高效液相色谱

阅读 / 问答 / 标签

高效液相色谱法心得体会论文

高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9??107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于 1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于 400 以上)的有机物(这些物质几乎占有机物总数的 75% ~ 80% )原则上都可应用高效液相色谱法来进行分离、分析。 据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液 — 液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式: 式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。 a. 正相液 — 液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液 — 液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。 c. 液 — 液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。现在应用很广泛(70~80%)。 2 .液 — 固色谱法 流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子 (X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下: Xm + nSa ====== Xa + nSm 式中:Xm--流动相中的溶质分子;Sa--固定相中的溶剂分子;Xa--固定相中的溶质分子;Sm--流动相中的溶剂分子。 当吸附竞争反应达平衡时: K=[Xa][Sm]/[Xm][Sa] 式中:K为吸附平衡常数。[讨论:K越大,保留值越大。] 3 .离子交换色谱法(Ion-exchange Chromatography) IEC是以离子交换剂作为固定相。IEC是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。 以阴离子交换剂为例,其交换过程可表示如下: X-(溶剂中) + (树脂-R4N+Cl-)=== (树脂-R4N+ X-) + Cl- (溶剂中) 当交换达平衡时: KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-] 分配系数为: DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-] [讨论:DX与保留值的关系] 凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离。 4 .离子对色谱法(Ion Pair Chromatography) 离子对色谱法是将一种 ( 或多种 ) 与溶质分子电荷相反的离子 ( 称为对离子或反离子 ) 加到流动相或固定相中,使其与溶质离子结合形成疏水型离子对化合物,从而控制溶质离子的保留行为。其原理可用下式表示: X+水相 + Y-水相 === X+Y-有机相 式中:X+水相--流动相中待分离的有机离子(也可是阳离子);Y-水相--流动相中带相反电荷的离子对(如氢氧化四丁基铵、氢氧化十六烷基三甲铵等);X+Y---形成的离子对化合物。 当达平衡时: KXY = [X+Y-]有机相/[ X+]水相[Y-]水相 根据定义,分配系数为: DX= [X+Y-]有机相/[ X+]水相= KXY [Y-]水相 [讨论:DX与保留值的关系] 离子对色谱法(特别是反相)发解决了以往难以分离的混合物的分离问题,诸如酸、碱和离子、非离子混合物,特别是一些生化试样如核酸、核苷、生物碱以及药物等分离。 5 .离子色谱法(Ion Chromatography) 用离子交换树脂为固定相,电解质溶液为流动相。以电导检测器为通用检测器,为消除流动相中强电解质背景离子对电导检测器的干扰,设置了抑制柱。试样组分在分离柱和抑制柱上的反应原理与离子交换色谱法相同。 以阴离子交换树脂(R-OH)作固定相,分离阴离子(如Br-)为例。当待测阴离子Br-随流动相(NaOH)进入色谱柱时,发生如下交换反应(洗脱反应为交换反应的逆过程): 抑制柱上发生的反应: R-H+ + Na+OH- === R-Na+ + H2O R-H+ + Na+Br- === R-Na+ + H+Br- 可见,通过抑制柱将洗脱液转变成了电导值很小的水,消除了本底电导的影响;试样阴离子Br-则被转化成了相应的酸H+Br-,可用电导法灵敏的检测。 离子色谱法是溶液中阴离子分析的最佳方法。也可用于阳离子分析。 6 .空间排阻色谱法(Steric Exclusion Chromatography) 空间排阻色谱法以凝胶 (gel) 为固定相。它类似于分子筛的作用,但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值最大,在色谱图上最后出现。气相色谱法(gas chromatography 简称GC)是色谱法的一种。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。  气相色谱法由于所用的固定相不同,可以分为两种,用固体吸附剂作固定相的叫气固色谱,用涂有固定液的担体作固定相的叫气液色谱。  按色谱分离原理来分,气相色谱法亦可分为吸附色谱和分配色谱两类,在气固色谱中,固定相为吸附剂,气固色谱属于吸附色谱,气液色谱属于分配色谱。  按色谱操作形式来分,气相色谱属于柱色谱,根据所使用的色谱柱粗细不同,可分为一般填充柱和毛细管柱两类。一般填充柱是将固定相装在一根玻璃或金属的管中,管内径为2~6mm。毛细管柱则又可分为空心毛细管柱和填充毛细管柱两种。空心毛细管柱是将固定液直接涂在内径只有0.1~0.5mm的玻璃或金属毛细管的内壁上,填充毛细管柱是近几年才发展起来的,它是将某些多孔性固体颗粒装入厚壁玻管中,然后加热拉制成毛细管,一般内径为0.25~0.5mm。

