电颗粒的分离不仅依赖于净电荷的性质和数量,而且还取决于分子大小,这就大大地提高了分辨能力。琼脂糖系天然的琼脂加工制得,天然琼脂是一种多聚糖,主要由琼脂糖(约占80%)及琼脂胶组成。琼脂糖是由半乳糖及其衍生物构成的中性物质,不带电荷。而琼脂胶是一种含硫酸根和羧基的强酸性多糖,由于这些基团带有电荷,在电场作用下能产生较强的电渗现象。所以常用于血清蛋白、血红蛋白、脂蛋白、糖蛋白、乳酸脱氢酶、碱性磷酸酶等同工酶的分离和鉴定,为临床某些疾病的鉴别诊断提供了可靠的依据。与免疫化学反应相结合发展成为免疫电泳技术,用于分离和检测抗原。可对目前常用的琼脂糖进行某些修饰,如引入化学基团羟乙基,则可使琼脂糖在65℃左右便能熔化,被称为低熔点琼脂糖。该温度低于DNA的熔点,而且凝胶强度又无明显改变。以此为支持物进行电泳,称为低熔点琼脂糖凝胶电泳,主要应用于DNA研究。如DNA鉴定,DNA限制性内切酶图谱制作等,为DNA分子及其片段分子量测定和DNA分子构象的分析提供了重要手段。3、聚丙烯酰胺凝胶电泳 :聚丙烯酰胺凝胶是由单体丙烯酰胺和交联剂又称为共聚体的N,N"-甲叉双丙烯酰胺(简称Bis)在加速剂和催化剂的作用下聚合交联成三维网状结构的凝胶,以此凝胶为支持物的电泳称为聚丙烯酰胺凝胶电泳(简称PAGE)。应用范围广,可用于蛋白质、酶、核酸等生物大分子的分离、定性、定量及少量的制备,还可测定分子量、等电点等。 4、等电聚焦电泳 :等电聚焦电泳是利用具有pH梯度的电泳介质来分离等电点(pI)不同的蛋白质的电泳技术。这是六十年代后期才发展起来的新技术,基本原理是在制备聚丙烯胺胶凝胶时,在胶的混合液中加入载体两性电解质(商品名Ampholine)。这种载体两性电解质是一系列含有不同比例氨基及羧基的氨羧酸混合物,其分子量在300~1000范围内,它们在pH2.5~11.0之间具有依次递变但相距很近的等电点,并且在水溶液中能够充分溶解。含有载体两性电解质的凝胶,当通以直流电时,载体两性电解质即形成一个从正极到负极连续增加的pH梯度。如果把蛋白质加人此体系中进行电泳时,不同的蛋白质即移动并聚焦于相当其等电点的位置。好的载体两性电解质应具有以下特点:在等电点处有足够的缓冲能力,不易被样品等改变其pH梯度;必须有均匀的足够高的电导,以便使一定的电流通过;分子量不宜太大,便于快速形成梯度并从被分离的高分子物质中除去;不与被分离物质发生化学反应或使之变性等。Ampholine是一种常用的载体两性电解质。要取得满意的等电聚焦电泳分离结果,除有好的载体两性电解质外,还应有抗对流的措施,使已分离的蛋白质区带不致发生再混合。要消除这种现象,办法之一加入抗对流介质,用得最多的抗对流支持介质是聚丙烯酰胺凝胶。 等电聚焦电泳与其它区带电泳比较具有更高的分辨率,等电点仅差0.01pH的物质即可分开;具有更好的浓缩效应,很稀的样品也可进行分离,并且可直接测出蛋白质的等电点。所以此技术在高分子物质的分离、提纯和鉴定中的应用日益广泛。但是等电聚焦电泳技术要求有稳定的pH梯度和使用无盐溶液,而在无盐溶液中蛋白质易发生沉淀。

为什么苏丹黑预染脂蛋白电泳分离出来的a-脂蛋白区带显黄色而不显蓝色?

琼脂 糖凝胶电泳的原理:琼脂糖凝胶是由D-半乳糖和3,6脱水L-半乳糖的残基通过氢键交替排列组成的直链多糖。电泳时,因为凝胶中含水量大(98%~99%),固体支持物的影响较少,故电泳速度快、区带整齐。而且由于琼脂糖不含带电荷的基团,电渗影响很小,是一种良好的电泳材料,分离效果较好。血清中脂类物质均与载脂蛋白结合成水溶性脂蛋白形式存在。各种脂蛋白所含载脂蛋白的种类及数量不同,因而不同脂蛋白颗粒大小相差很大。因此,以琼脂 糖凝胶为支持物,在电场中可使各种脂蛋白颗粒分开。琼脂糖凝胶电泳分离血清脂蛋白方法简单。将血清脂蛋白用脂类染料苏丹黑(或油红等)进行预染。再将预染过的血清置于琼脂糖凝胶板上进行分离。

