发动机工作原理

阅读 / 问答 / 标签

二冲程柴油发动机工作原理

1.在第一个冲程中,活塞从下止点移动到上止点。当活塞仍处于下止点位置时,进气口和排气阀都已打开。扫气泵将纯净空气加压至0.12~0.14MPa,然后通过气室和进气口送入气缸,排除废气。废气通过气缸顶部的排气阀排出。当活塞向上移动关闭进气口时,排气阀也关闭,进入气缸的空气开始被压缩。当活塞移动到上止点时,压缩过程结束。2.在第二冲程中,活塞从上止点运动到下止点。当压缩过程结束时,高压柴油通过喷油器喷入气缸并自燃。高压燃烧气体推动活塞做功。当活塞向下移动2/3冲程时,排气阀打开,废气通过排气阀排出。活塞继续下移,进气口打开,来自扫气泵的空气通过进气口进入气缸进行扫气。扫气过程将持续到活塞向上移动时进气孔关闭。

二冲程发动机工作原理?

发动机气缸体上有三个孔,即进气孔、排气孔和换气孔,这三个孔分别在一定时刻由活塞关闭。其工作循环包含两个行程:1.第一冲程:活塞自下止点向上移动,三个气孔同时被关闭后,进入气缸的混合气被压缩;在进气孔露出时,可燃混合气流入曲轴箱。2.第二冲程:活塞压缩到上止点附近时,火花塞点燃可燃混合气,燃气膨胀推动活塞下移作功。这时进气孔关闭,密闭在曲轴箱内的可燃混合气被压缩;当活塞接近下止点时排气孔开启,废气冲出;随后换气孔开启,受预压的可燃混合气冲入气缸,驱除废气,进行换气过程。【汽车有问题,问汽车大师。4S店专业技师,10分钟解决。】

二冲程发动机工作原理

二冲程发动机工作原理:二冲程发动机工作原理为活塞自下止点向上移动,三个气孔同时被关闭后,进入气缸的混合气被压缩;在进气孔露出时,可燃混合气流入曲轴箱。活塞压缩到上止点附近时,火花塞点燃可燃混合气,燃气膨胀推动活塞下移作功。这时进气孔关闭,密闭在曲轴箱内的可燃混合气被压缩;当活塞接近下止点时排气孔开启,废气冲出;随后换气孔开启,受预压的可燃混合气冲入气缸,驱除废气,进行换气过程。二冲程发动机产生很多污染,污染来自两方面。第一是润滑油的燃烧。在某种程度上,润滑油使所有的二冲程发动机烟雾弥漫,一个磨损很严重的二冲程发动机能释放出大团大团的含油烟雾。第二条原因不是很明显。每当往燃烧室注入大量新空气/燃料时,它们中的一些便从排气口泄露了。这正是为何你在任何二冲程摩托艇周围能看到泛着光泽的润滑油。从混有泄出的润滑油的新燃油里释出的碳氢化合物对环境造成了很大的问题。

二冲程发动机工作原理?

二冲程发动机的工作原理:发动机气缸体上有三个孔,即进气孔、排气孔和换气孔,这三个孔分别在一定时刻由活塞关闭。其工作循环包含两个行程:1、第一冲程:活塞自下止点向上移动,三个气孔同时被关闭后,进入气缸的混合气被压缩;在进气孔露出时,可燃混合气流入曲轴箱。2、第二冲程:活塞压缩到上止点附近时,火花塞点燃可燃混合气,燃气膨胀推动活塞下移作功。这时进气孔关闭,密闭在曲轴箱内的可燃混合气被压缩;当活塞接近下止点时排气孔开启,废气冲出;随后换气孔开启,受预压的可燃混合气冲入气缸,驱除废气,进行换气过程。优点:1、二冲程发动机没有阀,这就大大简化了它们的结构,减轻了自身的重量。2、二冲程发动机每一回转点火一次,而四冲程发动机每隔一次回转点火一次。这就赋予了二冲程发动机重要的动力基础。3、二冲程发动机可在任何方位上运转,这在某些设备如链锯上很重要。标准四冲程发动机可能在油料晃动的时候发生故障,除非它是直立着的。解决这个问题就会大大增加发动机的灵活性。这些优点使二冲程发动机更加轻便,简易,制造成本低廉。二冲程发动机另外还有将双倍的动力装进同一空间内的潜力,因为每一回转它有双倍的动力冲程。轻便和双倍动力的结合使它与许多四冲程发动机相比具有惊人的“ 推重比 ”。缺点:1、二冲程发动机无法像四冲程发动机那样可持续使用那么长时间。精密润滑系统的不足意味着二冲程发动机的零部件耗损得更快。2、二冲程润滑油非常昂贵,每使用一加仑汽油你就需要四盎司润滑油。如果你在轿车上使用二冲程发动机,那么你每一千英里就要烧掉一加仑的润滑油。3、二冲程发动机的燃油消耗率高,因而你每加仑油跑不了几里路。4、二冲程发动机产生很多污染,太多以至于你可能看不到污染在你周围。污染来自两方面。第一是润滑油的燃烧。在某种程度上,润滑油使所有的二冲程发动机烟雾弥漫,一个磨损很严重的二冲程发动机能释放出大团大团的含油烟雾。第二条原因不是很明显。每当往燃烧室注入大量新空气/燃料时,它们中的一些便从排气口泄露了。这正是为何你在任何二冲程摩托艇周围能看到泛着光泽的润滑油。从混有泄出的润滑油的新燃油里释出的碳氢化合物对环境造成了很大的问题。这些不足意味着二冲程发动机只能应用于那些马达不常使用和单位效率很重要的场合。

二冲程发动机工作原理

品牌型号:Redmibook Pro 15 系统:Windows 10 二冲程发动机工作原理为活塞自下止点向上移动,三个气孔同时被关闭后,进入气缸的混合气被压缩;在进气孔露出时,可燃混合气流入曲轴箱。活塞压缩到上止点附近时,火花塞点燃可燃混合气,燃气膨胀推动活塞下移作功。这时进气孔关闭,密闭在曲轴箱内的可燃混合气被压缩;当活塞接近下止点时排气孔开启,废气冲出;随后换气孔开启,受预压的可燃混合气冲入气缸,驱除废气,进行换气过程。 二冲程发动机产生很多污染,污染来自两方面。第一是润滑油的燃烧。在某种程度上,润滑油使所有的二冲程发动机烟雾弥漫,一个磨损很严重的二冲程发动机能释放出大团大团的含油烟雾。第二条原因不是很明显。每当往燃烧室注入大量新空气/燃料时,它们中的一些便从排气口泄露了。这正是为何你在任何二冲程摩托艇周围能看到泛着光泽的润滑油。从混有泄出的润滑油的新燃油里释出的碳氢化合物对环境造成了很大的问题。

二冲程汽油发动机工作原理

二冲程内燃机的工作循环是在两个活塞冲程中完成的,即曲轴旋转一周。在四冲程内燃机中,排气过程和进气过程通常被称为通风过程。在二冲程内燃机中,换气过程是指废气从气缸中被扫除,并被新鲜空气所取代的过程。两种内燃机工作循环的区别主要在于换气过程。1.在第一个冲程中,活塞由曲轴驱动,从下止点运动到上止点。当活塞仍处于下止点时,进气孔被活塞关闭,排气孔和扫气孔打开。此时,曲轴箱内的可燃混合气通过扫气孔进入气缸,将其中的废气一扫而空。当活塞移动到上止点时,活塞头首先关闭扫气孔,扫气结束。但此时排气孔尚未关闭,部分废气和可燃混合气继续通过排气孔排出,称为附加排气。当活塞关闭排气孔时,气缸内的可燃混合气开始被压缩。直到活塞到达上止点,压缩过程才结束。2.在第二冲程中,活塞从上止点运动到下止点。压缩过程结束时,火花塞产生电火花,点燃气缸内的可燃混合气。气体膨胀做功。此时,排气孔和扫气孔被活塞关闭,但进气孔仍然打开。并且空气和汽油继续通过进气口流入曲轴箱,直到活塞裙关闭进气口。随着活塞继续向下止点运动,曲轴箱的容积不断减小,其中的混合气被预压缩。之后活塞头先打开排气孔,膨胀的燃烧气体已经变成废气,通过排气孔排出。至此,工作流程结束,开始提前排气。然后活塞再次打开扫气孔,预压缩的可燃混合气通过扫气孔从曲轴箱进入气缸,从而将废气扫出,开始扫气过程。这个过程将继续,直到扫气孔在下一个活塞冲程中关闭。

二冲程柴油发动机工作原理

1.在第一个冲程中,活塞从下止点移动到上止点。当活塞仍处于下止点位置时,进气口和排气阀都已打开。扫气泵将纯净空气加压至0.12 ~ 0.14 MPa,然后通过气室和进气口送入气缸,排除废气。废气通过气缸顶部的排气阀排出。当活塞向上移动关闭进气口时,排气阀也关闭,进入气缸的空气开始被压缩。当活塞移动到上止点时,压缩过程结束。2.在第二冲程中,活塞从上止点运动到下止点。当压缩过程结束时,高压柴油通过喷油器喷入气缸并自燃。高压燃烧气体推动活塞做功。当活塞向下移动2/3冲程时,排气阀打开,废气通过排气阀排出。活塞继续下移,进气口打开,来自扫气泵的空气通过进气口进入气缸进行扫气。扫气过程将持续到活塞向上移动时进气孔关闭。

两冲程发动机工作原理?

  一、首先我们要知道什么叫二冲程发动机  发动机曲轴每旋转一周,活塞上、下各一次(所以叫两冲程)完成一个作功循环,这种发动机就叫两冲程发动机。  二、二冲程发动机工作原理:  1、二冲程发动机一般运用于高速摩托车,活塞从下止点到上止点的第一个冲程,关闭进排气门,把吸入的压缩气进行压缩。  2、活塞从上止点到下止点的第二个冲程,火花塞点火,完成做功,同时把空混合气从活塞另一侧排气压入曲轴箱,活塞上部吸入混合气。完成一个做功循环需要活塞运动两个冲程。

二冲程发动机工作原理?

工作原理包含两个行程:1、第一冲程:活塞自下止点向上移动,三个气孔同时被关闭后,进入气缸的混合气被压缩;在进气孔露出时,可燃混合气流入曲轴箱。2、第二冲程:活塞压缩到上止点附近时,火花塞点燃可燃混合气,燃气膨胀推动活塞下移作功。这时进气孔关闭,密闭在曲轴箱内的可燃混合气被压缩;当活塞接近下止点时排气孔开启,废气冲出;随后换气孔开启,受预压的可燃混合气冲入气缸,驱除废气,进行换气过程。扩展资料:二冲程发动机的优点1、二冲程发动机没有阀,这就大大简化了它们的结构,减轻了自身的重量。2、二冲程发动机每一回转点火一次,而四冲程发动机每隔一次回转点火一次。这就赋予了二冲程发动机重要的动力基础。3、二冲程发动机可在任何方位上运转,这在某些设备如链锯上很重要。标准四冲程发动机可能在油料晃动的时候发生故障,除非它是直立着的。解决这个问题就会大大增加发动机的灵活性。这些优点使二冲程发动机更加轻便,简易,制造成本低廉。二冲程发动机另外还有将双倍的动力装进同一空间内的潜力,因为每一回转它有双倍的动力冲程。轻便和双倍动力的结合使它与许多四冲程发动机相比具有惊人的“推重比”。参考资料来源:百度百科-二冲程发动机

康明斯发动机工作原理

其发动机排量1.4~91立升,功率范围覆盖31~3500马力,广泛应用于重型卡车、中型卡车、巴士客车、娱乐休闲房车、轻型商用汽车和皮卡车等公路车辆以及工程机械、矿山设备、农业机械、船舶和铁路等非公路设备。康明斯发动机不仅以一流的可靠性、耐久性和燃油经济性享誉业内,而且在满足日益严格的汽车排放、非公路用机动设备排放以及船机排放的激烈竞争中一直居于业内领先地位第一:前瞻的设计开发能力,康明斯能针对不同的排放标准开发出相应的解决方案.第二:成熟的配套能力,排放控制技术与发动机生命周期和整车可达到完美匹配,从而使客户获得最佳的经济效益.第三:先进的尾气排放控制技术,包括冷却式废气再循环(COOLED EGR),选择性催化氧气(SCR)和颗粒物滤轻器(DPF).第四:批量的采购能力,随着康明斯排放后处理市场规模的不断扩大,形成批量采购规模,从而为客户提供性价比高的产品。

脉冲式喷气发动机工作原理【急需】

脉冲喷气发动机的工作原理是回火真空抽气循环。在燃烧室里,混合气体被首次点燃后,开始剧烈燃烧,其能量从尾喷口释放,在释放过程中,燃烧室内形成低压真空,燃烧室顶端的燃料喷射口因为压力作用,向燃烧室喷射雾化燃料,而这时,燃烧室的尾部的燃料还在燃烧,尾部的压力大于燃烧室内部压力,于是一部分火焰回冲到燃烧室内部,再次点燃刚喷进的雾化燃料,作功循环大概如此。再举个生活中的例子:家里的天然气炉子,在点燃后将其关灭,快要关上的时候,炉口总要爆一下,火焰也突然要猛烈燃烧一下,然后才熄灭,这就是脉冲回火。只要在火焰没有完全熄灭的时候,再次添加燃料,脉冲燃烧循环就会产生。就形成了脉冲火箭发动机。希望对您有帮助;想了解更多,建议到大比特商务网。

超音速发动机工作原理

超音速燃烧冲压发动机是一种新型的吸气式发动机,装置了这种发动机的飞行器将大大突破现有的速度和高度极限,使飞行马赫数r运动速度与音速之比 达 到6~25.从而实现人类航空航天史上一个新的突破。超音速燃烧冲压发动机其燃料的燃烧利用了高速飞行所产生的压缩气流,能直接从空气中获取氧气。其相应也分为两大类,一类爆震波型;一类在续燃烧型。 今天喷气式飞机使用的最普通的喷气发动机是涡扇喷气发动机。带有外涵道的喷气发动机的早期设计出现在20世纪30年代。40和50年代,人们对早期的涡扇发动机进行了试验。然而,由于对风扇叶片设计制造的要求非常高,因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机实用化的阶段。涡扇喷气发动机由进气道、压气机、燃烧室、涡轮和尾喷管组成,发动机利用气压机先对进入发动机的空气进行压缩,压缩的空气和燃料混合并被点燃,随后气体爆炸推动飞机前进,后面的涡扇和前面的压缩机处在同一根轴承上。超音速燃烧发动机同涡扇喷气发动机存在不同。其实,它也有别于火箭发动机。虽然,多级火箭的速度极高,可达20多马赫,但是它携带着全部的燃料,因而在相同体积的情况下,其有效负载低于安装有超音速燃烧冲压发动机的飞行器。 超音速燃烧是超音速燃烧室的理论基础。冲压发动机的原理由法国人雷恩.洛兰于1913年提出,1939年首次被德国用于V-1飞弹上。冲压发动机由进气道、燃烧室、推进喷管三部分组成,它比涡轮喷气发动机简单得多。冲压是利用迎面气流进入发动机后减速、提高静压的过程。该过程不需要高速旋转的、复杂的压气机。高速气流经扩张减速,气压和温度升高后,进入燃烧室与燃油混合燃烧,温度为2000—2200℃,甚至更高,经膨胀加速,由喷口高速排出,产生推力。

涡扇发动机工作原理问题

1、涡扇的推力不完全来自反冲,还有压气机的排气力。这个和火箭发动机及涡喷不一样,后两个都是完全靠反冲来产生动力。2、引擎产生的阻力和引擎的转速关系不大,主要是面积大小和飞机飞行速度的快慢决定的。3、涡扇本来就是热机,动力当然来自他自己。靠燃烧航空煤油来产生。都说是涡扇了,当然是燃气轮机,涡扇本身就是动力装置,不需要其他动力装置。4、气体燃烧产生推力,推动叶轮旋转,和风车差不多。5、点击参考资料,看图之后仔细想想就明白了。

涡扇发动机工作原理 你知道吗

1、涡轮风扇发动机由风扇、低压压气机(髙涵比涡扇特有)、高压压气机、燃烧室、驱动压气机的高压涡轮、驱动风扇的低压涡轮和排气系统组成。其中高压压气机、燃烧室和高压涡轮三部分统称为核心机,由核心机排出的燃气中的可用能量,一部分传给低压涡轮用以驱动风扇,余下的部分在喷管中用于加速排出的燃气。 2、风扇转子实际上是1级或几级叶片较长的压气机,空气流过风扇后,分成两路:一路是内涵气流,空气继续经压气机压缩,在燃烧室和燃油混合燃烧,燃气经涡轮和喷管膨胀,燃气以高速从尾喷口排出,产生推力,流经路程为经低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮,燃气从喷管排出;另一路是外涵气流,风扇后空气经外涵道直接排入大气或同内涵燃气一起在喷管排出。

涡轮风扇发动机工作原理

涡轮风扇喷气发动机的原理涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。

涡轮风扇发动机工作原理

涡轮风扇喷气发动机的原理涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。

涡扇发动机工作原理

。。排气的时候进气口是关闭的。

涡扇发动机工作原理问题?

1、涡扇的推力不完全来自反冲,还有压气机的排气力。这个和火箭发动机及涡喷不一样,后两个都是完全靠反冲来产生动力。2、引擎产生的阻力和引擎的转速关系不大,主要是面积大小和飞机飞行速度的快慢决定的。3、涡扇本来就是热机,动力当然来自他自己。靠燃烧航空煤油来产生。都说是涡扇了,当然是燃气轮机,涡扇本身就是动力装置,不需要其他动力装置。4、气体燃烧产生推力,推动叶轮旋转,和风车差不多。5、点击参考资料,看图之后仔细想想就明白了。

涡轮风扇发动机工作原理

涡轮风扇喷气发动机的原理涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。

汽车发动机工作原理?

