第一性原理计算

阅读 / 问答 / 标签

第一性原理计算cpu的核心和主频谁更重要

模拟计算?

第一性原理计算隧穿效应的最小尺寸

1)原子核能量最小化,所以每次迭代都要求计算电子结构和原子排布;2) 周期性结构能量的计算是使用薛定谔方程为基础的KS方程(DFT理论常用);3) 原子核可以近似认为是静止的,也就是绝热假设。电子一般只考虑价电子,也就是赝势理论。4) 根据DFT,电子的密度由各个价电子的波函数加权得出,波函数用正弦波函数表示。根据波函数的振幅的平方等于密度,得出初始密度。5) 波函数的积分,是复变函数的积分,为了求积的方便,进行傅里叶变换;6) 完备的傅里叶级数既不可能,要不必要。所以要截取一部分便可,截断能就是这么来的;7) 得到密度函数后代入KS方程,能量算符一般就是库仑力等,最困难的是电子的相互关联能,其算符E(XC)是很多科学家不断拟合的目标;8) 根据熵增原理,使用张量迭代到最小能量便可。

哪个公司的平台第一性原理计算会比较好?

那必须选择北鲲云超算平台啊,我们在做量子力学实验的时候都会用这个平台来进行,第一性原理计算,来分析物质的第一性原理,速度是非常快的,能够帮助我们很好的得出准确的数据,便于我们进一步做出科学的分析,反正我们自己在用,是觉得挺方便的,速度非常快,超大的计算量也不会卡顿。 百度里面也有详细介绍。

第一性原理计算判断材料稳定性的几种方法(清楚明了)

原文链接:http://www.cailiaoniu.com/174802.html,转自材料人。 当我们通过一些方法,如:人工设计、机器学习和结构搜索等,设计出一种新材料的时候,首先需要做的一件事情就是去判断这个材料是否稳定。如果这个材料不稳定,那么后续的性能分析就犹如空中楼阁。因此,判断材料是否稳定是材料设计领域中非常关键的一个环节。接下来,我们介绍几种通过第一性原理计算判断材料是否稳定的方法。 1.结合能 结合能是指原子由自由状态形成化合物所释放的能量,一般默认算出来能量越低越稳定。对于简单的二元化合物 AmBn ( A,B 为该化合物中包含的两种元素, m,n 为相应原子在化学式中的数目),其结合能可表示为: 其中 E ( AmBn )为化学式 AmBn 的能量, E ( A )和 E ( B )分别为自由原子A和B的能量, Eb 越低,越稳定。 2.形成能 形成能是指由相应单质合成化合物所释放的能量。同样,对于二元化合物 AmBn ,其形成能可表示为: 其中 E ( A )和 E ( B )分别为对应单质A和B归一化后的能量。 用能量判断某一材料稳定性的时候,选择形成能可能更符合实际。因为实验合成某一材料的时候,我们一般使用其组成单质进行合成。如果想进一步判断该材料是处于稳态还是亚稳态,那么需要用凸包图(convex hull)进行。如图1所示,计算已知稳态 AxBy 的形成能,构成凸包图(红色虚线),其横轴为B在化学式中所占比例,纵轴为形成能。通过比较考察化合物与红色虚线的相对位置,如果在红色虚线上方则其可能分解(如:图1 插图中的D,将分解为A和B)或处于亚稳态(D的声子谱没有虚频);如果在红色虚线下方(如:图1 插图中的C),则该化合物稳定。 图 1:凸包图用于判断亚稳态和稳态[ [1] ] 3.声子谱 声子谱是表示组成材料原子的集体振动模式。如果材料的原胞包含 n 个原子,那么声子谱总共有3 n 支,其中有3条声学支,3 n -3条光学支。声学支表示原胞的整体振动,光学支表示原胞内原子间的相对振动。 计算出的声子谱有虚频,往往表示该材料不稳定。因为 其中 ω 为振动频率, β 可理解为弹性常量, E ( x )表示原子间相互作用能, x 表示原子偏离平衡位置的位移, m 为原子质量。由上式可以看出,当 ω 为虚频时, ,也就是表示原子平衡位置位于能量的“山顶”(类似抛物线顶点)。很明显,处于该平衡位置的原子是不稳定的。 图2 单层2H-NbSe2的声子谱[ [2] ] 有些情况下,我们可以利用虚频信息使不稳定的材料变得稳定。如图2所示,单层2H-NbSe2声子谱的一条声学支存在虚频,主要位于Γ点和M点1/2处(对应倒格矢的1/4位置)。倒格矢的1/4,对应晶格长度的4倍。我们可能需要将原胞沿上述倒格矢方向扩大四倍,进一步优化原子位置,才可能得到比较稳定的晶胞。 4.分子动力学和吉布斯自由能 通过能量和声子谱判断材料比较稳定之后,便可通过分析动力学或吉布斯自由能来进一步判断材料在一定温度下的稳定性。分子动力学方法:首先构建超胞,然后施加一定温度,运行一段时间之后观察原胞结构是否遭到破坏来判断该材料能否在该温度下稳定存在。吉布斯自由能可以用来比较不同构型材料在不同温度下的稳定性,如图3所示。 图3 几种碳的同素异形体在不同温度下的吉布斯自由能[ [3] ] 5.波恩稳定性判据 材料的弹性势能可以表示为, 其中 V0 为材料晶胞不受外力时的体积, Cij 为弹性常量矩阵元, εi 为应力。如果一个材料的是稳定的,得到的弹性能 E 一定大于0。这样就可以得到材料的弹性稳定性条件:矩阵 C 是正定的;矩阵 C 的所有本征值是正的;矩阵 C 的所有顺序主子式是正的;矩阵 C 的任意子式都是正的。因此,不同晶系材料的弹性常量矩阵元需要满足不同的条件,具体可查看文献“Necessary and sufficient elastic stability conditions in various crystal systems”[ [4] ]。 参考文献 [[1]] Zurek E. Discovering new materials via a priori crystal structure prediction[J]. Reviews in Computational Chemistry, 2016, 29: 274-326. [[2]] Calandra M, Mazin I I, Mauri F. Effect of dimensionality on the charge-density wave in few-layer 2H-NbSe2[J]. Physical Review B, 2009, 80(24): 241108. [[3]] Liu Y, Wang G, Huang Q, et al. Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings[J]. Physical review letters, 2012, 108(22): 225505. [[4]] Mouhat F, Coudert F X. Necessary and sufficient elastic stability conditions in various crystal systems[J]. Physical Review B, 2014, 90(22): 224104. 本文系宁宁供稿