琼脂糖凝胶电泳的常用浓度是

琼脂糖凝胶电泳的原理:琼脂糖凝胶电泳是常用的用于分离、鉴定DNA、RNA分子混合物的方法,这种电泳方法以琼脂凝胶作为支持物,利用DNA分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。DNA分子在高于其等电点的溶液中带负电,在电场中向阳极移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即分子本身的大小和构型是主要的影响因素。DNA分子的迁移速度与其相对分子量成反比。不同构型的DNA分子的迁移速度不同。如环形DNA分子样品,其中有三种构型的分子:共价闭合环状的超螺旋分子(cccDNA)、开环分子(ocDNA)、和线形DNA分子(IDNA)。这三种不同构型分子进行电泳时的迁移速度大小顺序为:cccDNA>IDNA>ocDNA核酸分子是两性解离分子,pH3.5是碱基上的氨基解离,而三个磷酸基团中只有一个磷酸解离,所以分子带正电,在电场中向负极泳动;而u2002pH8.0-8.3时,碱基几乎不解离,而磷酸基团解离,所以核酸分子带负电,在电场中向正极泳动。不同的核酸分子的电荷密度大致相同,因此对泳动速度影响不大。在中性或碱性时,单链DNA与等长的双链DNA的泳动率大致相同。

胶体电泳速度的快慢与哪些因素有关

  胶体电泳速度的快慢与带电粒子的大小、形状、粒表面的电荷数目、溶剂电解质的种类、离子强度、以及PH值、温度和所加的电压等有关。  带电颗粒在电场作用下,向着与其电性相反的电极移动,称为电泳(electrophoresis, EP)。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。

用琼脂糖凝胶电泳分析核酸(DNA和RNA)有哪些影响因素?

核酸分子是两性解离分子,在高于其等电点的电泳缓冲液中,其碱基不解离,而磷酸基团全部解离,核酸分子因而带负电荷,电泳时向正极迁移。琼脂糖主要从海洋植物琼脂中提取而来并经糖基化修饰,为一种聚合链线性分子,使用琼脂糖凝胶作为电泳支持介质,发挥分子筛功能,使得大小和构象不同的核酸分子的迁移率出现较大差异,从而达到分离的目的。琼脂糖凝胶电泳操作简单、快速,通过调整其使用浓度,使得分辨率达到大多数实验的要求,因此成为分离、鉴定、纯化核酸分子的常用方法。但操作过程中仍有不少要注意的问题。1 凝胶制作1.1 凝胶浓度 配制凝胶的浓度据实验需要而变 ,一般在0.8% ~2.0%之间,如果一次配制凝胶100 ml,没用完的凝胶可以再次融化,但随着融化次数的增加,水分丢失也越多,凝胶浓度则会越来越高,导致实验结果不稳定,补水办法:一是在容器上标记煮胶前的刻度,煮胶后补充相应的水分至原刻度;二是在煮胶前称重,煮胶后补充水至原重量。粗略一点的方法是通过多次较恒定的煮胶条件得出一个经验补水值。以保证凝胶浓度基本维持在原浓度。核酸染色剂溴化乙锭(ethidium bromide)可加在融化的琼脂糖中,终浓度为0.5 t*g/ml;也可在电泳结束后染色。1、2 梳板的选用 一般每个制胶模具均配有多个齿型不同的梳板,梳齿宽厚,形成的点样孑L容积较大,用于DNA 片段回收实验等;相反,梳齿窄而薄,形成的点样孑L容积就较小,用于PCR产物、酶切产物鉴定等。梳板的选择主要是看上样量的多少而定,一般来说,上样量小时尽量选择薄的梳板制胶,此时电泳条带致密清晰,便于结果分析。另外,每次制胶时都要注意梳齿与底板的距离至少要1 mm,否则,拔梳板时易损坏凝胶孑L底层,导致点样后样品渗漏。当然,点样孑L的破坏还与拔梳板的时间和方法有关,一般凝胶需冷却30 min以上方可拔梳板,应急的情况下可以将成型的凝胶块放4℃ 冰箱中冷却15 min 左右,拔梳板的方法是将制胶槽放置在电泳槽中的电泳缓冲液中,然后垂直向上慢慢用力,因为有液体的润滑作用,梳板易拔出且不易损坏点样孑L。2 点样点样需加上样缓冲液,因为上样缓冲液中加了甘油或蔗糖增加密度,使样品沉入孑L底;指示样品的迁移过程,上样缓冲液中一般加了两种指示剂,溴酚兰和二甲苯青(值得注意的是指示剂并非染色剂,DNA染色剂是溴化乙锭,而且要在紫外光的激发下才能看见桔红色荧光)。上样缓冲液储存液一般为6× (10×),表示其浓度为工作浓度的六倍。使用时上样缓冲液应稀释到一倍浓度。点样方法是将移液器基本垂直点样孑L,用另一只手帮助固定移液器下端,移液器枪头(Tip)尖端进入点样孑L即可将样品注入孑L内,千万不可将Tip尖插至孑L底,并点上适合的DNA分子量标准,所谓适合是指样品DNA分子量大小应基本在DNA分子量标准范围之内。 3 电泳将电泳仪的正极与电泳槽的正极相连,负极与负极相连,核酸带负电荷,从负极向正极移动。电泳槽中电泳缓冲液与制胶用电泳缓冲液应相同,电泳缓冲液刚好没过凝胶1 mm 为好,电泳缓冲液太多则电流加大,凝胶发热。电泳时凝胶上所加电压一般不超过5 v/cm(指的是正负电极之间的距离,而不是凝胶的长度),电泳时间一般为3O~60 min,根据实验需要也可作适当调整,电压增高,电泳时间缩短,核酸条带相对来说不够整齐,不够清晰;相反,电压降低,电泳时间较长,核酸条带整齐清晰。另外,如果电泳后样品泳动很慢或者没泳动,请检查胶模两端的封口胶条是否已去掉。4 结果分析较成功的电泳结果是分子量标准条带整齐清晰,样品条带也整齐清晰,如果条带模糊暗淡,单从琼脂糖凝胶电泳角度来说,可能的原因:溴化乙锭的质和量怎样?溴化乙锭见光易分解,母液配制时间过长或保存不当(一般4℃ 避光保存一年内有效),或者终浓度没达到0.5 vg/ml;电泳槽中缓冲液使用次数过多,缓冲能力下降。特别是TAE缓冲液,一般用2~3次就要更换,TBE缓冲液则可使用10次左右。实际工作中经常发现DNA 分子量标准小片段模糊不清,那足因为琼脂糖凝胶浓度一般不会超过2 0% ,较小的核酸片段在它的分辨范围之内,并且EB带正电荷,电泳时会向负傲移动,如果将凝胶置含EB(0.5#g/m1)的水溶液中30 min,较小的片段则可重新染色:另外,溴化乙锭(EB)是一种中等强度诱变剂,操作过程中要戴手套,并将加有EB的染色液作好标记、妥善保存