往复活塞式内燃机所用的燃料主要是汽油(gasoline)或柴油(diesel)。由于汽油和柴油具有不同的性质,因而在发动机的工作原理和结构上有差异。 一. 四冲程汽油机工作原理 汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。 (1) 吸气冲程(intake stroke) 活塞在曲轴的带动下由上止点移至下止点。此时进气门开启,排气门关闭,曲轴转动180°。在活塞移动过程中,汽缸容积逐渐增大,汽缸内气体压力从pr逐渐降低到pa,汽缸内形成一定的真空度,空气和汽油的混合气通过进气门被吸入汽缸,并在汽缸内进一步混合形成可燃混合气。由于进气系统存在阻力,进气终点 (图中a 点)汽缸内气体压力小于大气压力0 p ,即pa= (0.80~0.90) 0 p 。进入汽缸内的可燃混合气的温度,由于进气管、汽缸壁、活塞顶、气门和燃烧室壁等高温零件的加热以及与残余废气的混合而升高到340~400K。 (2) 压缩冲程(compression stroke) 压缩冲程时,进、排气门同时关闭。活塞从下止点向上止点运动,曲轴转动180°。活塞上移时,工作容积逐渐缩小,缸内混合气受压缩后压力和温度不断升高,到达压缩终点时,其压力pc可达800~2 000kPa,温度达600~750K。在示功图上,压缩行程为曲线a~c。 (3) 做功冲程(power stroke) 当活塞接近上止点时,由火花塞点燃可燃混合气,混合气燃烧释放出大量的热能,使汽缸内气体的压力和温度迅速提高。燃烧最高压力pZ达3 000~6 000kPa,温度TZ达2 200~2 800K。高温高压的燃气推动活塞从上止点向下止点运动,并通过曲柄连杆机构对外输出机械能。随着活塞下移,汽缸容积增加,气体压力和温度逐渐下降,到达 b 点时,其压力降至300~500kPa,温度降至1 200~1 500K。在做功冲程,进气门、排气门均关闭,曲轴转动180°。在示功图上,做功行程为曲线c-Z-b。 (4) 排气冲程(exhaust stroke) 排气冲程时,排气门开启,进气门仍然关闭,活塞从下止点向上止点运动,曲轴转动180°。排气门开启时,燃烧后的废气一方面在汽缸内外压差作用下向缸外排出,另一方面通过活塞的排挤作用向缸外排气。由于排气系统的阻力作用,排气终点r 点的压力稍高于大气压力,即pr=(1.05~1.20)p0。排气终点温度Tr=900~1100K。活塞运动到上止点时,燃烧室中仍留有一定容积的废气无法排出,这部分废气叫残余废气。 二. 四冲程柴油机工作原理 四冲程柴油机和汽油机一样,每个工作循环也是由进气冲程、压缩冲程、做功冲程和排气冲程组成。由于柴油机以柴油作燃料,与汽油相比,柴油自燃温度低、黏度大不易蒸发,因而柴油机采用压缩终点压燃着火,也叫压燃式点火,其工作过程及系统结构与汽油机有所不同. (1) 进气冲程 进入汽缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa= (0.85~0.95)p0,比汽油机高。进气终点温度Ta=300~340K,比汽油机低。 (2) 压缩冲程 由于压缩的工质是纯空气,因此柴油机的压缩比比汽油机高(一般为ε=16~22)。压缩终点的压力为3 000~5 000kPa,压缩终点的温度为750~1 000K,大大超过柴油的自燃温度(约520K)。 (3) 做功冲程 当压缩冲程接近终了时,在高压油泵作用下,将柴油以10MPa左右的高压通过喷油器喷入汽缸燃烧室中,在很短的时间内与空气混合后立即自行发火燃烧。汽缸内气体的压力急速上升,最高达5 000~9 000kPa,最高温度达1 800~2 000K。由于柴油机是靠压缩自行着火燃烧,故称柴油机为压燃式发动机。 (4) 排气冲程 柴油机的排气与汽油机基本相同,只是排气温度比汽油机低。一般Tr=700~900K。对于单缸发动机来说,其转速不均匀,发动机工作不平稳,振动大。这是因为四个冲程中只有一个冲程是做功的,其他三个冲程是消耗动力为做功做准备的冲程。为了解决这个问题,飞轮必须具有足够大的转动惯量,这样又会导致整个发动机质量和尺寸增加。采用多缸发动机可以弥补上述不足。现代汽车用多采用四缸、六缸和八缸发动机。参考资料:http://baike.baidu.com/view/493293.html#4

汽车发动机工作原理

德篇

汽车发动机工作原理

往复活塞式内燃机所用的燃料主要是汽油(gasoline)或柴油(diesel)。由于汽油和柴油具有不同的性质,因而在发动机的工作原理和结构上有差异。 一. 四冲程汽油机工作原理 汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。 (1) 吸气冲程(intake stroke) 活塞在曲轴的带动下由上止点移至下止点。此时进气门开启,排气门关闭,曲轴转动180°。在活塞移动过程中,汽缸容积逐渐增大,汽缸内气体压力从pr逐渐降低到pa,汽缸内形成一定的真空度,空气和汽油的混合气通过进气门被吸入汽缸,并在汽缸内进一步混合形成可燃混合气。由于进气系统存在阻力,进气终点 (图中a 点)汽缸内气体压力小于大气压力0 p ,即pa= (0.80~0.90) 0 p 。进入汽缸内的可燃混合气的温度,由于进气管、汽缸壁、活塞顶、气门和燃烧室壁等高温零件的加热以及与残余废气的混合而升高到340~400K。 (2) 压缩冲程(compression stroke) 压缩冲程时,进、排气门同时关闭。活塞从下止点向上止点运动,曲轴转动180°。活塞上移时,工作容积逐渐缩小,缸内混合气受压缩后压力和温度不断升高,到达压缩终点时,其压力pc可达800~2 000kPa,温度达600~750K。在示功图上,压缩行程为曲线a~c。 (3) 做功冲程(power stroke) 当活塞接近上止点时,由火花塞点燃可燃混合气,混合气燃烧释放出大量的热能,使汽缸内气体的压力和温度迅速提高。燃烧最高压力pZ达3 000~6 000kPa,温度TZ达2 200~2 800K。高温高压的燃气推动活塞从上止点向下止点运动,并通过曲柄连杆机构对外输出机械能。随着活塞下移,汽缸容积增加,气体压力和温度逐渐下降,到达 b 点时,其压力降至300~500kPa,温度降至1 200~1 500K。在做功冲程,进气门、排气门均关闭,曲轴转动180°。在示功图上,做功行程为曲线c-Z-b。 (4) 排气冲程(exhaust stroke) 排气冲程时,排气门开启,进气门仍然关闭,活塞从下止点向上止点运动,曲轴转动180°。排气门开启时,燃烧后的废气一方面在汽缸内外压差作用下向缸外排出,另一方面通过活塞的排挤作用向缸外排气。由于排气系统的阻力作用,排气终点r 点的压力稍高于大气压力,即pr=(1.05~1.20)p0。排气终点温度Tr=900~1100K。活塞运动到上止点时,燃烧室中仍留有一定容积的废气无法排出,这部分废气叫残余废气。 二. 四冲程柴油机工作原理 四冲程柴油机和汽油机一样,每个工作循环也是由进气冲程、压缩冲程、做功冲程和排气冲程组成。由于柴油机以柴油作燃料,与汽油相比,柴油自燃温度低、黏度大不易蒸发,因而柴油机采用压缩终点压燃着火,也叫压燃式点火,其工作过程及系统结构与汽油机有所不同. (1) 进气冲程 进入汽缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa= (0.85~0.95)p0,比汽油机高。进气终点温度Ta=300~340K,比汽油机低。 (2) 压缩冲程 由于压缩的工质是纯空气,因此柴油机的压缩比比汽油机高(一般为ε=16~22)。压缩终点的压力为3 000~5 000kPa,压缩终点的温度为750~1 000K,大大超过柴油的自燃温度(约520K)。 (3) 做功冲程 当压缩冲程接近终了时,在高压油泵作用下,将柴油以10MPa左右的高压通过喷油器喷入汽缸燃烧室中,在很短的时间内与空气混合后立即自行发火燃烧。汽缸内气体的压力急速上升,最高达5 000~9 000kPa,最高温度达1 800~2 000K。由于柴油机是靠压缩自行着火燃烧,故称柴油机为压燃式发动机。 (4) 排气冲程 柴油机的排气与汽油机基本相同,只是排气温度比汽油机低。一般Tr=700~900K。对于单缸发动机来说,其转速不均匀,发动机工作不平稳,振动大。这是因为四个冲程中只有一个冲程是做功的,其他三个冲程是消耗动力为做功做准备的冲程。为了解决这个问题,飞轮必须具有足够大的转动惯量,这样又会导致整个发动机质量和尺寸增加。采用多缸发动机可以弥补上述不足。现代汽车用多采用四缸、六缸和八缸发动机。参考资料:http://baike.baidu.com/view/493293.html#4

汽车发动机工作原理

我给你解释活塞.转子发动机,机械和涡轮增压原理.你也不看看咱是干嘛的,哪天咱俩见了我给你讲!

汽车汽油发动机工作原理(简要)

汽车汽油发动机工作原理:发动机是将化学能转化为机械能的机器,它的转化过程实际上就是工作循环的过程,简单来说就是是通过燃烧气缸内的燃料,产生动能,驱动发动机气缸内的活塞往复的运动,由此带动连在活塞上的连杆和与连杆相连的曲柄,围绕曲轴中心作往复的圆周运动,而输出动力的。四冲程汽油机的工作过程是一个复杂的过程,它由进气、压缩、燃烧膨胀、排气四个行程(冲程)组成。扩展资料:汽油发动机:由于汽油粘性小,蒸发快,可以用汽油喷射系统将汽油喷入气缸,经过压缩达到一定的温度和压力后,用火花塞点燃,使气体膨胀做功。按燃料供给方式的不同,汽油发动机又可分为化油器式及喷射式(或称电喷式)两大类。化油器常见于老车型的发动机上,现在大部分发动机使用喷射式燃料供给方式。在喷射式汽油机中,汽油可在进气口喷射,也可在进气冲程期间直接向气缸内喷射;喷油过程可由计算机程序控制,燃料可更均匀地分配给各个气缸;同时,由于不需要喉管而减少厂进气的阻力等,可提高气缸内的平均有效压力和热效率;此外,还可以减弱或避免爆震燃烧。相对于柴油机,汽油机热效率低于柴油机,且油耗较高,点火系统比柴油机复杂,可靠性和维修的方便性也不如柴油机。参考资料来源:百度百科-汽油发动机

汽车发动机工作原理是怎样的?

发动机的基本工作原理是将热能转化为动能:  1、首先在外力的作用下(起动机的带动)通过曲轴带动活塞作往复运动,一旦气缸作功,便可以脱离外力自行工作  2、活塞由上止点向下止点运动时,进气门打开,开始实现进气(汽油车进的是混合气,柴油机进的是纯空气)------进气  3、活塞由下止点向上止点运动时,进排气门关闭,将刚才的进气进行压缩,并产生高温------压缩  4、在压缩终了时,汽油车的混和气在火花塞的作用下进行点火燃烧、柴油车的高温气体在喷油器的作用下进行喷油而自行燃烧,气缸内的气体在燃烧的作用下急剧膨胀,促使活塞下行------作功  5、活塞再由下止点向上止点运动时,排气门打开进行排气,并准备下一个循环。

汽车发动机工作原理是什么

小编就关于“汽车发动机工作原理是什么”为你提供以下相关内容:汽车发动机分为汽油发动机和四冲柴油发动机。两者的工作原理分别是:1、汽油发动机(汽油机)的工作原理:四冲程汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。2、四冲程柴油机的工作原理:四冲程柴油机工作原理汽油机一样,每个工作循环也是由进气冲程、压缩冲程、做功冲程和排气冲程组成。由于柴油与汽油相比,自燃温度低、黏度大不易蒸发,因而柴油机采用压缩终点压燃着火(压燃式点火),而汽油机是火花塞点燃。

汽车发动机工作原理

发动机工作原理 发动机是将化学能转化为机械能的机器,它的转化过程实际上就是工作循环的过程,简单来说就是通过燃烧气缸内的燃料,产生动能,驱动发动机气缸内的活塞往复的运动,由此带动连在活塞上的连杆和与连杆相连的曲柄,围绕曲轴中心作往复的圆周运动,而输出动力的。 发动机分类 接下来让我们一起来看看发动机都有哪些分类吧。 按燃料供给方式的不同,汽油发动机又可分为化油器式及喷射式(或称电喷式)两大类。化油器常见于老车型的发动机上,现在大部分发动机使用喷射式燃料供给方式。

我们常见的汽车发动机工作原理?

发动机(Engine)是一种能够把其它形式的能转化为另一种能的机器,通常是把化学能转化为机械能。发动机 既适用于动力发生装置,也可指包括动力装置的整个机器(如:汽油发动机、航空发动机)。发动机最早诞生 在英国,所以,发动机的概念也源于英语,它的本义是指那种“产生动力的机械装置”。

汽车发动机工作原理

最讨厌百科复制给别人,由空气和汽油以14.7比1的理想比例混合在燃烧室压缩后点火爆炸产生推力推动活塞{就像你踩缝纫机一样,膝盖就是活塞}向下使曲轴{就是缝纫机的踏板}转动,通过变速器传到车轮!电控发动机有进气 供油 点火 排气 四大系统构成

汽车发动机工作原理是什么?

发动机(Engine)是一种能够把其它形式的能转化为机械能的机器。包括如内燃机(往复活塞式发动机)、外燃机(斯特林发动机、蒸汽机等)、喷气发动机、电动机等。以下是相关介绍:1、进气冲程:活塞在缸体上向下运动汽门打开吸入空间和燃油.2、压缩冲程:活塞向上运动压缩空气与燃油的混合通过火花塞进行点火。3、作功冲程:压缩的空气燃油混合气体被点燃后膨胀将活塞下压活塞杆推动传动杆转动。4、排气冲程:活塞被膨胀气体下压到底后另外的缸体内活塞运动带动活塞上升排气门打开排出废气。

汽车发动机工作原理

发动机通过循环燃烧汽油和空气的混合气产生热能。燃烧在一个封闭的圆柱形空间(燃烧室)内进行,该燃烧室可通过活塞移动改变容积。热能在燃烧室内产生高压,从」:而向边界面(燃烧室壁、燃烧室顶和活塞)施加作用力,该作用力促使活塞进行运动。

汽车发动机工作原理

四冲程汽油机 往复活塞式内燃机所用的燃料主要是汽油(gasoline)或柴油(diesel)。由于汽油和柴油具有不同的性质,因而在发动机的工作原理和结构上有差异。 一. 四冲程汽油机工作原理 汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。 (1) 吸气冲程(intake stroke) 活塞在曲轴的带动下由上止点移至下止点。此时进气门开启,排气门关闭,曲轴转动180°。在活塞移动过程中,汽缸容积逐渐增大,汽缸内气体压力从pr逐渐降低到pa,汽缸内形成一定的真空度,空气和汽油的混合气通过进气门被吸入汽缸,并在汽缸内进一步混合形成可燃混合气。由于进气系统存在阻力,进气终点 (图中a 点)汽缸内气体压力小于大气压力0 p ,即pa= (0.80~0.90) 0 p 。进入汽缸内的可燃混合气的温度,由于进气管、汽缸壁、活塞顶、气门和燃烧室壁等高温零件的加热以及与残余废气的混合而升高到340~400K。 (2) 压缩冲程(compression stroke) 压缩冲程时,进、排气门同时关闭。活塞从下止点向上止点运动,曲轴转动180°。活塞上移时,工作容积逐渐缩小,缸内混合气受压缩后压力和温度不断升高,到达压缩终点时,其压力pc可达800~2 000kPa,温度达600~750K。在示功图上,压缩行程为曲线a~c。 (3) 做功冲程(power stroke) 当活塞接近上止点时,由火花塞点燃可燃混合气,混合气燃烧释放出大量的热能,使汽缸内气体的压力和温度迅速提高。燃烧最高压力pZ达3 000~6 000kPa,温度TZ达2 200~2 800K。高温高压的燃气推动活塞从上止点向下止点运动,并通过曲柄连杆机构对外输出机械能。随着活塞下移,汽缸容积增加,气体压力和温度逐渐下降,到达 b 点时,其压力降至300~500kPa,温度降至1 200~1 500K。在做功冲程,进气门、排气门均关闭,曲轴转动180°。在示功图上,做功行程为曲线c-Z-b。 (4) 排气冲程(exhaust stroke) 排气冲程时,排气门开启,进气门仍然关闭,活塞从下止点向上止点运动,曲轴转动180°。排气门开启时,燃烧后的废气一方面在汽缸内外压差作用下向缸外排出,另一方面通过活塞的排挤作用向缸外排气。由于排气系统的阻力作用,排气终点r 点的压力稍高于大气压力,即pr=(1.05~1.20)p0。排气终点温度Tr=900~1100K。活塞运动到上止点时,燃烧室中仍留有一定容积的废气无法排出,这部分废气叫残余废气。四冲程柴油机 二. 四冲程柴油机工作原理 四冲程柴油机和汽油机一样,每个工作循环也是由进气冲程、压缩冲程、做功冲程和排气冲程组成。由于柴油机以柴油作燃料,与汽油相比,柴油自燃温度低、黏度大不易蒸发,因而柴油机采用压缩终点压燃着火,也叫压燃式点火,其工作过程及系统结构与汽油机有所不同. (1) 进气冲程 汽车发动机进入汽缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa= (0.85~0.95)p0,比汽油机高。进气终点温度Ta=300~340K,比汽油机低。 (2) 压缩冲程 由于压缩的工质是纯空气,因此柴油机的压缩比比汽油机高(一般为ε=16~22)。压缩终点的压力为3 000~5 000kPa,压缩终点的温度为750~1 000K,大大超过柴油的自燃温度(约520K)。 (3) 做功冲程 当压缩冲程接近终了时,在高压油泵作用下,将柴油以10MPa左右的高压通过喷油器喷入汽缸燃烧室中,在很短的时间内与空气混合后立即自行发火燃烧。汽缸内气体的压力急速上升,最高达5 000~9 000kPa,最高温度达1 800~2 000K。由于柴油机是靠压缩自行着火燃烧,故称柴油机为压燃式发动机。 (4) 排气冲程 柴油机的排气与汽油机基本相同,只是排气温度比汽油机低。一般Tr=700~900K。对于单缸发动机来说,其转速不均匀,发动机工作不平稳,振动大。这是因为四个冲程中只有一个冲程是做功的,其他三个冲程是消耗动力为做功做准备的冲程。为了解决这个问题,飞轮必须具有足够大的转动惯量,这样又会导致整个发动机质量和尺寸增加。采用多缸发动机可以弥补上述不足。现代汽车用多采用四缸、六缸和八缸发动机。

汽车发动机工作原理

汽车发动机工作原理   汽车发动机工作原理,发动机是一种能量转换机构,它将燃料燃烧产生的热能转变成机械能。那么,它是怎样完成这个能量转换过程呢,下面我给大家分享汽车发动机工作原理。   汽车发动机工作原理1    一、燃烧是关键   汽车的发动机一般都采用4冲程,分别是: 进气、压缩、燃烧、排气。完成这4个过程,发动机完成一个周期。   活塞,它由一个活塞杆和曲轴相联,过程如下:   1、活塞在顶部开始,进气阀打开,活塞往下运动,吸入油气混合气。   2、活塞往顶部运动来压缩油气混合气,使得**更有威力。   3、当活塞到达顶部时,火花塞放出火花来点燃油气混合气,**使得活塞再次向下运动。   4、活塞到达底部,排气阀打开,活塞往上运动,尾气从汽缸由排气管排出。   注意:内燃机*终产生的运动是转动的,活塞的直线往复运动*终由曲轴转化为转动,这样才能驱动汽车轮胎。    二、汽缸数   发动机的核心部件是汽缸,活塞在汽缸内进行往复运动,上面所描述的是单汽缸的运动过程,而实际应用中的发动机都是有多个汽缸的(4缸、6缸、8缸比较常见)。我们通常通过汽缸的排列方式对发动机分类:直列、V或水平对置(当然现在还有大众集团的W型,实际上是两个V组成)。   不同的排列方式使得发动机在顺滑性、制造费用和外型上有着各自的优点和缺点,配备在相应的汽车上。    三、排量   混合气的压缩和燃烧在燃烧室里进行,活塞往复运动,你可以看到燃烧室容积的变化,*大值和*小值的差值就是排量,用升(L)或毫升(CC)来度量。汽车的排量一般在1.5L~4.0L之间。每缸排量0.5L,4缸的排量为2.0L,如果V型排列的6汽缸,那就是V6 3.0升。一般来说,排量表示发动机动力的大小。   所以增加汽缸数量或增加每个汽缸燃烧室的容积可以获得更多的动力。    四、发动机的其他部分   凸轮轴 控制进气阀和排气阀的开闭。   火花塞 火花塞放出火花点燃油气混合气,使得**发生。火花必须在适当的时候放出。   阀门 进气、出气阀分别在适当的时候打开来吸入油气混合气和排出尾气。在压缩和   燃烧时,这两个阀都是关闭的,来保证燃烧室的密封。   以上关于发动机工作原理介绍,希望对于汽车发烧友有所帮助。   汽车发动机工作原理2    汽车保养三要点    一:两到三个月打次蜡最合适   有些车主给爱车洗车打蜡,就如同自己吃口香糖一般,想到了就来一遍,时尚爱美的女性车主尤其喜欢给车打蜡。很多人都认为,经常给车子美容会使自己的爱车更加光彩夺目。但频繁洗车后容易造成生锈,特别是车厢底板、车门底部等部位,造成锈蚀腐烂。一些街边洗车点,重复使用的水和抹布夹带泥沙会划伤车漆。所以如果车的外表不是特别脏的话,洗车的`次数不要太频繁。   另外,频繁打蜡反而会加速车漆褪去原有的亮度。最适宜的做法是,每隔两到三个月给爱车打一次蜡,打蜡时最好选择去污能力适中并且不含研磨剂成分的车蜡。    二:加高标号汽油花钱太浪费   以为汽油标号越高越好,并不正确。汽油标号高对发动机并没有特别好处,自己白白多花了不少银子。   “好马用好料”这一点是没错,但是料也要符合马的胃口。一般车主都知道如果高档轿车长期使用低标号汽油,除了会产生爆震外,还会产生诸如功率下降、油耗上升、发动机内部零件损坏等问题,严重缩短发动机的寿命。因此,不少车主宁好毋滥,喜欢使用高标油。事实上,汽车标号并非越高越好,即使是高档车也不等于必须加高标油。用93号油的发动机硬要用97号油就会出现“滞燃”现象,就会出现燃烧不完全现象,污染空气。    三:好马需要常“遛遛”   由于油料价格快速上涨,加之停车位置难寻,现在很多有车族平时上班以公交车代步,只有周末或休假时才驾车出行。还有的人为了延长汽车的寿命,能不用车的尽量不用车,以为这样做可以减少车的磨合损失。其实,给汽车放假对车是有害无利的。