第一性原理计算

根据原子核和电子相互作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法,习惯上称为第一性原理第一性原理通常是跟计算联系在一起的,是指在进行计算的时候除了告诉程序你所使用的原子和他们的位置外,没有其它的实验的,经验的或者半经验的参量,且具有很好的移植性。作为评价事物的依据,第一性原理和经验参数是两个极端。第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。

第一性原理计算方法指的是什么?

第一性原理计算(thefirstu2212principlescalculations)又称为从头计算(abinitio)

第一性原理计算

第一性原理计算:根据原子核和电子相互作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法。第一性原理通常是跟计算联系在一起的,是指在进行计算的时候除了告诉程序你所使用的原子和他们的位置外,没有其它的实验的,经验的或者半经验的参量,且具有很好的移植性。作为评价事物的依据,第一性原理和经验参数是两个极端。它是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。第一性原理和经验参数没有明显的界限,必须特别界定。如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。

第一性原理计算

第一性原理计算:根据原子核和电子相互作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法。第一性原理通常是跟计算联系在一起的,是指在进行计算的时候除了告诉程序你所使用的原子和他们的位置外,没有其它的实验的,经验的或者半经验的参量,且具有很好的移植性。作为评价事物的依据,第一性原理和经验参数是两个极端。它是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。第一性原理和经验参数没有明显的界限,必须特别界定。如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。

目前第一性原理计算最大的原子数是多少

目前第一性原理计算最大的原子数是多少第一性原理,英文First Principle,是一个计算物理或计算化学专业名词,广义的第一性原理计算指的是一切基于量子力学原理的计算。我们知道物质由分子组成,分子由原子组成,原子由原子核和电子组成。量子力学计算就是根据原子核和电子的相互作用原理去计算分子结构和分子能量(或离子),然后就能计算物质的各种性质。从头算(ab initio)是狭义的第一性原理计算,它是指不使用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。但是这个计算很慢,所以就加入一些经验参数,可以大大加快计算速度,当然也会不可避免的牺牲计算结果精度。那为什么使用“第一性原理”这个字眼呢?据说这是,来源于“第一推动力 ”这个宗教词汇。第一推动力是牛顿创立的,因为牛顿第一定律说明了物质在不受外力的作用下保持静止或匀速直线运动。如果宇宙诞生之初万事万物应该是静止的,后来却都在运动,是怎么动起来的呢?牛顿相信这是由于上帝推了一把,并且牛顿晚年致力于神学研究。现代科学认为宇宙起源于大爆炸,那么大爆炸也是有原因的吧。所有这些说不清的东西,都归结为宇宙“第一推动力”问题,它可能由某种原理决定,这个原理可以称为“第一原理”。爱因斯坦晚年致力于“大统一场理论”研究,也是希望找到统概一切物理定律的“第一原理”,可惜,这是当时科学水平所不能及的。现在也远没有答案。但是为什么称量子力学计算为第一性原理计算?大概是因为这种计算能够从根本上计算出来分子结构和物质的性质,这样的理论很接近于反映宇宙本质的原理,就称为第一性原理了。广义的第一原理包括两大类,以Hartree-Fock自洽场计算为基础的ab initio从头算,和密度泛函理论(DFT)计算。也有人主张,ab initio专指从头算,而第一性原理和所谓量子化学计算特指密度泛函理论计算。