聚丙烯酰胺凝胶电泳和琼脂糖凝胶电泳的异同?

DNA电泳一般使用的都是琼脂糖凝胶电泳,电泳的驱动力靠DNA骨架本身的负电荷。聚丙烯酰氨(PAGE)凝胶电泳用于蛋白质与寡糖核苷酸的分离。电泳的驱动力靠与蛋白质结合的SDS上所携带的负电荷。蛋白质电泳(一般指SDS-PAGE)根据蛋白分子量亚基的不同而分离蛋白。蛋白质亚基的电泳迁移率主要取决于亚基分子量的大小,电荷因素可以忽视。所以相同点就是样品都是带负电荷的,从负极向正极移动,移动的距离都和样品的分子量有关。而且这两个电泳体系可以互相交换使用。进行大分子蛋白质电泳时,可以考虑换用琼脂糖凝胶,因为该体系孔径大。相反,如果需要精确到各位数碱基的DNA电泳也可以使用聚丙烯酰胺凝胶系统,因为使用该系统可以将相差一个碱基的两条DNA链分开。不同点首先是样品不同。这个就不用多说了。其次是结果的观察方法不同。DNA电泳普遍使用EB做染料,在紫外灯下观察;而蛋白电泳使用的考马斯亮蓝染色,还需要经过脱色步骤,不过观察起来比较简单。还有就是胶体系的差别,DNA电泳通常是一胶跑到底,而蛋白质电泳则会有分离胶和浓缩胶之区别。电泳中样品移动的本质确实是样品所携带的电荷。但是,区分这些条带直接可以用分子量而无需使用电荷数,是因为这些样品的电荷/分子量比都是恒定的了。以DNA分子为例,它在电泳中的移动是靠其骨架中磷酸所携带的负电荷来实现的,而这个磷酸分子又是每一个核苷酸中都有的,所以DNA分子所携带的负电荷数是由其核苷酸总数决定的。而且,DNA分子中核苷酸的组成动辄成百上千,在如此大的分子量面前,讨论单个核苷酸之间分子量的差别就显得毫无意义。这样,DNA分子中负电荷的量就可以用DNA的分子量来代替,反过来,DNA的分子量也就可以用DNA分子所携带的电荷来代替(一句话,DNA分子的电荷/分子量比是恒定的)。这在蛋白电泳中(特别是SDS-PAGE中)是一样的。在SDS-PAGE中,SDS将蛋白质变性成直线分子并紧密包裹于其上,使得其所携带的电荷与蛋白分子量成了一定的比例,剩下的就和核酸电泳一样了。至于为什么核酸的横着跑,蛋白竖着跑,个人认为最大的问题是蛋白制胶的过程导致的。蛋白制胶由于使用了两种不同的凝胶系统,所以需要一个水平的分界面。这个分界面在配胶的过程中是依靠异丙醇在重力作用下的压力下形成的。所以,一并就竖着跑了~~