高效液相色谱分类

①甲过程表示ATP的水解,则反应物有ATP和水,故①错误; ②AMP是一磷酸腺苷,可参与AMP+Pi+能量→ADP,又是腺嘌呤核糖核苷酸,是合成mRNA的原料,故②正确; ③光能在光合作用的光反应中可转化为ATP中的能量,细胞呼吸中有机物分解释放出的能量,也可合成ATP,但热能无法用于合成ATP,故③错误; ④酶具有专一性,催化乙过程和丙过程的酶不是同一种酶,故④正确; ⑤ATP中T表示三个,ADP中D表示两个,则AMP中M表示“一个”,故⑤正确; ⑥根据AMP中A表示腺嘌呤核苷,则UMP中的U指尿嘧啶核苷,故⑥错误; ⑦HIV的遗传物质是RNA,单体为AMP、UMP、CMP、GMP,故⑦正确.故选:A.

高效液相色谱仪可以做凝胶色谱的检验么

高效凝胶色谱是液相色谱的一种。高效液相色谱法(HighPerformanceLiquidChromatographyHPLC)又称“高压液相色谱”,是以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。分类有反相色谱法,正相色谱法,分子排阻色潽法等。凝胶色谱法又称分子排阻色谱法。凝胶色谱主要用于高聚物的相对分子质量分级分析以及相对分子质量分布测试。高效凝胶色谱法即用现代高效液相色谱法所使用的高压流路系统,将分离凝胶装填到金属色谱柱中形成封闭液相系统进行分离的色谱法。实际上凝胶色谱在本质上就是液相色谱,只不过其分离原理是用凝胶对分子大小的排阻,而不是常规液相色谱法常用的利用物质极性。

高效液相色谱与高效凝胶色谱是一回事吗

高效凝胶色谱是液相色谱的一种。高效液相色谱法(High Performance Liquid Chromatography HPLC)又称“高压液相色谱”,是以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。分类有反相色谱法,正相色谱法,分子排阻色潽法等。凝胶色谱法又称分子排阻色谱法。凝胶色谱主要用于高聚物的相对分子质量分级分析以及相对分子质量分布测试。高效凝胶色谱法即用现代高效液相色谱法所使用的高压流路系统,将分离凝胶装填到金属色谱柱中形成封闭液相系统进行分离的色谱法。实际上凝胶色谱在本质上就是液相色谱,只不过其分离原理是用凝胶对分子大小的排阻,而不是常规液相色谱法常用的利用物质极性。

比较气相色谱法和高效液相色谱法测定食品中山梨酸和苯甲酸原理,操作的异同

试样酸化后,用乙迷提取山梨酸、苯甲酸用附氢火焰离子化检测器的气相色谱仪进行分离测定,与标准系列比较定量.标准溶液配制方法:标准溶液:准确称取山梨酸、苯甲酸各0.2g,置于100mL容量瓶中,用石油醚-乙迷(3+1)混合溶剂溶解后并稀释至刻度,此溶液毎毫升相当于2.0mg山梨酸或苯甲酸标准使用液:吸取适量的山梨酸、苯甲酸标准溶液,以石油醚-乙迷(3+1)混合溶剂稀释至每毫升相当于50、100、150、200、25ug山梨酸或苯甲酸仪器配置:产品名称 型号 规格及说明气相色谱仪 GC2020 FID 填充柱进样系统 八级程升色谱工作站 专用 双通道(电脑、打印机自配)色谱柱 内径3mm*长2m 5%DEGS高纯氢气发生器 HK-300 氢气流量300ml/min高纯空气发生器 AK-2000 空气流量2000ml/min高纯氮气钢瓶 40L 氮气流量300ml/min色谱条件:柱温:170℃ 进样口:230℃ 检测器:230℃ 载气50mL/min 进样量 2ul