第一性原理计算 什么时候加范德华力

范德华力之一 范德华力是存在于分子间的一种吸引力,它比化学键弱得多。一般来说,某物质的范德华力越大,则它的熔点、沸点就越高。对于组成和结构相似的物质,范德华力一般随着相对分子质量的增大而增强。 范德华力之二 范德华力也叫分子间力。分子型物质能由气态转变为液态,由液态转变为固态,这说明分子间存在着相互作用力,这种作用力称为分子间力或范德华力。分子间力有三种来源,即色散力、诱导力和取向力。色散力是分子的瞬时偶极间的作用力,它的大小与分子的变形性等因素有关。一般分子量愈大,分子内所含的电子数愈多,分子的变形性愈大,色散力亦愈大。诱导力是分子的固有偶极与诱导偶极间的作用力,它的大小与分子的极性和变形性等有关。取向力是分子的固有偶极间的作用力,它的大小与分子的极性和温度有关。极性分子的偶极矩愈大,取向力愈大;温度愈高,取向力愈小。在极性分子间有色散力,诱导力和取向力;在极性分子与非极性分子间有色散力和诱导力;在非极性分子间只有色散力。实验证明,对大多数分子来说,色散力是主要的;只有偶极矩很大的分子(如水),取向力才是主要的;而诱导力通常是很小的。 范德华力之三 在物质的聚集态中,分子间存在着一种较弱的吸引力,作用能的大小一般只有每摩尔几千焦至几十千焦,比化学键的键能小1~2个数量级,亦称范德华引力或范氏力。它由三部分作用力组成:①当极性分子相互接近时,它们的固有偶极将同极相斥而异极相吸,定向排列,产生分子间的作用力,叫做取向力。偶极矩越大,取向力越大。②当极性分子与非极性分子相互接近时,非极性分子在极性分子的固有偶极的作用下,发生极化,产生诱导偶极,然后诱导偶极与固有偶极相互吸引而产生分子间的作用力,叫做诱导力。当然极性分子之间也存在诱导力。③非极性分子之间,由于组成分子的正、负微粒不断运动,产生瞬间正、负电荷重心不重合,而出现瞬时偶极。这种瞬时偶极之间的相互作用力,叫做色散力。分子量越大,色散力越大。当然在极性分子与非极性分子之间或极性分子之间也存在着色散力。范德华引力是存在于分子间的一种不具有方向性和饱和性,作用范围在几百个皮米之间的力。它对物质的沸点、熔点、气化热、熔化热、溶解度、表面张力、粘度等物理化学性质有决定性的影响。

第一性原理计算中测量的距离单位是什么

原子之间的距离单位要看是气体、液体还是固体,对于固体物质的原子来说,其距离的单位是pm,也就是皮米,1pm=1/1000nm,也就是10的负12次方米,而一个纳米是10的负9次方米。

第一性原理计算对于催化剂的作用是什么

第一性原理计算对于催化剂的作用是指导催化剂的设计。基于第一性原理的理论计算对于指导催化剂的设计有着重要的意义。然而第一性原理计算有着十分昂贵的计算成本,阻碍了许多复杂体系催化剂的进一步探索。

第一性原理计算是什么?

根据原子核和电子相互作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法,习惯上称为第一性原理。第一性原理通常是跟计算联系在一起的,是指在进行计算的时候除了告诉程序你所使用的原子和他们的位置外,没有其它的实验的,经验的或者半经验的参量,且具有很好的移植性。根源我们知道物质由分子组成,分子由原子组成,原子由原子核和电子组成。量子力学计算就是根据原子核和电子的相互作用原理去计算分子结构和分子能量(或离子),然后就能计算物质的各种性质。从头算(ab initio)是狭义的第一性原理计算,它是指不使用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。

第一性原理计算是在0温度和压强下进行的,对实验指导有意义吗

第一性原理计算软件开展的材料设计和计算工作,第一性原理计算的结果分析要点.主要是从电荷密度图、能带结构、态密度等三个方面进行讨论.