汽车发动机工作原理

汽车发动机的工作原理是通过燃烧气缸内的燃料产生动能,带动发动机气缸内的活塞往复运动,从而带动连接在活塞上的连杆和连接在连杆上的曲柄绕曲轴中心往复运动输出动力。汽车发动机的工作原理是通过燃烧气缸内的燃料产生动能,带动发动机气缸内的活塞往复运动,从而带动连接在活塞上的连杆和连接在连杆上的曲柄绕曲轴中心往复运动输出动力。发动机使用注意事项如下:1.避免空挡行驶:发动机本身具有减速断油功能,如果使用空挡,不利于节油;2.使用车辆时注意观察。如果发现地面有油污,要判断是否有机油泄漏,及时与汽车4S店沟通,排除安全隐患;3.装有涡轮增压器的汽车不应在高速行驶或爬坡后立即熄火,怠速10分钟后再熄火。装有涡轮增压器的汽车形成积碳的速度是普通自然吸气汽车的几倍;4.当刹车油中混入或吸入水,或刹车油中发现杂质或沉淀物时,应及时更换或仔细过滤,否则会造成制动压力不足,从而影响制动效果。

汽车发动机工作原理是什么

汽车发动机是将燃料的化学能燃烧转换成热能,热能膨胀推动活塞做功转变成机械能,通过曲柄连杆机构将活塞的往复运动转换成曲轴的旋转运动,驱动汽车运行。http://diesel.hrbeu.edu.cn/test/zhang2/jie3.htm

汽车发动机工作原理

在我们身边,越来越多的人买了汽车,大家也都听说过汽车发动机,那大家知道汽车发动机的原理吗?下面总结一下汽车发动机的原理。发动机,又称为引擎,是汽车的“心脏”,是一种能够把一种形式的能转化为另一种更有用的能的机器,通常是把化学能转化为机械能(把电能转化为机器能的称为电动机)。有时它既适用于动力发生装置,也可指包括动力装置的整个机器,比如汽油发动机、航空发动机。发动机最早诞生在英国,所以,发动机的概念也源于英语,它的本义是指那种“产生动力的机械装置”。发动机之所以能源源不断地提供动力,得益于气缸内的进气、压缩、做功、排气这四个行程的有条不紊地循环运作。①进气行程活塞从气缸内上止点移动至下止点时,进气门打开,排气门关闭,新鲜的空气和汽油混合气被吸入气缸内。②压缩行程进排气门关闭,活塞从下止点移动至上止点,将混合气体压缩至气缸顶部,以提高混合气的温度,为做功行程做准备。③做功行程火花塞将压缩的气体点燃,混合气体在气缸内发生“爆炸”产生巨大压力,将活塞从上止点推至下止点,通过连杆推动曲轴旋转。④排气行程活塞从下止点移至上止点,此时进气门关闭,排气门打开,将燃烧后的废气通过排气歧管排出气缸外。

飞机发动机工作原理

飞机发动机工作原理,共有3种类型:1、活塞式航空发动机是早期在飞机或直升机上应用的航空发动机,用于带动螺旋桨或旋翼。大型活塞式航空发动机的功率可达2500千瓦。后来为功率大、高速性能好的燃气涡轮发动机所取代。但小功率的活塞式航空发动机仍广泛地用于轻型飞机、直升机及超轻型飞机。2、燃气涡轮发动机这种发动机应用最广。包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机,都具有压气机、燃烧室和燃气涡轮。涡轮螺旋桨发动机主要用于时速小于800千米的飞机;涡轮轴发动机主要用作直升机的动力;涡轮风扇发动机主要用于速度更高的飞机;涡轮喷气发动机主要用于超音速飞机。3、冲压发动机其特点是无压气机和燃气涡轮,进入燃烧室的空气利用高速飞行时的冲压作用增压。它构造简单、推力大,特别适用于高速高空飞行。由于不能自行起动和低速下性能欠佳,限制了应用范围,仅用在导弹和空中发射的靶弹上。

涡喷发动机工作原理?

涡喷发动机工作原理:涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段;不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。扩展资料:空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。参考资料:百度百科--涡轮喷气发动机

涡轮喷气发动机工作原理和流程 急求

涡喷发动机一般分为:进气道、压缩器、燃烧室、涡轮、加力燃烧室、喷口六 部分。空气通过进气道获得一部分增速(根据进气道类型及马赫数),然后经压缩器提高压力,在燃烧室和油料混合燃烧,获得高速燃气推动涡轮,最后经喷口高速喷出。

喷气式涡轮增压发动机工作原理

从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。   一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,目前只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至1.5倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。   随着航空燃气涡轮技术的进步,人们在涡轮喷气发动机的基础上,又发展了多种喷气发动机,如根据增压技术的不同,有冲压发动机和脉动发动机;根据能量输出的不同,有涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和螺桨风扇发动机等。   喷气发动机尽管在低速时油耗要大于活塞式发动机,但其优异的高速性能使其迅速取代了后者,成为航空发动机的主流。 轮增压器是安装在汽车发动机配气系统的一个装置 它的作用就是依靠由发动机排气道的废气驱动涡轮增压器的叶片转动,从而带动另一侧处于发动机进气道的叶片转动,以此来增加发动机的进气量,也就提高了进气效率,使汽缸每次工作所产生的扭矩和功率也都大大提高. 涡轮增压发动机的缺点是:1)噪音大2)涡轮增压器不是随时都处于工作状态的,当发动机达到一定转速的时候它才能够正常工作.

喷气式发动机工作原理与内燃式发动机相同

喷气式发动机工作原理与内燃式发动机完全不同的。喷气式发动机:利用发动机本身高速喷射的燃气流所产生的反作用力做功的,燃料燃烧产生的高温燃气通过喷管时,在其中绝热膨胀而高速喷出,常见的超音速飞机和火箭发动机都是喷气式发动机。内燃机:燃料在气缸内燃烧。主要由气缸、活塞、连杆机构、配气机构构成.燃料在气缸内燃烧,体积膨胀,推动活塞做往复运动,活塞再通过连杆机构把往复运动转换为圆周运动输出做功.配气机构主要是吸进空气、排出废气.现在用的最多的柴油机、汽油机等都是内燃机。

喷气式发动机工作原理

喷气式飞机原理:利用牛顿第三反作用力定律。首先,发动机前部装有空气压缩机。现代压缩机分为7-9级,叶片安装在压缩机转子周围。发动机启动后,压缩机旋转吸入外部空气。外界气体进入导管后,压缩机一步步把气体压回去,气体含量变稠,压力越来越大。当气体经过最后一级时,气体压力增加许多倍,然后进入燃烧室。在燃烧室中,进行电点火和燃料喷射燃烧。由于气体中的氧气,气体燃烧膨胀,然后被向后喷射。燃烧室后面是涡轮。涡轮轴上设有涡轮盘,叶片安装在涡轮盘周围。涡轮分为7-13级。涡轮转动后,一步步向后压。气体被发动机后面的涡轮一步步压缩,压力上升数百倍。最后通过尾喷管喷出。形成反作用力,使飞机向前飞。

四冲程活塞发动机工作原理 四冲程活塞发动机行程

1、进气行程 进气门开启,排气门关闭,活塞由上止点向下止点移动,活塞上方的气缸容积增大,产生真空度,气缸内压力降到进气压力以下,在真空吸力作用下,通过化油器或汽油喷射装置雾化的汽油,与空气混合形成可燃混合气,由进气道和进气门吸入气缸内。进气过程一直延续到活塞过了下止点进气门关闭为止。接着上行的活塞开始压缩气体。 2、压缩行程 进排气门全部关闭,压缩缸内可燃混合气,混合气温度升高,压力上升。活塞临近上止点前,可燃混合气压力上升到0.6~1.2MPa左右,温度可达330℃~430℃。 3.、作功行程 在压缩行程接近上止点时,装在气缸盖上方的火花塞发出电火花,点燃所压缩的可燃混合气。可燃混合气燃烧后放出大量的热量,缸内燃气压力和温度迅速上升,最高燃烧压力可达3~6MPa,最高燃烧温度可达2 200℃~2 500℃。高温高压燃气推动活塞快速向下止点移动,通过曲柄连杆机构对外作功。作功行程开始时,进、排气门均关闭。 4、排气行程 作功行程接近终了时,排气门开启,由于这时缸内压力高于大气压力,高温废气迅速排出气缸,这一阶段属于自由排气阶段,高温废气以当地音速通过排气门排出。随排气过程进行进入强制排气阶段,活塞越过下止点向上止点移动,强制将缸内废气排出,活塞到达上止点附近时,排气过程结束。排气终了时,气缸内气体压力稍高于大气压力,约为0.105~0.115MPa,废气温度约为600℃~900℃。由于燃烧室占有一定容积,因此在排气终了时,不可能将废气彻底排除干净,剩余部分废气称残余废气。

发动机工作原理是什么

发动机一般为四冲程,其工作原理包括进气冲程、压缩冲程、做功冲程和排气冲程。大多数汽车发动机是四冲程的。四冲程汽油机的工作循环由四个活塞冲程组成,即进气冲程、压缩冲程、做功冲程和排气冲程。1.进气冲程当进气门打开,排气门关闭时,活塞从上止点运动到下止点,活塞上方的气缸容积增大,产生真空度,气缸内压力下降到进气压力以下。在真空吸气的作用下,化油器或汽油喷射装置雾化的汽油与空气体混合形成可燃混合气,由进气口和进气门吸入。进气过程持续进行,直到活塞经过下止点,进气门关闭。然后向上的活塞开始压缩气体。2.压缩冲程所有的进气门和排气门都关闭,气缸内的可燃混合气被压缩,混合气的温度和压力升高。在活塞上止点前,可燃混合气压力升至0.6~1.2MPa左右,温度可达330℃~430℃。3.工作行程当压缩冲程接近上止点时,安装在气缸盖上方的火花塞发出电火花,点燃压缩的可燃混合物。可燃混合气燃烧后放出大量热量,缸内气体压力和温度迅速上升,最高燃烧压力3~6MPa,最高燃烧温度2200℃~2500℃。高压气体推动活塞快速运动到下止点,通过曲柄连杆机构对外做功。在工作冲程开始时,进气门和排气门关闭。4.排气冲程在工作冲程结束时,排气阀打开。由于此时气缸中的压力高于大气压力,高温废气迅速从气缸中排出。这个阶段属于自由排气阶段,高温废气以局部音速通过排气阀排出。随着排气过程的进行,进入强制排气阶段,活塞运动超过下止点到达上止点,强制排出气缸内的废气。当活塞到达上止点附近时,排气过程结束。四冲程汽油发动机通过进气、压缩、做功和排气四个冲程完成一个工作循环。在这个过程中,活塞上下往复运动四个冲程,对应的曲轴旋转两次。百万购车补贴

四冲程活塞发动机工作原理

1、进气行程进气门开启,排气门关闭,活塞由上止点向下止点移动,活塞上方的气缸容积增大,产生真空度,气缸内压力降到进气压力以下,在真空吸力作用下,通过化油器或汽油喷射装置雾化的汽油,与空气混合形成可燃混合气,由进气道和进气门吸入气缸内。进气过程一直延续到活塞过了下止点进气门关闭为止。接着上行的活塞开始压缩气体。2、压缩行程进排气门全部关闭,压缩缸内可燃混合气,混合气温度升高,压力上升。活塞临近上止点前,可燃混合气压力上升到0.6~1.2MPa左右,温度可达330℃~430℃。3.、作功行程在压缩行程接近上止点时,装在气缸盖上方的火花塞发出电火花,点燃所压缩的可燃混合气。可燃混合气燃烧后放出大量的热量,缸内燃气压力和温度迅速上升,最高燃烧压力可达3~6MPa,最高燃烧温度可达2200℃~2500℃。高温高压燃气推动活塞快速向下止点移动,通过曲柄连杆机构对外作功。作功行程开始时,进、排气门均关闭。4、排气行程作功行程接近终了时,排气门开启,由于这时缸内压力高于大气压力,高温废气迅速排出气缸,这一阶段属于自由排气阶段,高温废气以当地音速通过排气门排出。随排气过程进行进入强制排气阶段,活塞越过下止点向上止点移动,强制将缸内废气排出,活塞到达上止点附近时,排气过程结束。排气终了时,气缸内气体压力稍高于大气压力,约为0.105~0.115MPa,废气温度约为600℃~900℃。由于燃烧室占有一定容积,因此在排气终了时,不可能将废气彻底排除干净,剩余部分废气称残余废气。

四冲程发动机工作原理

品牌型号:Redmibook Pro 15 系统:Windows10 柴油机的工作是由进气、压缩、燃烧膨胀和排气这四个过程来完成的,这四个过程构成了一个工作循环。活塞走四个过程才能完成一个工作循环的柴油机称为四冲程柴油机。 做功冲程:压缩冲程结束后,(进排气门仍处于关闭状态)喷油器将燃油喷进气缸,在高温、高压气体的作用下,燃油被压燃,气缸内产生巨大的能量,推动活塞从上止点向下止点运动,曲轴飞轮组储存和输出能量,活塞到达下止点时,做功冲程结束。 排气冲程:进气门关闭,排气门开启,活塞在曲轴、连杆的带动下,从下止点向上止点运动,将气缸内燃烧后的废气排出,活塞到达上止点时,排气冲程结束。在进气、压缩、做功、排气四个冲程中,只有做功冲程产生能量,其他三个冲程都是靠曲轴、飞轮的惯性完成的。

四冲程柴油发动机工作原理(文字解说)

四冲程柴油机的工作循环还包括进气、压缩、做功和排气四个过程。在每个活塞冲程中,进气门和排气门的开闭以及曲柄连杆机构的运动与汽油机完全相同。只是因为柴油和汽油的性能不同,所以柴油和汽油发动机在混合气形成和点火的方法上有着根本的区别。1.进气冲程在柴油机的进气冲程中,只有纯空气被吸入气缸。2.压缩冲程因为柴油机的压缩比大,所以压缩冲程末期的气体压力高。3.工作旅程在压缩冲程结束时,喷油泵将柴油泵入喷油器,并通过喷油器将其喷入燃烧室。因为喷射压力很高,而喷射孔的直径很小,所以喷射的柴油是细雾形式。细小的油滴在热空气中迅速蒸发,借助空气的运动,迅速与空气混合,形成可燃混合物。由于气缸内的温度远高于柴油的自燃点,柴油立即点燃燃烧。燃烧气体的压力和温度迅速上升,其体积迅速膨胀。在气体压力的作用下,活塞推动连杆,连杆推动曲轴转动做功。4.排气跳闸当排气冲程开始时,排气门打开,进气门仍然关闭,燃烧后的废气排出气缸。

四冲程汽油发动机工作原理

四冲程往复活塞式内燃机,其运行过程可以分为进气、压缩、工作和排气四个过程。每个活塞冲程中只进行一个过程。进气冲程:曲轴带动活塞从上止点运动到下止点,进气门打开,而排气门关闭。气缸的容积逐渐增大,形成真空,混合气被吸入气缸,并在气缸内进一步混合。压缩行程:进气冲程后,曲轴继续驱动活塞从下止点到上止点。进气门和排气门关闭,气缸的容积减小,气缸内的混合气被压缩,其压力和温度同时上升。工作旅程:压缩冲程结束时,火花塞产生电火花,点燃气缸内的可燃混合气,火焰迅速蔓延到整个燃烧室,释放出大量热能。燃烧气体迅速膨胀,压力和温度上升,活塞从上止点运动到下止点,连杆带动曲轴旋转做功。进气门和排气门仍然关闭。排气跳闸:排气冲程开始时,排气门打开,进气门关闭。曲轴带动活塞从下止点运动到上止点,膨胀的燃烧气体或废气,在自身余压和活塞的推动下,通过排气阀排出气缸。当活塞到达上止点时,排气冲程结束,排气阀关闭。

战斗机发动机工作原理

涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入汽缸。当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入汽缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率了。 扇发动机是喷气发动机的一个分支,从血缘关系上来说涡扇发动机应该算得上是涡喷发动机的小弟弟.从结构上看,涡扇发动机只不过是在涡喷发动机之前(之后)加装了风扇而已.然而正是这区区的几页风扇把涡喷发动机与涡扇发动机严格的区分开来.涡扇发动机这个"小弟弟"仗着自已身上的几页风扇也青出于蓝. 现代的军用战斗机要求越来越高的机动性能,较高的推重比能赋予战斗机很高的垂直机动能力和优异的水平加速性能.而且在战时,如果本方机场遭到了对方破坏,战斗机还可以利用大推力来减少飞机的起飞着陆距离.比如装备了f-100-pw-100的f-15a当已方机机的跑道遭到部分破坏时,f-15可以开全加力以不到300米的起飞滑跑距离起飞.在降落时可以用60度的迎角作低速平飞,在不用减速伞和反推力的情况下,只要500米的跑道就可以安全降落. 更高的推重比是每一个战斗机飞行员所梦寐以求的.但战斗机的推重比在很大和度上是受发动机所限--如果飞机发动机的推重比小于6一级的话,其飞机的空战推重比就很难达到1,如果强行提高飞机的推重比的话所设计的飞机将在航程、武器挂载、机体强度上付出相当大的代价.比如前苏联设计的苏-11战斗机使用了推重比为4.085的ал-7ф-1-100涡喷发动机.为了使飞机的推重比达到1,苏-11的动力装置重量占了飞机起飞重量的26.1%.相应的代价是飞机的作战半径只有300公里左右. 而在民用客机、运输机和军用的轰炸机、运输机方面.随着新材料的运用飞机的机身结构作的越来越大,起飞重量也就越来越大,对发动机的推力要求也越来越高.在高函道比大推力的涡扇发动机出现之前,人们只能采用让大型飞机挂更多的发动机的方法来解决发动机的推力不足问题.比如b-52g轰炸机的翼下就挂了八台j-57-p-43w涡喷发动机.该发动机的单台最大起飞推力仅为6237公斤(喷水).如果b-52晚几年出生的话它完全可以不挂那么多的发动机.在现在如果不考虑动力系统的可靠性,像b-52之类的飞机只装一台发动机也未尝不可.