简要说明高效液相色谱法、经典液相色谱法、气相色谱法的主要异同点。

【答案】:(1)高效液相色谱法与经典液相色谱法异同点。①相同点都是液相色谱,原理都相同。②不同点a.分离效率高;b.灵敏度高;c.操作自动化;d.分析速度快。(2)高效液相色谱法与气相色谱法的异同点①相同点都是利用物质在两项中分配系数不同而分离的。②不同点a.高效液相色谱法不破坏试样,可方便地制备纯样;b.分离效果与流动相的性质密切相关,流动相种类较多;c.广泛应用于有机化合物的分离分析,尤其是低挥发性、热稳定性差或相对质量大的物质。

高效液相色谱法与气相色谱法的有哪些异同点

气相色谱与液相色谱的原理是一样的,但实际上这两者的差别挺大的。三言两语很难说清楚。“生化色谱网”的“学习培训”栏目对色谱有详细系统的介绍,我在这里就不拷贝了,你自己去看看吧。

试说明气相色谱法和高效液相色谱法有何相同和不同之处

haocunha答应用范围广品破坏、易收等优点三点勉强高效:般气相理论板数达万级高于液相千级高灵敏度:般液相都微克级别更达纳克级气相般都纳克级些达皮克级析速度:气相液相差间短主要根据品定气相般超40min液相考虑流速能调太高品要跑12色谱柱耐用性:维护使用气相色谱柱用更久液相色谱气相色谱检测范围同优点并比较总说3优点外几点:1定量准确性更;2重复性更;3液相流相变化更灵利于研究发

高效液相色谱原理

高效液相色谱(HPLC)的原理:以高压下的液体为流动相,并采用颗粒极细的高效固定相的柱色谱分离技术。高效液相色谱对样品的适用性广,不受分析对象挥发性和热稳定性的限制,因而弥补了气相色谱法的不足。在目前已知的有机化合物中,可用气相色谱分析的约占20%,而80%则需用高效液相色谱来分析。高效液相色谱和气相色谱在基本理论方面没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质的差别。高效液相色谱法的构造可分为“高压输液泵”、“色谱柱”、“进样器”、“检测器”、“馏分收集器”以及“数据获取与处理系统”等部分。高效液相色谱法有“四高一广”的特点①高压:流动相为液体,流经色谱柱时,受到的阻力较大,为了能迅速通过色谱柱,必须对载液加高压。②高速:分析速度快、载液流速快,较经典液体色谱法速度快得多,通常分析一个样品在15~30分钟,有些样品甚至在5分钟内即可完成,一般小于1小时。③高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。④高灵敏度:紫外检测器可达0.01ng,进样量在μL数量级。⑤应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。

如何用高效液相色谱仪测柠檬酸的液相色谱

我给你的答案是 翻看药典有没有吧。呵呵

高效液相色谱仪的组成部分及各部分的作用

高效液相色谱仪器的结构:1.进样系统 :一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。 2.输液系统 :该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH值,或改用竞争性抑制剂或变性剂等。这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。 在分离原理,仪器构造及应用范围上,比较气相色谱及液相色谱有什么异同点。1、气相:气相色谱是一种物理的分离方法.利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。2、液相:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH值,或改用竞争性抑制剂或变性剂等。这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。 分离系统 该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成).固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基因基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基因(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。

高效液相色谱的原理及分析方法?

“色谱世界”网站要比仪器信息网在色谱方面专业多了。你去看看就知道了。

高效液相色谱仪有哪些主要组成部件,各有什么作用?

高效液相册色谱仪有哪些主要的组成部件各有什么样的作用?主要的组成部件也是有非常的多的,包括它的各种功能的一一些相关的仪器。

高效液相色谱仪是用来检测分析什么的呀?

高效液相色谱仪是用来检测分析高沸点不易挥发的、受热不稳定的和分子量大的有机化合物。HPLC成为解决生化分析问题最有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点。因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱- 质谱联用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等; 液相色谱- 红外光谱联用也发展很快,如在环境污染分析测定水中的烃类,海水中的不挥发烃类,使环境污染分析得到新的发展。扩展资料高效液相色谱是应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效液相色谱的色谱柱一般比较粗,长度也远小于气相色谱柱。HPLC应用非常广泛,几乎遍及定量定性分析的各个领域。使用高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待测物所含有的物质。高效液相色谱作为一种重要的分析方法,广泛的应用于化学和生化分析中。高效液相色谱从原理上与经典的液相色谱没有本质的差别,它的特点是采用了高压输液泵、高灵敏度检测器和高效微粒固定相,适于分析高沸点不易挥发、分子量大、不同极性的有机化合物。参考资料来源:百度百科-高效液相色谱仪

高效液相色谱仪器的结构及其各部分作用是什么?