血清蛋白电泳简介

目录 1 拼音 2 英文参考 3 概述 4 血清蛋白电泳的别名 5 血清蛋白电泳的医学检查 5.1 检查名称 5.2 分类 5.3 取材 5.4 血清蛋白电泳的测定原理 5.5 试剂 5.6 操作方法 5.7 正常值 5.8 化验结果临床意义 5.9 附注 5.10 相关疾病 1 拼音 xuè qīng dàn bái diàn yǒng 2 英文参考 serum protein electrophoresis SPE SPEP 3 概述 蛋白质等生物分子在缓冲液中带负电荷或正电荷,在电场中向阳极或阴极运动,称为电泳(electmphomsis)。由于其等电点不同,分子大小、形状和荷质比的不同,使不同蛋白质分子具有不同的电泳迁移率,在一定的支持介质中可借以分离各种蛋白质。常用的电泳技术有:醋酸纤维素薄膜电泳、琼脂糖凝胶电泳、聚丙烯酰胺凝胶电泳、免疫电泳等。血清蛋白电泳以醋酸纤维素薄膜应用最为普遍。 4 血清蛋白电泳的别名 SPE 5 血清蛋白电泳的医学检查 5.1 检查名称 血清蛋白电泳 5.2 分类 血液生化检查 > 蛋白质测定 5.3 取材 血液 5.4 血清蛋白电泳的测定原理 血清中各种蛋白质都有其特有的等电点,各种蛋白质在各自的等电点时呈电中性状态,它的分子所带正电荷与所带负电荷量相等。将蛋白质置于pH比值等电点较高的缓冲液中,它们将形成带负电荷的质点,在电场中均向正极泳动。由于血清蛋白质的等电点不同,带电荷的量多少差异,蛋白质分子量大小也不同,所以在同一电场中泳动速度也不同。蛋白质分子越小带电越多,移动速度越快;分子越大而带电越少,移动速度越慢。按其泳动速度可以分出以下的主要区带,从正极端起,依次为白蛋白、α1球蛋白和α2球蛋白,β球蛋白和γ球蛋白5条区带。 5.5 试剂 (1)巴比妥巴比妥钠缓冲液(pH8.6±0.1、μ=0.06):以巴比妥2.21g、巴比妥钠12.36g于500ml蒸馏水中,加热溶解,待冷却至室温后加蒸馏水至1000ml。 (2)染色液: ①丽春红S染色液:丽春红9.04g、三氯醋酸6g,用蒸馏水溶解,并稀释至100ml。 ②氨基黑10B染色液:氨基黑10B 0.1g,溶于无水乙醇20ml中,加冰醋酸5ml甘油0.5ml使溶解。然后将磺柳酸2.5 g,溶于少量蒸馏水中,加入前液,再以蒸馏水补足至100ml。 (3)漂洗液: ①30ml/L醋酸溶液:用于丽春红染色的漂洗。 ②甲醇45ml,冰醋酸5ml和蒸馏水50ml混匀。用于氨基黑10B染色的漂洗。 (4)透明液:柠檬酸(C6H5Na3O7·2H2O)21g和N甲基吡咯烷酮150g,用蒸馏水溶解,并稀释到500ml。亦可选用氢萘或液体石蜡透明。 (5)0.4mol/L氢氧化钠溶液或0.1mol/L氢氧化钠溶液。 5.6 操作方法 (1)将缓冲液加入电泳槽内,调节两侧槽内的缓冲液,使其处于同一平面。 (2)醋酸纤维素薄膜的准备:取醋酸纤维素薄膜(2cm×8cm)在毛面的一端(负极侧)1.5cm处用铅笔轻划一横线,做点样标记。编号,并标明正、负极后,将薄膜置于巴比妥巴比妥钠缓冲液中浸泡,待充分浸透后(一般为20min)取出,夹于洁净滤纸中间吸去多余的缓冲液。 (3)将醋酸纤维素薄膜毛面向上贴于电泳槽支架上拉直。用微量吸管吸取无溶血血清3~5μl于横线处沿横线加样,样品应与薄膜的边缘保持一定的距离,以免电泳图谱中的蛋白区带变形,待血清渗入薄膜后,反转薄膜,使光面朝上,平直地贴于电泳槽支架上,用双层滤纸或四层纱布将薄膜的两端与缓冲液连通,稍待片刻。 (4)接通电源,注意醋酸纤维素薄膜上的正、负极,切勿接错。电压90~150v,电流0.4~0.6mA/cm(不同的电泳仪所需电压,电流可能不同,应灵活掌握),夏季通电45min,冬季通电时间稍长,约为60min,电泳区带展开约25~35mm即可。 (5)染色:通电完毕,取下薄膜直接浸于丽春红S染液或氨基黑10B染色液中,染色5~10min(以白蛋白区带染透为止),然后在漂洗液中漂去剩余染料,直至背景无色为止。 (6)定量: ①比色法:将漂洗的薄膜吸干,剪下各染色的蛋白区带入相应的试管中,在白蛋白管中加0.4mol/L氢氧化钠6ml(计算时吸光度乘以2),其余各管加3ml,振摇数次,置37℃水箱20min使其色泽浸出。氨基黑10B染色用分光光度计在620nm处读取各管吸光度,然后计算出各管的含量(同时做空白管对照)。 丽春红S染色时浸出液用0.1mol/L氢氧化钠,加入量同上法。10min后,白蛋白管内加400ml/L醋酸0.6ml(计算吸光度时乘以2),其余各管加0.3ml,以中和部分氢氧化钠,使色泽加深,必要时离心,取上清液用分光光度计在520nm处读取各管的吸光度(同时作空白对照),然后计算各自的含量。 ②光密度计扫描法:A.透明:吸去薄膜上的漂洗液(为防止透明液被稀释影响透明结果),将薄膜浸入透明液中2~3min,然后取出,以滚动的方式平贴于洁净无划痕的载物玻璃片上(切勿产生气泡),将此玻片竖立片刻,除去多余透明液后,置于恒温90℃至100℃的烘箱内,烘烤10~15min,取出冷却至室温,用此法透明的各蛋白区带鲜明,薄膜平整,可供直接扫描和永久保存(用氢萘或液体石蜡透明,应将漂洗过的薄膜烘干后进行透明,此法透明的薄膜不能存久,且易发生皱折)。B.扫描定量:将已透明的薄膜放入全自动光密度计或其他光密度计暗箱内,进行扫描分析。 5.7 正常值 醋酸纤维素膜电泳法:白蛋白0.61~0.71(61%~71%)、α1球蛋白0.03~0.04(3%~4%),α2球蛋白0.06~0.10(6%~10%),β球蛋白0.07~0.11(7%~11%),γ球蛋白0.09~0.18(9%~18%)。 5.8 化验结果临床意义 (1)白蛋白减少:见于慢性肝炎、肝硬化、肝癌等。 (2)α1球蛋白(糖蛋白)增高:见于原发性肝癌。在重型肝炎、肝硬化、肝昏迷时则减少,与白蛋白呈正相关。肝病时测定α1球蛋白对判断肝炎的严重程度和预后有参考价值。一般情况下,α1球蛋白增加示病情较轻,α1球蛋白减少则提示病情较重,在严重肝功能衰竭时,其血清含量可显著降低。 (3)α2球蛋白:病毒性肝炎初期无明显变化,一周后逐渐增加,亚急性肝炎和急性肝坏死、失代偿期肝硬化则减少。 (4)β球蛋白增高:见于脂肪肝、高脂血症、肾病综合征、糖尿病合并高胆固醇血症、梗阻性黄疸、恶性肿瘤。在胆汁淤积性肝病时其含量升高,与α2球蛋白升高相平行。降低于见于急、慢性肝炎,肝硬化,尤以失代偿期肝硬化和坏死肝硬化下降最为显著。 (5)γ球蛋白增高:见于慢性肝炎、肝硬化、肝胆疾患。典型肝硬化尚可见β和γ带相融合,形成βγ桥。肝病患者γ球蛋白的变化可反映病情的严重程度。随病情好转,其含量可逐渐降至正常,如一直在高水平持续不降,提示病情严重,预后不良,并有向慢性肝炎及肝硬化发展的趋势。此外,感染、血吸虫病、多发性骨髓瘤、结缔组织病等也可升高。降低见于丙种球蛋白缺乏症、部分化疗患者等。 另外,多发性骨髓瘤在β球蛋白区带与γ球蛋白区带之间常出现M球蛋白带;双白蛋白血症可见双条白蛋白区带。 5.9 附注 (1)每次电泳时应交换电极,可使两侧电泳槽内缓冲液的正、负离子相互交换,从而使缓冲液保持在一定的pH水平,然而,每次电泳时薄膜数量不同,故缓冲液在使用10次后,最好弃去,重新配制,否则影响电泳效果。 (2)电泳槽内缓冲液高度保持一定,过低会出γ球蛋白的电渗现象(向阴极移动)。同时,电泳槽两侧液面应保持水平一致,否则通过薄膜时有虹吸现象,将会影响蛋白质分子的泳动速度。 (3)电泳失败的原因: ①电泳图谱不整齐:常见于点样不均匀,位置不佳,薄膜尚未干燥或水分蒸发,缓冲液变质,电泳时薄膜位置放置不正确,使电流方向不平行等。 ②蛋白组分分离不佳:如点样过多,电流过低,薄膜结构过分细致,透水性差,导电差等。 ③白蛋白结果偏低:见于染色时间不足,染色液陈旧,不透明直接扫描等。 ④薄膜透明不完全:见于温度未达到90℃以上将标本放入烘箱,透明液时间过长或薄膜的浸泡时间不足等。 ⑤透明膜上有气泡:见于玻璃片不干净(油脂、污垢等)使薄膜部分与其脱开,贴膜时操作不慎将气泡裹入等。 (4)点加样本时,一定要注意薄膜的毛面和光面,将样本点在毛面上。 (5)放置薄膜时,要注意其正、负极,切勿接错。 5.10 相关疾病