战机发动机工作原理

这个内容比较长,你可以去自己看,附链接!http://baike.baidu.com/view/741448.htm小毛回答 必属佳作 记得给分 谢谢合作

呃!求一个详细的飞机发动机工作原理的论坛一个亦或大神一枚。。。。。。

1. 两种说法不矛盾吧,旋翼的翼型(上凸下平)产生压力差,旋翼给空气一个向下的力,空气也给旋翼一个向上的力,这就是反作用力2. 涡轮前温度。燃气涡轮发动机的基本原理,是把燃料的化学能转化为动能。但这需要几个步骤:第一步,先把燃料的化学能转化为热能,就是烧,在燃烧室内加热空气。涡轮前温度越高,说明化学能转化为热能越充分。热能转化为动能是第二步,越热空气越膨胀,膨胀就会向后喷,喷气速度也越大,反作用也就越大。其实,反作用力=喷气速度 乘以 每秒喷出的气体质量,所以要在提高喷气速度和提高流量间取个平衡。喷气速度高噪声大还浪费燃料,所以就有第4条(提高涵道比)3. 刚才说了,第一步热能转化为热能,第二步热能转化为动能。气体在涡轮中膨胀,推动涡轮旋转,就是热能转化为动能,才能真正演变成推力。涡轮叶片间空间有限,气体膨胀没处去,向后喷的速度自然就增大了。速度大了,推力也就大了。4. 接第2条,“反作用力=喷气速度 乘以 每秒喷出的气体质量”,增加涵道比就是为了增加每秒喷出的气体质量。不管气体在发动机内怎么折腾,只有当气体对发动机有向前的作用力时,才对产生向前的推力有贡献。如果发动机喷管喷出高速燃气,说明燃气的动能浪费了。燃气喷出发动机后,就无法再对发动机产生任何形式的力。所以就再装一个自由涡轮,让它吸收燃气的动能,带动前方的风扇转动,给外涵道气流加速。降低一点喷气速度,大幅增加气流流量,从而增大推力。5. 普通涡轮和自由涡轮不连接,各自独立转动。压气机由核心机涡轮带动,旋翼由自由涡轮带动,核心机转速高,自由涡轮转速低。这样设计就是为了让它们都在各自最适合的转速下工作。6. 作用力=喷气速度 乘以 每秒喷出的气体质量,在流量一定的情况下,喷气速度越大推力就越大,但这会造成噪声增大、浪费燃料等缺点。现在一般都采用增加流量的方式来增大推力,也就是增大涵道比

飞机发动机工作原理和摩托车发动机工作原理一样吗?

不一样,飞机是喷气式,靠高速气体喷出的气体产生的反推力工作,摩托车是内燃机式的,靠燃烧推动连杆,曲轴带动工作

涡轮风扇发动机工作原理

你知道涡轮风扇发动机的工作原理吗?涡扇发动机全称为涡轮风扇发动机(Turbofan)是飞机发动机的一种,由涡轮喷气发动机(Turbojet)发展而成。与涡轮喷气比较,主要特点是首级压缩机的面积大很多,同时被用作为空气螺旋桨(扇),将部分吸入的空气通过喷射引擎的外围向後推。发动机核心部分空气经过的部分称为内涵道,仅有风扇空气经过的核心机外侧部分称为外涵道。涡扇引擎最适合飞行速度400至1,000公里时使用,因此现在多数的飞机引擎都采用涡扇作为动力来源。所有的人,都祝你快乐广告工作原理涡轮风扇发动机由风扇、低压压气机(髙涵比涡扇特有)、高压压气机、燃烧室、驱动压气机的高压涡轮、驱动风扇的低压涡轮和排气系统组成。其中高压压气机、燃烧室和高压涡轮三部分统称为核心机,由核心机排出的燃气中的可用能量,一部分传给低压涡轮用以驱动风扇,余下的部分在喷管中用于加速排出的燃气。风扇转子实际上是 1级或几级叶片较长的压气机,空气流过风扇后,分成两路:一路是内涵气流,空气继续经压气机压缩,在燃烧室和燃油混合燃烧,燃气经涡轮和喷管膨胀,燃气以高速从尾喷口排出,产生推力,流经路程为经低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮,燃气从喷管排出;另一路是外涵气流,风扇后空气经外涵道直接排入大气或同内涵燃气一起在喷管排出。涡轮风扇发动机组合了涡轮喷气和涡轮螺桨发动机的优点。涡扇发动机转换大部分的燃气能量成驱动风扇和压气机的扭矩,其余的转换成推力。涡扇发动机的总推力是核心发动机和风扇产生的推力之和。这种有内外二个涵道的涡轮风扇发动机又称为内外涵发动机。也就是说,涡扇发动机可以是分开排气的或混合排气的,可以是短外涵的或长外涵(全涵道)的。风扇可作为低压压气机的第1级由低压涡轮驱动,也可以由单独的涡轮驱动。 涡扇发动机的推力由两部分组成:内涵产生的推力和外涵产生的推力。对于高涵道比涡扇发动机,风扇产生的推力占78%以上。流经外涵和内涵的空气流量之比称为涵道比或流量比。涵道比对涡轮风扇发动机性能影响较大,涵道比大,耗油率低,但发动机的迎风面积大;涵道比较小时,迎风面积小,但耗油率大。内外涵两股气流分开排入大气的称为分排式涡轮风扇发动机。内外涵两股气流在内涵涡轮后的混合器中相互渗混后通过同一喷管排入大气的,称为混排式涡轮风扇发动机。涡轮风扇发动机也可安装加力燃烧室,成为加力涡轮风扇发动机。在分排式涡轮风扇发动机上的加力燃烧室可以分别安装在内涵涡轮后或外涵通道内,在混排式涡轮风扇发动机上则可装在混合器后面

J-10战机的发动机工作原理(最好能配图解)

涡扇发动机全称为涡轮风扇发动机(Turbofan)是飞机发动机的一种,由涡轮喷气发动机(Turbojet)发展而成。  与涡轮喷气比较,主要特点是首级压缩机的面积大很多,同时被用作为空气螺旋桨(扇),将部分吸入的空气通过喷射引擎的外围向後推。发动机核心部分空气经过的部分称为内涵道,仅有风扇空气经过的核心机外侧部分称为外涵道。涡扇引擎最适合飞行速度400至1,000公里时使用,因此现在多数的飞机引擎都采用涡扇作为动力来源。  涡扇引擎的旁通比(Bypassratio,也称涵道比)是不经过燃烧室的空气质量,与通过燃烧室的空气质量的比例。旁通比为零的涡扇引擎即是涡轮喷气引擎。早期的涡扇引擎和现代战斗机使用的涡扇引擎旁通比都较低。例如世界上第一款涡扇引擎,劳斯莱斯的Conway,其旁通比只有0.3。现代多数民航机引擎的旁通比通常都在5以上。旁通比高的涡轮扇引擎耗油较少,但推力却与涡轮喷气引擎相当,且运转时还宁静得多。   由喷管排出燃气和风扇排出空气共同产生反作用推力的燃气涡轮发动机。涡轮风扇发动机由风扇、压气机、燃烧室、驱动压气机的高压涡轮、驱动风扇的低压涡轮和排气系统组成。其中压气机、燃烧室和高压涡轮三部分统称为核心机,由核心机排出的燃气中的可用能量,一部分传给低压涡轮用以驱动风扇,余下的部分在喷管中用于加速排出的燃气。风扇转子实际上是1级或几级叶片较长的压气机,空气流过风扇后,一部分流入核心机称为内涵气流由喷管高速排出产生推力,另一部分围绕核心机的外围流过,称为外涵气流,也产生推力。这种有内外二个涵道的涡轮风扇发动机又称为内外涵发动机。流经外涵和内涵的空气流量之比称为涵道比或流量比。涵道比对涡轮风扇发动机性能影响较大,涵道比大,耗油率低,但发动机的迎风面积大;涵道比较小时,迎风面积小,但耗油率大。内外涵两股气流分开排入大气的称为分排式涡轮风扇发动机。内外涵两股气流在内涵涡轮后的混合器中相互渗混后通过同一喷管排入大气的,称为混排式涡轮风扇发动机。涡轮风扇发动机也可安装加力燃烧室,成为加力涡轮风扇发动机。在分排式涡轮风扇发动机上的加力燃烧室可以分别安装在内涵涡轮后或外涵通道内,在混排式涡轮风扇发动机上则可装在混合器后面。   核心机相同时,涡轮风扇发动机的工质(工作介质)流量介于涡轮喷气发动机和涡轮螺旋桨发动机之间。涡轮风扇发动机比涡轮喷气发动机的工质流量大、喷射速度低、推进效率高、耗油率低、推力大。50年代发展的第一代涡轮风扇发动机,其涵道比、压气机增压比和燃气温度都较低,耗油率比涡轮喷气发动机仅低25%左右,大约为 0.06~0.07公斤/牛·时(0.6~0.7公斤/公斤力·时)。60年代末、70年代初发展了高涵道比(5~8)、高增压比(25~30)和高燃气温度(1600~1750K)的第二代涡轮风扇发动机,耗油率降低到0.03~0.04公斤/牛·时(0.3~0.4公斤/公斤力·时),推力则高达200~250千牛(20000~25000公斤力)。高涵道比涡轮风扇发动机的噪声低,排气污染小,多用作大型客机的动力装置,这种客机在11公里高度的巡航速度可达950公里/时。但这种高涵道比的涡轮风扇发动机的排气喷射速度低,迎风面积大,不宜用于超音速飞机上。   有些歼击机使用了小涵道比、带加力燃烧室的涡轮风扇发动机,在亚音速飞行时不使用加力燃烧室,耗油率和排气温度都比涡轮喷气发动机低,因而红外辐射强度较弱,不易被红外制导的导弹击中。使用加力作2倍以上音速的飞行时,产生的推力可超过加力涡轮喷气发动机,地面标准大气条件下的推重比已达8左右。  1. 涡喷发动机   进气道进气---压气机增压---燃烧室加热---涡轮膨胀作功带动压气机---尾喷管膨胀加速---排气到体外   发动机转起来之后,压气机源源不断地把压缩了的空气送到后面的燃烧室,在燃烧室里空气和燃油混合燃烧,向后排出高温高速高压气体,这些气体带动涡轮旋转,涡轮和压气机是用轴连在一起的,因此涡轮旋转了,压气机也跟着旋转,就不断地把空气压缩进去了  2. 涡轮风扇发动机   2.1分开排气涡轮风扇发动机   进气道进气--风扇增压--气流分为两股   内涵气流:压气机增压--燃烧室加热--涡轮膨胀作功带动风扇和压气机--内涵尾喷管膨胀加速--排气到体外   外涵气流:外涵道--外涵尾喷管膨胀加速--排气到体外   我们常见的民航客机所采用的发动机,多半是分别排气涡轮风扇发动机,比如著名的V2500,PW4000,GE90....   2.2混合排气涡轮风扇发动机   进气道进气--风扇增压--气流分为两股   内涵气流:压气机增压--燃烧室加热--涡轮膨胀作功带动风扇和压气机--混合器   外涵气流:外涵道--混合器   两股气流在混合器中掺混--尾喷管膨胀加速--排气到体外

飞机发动机工作原理

飞机发动机工作原理:1、活塞式航空发动机的原理利用气缸运动做功和压缩来输出。气缸向下运动时,空气被压缩成很小的体积,根据能量守恒,空气温度会升高。此时,在气缸内喷入燃油,再打个电火花,燃油会突然进行剧烈燃烧。燃烧后空气温度升高,体积变大,推动活塞向外运动。活塞带动大质量轮盘转动。2、涡轮式航空发动机的原理是压缩气体点火燃烧气体变成高温燃气实现起飞。压气机由多级叶片组成,用于吸气,并将吸入的空气进行逐级压缩,将空气变为高压气体,送入燃烧室。燃烧室内部有点火装置和喷油装置,燃油在高压空气中剧烈燃烧,给压缩空气加热,形成高温燃气。高温燃气一部分用于推动涡轮转动,一部分喷出,用于产生推力。3、冲压发动机的原理是超燃冲压发动机,在超音速气流中组织燃烧然后产生推力。从理论上来说,超燃冲压发动机能使飞行器最快飞到25马赫。与弹道导弹的最大速度接近。由于这类速度的飞行器搭载导弹之后,根本无法拦截。航空发动机航空发动机(aero-engine)是一种高度复杂和精密的热力机械,作为飞机的心脏,不仅是飞机飞行的动力,也是促进航空事业发展的重要推动力,人类航空史上的每一次重要变革都与航空发动机的技术进步密不可分。经过百余年的发展,航空发动机已经发展成为可靠性极高的成熟产品,正在使用的航空发动机包括涡轮喷气/涡轮风扇发动机、涡轮轴/涡轮螺旋桨发动机、冲压式发动机和活塞式发动机等多种类型。以上内容参考:百度百科——航空发动机

战斗机发动机工作原理

发动机原理: 该定律表述为:“作用在一物体上的每一个力都有一方向相反大小相等的反作用力。”就飞机推进而言,“物体”是通过发动机时受到加速的空气。产生这一加速度所需的力有一大小相等方向相反的反作用力作用在产生这一加速度的装置上。喷气发动机用类似于发动机/螺旋桨组合的方式产生推力。二者均靠将大量气体向后推来推进飞机,一种是以比较低速的大量空气滑流的形式,而另一种是以极高速的燃气喷气流形式。 喷气反作用绝对是一种内部现象。它不象人们经常想象的那样说成是由于喷气流作用在大气上的压力所造成的。实际上,喷气推进发动机,无论火箭、冲压喷气、或者涡轮喷气,都是设计成加速空气流或者燃气流并将其高速排出的一种装置。当然,这样做有不同的方式。但是,在所有例子中,作用在发动机上的最终的反作用力即推力是与发动机排出的气流的质量以及气流的速度成比例的。换言之,给大量空气附加一个小速度或者给少量空气一个大速度能提供同样的推力。实用中,人们喜欢前者,因为降低喷气速度能得到更高的推进效率。 它们的工作过程可归纳为:进气、压缩、燃烧、排气。

协和客机发动机工作原理

协和客机发动机是带加力燃烧室的喷气式发动机。加力燃烧室也使“协和”能够使用与传统飞机相同的跑道,因为该机必须以更快速度滑跑才能起飞。“协和”可能在能支持波音747的任何机场上起降,而反之747做不到这一点。加力系统把燃料喷射到发动机尾部加力燃烧室,然后点燃,尾喷管会喷出一股火焰来提供额外推力。但加力系统显著增加了燃料消耗,所以飞行员不能在起飞时长时间开加力。以最大重量起飞时,一般持续加力时间是大约1分10秒。当飞行员点燃加力燃烧室后,即使在最大重量的情况下,乘客仍能感觉到自己被加速度压在椅背上。因此飞行员在起飞前向乘客广播时或告知这一点。

求战斗机喷气式发动机工作原理!!越详细越好!!还有推力矢量!!!