1、溶剂输送系统;储液器,用来贮存数量足够、符合要求的流动相。配有溶剂过滤器,以防止流动相中的颗粒进入泵内。脱气器,脱气的目的是为了防止流动相从色谱柱内流出时释放出气泡进入检测器,从而引起噪声,不能正常检测。输液泵,将储液器中的流动相连续不断地以高压形式进入液路系统,使样品在色谱柱中完成分离过程。梯度洗脱装置,是在分离过程中通过逐渐改变流动相的组成增加洗脱能力的一种装置。2、进样系统;进样器:是将样品送入色谱柱的装置,进样方式可以分为两种:阀进样或自动进样。比较常用的是采用自动进样器装样。3、分离系统;色谱柱:对样品进行分离,是整个色谱系统的心脏,它的质量优劣直接影响到分离的效果。4、检测系统;检测器:将色谱柱连续流出的样品组分转变成易于测量的电信号,被数据系统接收,得到样品分离的色谱图。5、数据处理和记录系统;对色谱数据进行处理,并参与HPLC仪器的自动控制。扩展资料与试样预处理技术相配合,HPLC 所达到的高分辨率和高灵敏度,使分离和同时测定性质上十分相近的物质成为可能,能够分离复杂相体中的微量成分。随着固定相的发展,有可能在充分保持生化物质活性的条件下完成其分离。HPLC成为解决生化分析问题最有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。参考资料来源:百度百科——高效液相色谱仪

高效液相色谱仪测定食品中的水杨酸的实验原理

1、本实验采用高效液相色谱法测定水杨酸及其羟基化产物,以pH4.7527.7mmol/醋酸盐缓冲液为流动相,C18色谱柱分离,电化学检测器Range=500nA,Ec=+0.85V下检测水杨酸和2.3-DHBA,根据保留时间定性,外标法定量。2、通过采用高效液相色谱分析技术,测定碳酸饮料果酱、红枣核桃粉中水杨酸成分含量,建立高效液相色谱测定食品中水杨酸含量。

质谱仪和高效液相色谱仪的操作规程和区别有哪些?

质谱仪也可以说是一种检测器,单独就是用来定性定量。而高效液相色谱仪可以针对不同的物质有不同的检测器,主要作用是分离检测。操作上是完全的不同,可以针对你用的品牌及型号看一下说明书。

高效液相色谱仪操作流程

高效液相色谱仪操作流程为开机、超声、排气、走基线。1、开机前先将流动相过滤和超声:水流动相用混合滤膜(0.2μm)过滤,有机流动相用有机滤膜过滤,之后超声脱气15-20分钟。(过滤的目的是除去流动相里的杂质,以免杂质进入色谱柱堵塞色谱柱;超声的目的是排除流动相里面的气体,以防气体进入色谱柱损害色谱柱,影响柱效能)注意:试验过程中由于只有0.45μm的混合滤膜,第一次使用时感觉效果不好,于是过滤水时同时使用两张混合滤膜过滤水流动相。2、超声结束后,将流动相放置到规定位置(1号泵接水流动相,2号泵接有机流动相),开机逐个排气(先启动泵,排气结束后再打开检测器)。3、排气结束后,关闭所有排气阀。先用纯有机流动相冲洗色谱柱20-30分钟,基线走稳之后,再打开水流动相(注意:水流动相和有机流动相流速之和为1ml/min),继续走基线,直到基线平稳。注意:实验结束后,再用纯有机流动相冲洗色谱柱20-30分钟,冲出色谱柱内残留的样品物质,预防长时间不使用仪器样品的残留物质沉积在色谱柱内,导致下次使用难以冲出,色谱柱柱压偏高,基线不稳,出现大量鬼峰。4、走基线时,应将进样阀处于Load状态,用注射器进样时应快速进样,进样后将进样阀立即扳回到Inject状态,此时液相系统开始进入采样状态。采样结束后,可在数据分析里面查看分析结果并可进行编辑,也可以在脱机状态下查看样品的分析结果并编辑。数据分析:色谱得到的原始数据为色谱图,我们需要对途中的色谱峰进行积分,获得峰面积,并根据实验需要,使用不同的方法进行定量计算,比如外标法,内标法,面积百分比法等。仪器还可以得到光谱或者质谱信息,我们可以通过色谱柱数据软件的对应功能得到光谱图及质谱图,获得定性信息。获得所需信息后,可以利用色谱软件将结果输出成不同格式的报告,或将处理好的结果导入其他软件(如统计分析)进行二次处理。

质谱仪和高效液相色谱仪的操作规程和区别有哪些?