【大学分子生物学实验】分子克隆实验中dna琼脂糖凝胶电泳的图(跑胶图)怎么看?

跑胶是分子生物学实验非常常用的手段,一般多用于判断目标分子的存在、大小和多少。marker就是分子量标记的意思,现在大多已经商品化,买回来的说明书上会告诉你其用法和指示范围。

为什么LAMP反应扩增出来的产物跑电泳是梯形条带

可以把lamp产物想象成很扩增目标的多聚体,多少个单位聚集在一起都有,所以有梯度带,有时梯度带到点样孔间还有糊带

聚丙烯酰胺凝胶电泳与琼脂糖凝胶电泳的区别

DNA电泳一般使用的都是琼脂糖凝胶电泳,电泳的驱动力靠DNA骨架本身的负电荷。 蛋白质电泳(一般指SDS-PAGE)一般使用的都是聚丙烯酰胺凝胶电泳,电泳的驱动力靠与蛋白质结合的SDS上所携带的负电荷。 所以相同点就是样品都是带负电荷的,从负极向正极移动,移动的距离都和样品的分子量有关。而且这两个电泳体系可以互相交换使用。进行大分子蛋白质电泳时,可以考虑换用琼脂糖凝胶,因为该体系孔径大。相反,如果需要精确到各位数碱基的DNA电泳也可以使用聚丙烯酰胺凝胶系统,因为使用该系统可以将相差一个碱基的两条DNA链分开。 不同点首先是样品不同。这个就不用多说了。其次是结果的观察方法不同。DNA电泳普遍使用EB做染料,在紫外灯下观察;而蛋白电泳使用的考马斯亮蓝染色,还需要经过脱色步骤,不过观察起来比较简单。还有就是胶体系的差别,DNA电泳通常是一胶跑到底,而蛋白质电泳则会有分离胶和浓缩胶之区别。 电泳中样品移动的本质确实是样品所携带的电荷。但是,区分这些条带直接可以用分子量而无需使用电荷数,是因为这些样品的电荷/分子量比都是恒定的了。以DNA分子为例,它在电泳中的移动是靠其骨架中磷酸所携带的负电荷来实现的,而这个磷酸分子又是每一个核苷酸中都有的,所以DNA分子所携带的负电荷数是由其核苷酸总数决定的。而且,DNA分子中核苷酸的组成动辄成百上千,在如此大的分子量面前,讨论单个核苷酸之间分子量的差别就显得毫无意义。这样,DNA分子中负电荷的量就可以用DNA的分子量来代替,反过来,DNA的分子量也就可以用DNA分子所携带的电荷来代替(一句话,DNA分子的电荷/分子量比是恒定的)。 这在蛋白电泳中(特别是SDS-PAGE中)是一样的。在SDS-PAGE中,SDS将蛋白质变性成直线分子并紧密包裹于其上,使得其所携带的电荷与蛋白分子量成了一定的比例,剩下的就和核酸电泳一样了。

为什么正常人血清脂蛋白电泳时见不到乳糜微粒区带?

因为它是一种外缘性的脂肪颗粒,出现在高油脂后,经代谢,12-16小时血浆中就没有了,代谢成其它脂质了。实用内科学里有

琼脂糖凝胶电泳常用的染色剂是____。在电泳检测时,dna条带越亮则表示dna含量_

实验室常用的核酸染色剂是溴化乙锭(EB)。染色效果好,操作方便,但是稳定性差,具有毒性。注意观察凝胶时应根据染料不同使用合适的光源和激发波长,如果激发波长不对,条带则不易观察,出现条带模糊的现象。琼脂糖凝胶具有网络结构,物质分子通过时会受到阻力,大分子物质在涌动时受到的阻力大,因此在凝胶电泳中,带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。但由于其孔径相比于蛋白质太大,对大多数蛋白质来说其分子筛效应微不足道,现广泛应用于核酸的研究中。蛋白质和核酸会根据pH不同带有不同电荷,在电场中受力大小不同,因此跑的速度不同,根据这个原理可将其分开。电泳缓冲液的pH在6~9之间,离子强度0.02~0.05为最适。常用1%的琼脂糖作为电泳支持物。琼脂糖凝胶约可区分相差100bp的DNA片段,其分辨率虽比聚丙烯酰胺凝胶低,但它制备容易,分离范围广。普通琼脂糖凝胶分离DNA的范围为0.2-20kb,利用脉冲电泳,可分离高达10^7bp的DNA片段。

琼脂糖凝胶电泳跑完,DNA条带颜色浅怎么回事?

原因有以下:1、 可以考虑是不是样品不纯,目的产物与杂带相差不大,所以要多跑一段时间才有尾巴。参考marker,marker应该不会有。如果有的话说明配胶有问题。2 、琼脂糖检测DNA一般去1~5微升原液,加2微升溴酚蓝便可,注意上样浓度。3、可能是原液浓度太大造成的。4、可能DNA已降解。原理琼脂糖凝胶电泳的分析原理与其他支持物电泳最主要区别是:它兼有“分子筛”和“电泳”的双重作用。琼脂糖凝胶具有网络结构,物质分子通过时会受到阻力,大分子物质在涌动时受到的阻力大,因此在凝胶电泳中,带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。但由于其孔径相比于蛋白质太大,对大多数蛋白质来说其分子筛效应微不足道,现广泛应用于核酸的研究中。

琼脂糖凝胶电泳时胶中dna是靠什么发出荧光的

琼脂糖凝胶电泳时胶中dna发出荧光是因为琼脂糖凝胶中添加了溴化乙锭(EB)。溴化乙锭是一种高度灵敏的荧光染色剂,用于观察琼脂糖和聚丙烯酰胺凝胶中的DNA。溴化乙锭用标准302nm 紫外光透射仪激发并放射出橙红色信号,可用Polaroid 底片或带CCD 成像头的凝胶成像处理系统拍摄。

琼脂糖电泳时,EB的显色原理?