◆压气机   压气机故名思意,就是用来压缩空气的一种机械。在喷气发动机上所使用的压气机按其结构和工作原理可以分为两大类,一类是离心式压气机,一类是轴流式压气机。离必式压气机的外形就像是一个钝角的扁圆锥体。在这个圆锥体上有数条螺旋形的叶片,当压气机的圆盘运转时,空气就会被螺旋形的叶片“抓住”,在高速旋转所带来的巨大离心力之下,空气就会被甩进压气机圆盘与压气机机匣之间的空隙,从而实现空气的增压。与离心式压气机不同,轴流式压气机是由多级风扇所构成的,其每一级都会产生一定的增压比,各级风扇的增压比相乘就是压气机的总增压比。   在现代涡扇发动机上的压气机大多是轴流式压气机,轴流式压气机有着体积小、流量大、单位效率高的优点,但在一些场合之下离心式压气机也还有用武之地,离心式压气机虽然效率比较差,而且重量大,但离心式压气机的工作比较稳定、结构简单而且单级增压比也比轴流式压气机要高数倍。比如在我国台湾的IDF上用的双转子结构的TFE1-042-70涡扇发动机上,其高压压气机就采用了四级轴流式与一级离心式的组合式压气机以减少压气机的级数。多说一句,这样的组合式压气机在涡扇发动机上用的不多,但在直升机上所使用的涡轴发动机现在一般都为几级轴流式加一级离心式的组合结构。比如国产的涡轴-6、涡轴-8发动机就是1级轴流式加1级离心式构成的组合压气机。而美国的“黑鹰”直升机上的T-700发动机其压气机为5级轴流式加上1级离心式。   压气机是涡扇发动机上比较核心的一个部件。在涡扇发动机上采用双转子结构很大程度上就是为了迎合压气机的需要。压气机的效率高低直接的影响了发动机的工作效率。目前人们的目标是提高压气机的单级增压比。比如在J-79上用的压气机风扇有17级之多,平均单级增压比为1.16,这样17级叶片的总增压比大约为12.5左右,而用在波音-777上的GE-90的压气机的平均单级增压比以提高到了1.36,这样只要十级增压叶片总增压比就可以达到23左右。而F-22的动力F-119发动机的压气机更是了的,3级风扇和6级高压压气机的总增压比就达到了25左右,平均单级增压比为1.43。平均单级增压比的提高对减少压气机的级数、减少发动机的总量、缩短发动机的总长度是大有好处的。   但随着压气机的增压比越来越高,压气机振喘和压气机防热的问题也就突现了出来。   在压气机中,空气在得到增压的同时,其温度也在上升。比如当飞机在地面起飞压气机的增压比达到25左右时,压气机的出口温度就会超过500度。而在战斗机所用的低函道比涡扇发动机中,在中低空飞行中由于冲压作用,其温度还会提高。而当压气机的总增压比达到30左右时,压气机的出口温度会达到600度左右。如此高的温度会钛合金以是难当重任,只能由耐高温的镍基合金取而代之,可是镍基合金与钛合金相比基重量太大。与是人们又开发了新型的耐高温钛合金。在波音-747的动力之一罗·罗公司的遄达800与EF-2000的动力EJ-200上就使用了全钛合金压气机。其转子重量要比使用镍基合金减重百分之三十左右。   与压气机防热的问题相比压气机振喘的问题要难办一些。振喘是发动机的一种不正常的工作状态,他是由压气机内的空气流量、流速、压力的空然变化而引发的。比如在当飞机进行加速、减速时,当飞发动机吞水、吞冰时,或当战斗机在突然以大攻飞行拉起进气道受到屏蔽进气量骤减时。都极有可能引起发动机的振喘。   在涡扇喷气发动机之初,人们就采用了在各级压气机前和风扇前加装整流叶片的方法来减少上一级压气机因绞动空气所带给下一级压气机的不利影响,以克制振喘现像的发生。而且在J-79涡喷发动机上人们还首次实现了整流叶片的可调整。可调整的整流叶片可以让发动机在更加宽广的飞行包线内正常工作。可是随着风扇、压气机的增压比一步一步的提高光是采用整流叶片的方法以是行不通了。对于风扇人们使用了宽弦风扇解决了在更广的工作范围内稳定工作的问题,而且采用了宽弦风扇之后即使去掉风扇前的整流叶片风扇也会稳定的工作。比如在F-15上的F100-PW-100其风扇前就采用了整流叶片,而F-22的F-119就由于采用了三级宽弦风扇所以风扇前也就没有了整流叶片,这样发动机的重量得以减轻,而且由于风扇前少了一层屏蔽其效率也就自然而然的提高了。风扇的问题解决了可是压气的问题还在,而且似乎比风扇的问题材更难办。因为多级的压气机都是装在一根轴上的,在工作时它的转数也是相同的。如果各级压气机在工作的时候都有自已合理的工作转数,振喘的问题也就解决了。可是到现在为止还没有听说什么国家在集中国力来研究十几、二十几转子的涡扇发动机。   在万般的无耐之后人们能回到老路上来——放气。放气是一种最简单但也最无可耐何的防振喘的方法。在很多现代化的发动上人们都保留的放气活门以备不时之须。比如在波音-747的动力JT-9D上,普·惠公司就分别在十五级的高、低压气机中的第4、9、15级上保留了三个放气活门。   ◆燃烧室与涡轮   涡扇发动机的燃烧室也就是我们上面所提到过的“燃气发生器”。经过压气机压缩后的高压空气与燃料混合之后将在燃烧室中燃烧以产生高温高压燃气来推动燃气涡轮的运转。在喷气发动机上最常用的燃烧室有两种,一种叫作环管形燃烧室,一种叫作环形燃烧室。   环管燃烧室是由数个火焰筒围成一圈所组成,在火焰筒与火焰筒之间有传焰管相连以保证各火焰筒的出口燃气压力大至相等。可是既使是如此各各火焰筒之内的燃气压力也还是不能完全相等,但各火焰筒内的微小燃气压力还不足以为患。但在各各火焰筒的出口处由于相邻的两个火焰筒所喷出的燃气会发生重叠,所以在各火焰筒的出口相邻处的温度要比别处的温度高。火焰筒的出口温度场的温度差异会给涡轮前部的燃气导向器带来一定的损害,温度高的部分会加速被烧蚀。比如在使用了八个火焰筒的环管燃烧室的JT-3D上,在火焰筒尾焰重叠处其燃气导流叶片的寿命只有正常叶片的三分之一。   与环管式燃烧室相比,环形燃烧室就没有这样的缺点。故名思意,与管环燃烧室不同,环形燃烧室的形状就像是一个同心圆,压缩空气与燃油在圆环中组织燃烧。由于环形燃烧室不像环管燃烧室那样是由多个火焰筒所组成,环形燃烧室的燃烧室是一个整体,因此环形燃烧室的出口燃气场的温度要比环管形燃烧室的温度均匀,而且环形燃烧室所需的燃油喷嘴也要比环管燃烧室的要少一些。均匀的温度场对直接承受高温燃气的燃气导流叶片的整体寿命是有好处的。   与环管燃烧室相比,环形燃烧室的优点还不止是这些。   由于燃烧室中的温度很高,所以无论环管燃烧室还是环形燃烧室都要进行一定的冷却,以保证燃烧室能更稳定的进行工作。单纯的吹风冷却早以不能适应极高的燃烧室温度。现在人们在燃烧室中最普便使用的冷却方法是全气膜冷却,即在燃烧室内壁与燃烧室内部的高温燃气之间组织起一层由较冷空气所形成的气膜来保护燃烧室的内壁。由于要形成气膜,所以就要从燃烧室壁上的孔隙中向燃烧室内喷入一定量的冷空气,所以燃烧室壁被作的很复杂,上面的开有成千上万用真空电子束打出的冷却气孔。现在大家只要通过简单的计算就可以得知,在有着相同的燃烧室容积的情况下,环形燃烧室的受热面积要比环管燃烧室的受热面积小的多。因此环形燃烧的冷却要比环管形燃烧室的冷却容易的多。在除了冷却比较容易之处,环形燃烧室的体积、重量、燃油油路设计等等与环管燃烧室相比也着优势。   但与环管燃烧室相比,环形燃烧室也有着一些不足,但这些不足不是性能上的而是制作工艺上。   首先,是环形燃烧室的强度问题。在环管燃烧室上使用的是单个体积较小的火焰筒,而环形燃烧室使用的是单个体积较大的圆环形燃烧室。随着承受高温、高压的燃烧室的直径的增大,环形燃烧室的结构强度是一大难点。   其次,由于燃烧室的工作整体环境很复杂,所以现在人们还不可能完全用计算的方法来发现、解决燃烧室所面临的问题。要暴露和解决问题进行大量的实验是唯一的方法。在环管燃烧室上,由于单个火焰筒的体积和在正常工作时所需要的空气流量较少,人们可以进行单个的火焰筒实验。而环形燃烧室是一个大直径的整体,在工作时所需要的空气流量也比较大,所以进行实验有一定的难度。在五六十年代人们进行环行燃烧室的实验时,由于没有足够的条件只能进行环形燃烧室部分扇面的实验,这种实验不可能得到燃烧室的整体数据。   但由于科技的进步,环形燃烧室的机械强度与调试问题在现如今都以经得到了比较圆满的解决。由于环形燃烧室固有的优点,在八十年代之后研发的新型涡扇发动机之上几忽使用的都是环形燃烧室。   为了更能说明两种不同的燃烧室的性能差异,现在我们就以同为普·惠公司所出品的使用环管形燃烧室的第一代涡扇发动机JT-3D与使用了环形燃烧室的第二代涡扇发动机JT-9D来作一个比较。两种涡扇发动同为双转子前风扇无加力设计,不过推力差异比较大,JT-3D是8吨级推力的中推发动机,而JT-9D-59A的推力高达24042公斤,但这样的差异并不妨碍我们对它们的燃烧室作性能上的比较。首先是两种燃烧室的几何形状,JT-9D-3A的直径和长度分别为965毫米和627毫米,而JT-3D-3B的直径是1020.5毫米、长度是1070毫米。很明显,JT-9D的环形燃烧室要比JT-3D的环管燃烧室的体积小。JT-9D-3A只有20个燃油喷嘴,而JT-3D-3B的燃油喷嘴多达四十八个。燃烧效率JT-3D-3B为0.97而JT-9D-3A比他要高两个百分点。JT-3D-3B八个火焰筒的总表面积为3.579平方米,而JT-9D-3A的火焰筒表面积只有2.282平方米,火焰筒表面积的缩小使得火焰筒的冷却结构可以作到简单、高效,因此JT-9D的火焰筒壁温度得以下降。JT-3D-3B的火焰筒壁温度为700~900度左右,而JT-9D-3A的火焰筒壁温度只有600到850度左右。JT-9D的火焰筒壁温度没有JT-3D-3B的高,可是JT-9D-3A的燃烧室出口温度却高达1150度,而JT-3D-3B的燃烧室出口温度却只有943度。以上所列出的几条足以能说明与环管燃烧室相比环形燃烧室有着巨大的性能优势。   在燃烧室中产生的高温高压燃气道先要经过一道燃气导向叶片,高温高压燃气在经过燃气导向叶片时会被整流,并被赋予一定的角度以更有效率的来冲击涡轮叶片。其目地就是为了推动涡轮,各级涡轮会带动风扇和压气机作功。在涡扇发动机中,涡轮叶片和燃气导向叶片将要直接的承受高温高压燃气的冲刷。普通的金属材料跟本无法承受如此刻克的工作环境。因此燃气导向叶片和涡轮叶片还有联接涡轮叶片的涡轮盘都必需是极耐高温的合金材料。没有深厚的基础科学研究,高性能的涡轮研制也就无从谈起。现今有实力来研制高性能涡轮的国家都无不把先进的涡轮盘和涡轮叶片的材料配方和制作工艺当作是最高极密。也正是这个小小的涡轮减缓了一些国家成为航空大国的步伐。   众所周知,提高涡轮进口温度是提高涡扇发动机推力的有效途径,所以在军用涡扇发动机上,人们都在不遗余力的来提高涡轮的进口涡度以使发动机用更小的体积和重量来产生更大的推力。苏-27的动力AL-37F涡扇发动机的涡轮进口温度以高达1427度,而F-22的运力F-119涡扇发动机其涡轮前进口温度更是达到了1700度的水平。在很多文章上提到如果要想达到更高的涡轮口进气温度,在现今陶瓷涡轮还未达到真正实际应用水平的情况下,只能采用更高性能的耐高温合金。其实这是不切确的。提高涡轮的进口温度并非只有采用更加耐高温的材料这一种途径。早在涡扇发动机诞生之初,人们就想到了用涂层的办法来提高涡轮叶片的耐烧上涂一层耐烧蚀的表面涂层来延长涡轮叶片的使用寿命。在JT-3D的涡轮叶片上普惠公司就用扩散渗透法在涡轮叶片上“镀”上一层铝、硅涂层。这种扩散渗透法与我们日常应用的手工钢锯条的渗碳工艺有点类似。经过了扩散渗透铝、硅的JT-3D一级涡轮叶片其理论工作寿命高达15900小时。   当涡轮工作温度进一步升高之后,固体渗透也开始不能满足越来越高的耐烧蚀要求。首先是固体渗透法所产生的涂层不能保证其涂层的均匀,其次是用固体渗透法得出的涂层容易脱落,其三经过固体渗透之后得出的成品由于涂层不匀会产生一定的不规则变形(一般来说经过渗透法加工的零件其外形尺寸都有细小的放大)。   针对固体渗透法的这些不足,人们又开发了气体渗透法。所谓气体渗透就是用金属蒸气来对叶片进行“蒸煮”在“蒸煮”的过程中各种合金成分会渗透到叶片的表层当中去和叶片表层紧密结合并改变叶片表层的金属结晶结构。和固体渗透法相比,气体渗透法所得到的涂层质量有了很大提高,其被渗透层可以作的极均匀。但气体渗透法的工艺过程要相对复杂很多,实现起来也比较的不容易。但在对涡轮叶片的耐热蚀要求越来越高的情况下,人们还是选择了比较复杂的气体渗透法,现如今的涡轮风扇中的涡轮叶片大都经过气体渗透来加强其表面的耐烧蚀。   除了涂层之外,人们还要用较冷的空气来对涡轮叶片进行一定的冷却,空心气冷叶片也就随之诞生了。最早的涡扇发动机--英国罗·罗公司的维康就使用了空心气冷叶片。与燃烧室相比因为涡轮是转动部件,因此涡轮的气冷也就要比燃烧室的空气冷却要复杂的多的多。除了在燃烧室中使用的气薄冷却之外在涡轮的燃气导向叶片和涡轮叶片上大多还使用了对流冷却和空气冲击冷却。   对流冷却就是在空心叶片中不停有冷却气在叶片中流动以带走叶片上的热量。冲击冷却其实是一种被加强了的对流冷却,即是一股或多股高速冷却气强行喷射在要求被冷却的表面。冲击冷却一般都是用在燃气导向叶片和涡轮叶片的前缘上,由空心叶片的内部向叶片的前缘喷射冷却气体以强行降温。冲击冷却后的气体会从燃气导向叶片和涡轮叶片前缘上的的孔、隙中流出在燃气的带动下在叶片的表面形成冷却气薄。但开在叶片前缘上使冷却气流出的孔、隙会让叶片更加难以制造,而且开在叶片前缘上的孔隙还会使应力极中,对叶片的寿命产生负面影响。可是由于气薄冷却要比对流冷却的效果好上很多,所以人们还是要不惜代价的在叶片上采用气薄冷却。   从某种意义上来说,在燃气导向叶片和涡轮叶片上使用更科学理合理的冷却方法可能要比开发更先进的耐高温合金更重要一些。因为空心冷却要比开发新合金投资更少,见效更快。现在涡轮进口温度的提升其一半左右的功劳要归功于冷却技术的提高。现如今在各式涡扇发动机的涡轮前进口温度中要有200度到350度的温度被叶片冷却技术所消化,所以说涡轮工作温度的提高叶片冷却技术功不可没。   其实在很多军事爱好者的眼中,涡轮的问题似乎只是一个耐高温材料的问题。其实涡轮问题由于其工作环境的特殊性它的难点不只是在高温上。比如,由于涡轮叶片和涡轮机匣在高温工作时由于热涨冷缩会产生一定的变形,由这些变形所引起的涡轮叶片与机匣径向间隙过大的问题,径向间隙的变大会引起燃气泄露而级大的降底涡轮效率。还有薄薄的涡轮机匣在高温工作时产生的扭曲变形;低压涡轮所要求的大功率与低转数的矛盾;提高单级涡轮载荷后涡轮叶片的根部强度等等。除了这些设计上的难题之外,更大的难题则在于涡轮部件的加工工艺。比如进行涡轮盘粉末合金铸造时的杂质控制、涡轮盘进行机器加工时的轴向进给力的控制、对涡轮盘加工的高精度要求、涡轮叶片合金精密铸造时的偏析、涡轮叶片在表面渗透加工中的变形等等,这里面的每一个问题解决不好都不可能生产出高质量、高热效率的涡轮部件。   ◆喷管与加力   尾喷管是涡扇发动机的最末端,流经风扇、压气机、燃烧室、涡轮的空气只有通过喷管排出了发动机之外才能产生真正的推力以推动飞机飞行。   涡扇发动机的排气有二部分,一部分是外函排气,一部分是内函排气。所以相应的涡扇发动机的排气方式也就分成了二种,一种是内外函的分开排气,一种是内外函的混合排气。两种排气方式各有优劣,所以在现代涡扇发动机上两种排气方式都有使用。总的来说,在高函道比的涡扇发动机上大多采有内外函分开排气,在低函道比的战斗机涡扇发动机上都采用混合排气的方式,而在中函道比的涡扇发动机上两种排气方式都有较多的使用。   对于涡扇发动机来说,函道比越高的发动机其用油也就更省推力也更大。其原因就是内函核心发动机把比较多的能量传递给了外函风扇。在混合排气的涡扇发动机中,内函较热的排气会给外函较冷的排气加温,进一步的用气动--热力过程把能量传递给外函排气。所以从理论上来说,内外函的混合排气会提高推进效率使燃油消耗进一步降低,而且在实际上由于混合排气可以降底内函较高排气速度,所以在当飞机起降时还可以降低发动机的排气噪音。可是在实际操作的过程中,高函道的涡扇发动机几乎没有使用混合排气的例子,一般都采用可以节省重量的短外函排气。   进行内外函的混合排气到目前为止只有两种方法一种是使用排气混合器,一种是使用长外函道进行内外函排气的混合。在使用排气混合器时,发动机会增加一部分排气混合器的重量,而且由于排气要经过排气混合器所以发动机的排气会产生一部分总压损失,这两点不足完全可以抵消掉混合排气所带来的好处。而长外函排气除了要付出重量的代价之外其排气的混合也不是十分的均匀。所以除了在战斗机上因结构要求而采用外则很少有采用。   在战斗机上除了有长外函进行内外函空气混合之外一般都还装有加力装置来提高发动机的最大可用推力。   所谓加力就是在内函排气和外函排气中再喷入一定数量的燃油进行燃烧,以燃油的损失来换取短时间的大推力。到目前为此只有在军用飞机和极少数要求超音速飞行的民用飞机上使用了加力。由于各种飞机的使命不同对加力燃料的要求也是不同的。比如对于纯粹的截击战斗机如米格-25来说,在进行战斗起飞时,其起飞、爬升、奔向战区、空战等等都要求发动机用最大的推力来驱动飞机。其战斗起飞时使用加力的时间差不多达到了整个飞行时间的百分之五十。而对于F-15之类的空优战斗机来说在作战起飞时只有在起飞和进行空中格斗时使用加力,因此其加力的使用使时长只占其飞行时间的百分之十不到。而在执行纯粹的对地攻击任务时其飞机要求时用加力的时间连百分之一都不到,所以在强击机上干脆就不安装加力装置以减少发动机的重量和长度。   加力燃烧是提高发动机推重比的一个重要手段。现在我们所说的战斗机发动机的推重比都是按照加力推力来计算的。如果不按照加力推力来计算F-100-PW-100的推重比只有4.79连5都没有达到!为了提高发动机的最大推力,人们现在一般都在采用内外函排气同时参与加力燃烧的混合加力。   但当加力燃烧在大幅度的提高发动机的推力的时候,所负出的代价就是燃油的高消耗。还是以F-100-PW-100为例其在全加力时的推力要比无加力时的最大推力高百分之六十六,可是加力的燃油消耗却是无加力时的百分之二百八十一。这样高的燃油消耗在起飞和进行空中格斗时还可以少少的使用一下,如要进行长时间的超音速飞行的话飞机的作战半径将大大缩短。   针对涡扇发动机高速性能的不足,人们又提出了变循环方案和外函加力方案。所谓变循环就是涡扇发动机的函道比在一定的范围内可调。比如与F-119竞争F-22动力的YF-120发动机就是一种变循环涡扇发动机。他的函道比可以0~0.25之间可调。这样就可以在要求高航速的时候把函道比缩至最小,使涡扇发动机变为高速性能好的涡喷发动机。但由于变循环发动机技术复杂,要增加一部分重量,而且费用高、维护不便,于是YF-120败与F-119手下。   由于混合加力要求内外函排气都参与加力燃烧,这样所需要的燃油也较多,于是人们又想到了内外函分开排气,只使用外函排气参加加力燃料的方案。但外函排气的温度比较低,所以组织燃烧相对的困难。目前只有少数使用,通常是要求长时间开加力的发动机才会采用这种结构

各式各样的发动机工作原理介绍

1、星型发动机。星型发动机是一种气缸排列在同一个圆周上的往复式发动机。在喷气式飞机诞生之前,大多数的飞机都是采用星型发动机提供动力。星型发动机各个气缸的活塞通过连杆连接到曲轴上,按照特定的点火顺序进行工作。2、V型发动机。V型发动机将气缸分为两组,并将其呈V型夹角进行布置,这样的布置方式减小了发动机的体积,因此家用汽车中经常采用这种发动机。3、涡轮发动机。涡轮发动机主要由压缩机、涡轮机和燃烧室三部分组成。在工作时,气体经过压缩机变成高压状态进入到燃烧室中与油嘴喷射出的燃油混合燃烧,形成的高热废气推动涡轮机旋转。通常这种发动机用作飞机和船舶的动力元件。4、转子发动机。转子发动机诞生较晚,1954年,德国人菲加士·汪克尔发明了转子发动机。这种发动机不同于传统的活塞往复式发动机,采用三角形转子的旋转运动来控制压缩与排放。在工作时,燃烧产生的膨胀压力推动三角形转子的侧面,并将其推向偏心轴的中心形成旋转运动。5、等离子发动机。等离子发动机属于一种电力推动装置,它的工作原理是利用洛伦磁力让电子加速通过磁场,漂移的电子与通道中的中性原子碰撞产生离子,离子经过电场加速后高速喷出产生推力。这种发动机不使用固体或液体燃料,因此在航天器中经常使用。

战机发动机工作原理

一、战斗机涡扇喷气发动机的工作原理现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。 空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。 进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。 从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,气流在涡轮中膨胀所做的功正好等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远小于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。 从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。 一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,目前只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至1.5倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。 随着航空燃气涡轮技术的进步,人们在涡轮喷气发动机的基础上,又发展了多种喷气发动机,如根据增压技术的不同,有冲压发动机和脉动发动机;根据能量输出的不同,有涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和螺桨风扇发动机等。 喷气发动机尽管在低速时油耗要大于活塞式发动机,但其优异的高速性能使其迅速取代了后者,成为航空发动机的主流二、航天火箭发动机迄今为止,人类从事的最神奇的事业就是太空探索了。它的神奇之处很大程度上是因为它的复杂性。太空探索是非常复杂的,因为其中有太多的问题需要解决,有太多的障碍需要克服。所面临的问题包括: 太空的真空环境 热量处理问题 重返大气层的难题 轨道力学 微小陨石和太空碎片 宇宙辐射和太阳辐射 在无重力环境下为卫生设施提供后勤保障 但在所有这些问题中,最重要的还是如何产生足够的能量使太空船飞离地面。于是火箭发动机应运而生。 一方面,火箭发动机是如此简单,您完全可以自行制造和发射火箭模型,所需的成本极低(有关详细信息,请参见本文最后一页上的链接)。而另一方面,火箭发动机(及其燃料系统)又是如此复杂,目前只有三个国家曾将自己的宇航员送入轨道。在本文中,我们将对火箭发动机进行探讨,以了解它们的工作原理以及一些与之相关的复杂问题。 火箭发动机基本原理火箭发动机工作原理当大多数人想到马达或发动机时,会认为它们与旋转有关。例如,汽车里的往复式汽油发动机会产生转动能量以驱动车轮。电动马达产生的转动能量则用来驱动风扇或转动磁盘。蒸汽发动机也用来完成同样的工作,蒸汽轮机和大多数燃气轮机也是如此。 火箭发动机则与之有着根本的区别。它是一种反作用力式发动机。火箭发动机是以一条著名的牛顿定律作为基本驱动原理的,该定律认为“每个作用力都有一个大小相等、方向相反的反作用力”。火箭发动机向一个方向抛射物质,结果会获得另一个方向的反作用力。

航天火箭发动机和战斗机发动机工作原理一样吗?

一、战斗机涡扇喷气发动机的工作原理现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。 空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。 进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。 从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,气流在涡轮中膨胀所做的功正好等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远小于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。 从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。 一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,目前只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至1.5倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。 随着航空燃气涡轮技术的进步,人们在涡轮喷气发动机的基础上,又发展了多种喷气发动机,如根据增压技术的不同,有冲压发动机和脉动发动机;根据能量输出的不同,有涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和螺桨风扇发动机等。 喷气发动机尽管在低速时油耗要大于活塞式发动机,但其优异的高速性能使其迅速取代了后者,成为航空发动机的主流 二、航天火箭发动机迄今为止,人类从事的最神奇的事业就是太空探索了。它的神奇之处很大程度上是因为它的复杂性。太空探索是非常复杂的,因为其中有太多的问题需要解决,有太多的障碍需要克服。所面临的问题包括: 太空的真空环境 热量处理问题 重返大气层的难题 轨道力学 微小陨石和太空碎片 宇宙辐射和太阳辐射 在无重力环境下为卫生设施提供后勤保障 但在所有这些问题中,最重要的还是如何产生足够的能量使太空船飞离地面。于是火箭发动机应运而生。 一方面,火箭发动机是如此简单,您完全可以自行制造和发射火箭模型,所需的成本极低(有关详细信息,请参见本文最后一页上的链接)。而另一方面,火箭发动机(及其燃料系统)又是如此复杂,目前只有三个国家曾将自己的宇航员送入轨道。在本文中,我们将对火箭发动机进行探讨,以了解它们的工作原理以及一些与之相关的复杂问题。 火箭发动机基本原理火箭发动机工作原理当大多数人想到马达或发动机时,会认为它们与旋转有关。例如,汽车里的往复式汽油发动机会产生转动能量以驱动车轮。电动马达产生的转动能量则用来驱动风扇或转动磁盘。蒸汽发动机也用来完成同样的工作,蒸汽轮机和大多数燃气轮机也是如此。 火箭发动机则与之有着根本的区别。它是一种反作用力式发动机。火箭发动机是以一条著名的牛顿定律作为基本驱动原理的,该定律认为“每个作用力都有一个大小相等、方向相反的反作用力”。火箭发动机向一个方向抛射物质,结果会获得另一个方向的反作用力。

战机发动机工作原理是什么?

一、战斗机涡扇喷气发动机的工作原理现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。x0dx0ax0dx0a空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。x0dx0ax0dx0a进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。x0dx0ax0dx0a从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,气流在涡轮中膨胀所做的功正好等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远小于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。x0dx0ax0dx0a从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。x0dx0ax0dx0a一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,目前只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至1.5倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。x0dx0ax0dx0a随着航空燃气涡轮技术的进步,人们在涡轮喷气发动机的基础上,又发展了多种喷气发动机,如根据增压技术的不同,有冲压发动机和脉动发动机;根据能量输出的不同,有涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和螺桨风扇发动机等。x0dx0ax0dx0a喷气发动机尽管在低速时油耗要大于活塞式发动机,但其优异的高速性能使其迅速取代了后者,成为航空发动机的主流二、航天火箭发动机迄今为止,人类从事的最神奇的事业就是太空探索了。它的神奇之处很大程度上是因为它的复杂性。太空探索是非常复杂的,因为其中有太多的问题需要解决,有太多的障碍需要克服。所面临的问题包括:太空的真空环境热量处理问题重返大气层的难题轨道力学微小陨石和太空碎片宇宙辐射和太阳辐射在无重力环境下为卫生设施提供后勤保障但在所有这些问题中,最重要的还是如何产生足够的能量使太空船飞离地面。于是火箭发动机应运而生。一方面,火箭发动机是如此简单,您完全可以自行制造和发射火箭模型,所需的成本极低(有关详细信息,请参见本文最后一页上的链接)。而另一方面,火箭发动机(及其燃料系统)又是如此复杂,目前只有三个国家曾将自己的宇航员送入轨道。在本文中,我们将对火箭发动机进行探讨,以了解它们的工作原理以及一些与之相关的复杂问题。火箭发动机基本原理x0dx0a火箭发动机工作原理x0dx0a当大多数人想到马达或发动机时,会认为它们与旋转有关。例如,汽车里的往复式汽油发动机会产生转动能量以驱动车轮。电动马达产生的转动能量则用来驱动风扇或转动磁盘。蒸汽发动机也用来完成同样的工作,蒸汽轮机和大多数燃气轮机也是如此。火箭发动机则与之有着根本的区别。它是一种反作用力式发动机。火箭发动机是以一条著名的牛顿定律作为基本驱动原理的,该定律认为“每个作用力都有一个大小相等、方向相反的反作用力”。火箭发动机向一个方向抛射物质,结果会获得另一个方向的反作用力。

航天火箭发动机和战斗机发动机工作原理一样吗?

一、战斗机涡扇喷气发动机的工作原理现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。 空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。 进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。 从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,气流在涡轮中膨胀所做的功正好等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远小于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。 从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。 一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,目前只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至1.5倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。 随着航空燃气涡轮技术的进步,人们在涡轮喷气发动机的基础上,又发展了多种喷气发动机,如根据增压技术的不同,有冲压发动机和脉动发动机;根据能量输出的不同,有涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和螺桨风扇发动机等。 喷气发动机尽管在低速时油耗要大于活塞式发动机,但其优异的高速性能使其迅速取代了后者,成为航空发动机的主流 二、航天火箭发动机迄今为止,人类从事的最神奇的事业就是太空探索了。它的神奇之处很大程度上是因为它的复杂性。太空探索是非常复杂的,因为其中有太多的问题需要解决,有太多的障碍需要克服。所面临的问题包括: 太空的真空环境 热量处理问题 重返大气层的难题 轨道力学 微小陨石和太空碎片 宇宙辐射和太阳辐射 在无重力环境下为卫生设施提供后勤保障 但在所有这些问题中,最重要的还是如何产生足够的能量使太空船飞离地面。于是火箭发动机应运而生。 一方面,火箭发动机是如此简单,您完全可以自行制造和发射火箭模型,所需的成本极低(有关详细信息,请参见本文最后一页上的链接)。而另一方面,火箭发动机(及其燃料系统)又是如此复杂,目前只有三个国家曾将自己的宇航员送入轨道。在本文中,我们将对火箭发动机进行探讨,以了解它们的工作原理以及一些与之相关的复杂问题。 火箭发动机基本原理火箭发动机工作原理当大多数人想到马达或发动机时,会认为它们与旋转有关。例如,汽车里的往复式汽油发动机会产生转动能量以驱动车轮。电动马达产生的转动能量则用来驱动风扇或转动磁盘。蒸汽发动机也用来完成同样的工作,蒸汽轮机和大多数燃气轮机也是如此。 火箭发动机则与之有着根本的区别。它是一种反作用力式发动机。火箭发动机是以一条著名的牛顿定律作为基本驱动原理的,该定律认为“每个作用力都有一个大小相等、方向相反的反作用力”。火箭发动机向一个方向抛射物质,结果会获得另一个方向的反作用力。

火箭发动机工作原理

火箭发动机就是利用冲量原理,自带推进剂、不依赖外界空气的喷气发动机。火箭发动机是喷气发动机的一种,将推进剂贮箱或运载工具内的反应物(推进剂)变成高速射流,由于牛顿第三运动定律而产生推力。火箭发动机可用于航天器推进,也可用于导弹等在大气层内飞行。大部分火箭发动机都是内燃机,也有非燃烧形式的发动机。火箭发动机的最大特点:它自身既带燃料,又带氧化剂,靠氧化剂来助燃,不需要从周围的大气层中汲取氧气。所以它不但能在大气层内,也可在大气层之外的宇宙真空中工作。这是任何空气喷气发动机都做不到的。发射的人造卫星、月球飞船以及各种宇宙飞行器所用的推进装置,都是火箭发动机。能源在火箭发动机内转化为工质(工作介质)的动能,形成高速射流排出而产生动力。火箭发动机依形成气流动能的能源种类分为化学火箭发动机、核火箭发动机和电火箭发动机。

液压发动机工作原理以及内部反应和降温装置是啥来着?

液压传动的工作原理是:利用液体的压力传递运动和动力。先利用动力元件将原动机的机械能转换成液体的压力能,再利用执行元件将体液的压力能转换为机械能,驱动工作部件运动。以上就是液压传动的工作原理。一个完整的、能够正常工作的液压系统,应该由以下五个主要部分来组成:1.动力装置:它是供给液压系统压力油,把机械能转换成液压能的装置。最常见的是液压泵。2.执行装置:它是把液压能转换成机械能的装置。其形式有作直线运动的液压缸,有作回转运动的液压马达,它们又称为液压系统的执行元件。3.控制调节装置:它是对系统中的压力、流量或流动方向进行控制或调节的装置。如溢流阀、节流阀、换向阀、截止阀等。4.辅助装置:例如油箱,滤油器,油管等。它们对保证系统正常工作是必不可少的。5.工作介质:传递能量的流体,即液压油等。

简述你对燃气涡轮发动机工作原理的认识?

燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能,通过它来了解燃气轮机的工作原理。从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

直升机涡轴发动机工作原理?

涡轴发动机的主要机件   与一般航空喷气发动机一样,涡轴发动机也有进气装置、压气机、燃烧室、涡轮及排气 装置等五大机件。进气装置   由于直升机飞行速度不大,一般最大平飞速度在350km/h以下, 故进气装置的内流进气道采用收敛形,以便气流在收敛形进气道内作加速流动,以改善气流流场的不均匀性。 进气装置进口唇边呈圆滑流线,适合亚音速流线要求,以避免气流在进口处突然方向折转,引起气流分离,为压气机稳定工作创造一个好的进气环境。 有的涡轴发动机将粒子分离器与进气道设计成一体,构成“多功能进气道”,以防止砂粒进入发动机内部磨损机件或者影响发动机稳定工作,这种多功能进气道利用惯性力场,使含有砂粒的空气沿着一定几何形状的通道流动。由于砂粒质量较空气大,在弯道处使砂粒获得较大的惯性力,砂粒便聚集在一起并与空气分离,排出机外。压气机 压气机的主要作用是将从进气道进入发动机的空气加以压缩,提高气流的压强, 为燃烧创造有利条件。根据压气机内气体流动的特点,可以分为轴流式和离心式两种。轴流式压气机,面积小、流量大;离心式结构简单、工作较稳定。涡轴发动机的压气机,其结构形式几经演变, 从纯轴流式、单级离心、双级离心到轴流与离心混装一起的组合式压气机。当前,直升机的涡轴发动机大多采用的是若干级轴流加一级离心所构成的组合压气机。例如,国产涡轴6、涡轴8发动机为l级轴流加1级离心构成的组合压气机;“黑鹰”直升机上的T700发动机其压气机为5级轴流加上l级离心。压气机部件主要由进气导流器、压气机转子、压气机静子及防喘装置等组成。压气机转子是一个高速旋转的组合件,轴流式转子叶片呈叶栅排列安装在工作叶轮周围,离心式转子叶片则呈辐射形状铸在叶轮外部,见下图。压气机静于由压气机壳体和静止叶片组成。转于旋转时,通过转子叶片迫使空气向后流动,不仅加速了空气,而且使空气受到压缩,转于叶片后面的空气压强大于前面的压强。气流离开转于叶片后,进入起扩压作用的静于叶片。在静于叶片的通道、空气流速降低,压强升高,得到进一步压缩。一个转子加一个静于称为一级。衡量空气经过压气机被压缩的程度,常用压缩后与压缩前的压强之比,即增压比来表示。   增压比是评估压气机性能的重要指标。现代直升机装用的涡轴发动机,要求压 气机的总增压比越来越高,有的已使增压比达到20,以使发动机获取尽可能高的热效率和轴功率。   喘振是压气机的一种有害、不稳定工作状态。当压气机发生喘振时,空气流量、空气压 力和速度发生骤变,甚至可能出现突然倒流现象。喘振的形成通常由于进气方向不适,引起 压气机叶片中的气流分离并失速。喘振的后果,轻者降低发动机功率和经济性,重者引起发 动机机械损伤或者使燃烧室熄火、停车。为防止发动机发生喘振,保证压气机稳定可靠地工 作,可在压气机前面采用角度可变的导流片,也可在压气机中部通道处设置放气装置。除了 在发动机结构设计时要考虑采取防喘措施外,还要求飞行使用中注意避免因为操纵不当致使 压气机发生喘振。 燃烧室  燃烧室是发动机内燃油与空气混合、燃烧的地方。燃烧室一般由外壳、火焰筒组成,气流进口处还设有燃油喷嘴,起动时用的喷油点火器也装在这里。燃烧室的工作条件十分恶劣,由于气体流速很高(一般流速为50一100m/s之间),混合气燃烧如大风中点火,因此保持燃烧稳定至关重要。为了保证稳定燃烧,在燃烧室结构设计上采取气流分流和火焰稳定 等措施。   经过压气机压缩后的高压空气进入燃烧室,被火焰筒分成内、外两股,大部分空气在火 焰筒外部,沿外部通道向后流动,起着散热、降温作用;小部分空气进入火焰筒内与燃油喷 嘴喷出(或者甩油盘甩出)的燃油混合形成油气混合气,经点火燃烧成为燃气,向后膨胀加速, 然后与外部渗入火焰筒内的冷空气掺合,燃气温度平均可达1500℃,流速可达230m/s,高温、高速的燃气从燃烧室后部喷出冲击涡轮装置。   工作时,先靠起动点火器点燃火焰筒内的混合气,正常工作时靠火焰筒内的燃气保持稳定燃烧。由于燃烧室的零件工作在高温、高压下,工作中常出现翘曲、变形、裂纹、过热烧穿等故障,为此燃烧室采用热强度高、热塑性好的耐高温合金。   按照燃气在燃烧室的流动路线,燃烧室可分为直流和回流式两种。直流燃烧室形状细且长,燃气流动阻力小,回流燃烧室燃气路线回转,燃气流动阻力大,但可使发动机结构紧凑,缩短转于轴的长度,使发动机获得较大的整体刚度。图2.2—34为国产祸轴8发动机的 燃烧室,是介于以上两者之间的一种折流燃烧室,使燃气折流适应甩油盘甩出燃油的方向, 以提高燃油雾化质量及燃烧室工作效率。 涡轮  涡轮的作用是将高温、高压燃气热能转变为旋转运动的机械能。它是涡抽发动机的主要机件之一,要求尺寸小、效率高。涡轮通常由静止的导向叶片和转动的工作叶轮组成。和压气机恰好相反,祸轮的导向叶片在前,工作叶片在后。从燃烧室来的燃气,先经过导向叶片、由于叶片间收敛形通道的作用,提高速度、降低压强,燃气膨胀并以适当的角度冲击工作叶轮,使叶轮高速旋转。现代涡轴发动机进入涡轮前的温度可高达1500℃,涡轮转速超过50000r/min。由于涡轮工作时要承受巨大的离心力和热负荷,所以涡轮一般选用耐高温的高强度合金钢,此外,还要为祸轮的散热和轴承的润滑进行周密设计。   与一般涡轮喷气发动机不同,直升机用涡轴发动机的涡轮既要带动压气机转动,又要带 动旋翼、尾桨工作。现在大多数涡轴发动机将涡轮分为彼此无机械连接的前、后两段,见上图。前段带动压气机工作,构成发动机的燃气发生器转子;后段作为动力轴,即自由 涡轮,输出铀功率带动旋翼、尾桨等部件工作。前、后两段虽不发生机械连接关系,却有着 气体动力上的联系,可以使得燃气发生器涡轮与自由涡轮在气体热能分配上随飞行条件改变 作适当调整,这样就能使涡轴发动机性能与直升机旋翼性能在较宽裕的范围内得到优化组。 排气装置   根据涡轴发动机工作特点,一般排气装置呈圆筒扩散形,以便燃气在自由涡轮内充分膨胀作功,使燃气热能尽可能多地转化为轴功率。现代涡轴发动机的排气装置能做到使95% 以上的燃气可用膨胀功通过自由祸轮转变为轴功率,而余下不到5%的可用膨胀功仍以动能 形式向后嚎出转变为推力。发动机排气装置历排出的热流是直升机主要热辐射源之一,其热辐射的强度与排气热流、的温度和温度场的分布有关。现代军用直升机为了在战场上防备敌方红外制导武器的攻击,减小自身热辐射强度,采用红外抑制技术。该技术除设法降低发动机外露热部件的表面温度外,主要是将外界冷空气引入排气装置内,掺进高温徘气热流中,降低温度并冲淡徘气热流中所含二氧化氯的浓度,以降低红外信号源能量。先进的红外抑制技术往往要将排气装置、冷却空气道以及发动机的安装位置 通盘考虑,形成了一个完整、有效的红外抑制系统

飞机发动机工作原理 工作原理是这样的

飞机发动机工作原理,共有3种类型: 1、活塞式航空发动机 是早期在飞机或直升机上应用的航空发动机,用于带动螺旋桨或旋翼。大型活塞式航空发动机的功率可达2500千瓦。后来为功率大、高速性能好的燃气涡轮发动机所取代。但小功率的活塞式航空发动机仍广泛地用于轻型飞机、直升机及超轻型飞机。 2、燃气涡轮发动机 这种发动机应用最广。包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机,都具有压气机、燃烧室和燃气涡轮。涡轮螺旋桨发动机主要用于时速小于800千米的飞机;涡轮轴发动机主要用作直升机的动力;涡轮风扇发动机主要用于速度更高的飞机;涡轮喷气发动机主要用于超音速飞机。 3、冲压发动机 其特点是无压气机和燃气涡轮,进入燃烧室的空气利用高速飞行时的冲压作用增压。它构造简单、推力大,特别适用于高速高空飞行。由于不能自行起动和低速下性能欠佳,限制了应用范围,仅用在导弹和空中发射的靶弹上。

飞机发动机工作原理 工作原理是这样的

飞机发动机工作原理,共有3种类型: 1、活塞式航空发动机 是早期在飞机或直升机上应用的航空发动机,用于带动螺旋桨或旋翼。大型活塞式航空发动机的功率可达2500千瓦。后来为功率大、高速性能好的燃气涡轮发动机所取代。但小功率的活塞式航空发动机仍广泛地用于轻型飞机、直升机及超轻型飞机。 2、燃气涡轮发动机 这种发动机应用最广。包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机,都具有压气机、燃烧室和燃气涡轮。涡轮螺旋桨发动机主要用于时速小于800千米的飞机;涡轮轴发动机主要用作直升机的动力;涡轮风扇发动机主要用于速度更高的飞机;涡轮喷气发动机主要用于超音速飞机。 3、冲压发动机 其特点是无压气机和燃气涡轮,进入燃烧室的空气利用高速飞行时的冲压作用增压。它构造简单、推力大,特别适用于高速高空飞行。由于不能自行起动和低速下性能欠佳,限制了应用范围,仅用在导弹和空中发射的靶弹上。