EB 是一种经紫外光照射能够发光的物质.其结构呈扁平状,与碱基很相似,能够插在核酸分子碱基之间.当DNA电泳时,EB加在胶中或者电泳完成后胶浸泡在EB中,EB 就会与核酸分子结合,在凝胶成像系统中就可以看到条带.

琼脂糖凝胶电泳是从负极到正极跑吗

DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。其分析原理与其他支持物电泳最主要区别是:它兼有“分子筛”和“电泳”的双重作用。琼脂糖凝胶具有网络结构,物质分子通过时会受到阻力,大分子物质在涌动时受到的阻力大,因此在凝胶电泳中,带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。但由于其孔径相比于蛋白质太大,对大多数蛋白质来说其分子筛效应微不足道,现广泛应用于核酸的研究中。蛋白质和核酸会根据pH不同带有不同电荷,在电场中受力大小不同,因此跑的速度不同,根据这个原理可将其分开。电泳缓冲液的pH在6~9之间,离子强度0.02~0.05为最适。常用1%的琼脂糖作为电泳支持物。琼脂糖凝胶约可区分相差100bp的DNA片段,其分辨率虽比聚丙烯酰胺凝胶低,但它制备容易,分离范围广。普通琼脂糖凝胶分离DNA的范围为0.2-20kb,利用脉冲电泳,可分离高达10^7bp的DNA片段。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速率向正极方向移动。

为什么可以用走琼脂糖凝胶电泳的方式鉴定提取的RNA质量好坏

可以用走琼脂糖凝胶电泳的方式鉴定提取的RNA质量好坏的原因:琼脂糖凝胶电泳可以通过限制性酶切多态性(rflp)或者扩增片断多态性(aflp)来鉴定检测的dna。就是不同dna被特定的限制性内切酶切出来的片断大小是不一样的,在琼脂糖凝胶电泳跑出来的条带也不一样,如果是相同的dna,结果就一样。原理琼脂糖凝胶电泳的分析原理与其他支持物电泳最主要区别是:它兼有“分子筛”和“电泳”的双重作用。琼脂糖凝胶具有网络结构,物质分子通过时会受到阻力,大分子物质在涌动时受到的阻力大,因此在凝胶电泳中,带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。但由于其孔径相比于蛋白质太大,对大多数蛋白质来说其分子筛效应微不足道,现广泛应用于核酸的研究中。

琼脂糖凝胶电泳的电泳缓冲液与凝胶加样缓冲液分别有何作用(原理)呢?

加样缓冲液中有buffer染料,给核酸染色,指示作用,电泳缓冲液与制胶缓冲液是一样的,是1*TAE或5*TBE.

PCR电泳条带是什么,如何形成的?形成原理是什么?

首先PCR电泳主要是琼脂糖凝胶电泳.电泳仪有正负极的,而DNA是带负电荷的.故而向正方向移动. 然后,DNA里是有碱基的.碱基可以吸收紫外光.最重要的是有染色剂,常用的有溴化乙锭等等.一般在配制凝胶的时候会加进去,或者跑完电泳然后将凝胶浸在含有染色剂的溶液里,染色剂可以插入DNA链中.在可见光下是看不见条带的,但在紫外光照射下就能出现条带. 这也是为什么能出现条带的原因.

简述凝胶电泳的原理与方法

凝胶电泳(Gel electrophoresis)是指DNA分子提取得到以后,需要通过电泳技术来检测其数量和质量。琼脂糖或聚丙烯酰胺凝胶电泳是基因操作的核心技术之一,它能够用于分离、鉴定和纯化DNA片段。 该技术操作简单而迅速,已经成为许多通用的分子生物学研究方法,如DNA重组、DNA核苷酸序列分析等。当一种分子被放置在电场当中时,它们就会以一定的速度移向适当的电极,这种电泳分子在电场作用下的迁移速度,叫做电泳的迁移率。它同电场的强度和电泳分子本身所携带的净电荷数成正比。也就是说,电场强度越大、电泳分子所携带的净电荷数量越多,其迁移的速度也就越快,反之则较慢。由于在电泳中使用了一种无反应活性的稳定的支持介质,如琼脂糖凝胶和聚丙烯酰胺胶等,从而降低了对流运动,故电泳的迁移率又是同分子的摩擦系数成反比的。已知摩擦系数是分子的大小、极性及介质粘度的函数,因此根据分子大小的不同、构成或形状的差异,以及所带的净电荷的多少,便可以通过电泳将蛋白质或核酸分子混合物中的各种成分彼此分离开来。在生理条件下,核酸分子的糖-磷酸骨架中的磷酸基团呈离子状态,从这种意义上讲,DNA和RNA多核苷酸链可叫做多聚阴离子。因此,当核酸分子被放置在电场中时,它们就会向正电极的方向迁移。由于糖-磷酸骨架结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因而它们能以同样的速度向正电极方向迁移。在一定的电场强度下,DNA分子的这种迁移速度,亦即电泳的迁移率,取决于核酸分子本身的大小和构型,分子量较小的DNA分子比分子量较大的DNA分子迁移要快些。这就是应用凝胶电泳技术分离DNA片段的基本原理。