15级甲醇发动机工作原理

甲醇机的工作原理和二冲汽油机基本一样,润滑不能单独作用,要和燃料兑在一起。如果自己调配燃油的话一定要主要甲醇和润滑的比例。原理:活塞是往返(直线)运动,车轮、螺旋桨可是圆周运动,于是人们在一个圆盘偏心的位置上装一个销子,活塞通过一个连杆推动这个销子,于是直线运动就变成了圆周运动。补充:发动机(Engine)是一种能够把其它形式的能转化为机械能的机器,包括如内燃机(汽油发动机等)、外燃机(斯特林发动机、蒸汽机等)、电动机等。如内燃机通常是把化学能转化为机械能。发动机既适用于动力发生装置,也可指包括动力装置的整个机器(如:汽油发动机、航空发动机)。发动机最早诞生在英国,所以,发动机的概念也源于英语,它的本义是指那种“产生动力的机械装置”。

斯特林发动机工作原理

这种发动机的工作原理十分的简单,正是我们生活中常见的热胀冷缩现象。这类发动机一般由两个底部联通的缸体组成,并且在两个缸体中密闭着一定体积的气体。当其中一个缸体受热的时候,缸内的气体就会膨胀,从而推动活塞运动,等到这个气缸运动完成之后另一个活塞又受热膨胀运动,两个活塞在气缸中交替往复运动从而将热能转换成动力输出。这个诞生于两百年前的发动机,在这个时代起着越来越重要的作用,原因正是它所具有的独特优点:和外界没有气体交换。正是因为这一点,使得斯特林发动机的能量损失远远小于现代传统意义上的四冲程发动机。而且这种发动机只需要有热源对其进行加热就能够动起来,这一点使太阳能等新能源技术运用在发动机上成为了可能。与内燃机比较热气机所具备的优点:1、适用于各种能源。无论是液态的、气态的或固态的燃料,当采用载热系统(如热管)间接加热时,几乎可以使用任何高温热源。如:生物质能(柴火等),而发动机本身(除加热器外)不需要作任何更改同时热气机无需压缩机增压,使用一般风机即可满足要求,并允许燃料具有较高的杂质含量;太阳能,这是斯特林发动机较为常见的用途之一;放射性同位素,常见于用于潜艇、深空的AIP系统。2、噪音小。热气机在运行时,由于燃料的燃烧是连续的,因此避免了类似内燃机的爆震做功和间歇燃烧过程,从而实现了低噪音的优势。这使得它可以用在潜艇上以得到较好的隐蔽性。热气机单机容量小,机组容量从20-50kw,可以因地制宜的增减系统容量。结构简单,零件数比内燃机少40%,降价空间大,同时维护成本也较低。3、不受气压影响。这是由于斯特林闭循环中工质与大气隔绝产生的。这使得它非常适合于高海拔地区使用。

发动机工作原理,四行程与二行程的区别是什么?

四行程是有进排气阀,换气质量好,两行程没有进排气阀大部分用直流扫气换气质量一般,两行程在大型船舶使用广泛,供你参考

排气式斯特林发动机工作原理?

这是哪本书啊???那么神

SMART-1号的等离子发动机工作原理是怎样的?

离子发动机,也就是通常所说的“电火箭”,其原理也并不复杂,推进剂被电离成粒子,在电磁场中加速,高速喷出。从发展趋势来看,美国的研究范围几乎覆盖了所有类型的电推力器,但以离子发动机的研制为主,美国航宇局在其中扮演了最活跃的角色。最近它有一项规模很大的计划,即“太阳电推进技术应用及准备计划”。1998年10月美国航宇局发射的空间探测器“深空”1号率先实现了以离子发动机系统为主推进,这标志着电推进的应用进入了一个崭新阶段。“深空”1号在离子推进系统工作期间,其自主导航仪能够根据太阳电池阵产生电能的模型和器载设备功耗的情况,选择推力器的节流级,调节推力大小。在一般情况下,弹道机动和中途修正也由离子推进系统来执行。 欧空局已经将电推进作为未来十大尖端技术之一。目前法国正在研制稳态等离子体推力器,欧空局准备应用氙离子推力器。欧空局向月球发射SMART-1探测器的目的之一就是验证如何利用离子推进技术把未来的探测器送入绕水星运行的轨道。 俄罗斯的稳态等离子体推力器得到了实际应用。日本的电弧加热式推力器已在空间自由飞行器上通过在轨测试。 目前,国际电推进研究对象还扩展到了一些采用新的工作原理的推进方案,如采用微加工工艺成型的微型离子器、采用等离子体气体聚变的推力器等。而所有这些项目大多得到了政府和大公司的资金支持。 国际上核推进技术的研发也已崭露头角。核推进火箭提供的最大速度增量可达到每秒22千米,可以大大缩短探测器到达月球的时间。运用核推进火箭,探测器到达土星的飞行时间只需要3年,而传统航天器则要花费7年的时间。核推进火箭非常安全而且有利于环保,这一点与人们平时的想象相反,因为发射核火箭时,放射性并不强。载有核助推器的空间探测器可作为普通化学火箭头部的有效载荷被发射出去,当有效载荷进入地球高轨道(即大约800千米以上)时,核反应堆开始工作。 制造核动力火箭发动机所需的技术并非遥不可及。目前美国已经设计出一种小型核动力火箭发动机,称为微型核反应堆发动机,大约还要6~7年可制造出来。美国航宇局最近表示,它近期在月球探测技术方面想做的主要是加速包括核能推进在内的新推进技术的研发工作。在美国航宇局2003财年预算草案中,有4650万美元用于核推进研究;有7900万美元用于航天器核反应堆研制。 在月球探测中,缩短到达月球的时间,使观测卫星能以较少的推进剂携带更多的观测仪器等要求,都会使电推进、核推进等高效推进技术成为最重要的技术而得以更快地发展。 高效能源变换技术将朝着小型、轻便太阳电池方向发展。在传输技术方面,未来将开发微波或激光能源传输技术,包括从卫星到月球探测器,从月球上的能源站到月球探测器等的能源传输。 由于传统控制技术越来越难以满足航天器月球探测任务多样性和姿态控制、轨道控制的高性能指标要求,先进航天国家早在20世纪80年代就着手发展航天器智能自主技术,并在自己的空间探测计划中逐渐增大了对智能自主技术的投入力度。 欧空局较早就展开了在轨智能自主技术的研究。美国航宇局“新盛世”计划把智能自主技术放在首位,旨在研制自主航天器,使深空探测器能自主完成导航控制、数据处理、故障判断和部分重构与维修工作,从而大大减少对地面测控、通信等支持系统的依赖。俄罗斯和日本的航天研究机构,在自主技术方面也都开展了研发工作。印度宇航界也非常重视具有自主功能的软件的开发。 先进航天国家在“战略规划→研究开发→型号应用”各个层次都非常重视探测器智能自主技术。他们往往按照“走一步、看一步、想一步”的三步曲进行发展,即利用先进成熟技术做当前之事,与此同时大力开发试验下一步先进技术,同时还要想到更远的需求以便提早作技术发展的战略规划。

SMART-1号的等离子发动机工作原理是怎样的?

分类: 理工学科 问题描述: SMART-1号的等离子发动机工作原理是怎样的? 解析: 离子发动机,也就是通常所说的“电火箭”,其原理也并不复杂,推进剂被电离成粒子,在电磁场中加速,高速喷出。从发展趋势来看,美国的研究范围几乎覆盖了所有类型的电推力器,但以离子发动机的研制为主,美国航宇局在其中扮演了最活跃的角色。最近它有一项规模很大的计划,即“太阳电推进技术应用及准备计划”。1998年10月美国航宇局发射的空间探测器“深空”1号率先实现了以离子发动机系统为主推进,这标志着电推进的应用进入了一个崭新阶段。“深空”1号在离子推进系统工作期间,其自主导航仪能够根据太阳电池阵产生电能的模型和器载设备功耗的情况,选择推力器的节流级,调节推力大小。在一般情况下,弹道机动和中途修正也由离子推进系统来执行。 欧空局已经将电推进作为未来十大尖端技术之一。目前法国正在研制稳态等离子体推力器,欧空局准备应用氙离子推力器。欧空局向月球发射SMART-1探测器的目的之一就是验证如何利用离子推进技术把未来的探测器送入绕水星运行的轨道。 俄罗斯的稳态等离子体推力器得到了实际应用。日本的电弧加热式推力器已在空间自由飞行器上通过在轨测试。 目前,国际电推进研究对象还扩展到了一些采用新的工作原理的推进方案,如采用微加工工艺成型的微型离子器、采用等离子体气体聚变的推力器等。而所有这些项目大多得到了 *** 和大公司的资金支持。 国际上核推进技术的研发也已崭露头角。核推进火箭提供的最大速度增量可达到每秒22千米,可以大大缩短探测器到达月球的时间。运用核推进火箭,探测器到达土星的飞行时间只需要3年,而传统航天器则要花费7年的时间。核推进火箭非常安全而且有利于环保,这一点与人们平时的想象相反,因为发射核火箭时,放射性并不强。载有核助推器的空间探测器可作为普通化学火箭头部的有效载荷被发射出去,当有效载荷进入地球高轨道(即大约800千米以上)时,核反应堆开始工作。 制造核动力火箭发动机所需的技术并非遥不可及。目前美国已经设计出一种小型核动力火箭发动机,称为微型核反应堆发动机,大约还要6~7年可制造出来。美国航宇局最近表示,它近期在月球探测技术方面想做的主要是加速包括核能推进在内的新推进技术的研发工作。在美国航宇局2003财年预算草案中,有4650万美元用于核推进研究;有7900万美元用于航天器核反应堆研制。 在月球探测中,缩短到达月球的时间,使观测卫星能以较少的推进剂携带更多的观测仪器等要求,都会使电推进、核推进等高效推进技术成为最重要的技术而得以更快地发展。 高效能源变换技术将朝着小型、轻便太阳电池方向发展。在传输技术方面,未来将开发微波或激光能源传输技术,包括从卫星到月球探测器,从月球上的能源站到月球探测器等的能源传输。 由于传统控制技术越来越难以满足航天器月球探测任务多样性和姿态控制、轨道控制的高性能指标要求,先进航天国家早在20世纪80年代就着手发展航天器智能自主技术,并在自己的空间探测计划中逐渐增大了对智能自主技术的投入力度。 欧空局较早就展开了在轨智能自主技术的研究。美国航宇局“新盛世”计划把智能自主技术放在首位,旨在研制自主航天器,使深空探测器能自主完成导航控制、数据处理、故障判断和部分重构与维修工作,从而大大减少对地面测控、通信等支持系统的依赖。俄罗斯和日本的航天研究机构,在自主技术方面也都开展了研发工作。印度宇航界也非常重视具有自主功能的软件的开发。 先进航天国家在“战略规划→研究开发→型号应用”各个层次都非常重视探测器智能自主技术。他们往往按照“走一步、看一步、想一步”的三步曲进行发展,即利用先进成熟技术做当前之事,与此同时大力开发试验下一步先进技术,同时还要想到更远的需求以便提早作技术发展的战略规划。

发动机工作原理

汽车发动机的工作原理主要就是把化学能转化为机械能。发动机既适用于动力发生装置,也可指包括动力装置的整个机器(如:汽油发动机、航空发动机)。发动机最早诞生在英国,所以,发动机的概念也源于英语,它的本义是指那种“产生动力的机械装置”。之所以发动机拥有充足的动力,是因为通过燃烧气缸内的燃料产生动能,使发动机气缸内的活塞往复运动,这也是一个工作循环的过程。发动机的动力是因为发动机气缸内的活塞在往复运动的同时,带动活塞上的连杆和连杆相连的曲柄燃烧,曲轴中心一直做往复的圆周运动来输出动力。发动机分类按燃料供给方式的不同,汽油发动机又可分为化油器式及喷射式(或称电喷式)两大类。化油器常见于老车型的发动机上,现在大部分发动机使用喷射式燃料供给方式。发动机工作原理发动机是将化学能转化为机械能的机器,它的转化过程实际上就是工作循环的过程,简单来说就是通过燃烧气缸内的燃料,产生动能,驱动发动机气缸内的活塞往复的运动,由此带动连在活塞上的连杆和与连杆相连的曲柄,围绕曲轴中心作往复的圆周运动,而输出动力的。

飞机发动机工作原理

1、活塞式航空发动机的原理利用气缸运动做功和压缩来输出。气缸向下运动时,空气被压缩成很小的体积,根据能量守恒,空气温度会升高。此时,在气缸内喷入燃油,再打个电火花,燃油会突然进行剧烈燃烧。燃烧后空气温度升高,体积变大,推动活塞向外运动。活塞带动大质量轮盘转动。轮盘被推动后,会在惯性作用下继续推动活塞向气缸内运动,对空气进行压缩。如此反复。2、涡轮式航空发动机的原理是压缩气体点火燃烧气体变成高温燃气实现起飞。压气机由多级叶片组成,用于吸气,并将吸入的空气进行逐级压缩,将空气变为高压气体,送入燃烧室。燃烧室内部有点火装置和喷油装置,燃油在高压空气中剧烈燃烧,给压缩空气加热,形成高温燃气。高温燃气一部分用于推动涡轮转动,一部分喷出,用于产生推力。3、冲压发动机的原理是超燃冲压发动机,在超音速气流中组织燃烧然后产生推力。从理论上来说,超燃冲压发动机能使飞行器最快飞到25马赫。与弹道导弹的最大速度接近。由于这类速度的飞行器搭载导弹之后,根本无法拦截。飞机动力装置飞机动力装置是用来产生拉力(螺旋桨飞机)或推力(喷气式飞机),使飞机前进的装置。采用推力矢量的动力装置,还可用来进行机动飞行。现代的军用飞机多数为喷气式飞机。喷气式飞机的动力装置主要分为涡轮喷气发动机和涡轮风扇发动机两类。

飞机发动机工作原理

航空发动机推进系统按其组成和工作原理可分为两大类:直接反作用推进系统和间接反作用推进系统。一、直接反作用推进系统:发动机直接将工质加速产生反作用推力,属于这类的航空发动机有涡轮喷气发动机、涡轮风扇发动机和冲压喷气发动机;二、间接反作用推进系统:发动机只将燃料燃烧产生的化学 能转换成有效功率,以轴功率形式输出,推理则要靠专门的推进器产生。推进器有飞机的螺旋桨和直升机的旋翼。属于这类的反动机有活塞式、涡轮螺旋桨、浆扇和涡轮轴发动机,航空电动机。航空发动机又可以分为活塞式发动机和空气喷气式发动机两大类。空气发动机又可分为带压气机的燃气涡轮发动机和不到压气机的冲压发动机。现在航空发动机主要又以喷气式发动机应用最为广泛, 喷气式发动机是一个总称 它包含很多种 在航天领域 主要使用的是冲压喷气发动机 和 涡轮喷气发动机冲压发动机由进气道(也称扩压器)、燃烧室、推进喷管三部组成,比涡轮喷气发动机简单得多。冲压是利用迎面气流进入发动机后减速、提高静压的过程。这一过程不需要高速旋转的复杂的压气机,是冲压喷气发动机最大的优势所在。进气速度为3倍音速时,理论上可使空气压力提高37倍,效率很高。高速气流经扩张减速,气压和温度升高后,进入燃烧室与燃油混合燃烧。燃烧后温度为2000一2200℃,甚至更高,经膨胀加速,由喷口高速排出,产生推力。因此,冲压发动机的推力与进气速度有关。以3倍音速进气时,在地面产生的静推力可高达2OO千牛。 冲压喷气发动机目前分为亚音速、超音速、高超音速三类。亚音速冲压发动机以航空煤油为燃料,采用扩散形进气道和收敛形喷管,飞行时增压比不超过1.89。马赫数小于O.5时一般无法工作。超音速冲压发动机采用超音速进气道,燃烧室入口为亚音速气流,采用收敛形或收敛扩散形喷管。用航空煤油或烃类作为燃料。推进速度为亚音速~6倍音速,用于超音速靶机和地对空导弹。高超音速冲压发动机使用碳氢燃料或液氢燃料,是一种新颖的发动机,飞行马赫数高达5~16。目前尚处于研制阶段。前两类发动机统称为亚音速冲压发动机,最后一种称为超音速冲压发动机。 我们现在做飞机看到的一般都是后者 涡轮喷气发动机 1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。涡轮喷气发动机的原理 涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。 涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。 工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。 压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。 高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化为机械能,驱动涡轮旋转。由于高温涡轮同压气机装在同一条轴上,因此也驱动压气机旋转,从而反复的压缩吸入的空气。 从高温涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速从尾部喷口向后排出。这一速度比气流进入发动机的速度大得多,从而产生了对发动机的反作用推力,驱使飞机向前飞行。

涡喷发动机工作原理?

涡轮喷气发动机的工作原理并不复杂,涡轮喷气发动机的核心部件是燃烧发生器,由压气机,燃烧室,涡轮组成。首先气体由进气道经压气机压缩后进入燃烧室,在燃烧室内点火燃烧,燃烧气体激烈膨胀向后经拉瓦尔喷管喷出,喷出气体一部分能量用于提供动力,一部分能量用于带动涡轮旋转,而压气机的动力就是来源于涡轮的旋转。涡轮喷气发动机相对于活塞发动机的耗油率要大,但涡轮喷气发动机的功率要比活塞发动机的功率大的多,由于活塞发动机的功率不足以突破音障,所以超音速飞机都采用喷气式发动机

求战斗机喷气式发动机工作原理!!越详细越好!!还有推力矢量!!!

◆压气机   压气机故名思意,就是用来压缩空气的一种机械。在喷气发动机上所使用的压气机按其结构和工作原理可以分为两大类,一类是离心式压气机,一类是轴流式压气机。离必式压气机的外形就像是一个钝角的扁圆锥体。在这个圆锥体上有数条螺旋形的叶片,当压气机的圆盘运转时,空气就会被螺旋形的叶片“抓住”,在高速旋转所带来的巨大离心力之下,空气就会被甩进压气机圆盘与压气机机匣之间的空隙,从而实现空气的增压。与离心式压气机不同,轴流式压气机是由多级风扇所构成的,其每一级都会产生一定的增压比,各级风扇的增压比相乘就是压气机的总增压比。   在现代涡扇发动机上的压气机大多是轴流式压气机,轴流式压气机有着体积小、流量大、单位效率高的优点,但在一些场合之下离心式压气机也还有用武之地,离心式压气机虽然效率比较差,而且重量大,但离心式压气机的工作比较稳定、结构简单而且单级增压比也比轴流式压气机要高数倍。比如在我国台湾的IDF上用的双转子结构的TFE1-042-70涡扇发动机上,其高压压气机就采用了四级轴流式与一级离心式的组合式压气机以减少压气机的级数。多说一句,这样的组合式压气机在涡扇发动机上用的不多,但在直升机上所使用的涡轴发动机现在一般都为几级轴流式加一级离心式的组合结构。比如国产的涡轴-6、涡轴-8发动机就是1级轴流式加1级离心式构成的组合压气机。而美国的“黑鹰”直升机上的T-700发动机其压气机为5级轴流式加上1级离心式。   压气机是涡扇发动机上比较核心的一个部件。在涡扇发动机上采用双转子结构很大程度上就是为了迎合压气机的需要。压气机的效率高低直接的影响了发动机的工作效率。目前人们的目标是提高压气机的单级增压比。比如在J-79上用的压气机风扇有17级之多,平均单级增压比为1.16,这样17级叶片的总增压比大约为12.5左右,而用在波音-777上的GE-90的压气机的平均单级增压比以提高到了1.36,这样只要十级增压叶片总增压比就可以达到23左右。而F-22的动力F-119发动机的压气机更是了的,3级风扇和6级高压压气机的总增压比就达到了25左右,平均单级增压比为1.43。平均单级增压比的提高对减少压气机的级数、减少发动机的总量、缩短发动机的总长度是大有好处的。   但随着压气机的增压比越来越高,压气机振喘和压气机防热的问题也就突现了出来。   在压气机中,空气在得到增压的同时,其温度也在上升。比如当飞机在地面起飞压气机的增压比达到25左右时,压气机的出口温度就会超过500度。而在战斗机所用的低函道比涡扇发动机中,在中低空飞行中由于冲压作用,其温度还会提高。而当压气机的总增压比达到30左右时,压气机的出口温度会达到600度左右。如此高的温度会钛合金以是难当重任,只能由耐高温的镍基合金取而代之,可是镍基合金与钛合金相比基重量太大。与是人们又开发了新型的耐高温钛合金。在波音-747的动力之一罗·罗公司的遄达800与EF-2000的动力EJ-200上就使用了全钛合金压气机。其转子重量要比使用镍基合金减重百分之三十左右。   与压气机防热的问题相比压气机振喘的问题要难办一些。振喘是发动机的一种不正常的工作状态,他是由压气机内的空气流量、流速、压力的空然变化而引发的。比如在当飞机进行加速、减速时,当飞发动机吞水、吞冰时,或当战斗机在突然以大攻飞行拉起进气道受到屏蔽进气量骤减时。都极有可能引起发动机的振喘。   在涡扇喷气发动机之初,人们就采用了在各级压气机前和风扇前加装整流叶片的方法来减少上一级压气机因绞动空气所带给下一级压气机的不利影响,以克制振喘现像的发生。而且在J-79涡喷发动机上人们还首次实现了整流叶片的可调整。可调整的整流叶片可以让发动机在更加宽广的飞行包线内正常工作。可是随着风扇、压气机的增压比一步一步的提高光是采用整流叶片的方法以是行不通了。对于风扇人们使用了宽弦风扇解决了在更广的工作范围内稳定工作的问题,而且采用了宽弦风扇之后即使去掉风扇前的整流叶片风扇也会稳定的工作。比如在F-15上的F100-PW-100其风扇前就采用了整流叶片,而F-22的F-119就由于采用了三级宽弦风扇所以风扇前也就没有了整流叶片,这样发动机的重量得以减轻,而且由于风扇前少了一层屏蔽其效率也就自然而然的提高了。风扇的问题解决了可是压气的问题还在,而且似乎比风扇的问题材更难办。因为多级的压气机都是装在一根轴上的,在工作时它的转数也是相同的。如果各级压气机在工作的时候都有自已合理的工作转数,振喘的问题也就解决了。可是到现在为止还没有听说什么国家在集中国力来研究十几、二十几转子的涡扇发动机。   在万般的无耐之后人们能回到老路上来——放气。放气是一种最简单但也最无可耐何的防振喘的方法。在很多现代化的发动上人们都保留的放气活门以备不时之须。比如在波音-747的动力JT-9D上,普·惠公司就分别在十五级的高、低压气机中的第4、9、15级上保留了三个放气活门。   ◆燃烧室与涡轮   涡扇发动机的燃烧室也就是我们上面所提到过的“燃气发生器”。经过压气机压缩后的高压空气与燃料混合之后将在燃烧室中燃烧以产生高温高压燃气来推动燃气涡轮的运转。在喷气发动机上最常用的燃烧室有两种,一种叫作环管形燃烧室,一种叫作环形燃烧室。   环管燃烧室是由数个火焰筒围成一圈所组成,在火焰筒与火焰筒之间有传焰管相连以保证各火焰筒的出口燃气压力大至相等。可是既使是如此各各火焰筒之内的燃气压力也还是不能完全相等,但各火焰筒内的微小燃气压力还不足以为患。但在各各火焰筒的出口处由于相邻的两个火焰筒所喷出的燃气会发生重叠,所以在各火焰筒的出口相邻处的温度要比别处的温度高。火焰筒的出口温度场的温度差异会给涡轮前部的燃气导向器带来一定的损害,温度高的部分会加速被烧蚀。比如在使用了八个火焰筒的环管燃烧室的JT-3D上,在火焰筒尾焰重叠处其燃气导流叶片的寿命只有正常叶片的三分之一。   与环管式燃烧室相比,环形燃烧室就没有这样的缺点。故名思意,与管环燃烧室不同,环形燃烧室的形状就像是一个同心圆,压缩空气与燃油在圆环中组织燃烧。由于环形燃烧室不像环管燃烧室那样是由多个火焰筒所组成,环形燃烧室的燃烧室是一个整体,因此环形燃烧室的出口燃气场的温度要比环管形燃烧室的温度均匀,而且环形燃烧室所需的燃油喷嘴也要比环管燃烧室的要少一些。均匀的温度场对直接承受高温燃气的燃气导流叶片的整体寿命是有好处的。   与环管燃烧室相比,环形燃烧室的优点还不止是这些。   由于燃烧室中的温度很高,所以无论环管燃烧室还是环形燃烧室都要进行一定的冷却,以保证燃烧室能更稳定的进行工作。单纯的吹风冷却早以不能适应极高的燃烧室温度。现在人们在燃烧室中最普便使用的冷却方法是全气膜冷却,即在燃烧室内壁与燃烧室内部的高温燃气之间组织起一层由较冷空气所形成的气膜来保护燃烧室的内壁。由于要形成气膜,所以就要从燃烧室壁上的孔隙中向燃烧室内喷入一定量的冷空气,所以燃烧室壁被作的很复杂,上面的开有成千上万用真空电子束打出的冷却气孔。现在大家只要通过简单的计算就可以得知,在有着相同的燃烧室容积的情况下,环形燃烧室的受热面积要比环管燃烧室的受热面积小的多。因此环形燃烧的冷却要比环管形燃烧室的冷却容易的多。在除了冷却比较容易之处,环形燃烧室的体积、重量、燃油油路设计等等与环管燃烧室相比也着优势。   但与环管燃烧室相比,环形燃烧室也有着一些不足,但这些不足不是性能上的而是制作工艺上。   首先,是环形燃烧室的强度问题。在环管燃烧室上使用的是单个体积较小的火焰筒,而环形燃烧室使用的是单个体积较大的圆环形燃烧室。随着承受高温、高压的燃烧室的直径的增大,环形燃烧室的结构强度是一大难点。   其次,由于燃烧室的工作整体环境很复杂,所以现在人们还不可能完全用计算的方法来发现、解决燃烧室所面临的问题。要暴露和解决问题进行大量的实验是唯一的方法。在环管燃烧室上,由于单个火焰筒的体积和在正常工作时所需要的空气流量较少,人们可以进行单个的火焰筒实验。而环形燃烧室是一个大直径的整体,在工作时所需要的空气流量也比较大,所以进行实验有一定的难度。在五六十年代人们进行环行燃烧室的实验时,由于没有足够的条件只能进行环形燃烧室部分扇面的实验,这种实验不可能得到燃烧室的整体数据。   但由于科技的进步,环形燃烧室的机械强度与调试问题在现如今都以经得到了比较圆满的解决。由于环形燃烧室固有的优点,在八十年代之后研发的新型涡扇发动机之上几忽使用的都是环形燃烧室。   为了更能说明两种不同的燃烧室的性能差异,现在我们就以同为普·惠公司所出品的使用环管形燃烧室的第一代涡扇发动机JT-3D与使用了环形燃烧室的第二代涡扇发动机JT-9D来作一个比较。两种涡扇发动同为双转子前风扇无加力设计,不过推力差异比较大,JT-3D是8吨级推力的中推发动机,而JT-9D-59A的推力高达24042公斤,但这样的差异并不妨碍我们对它们的燃烧室作性能上的比较。首先是两种燃烧室的几何形状,JT-9D-3A的直径和长度分别为965毫米和627毫米,而JT-3D-3B的直径是1020.5毫米、长度是1070毫米。很明显,JT-9D的环形燃烧室要比JT-3D的环管燃烧室的体积小。JT-9D-3A只有20个燃油喷嘴,而JT-3D-3B的燃油喷嘴多达四十八个。燃烧效率JT-3D-3B为0.97而JT-9D-3A比他要高两个百分点。JT-3D-3B八个火焰筒的总表面积为3.579平方米,而JT-9D-3A的火焰筒表面积只有2.282平方米,火焰筒表面积的缩小使得火焰筒的冷却结构可以作到简单、高效,因此JT-9D的火焰筒壁温度得以下降。JT-3D-3B的火焰筒壁温度为700~900度左右,而JT-9D-3A的火焰筒壁温度只有600到850度左右。JT-9D的火焰筒壁温度没有JT-3D-3B的高,可是JT-9D-3A的燃烧室出口温度却高达1150度,而JT-3D-3B的燃烧室出口温度却只有943度。以上所列出的几条足以能说明与环管燃烧室相比环形燃烧室有着巨大的性能优势。   在燃烧室中产生的高温高压燃气道先要经过一道燃气导向叶片,高温高压燃气在经过燃气导向叶片时会被整流,并被赋予一定的角度以更有效率的来冲击涡轮叶片。其目地就是为了推动涡轮,各级涡轮会带动风扇和压气机作功。在涡扇发动机中,涡轮叶片和燃气导向叶片将要直接的承受高温高压燃气的冲刷。普通的金属材料跟本无法承受如此刻克的工作环境。因此燃气导向叶片和涡轮叶片还有联接涡轮叶片的涡轮盘都必需是极耐高温的合金材料。没有深厚的基础科学研究,高性能的涡轮研制也就无从谈起。现今有实力来研制高性能涡轮的国家都无不把先进的涡轮盘和涡轮叶片的材料配方和制作工艺当作是最高极密。也正是这个小小的涡轮减缓了一些国家成为航空大国的步伐。   众所周知,提高涡轮进口温度是提高涡扇发动机推力的有效途径,所以在军用涡扇发动机上,人们都在不遗余力的来提高涡轮的进口涡度以使发动机用更小的体积和重量来产生更大的推力。苏-27的动力AL-37F涡扇发动机的涡轮进口温度以高达1427度,而F-22的运力F-119涡扇发动机其涡轮前进口温度更是达到了1700度的水平。在很多文章上提到如果要想达到更高的涡轮口进气温度,在现今陶瓷涡轮还未达到真正实际应用水平的情况下,只能采用更高性能的耐高温合金。其实这是不切确的。提高涡轮的进口温度并非只有采用更加耐高温的材料这一种途径。早在涡扇发动机诞生之初,人们就想到了用涂层的办法来提高涡轮叶片的耐烧上涂一层耐烧蚀的表面涂层来延长涡轮叶片的使用寿命。在JT-3D的涡轮叶片上普惠公司就用扩散渗透法在涡轮叶片上“镀”上一层铝、硅涂层。这种扩散渗透法与我们日常应用的手工钢锯条的渗碳工艺有点类似。经过了扩散渗透铝、硅的JT-3D一级涡轮叶片其理论工作寿命高达15900小时。   当涡轮工作温度进一步升高之后,固体渗透也开始不能满足越来越高的耐烧蚀要求。首先是固体渗透法所产生的涂层不能保证其涂层的均匀,其次是用固体渗透法得出的涂层容易脱落,其三经过固体渗透之后得出的成品由于涂层不匀会产生一定的不规则变形(一般来说经过渗透法加工的零件其外形尺寸都有细小的放大)。   针对固体渗透法的这些不足,人们又开发了气体渗透法。所谓气体渗透就是用金属蒸气来对叶片进行“蒸煮”在“蒸煮”的过程中各种合金成分会渗透到叶片的表层当中去和叶片表层紧密结合并改变叶片表层的金属结晶结构。和固体渗透法相比,气体渗透法所得到的涂层质量有了很大提高,其被渗透层可以作的极均匀。但气体渗透法的工艺过程要相对复杂很多,实现起来也比较的不容易。但在对涡轮叶片的耐热蚀要求越来越高的情况下,人们还是选择了比较复杂的气体渗透法,现如今的涡轮风扇中的涡轮叶片大都经过气体渗透来加强其表面的耐烧蚀。   除了涂层之外,人们还要用较冷的空气来对涡轮叶片进行一定的冷却,空心气冷叶片也就随之诞生了。最早的涡扇发动机--英国罗·罗公司的维康就使用了空心气冷叶片。与燃烧室相比因为涡轮是转动部件,因此涡轮的气冷也就要比燃烧室的空气冷却要复杂的多的多。除了在燃烧室中使用的气薄冷却之外在涡轮的燃气导向叶片和涡轮叶片上大多还使用了对流冷却和空气冲击冷却。   对流冷却就是在空心叶片中不停有冷却气在叶片中流动以带走叶片上的热量。冲击冷却其实是一种被加强了的对流冷却,即是一股或多股高速冷却气强行喷射在要求被冷却的表面。冲击冷却一般都是用在燃气导向叶片和涡轮叶片的前缘上,由空心叶片的内部向叶片的前缘喷射冷却气体以强行降温。冲击冷却后的气体会从燃气导向叶片和涡轮叶片前缘上的的孔、隙中流出在燃气的带动下在叶片的表面形成冷却气薄。但开在叶片前缘上使冷却气流出的孔、隙会让叶片更加难以制造,而且开在叶片前缘上的孔隙还会使应力极中,对叶片的寿命产生负面影响。可是由于气薄冷却要比对流冷却的效果好上很多,所以人们还是要不惜代价的在叶片上采用气薄冷却。   从某种意义上来说,在燃气导向叶片和涡轮叶片上使用更科学理合理的冷却方法可能要比开发更先进的耐高温合金更重要一些。因为空心冷却要比开发新合金投资更少,见效更快。现在涡轮进口温度的提升其一半左右的功劳要归功于冷却技术的提高。现如今在各式涡扇发动机的涡轮前进口温度中要有200度到350度的温度被叶片冷却技术所消化,所以说涡轮工作温度的提高叶片冷却技术功不可没。   其实在很多军事爱好者的眼中,涡轮的问题似乎只是一个耐高温材料的问题。其实涡轮问题由于其工作环境的特殊性它的难点不只是在高温上。比如,由于涡轮叶片和涡轮机匣在高温工作时由于热涨冷缩会产生一定的变形,由这些变形所引起的涡轮叶片与机匣径向间隙过大的问题,径向间隙的变大会引起燃气泄露而级大的降底涡轮效率。还有薄薄的涡轮机匣在高温工作时产生的扭曲变形;低压涡轮所要求的大功率与低转数的矛盾;提高单级涡轮载荷后涡轮叶片的根部强度等等。除了这些设计上的难题之外,更大的难题则在于涡轮部件的加工工艺。比如进行涡轮盘粉末合金铸造时的杂质控制、涡轮盘进行机器加工时的轴向进给力的控制、对涡轮盘加工的高精度要求、涡轮叶片合金精密铸造时的偏析、涡轮叶片在表面渗透加工中的变形等等,这里面的每一个问题解决不好都不可能生产出高质量、高热效率的涡轮部件。   ◆喷管与加力   尾喷管是涡扇发动机的最末端,流经风扇、压气机、燃烧室、涡轮的空气只有通过喷管排出了发动机之外才能产生真正的推力以推动飞机飞行。   涡扇发动机的排气有二部分,一部分是外函排气,一部分是内函排气。所以相应的涡扇发动机的排气方式也就分成了二种,一种是内外函的分开排气,一种是内外函的混合排气。两种排气方式各有优劣,所以在现代涡扇发动机上两种排气方式都有使用。总的来说,在高函道比的涡扇发动机上大多采有内外函分开排气,在低函道比的战斗机涡扇发动机上都采用混合排气的方式,而在中函道比的涡扇发动机上两种排气方式都有较多的使用。   对于涡扇发动机来说,函道比越高的发动机其用油也就更省推力也更大。其原因就是内函核心发动机把比较多的能量传递给了外函风扇。在混合排气的涡扇发动机中,内函较热的排气会给外函较冷的排气加温,进一步的用气动--热力过程把能量传递给外函排气。所以从理论上来说,内外函的混合排气会提高推进效率使燃油消耗进一步降低,而且在实际上由于混合排气可以降底内函较高排气速度,所以在当飞机起降时还可以降低发动机的排气噪音。可是在实际操作的过程中,高函道的涡扇发动机几乎没有使用混合排气的例子,一般都采用可以节省重量的短外函排气。   进行内外函的混合排气到目前为止只有两种方法一种是使用排气混合器,一种是使用长外函道进行内外函排气的混合。在使用排气混合器时,发动机会增加一部分排气混合器的重量,而且由于排气要经过排气混合器所以发动机的排气会产生一部分总压损失,这两点不足完全可以抵消掉混合排气所带来的好处。而长外函排气除了要付出重量的代价之外其排气的混合也不是十分的均匀。所以除了在战斗机上因结构要求而采用外则很少有采用。   在战斗机上除了有长外函进行内外函空气混合之外一般都还装有加力装置来提高发动机的最大可用推力。   所谓加力就是在内函排气和外函排气中再喷入一定数量的燃油进行燃烧,以燃油的损失来换取短时间的大推力。到目前为此只有在军用飞机和极少数要求超音速飞行的民用飞机上使用了加力。由于各种飞机的使命不同对加力燃料的要求也是不同的。比如对于纯粹的截击战斗机如米格-25来说,在进行战斗起飞时,其起飞、爬升、奔向战区、空战等等都要求发动机用最大的推力来驱动飞机。其战斗起飞时使用加力的时间差不多达到了整个飞行时间的百分之五十。而对于F-15之类的空优战斗机来说在作战起飞时只有在起飞和进行空中格斗时使用加力,因此其加力的使用使时长只占其飞行时间的百分之十不到。而在执行纯粹的对地攻击任务时其飞机要求时用加力的时间连百分之一都不到,所以在强击机上干脆就不安装加力装置以减少发动机的重量和长度。   加力燃烧是提高发动机推重比的一个重要手段。现在我们所说的战斗机发动机的推重比都是按照加力推力来计算的。如果不按照加力推力来计算F-100-PW-100的推重比只有4.79连5都没有达到!为了提高发动机的最大推力,人们现在一般都在采用内外函排气同时参与加力燃烧的混合加力。   但当加力燃烧在大幅度的提高发动机的推力的时候,所负出的代价就是燃油的高消耗。还是以F-100-PW-100为例其在全加力时的推力要比无加力时的最大推力高百分之六十六,可是加力的燃油消耗却是无加力时的百分之二百八十一。这样高的燃油消耗在起飞和进行空中格斗时还可以少少的使用一下,如要进行长时间的超音速飞行的话飞机的作战半径将大大缩短。   针对涡扇发动机高速性能的不足,人们又提出了变循环方案和外函加力方案。所谓变循环就是涡扇发动机的函道比在一定的范围内可调。比如与F-119竞争F-22动力的YF-120发动机就是一种变循环涡扇发动机。他的函道比可以0~0.25之间可调。这样就可以在要求高航速的时候把函道比缩至最小,使涡扇发动机变为高速性能好的涡喷发动机。但由于变循环发动机技术复杂,要增加一部分重量,而且费用高、维护不便,于是YF-120败与F-119手下。   由于混合加力要求内外函排气都参与加力燃烧,这样所需要的燃油也较多,于是人们又想到了内外函分开排气,只使用外函排气参加加力燃料的方案。但外函排气的温度比较低,所以组织燃烧相对的困难。目前只有少数使用,通常是要求长时间开加力的发动机才会采用这种结构
 1 2  下一页  尾页