琼脂糖凝胶电泳的原理

琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。其分析原理与其他支持物电泳最主要区别是:它兼有“分子筛”和“电泳”的双重作用。琼脂糖凝胶具有网络结构,物质分子通过时会受到阻力,大分子物质在涌动时受到的阻力大,因此在凝胶电泳中,带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。但由于其孔径相比于蛋白质太大,对大多数蛋白质来说其分子筛效应微不足道,现广泛应用于核酸的研究中。蛋白质和核酸会根据pH不同带有不同电荷,在电场中受力大小不同,因此跑的速度不同,根据这个原理可将其分开。电泳缓冲液的pH在6~9之间,离子强度0.02~0.05为最适。常用1%的琼脂糖作为电泳支持物。琼脂糖凝胶约可区分相差100bp的DNA片段,其分辨率虽比聚丙烯酰胺凝胶低,但它制备容易,分离范围广。普通琼脂糖凝胶分离DNA的范围为0.2-20kb,利用脉冲电泳,可分离高达10^7bp的DNA片段。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速率向正极方向移动。

你想知道的琼脂糖凝胶电泳

琼脂糖凝胶电泳 【原理】兼有“分子筛”和“电泳”的双重作用。 琼脂糖凝胶具有网络结构,物质分子通过时会受到阻力,大分子物质在涌动时受到的阻力大,因此在凝胶电泳中,带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。但由于其孔径相当大,对大多数蛋白质来说其分子筛效应微不足道,现广泛应用于核酸的研究中。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速率向正极方向移动。 【核酸分子是两性解离分子,在高于其等电点的电泳缓冲液 中,其碱基不解离,而磷酸基团全部解离,核酸分子因而带负电荷,电泳时向正极迁移。也就是说 —— DNA上有磷酸根,在一般情况下带负电,所以必然朝正电方向前进】 一、制配胶二、上样 1、根据你想要的量来进行跑。例如:10μl 样品,4、6μl Mark,用微量移液枪小心加入样品槽中。 【用微量移液枪小心加入样品槽中,每加完一个样品要更换枪头,以防止互相污染,注意上样时要小心操作,避免损坏凝胶或将样品槽底部凝胶刺穿】 三、电泳 1、加完样后,合上电泳槽盖,立即接通电源。控制电压保持在110 V,电流在40 mA以上。横压跑 2、当条带移动到距凝胶前沿约2 cm时(约40 min),停止电泳。 3、打开电脑和观测仪器, 紫外下拍照并观察。 注:PCR产物跑完胶结束后可放到4℃冰箱 备注: 1、凝胶厚度和孔径大小 一般而言, 较厚的凝胶 运行过程中产生热量也较多,可导致条带扩散。 由于凝胶染色的高背景或凝胶染色和/或脱色所需时长(如进行 电泳后染色 ),可能会出现可视化不佳的情况。 对于 琼脂糖 凝胶,厚度以3 - 4 mm为佳,不推荐超过5 mm厚度的凝胶。 聚丙烯酰胺凝胶 的厚度由制造商提供的用于凝胶灌制的垫片决定,最常见的是0.75 mm,1.0 mm,1.5 mm。 由 胶梳形状决定的 孔径大小,不仅影响样品的装载量,而且会影响条带的分辨率。 虽然较大的孔可容纳更大的样品负载,但同时也会产生粗条带,减少条带分辨率并产生污点。 而长而窄的孔可容纳的样品量虽小,但可提供更清晰的条带,以获得更好的分辨率。 减少高密度样品的进样量可提供更高强度的条带。 2、跑电泳的时间 电泳的时间短,不同长度片段的DNA条带还未分离,都聚集在一起,所以只能看见DNA含量最高的主带;而电泳时间比较长,不同长度片段的DNA条带已经分离,可以清晰看到不同长度片段的DNA条带。 3、跑出的DNA带模糊

琼脂糖凝胶电泳的原理是什么?

原理如下:琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。其分析原理与其他支持物电泳最主要区别是:它兼有“分子筛”和“电泳”的双重作用。琼脂糖凝胶具有网络结构,物质分子通过时会受到阻力,大分子物质在涌动时受到的阻力大,因此在凝胶电泳中,带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。但由于其孔径相比于蛋白质太大,对大多数蛋白质来说其分子筛效应微不足道,现广泛应用于核酸的研究中。目前多用琼脂糖为电泳支持物进行平板电泳,其优点如下:(1)琼脂糖凝胶电泳操作简单,电泳速度快,样品不需事先处理就可以进行电泳。(2)琼脂糖凝胶结构均匀,含水量大(约占98%~99%),近似自由电泳,样品扩散较自由电流,对样品吸附极微,因此电泳图谱清晰,分辨率高,重复性好。(3)琼脂糖透明无紫外吸收,电泳过程和结果可直接用紫外光灯检测及定量测定。(4)电泳后区带易染色,样品极易洗脱,便于定量测定。制成干膜可长期保存。以上内容参考:百度百科-琼脂糖凝胶电泳
 1 2 3 4  下一页  尾页