质谱仪有检测器,高效液相色谱仪没有检测器。一、HPLC从不同的角度出发可以有不同的分类方法,一般液相色谱根据柱子填料和流动相选择的不同分为正相色谱和反相色谱.所说的“高效”和“超高效”,则是涵盖了小颗粒填料、非常低系统体积及快速检测手段等技术。二、由于HPLC检测器(常见为UV类)和MS工作原理不同,有些化合物不会同时在UV和MS上有响应。由于MS检测器对于流动相有要求,比如易挥发,低盐等,有时HPLC适合的流动相条件并不能直接用在液/质联用仪上,需作改动。三、检测器的作用是将柱流出物中样品组成和含量的变化转化为可供检测的信号,常用检测器有紫外吸收、荧光、示差折光、化学发光等。四、PDA检测器:即紫外检测器,点时间可检测单一点处吸收值。DAD检测器:二极管阵列检测器,可理解为无数个PDA检测器串联。即点时间可检测某一波段吸收值,比PDA检测器定性能力强大。

高效液相色谱法的原理

fggffgf

高效液相色谱仪的基本工作原理

高效液相色谱仪工作原理;高压泵将贮液罐的流动相经进样器送入色谱柱中,然后从检测器的出口流出,这时整个系统就被流动相充满。当欲分离样品从进样器进入时,流经进样器的流动相将其带入色谱柱中进行分离,分离后不同组分依先后顺序进入检测器,记录仪将进入检测器的信号记录下来,得到液相色谱图。高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送,色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万),同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。扩展资料高效液相色谱仪配置高压二元泵或者低压四元泵,而泵的冲程体积以及混合器的体积大小,均会对色谱基线噪音水平产生影响,特别是在梯度洗脱的时候。一般地泵的冲程体积越小以及混合器的体积相对越大,由输液造成的脉冲相对越小,对于梯度变化的响应能力越高,基线越平缓,在应用二元泵的时,需要注意的是,当二元混合中的其中一元流动相的比例小于5%的时候,特别是在使用正相等度洗脱对一些医药中间体及终产品进行手性拆分的时候,最好使用单泵预混合的方式。避免由于泵在低比例时泵液精度相对较差,而导致色谱基线出现冲程相关峰,参考资料来源;百度百科--高效液相色谱仪

高效液相色谱使用步骤

不宵夜,像姆普食用工作是按照商城的方式走开,因为每种方式播出什么样?

高效液相色谱的使用方法

你想哪种高效液相色谱仪的使用?Agilent?Waters?还是岛津?

高效液相色谱的原理

高效液相色谱的原理是:是在条件一定,样品浓度很低时时,K只取决于组分的性质,而与浓度无关。这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰。在许多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;而有时随着溶质浓度增大,K也增大,这时色谱峰为前延峰。该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。液相色谱仪是一款以用户为核心的智能化的色谱仪,具有常规HPLC的基本性能,并扩展了更多智能化的功能,能很好的满足用户的各类不同的应用要求,使用户能更加轻松的使用,并获得准确的分析数据。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法。又因分析速度快而称为高速液相色谱法。也称现代液相色谱。高效液相色谱仪器使用:高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。与试样预处理技术相配合,HPLC所达到的高分辨率和高灵敏度,使分离和同时测定性质上十分相近的物质成为可能,能够分离复杂相体中的微量成分。随着固定相的发展,有可能在充分保持生化物质活性的条件下完成其分离。HPLC成为解决生化分析问题Z有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。

高效液相色谱原理

高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。

高效液相色谱仪的使用和原理分析

高效液相色谱法(HPLC)是目前应用广泛的分离、分析、纯化有机化合物(包括能通过化学反应转变为有机化合物的无机物)的有效方法之一。 在已知的有机化合物中,约有80%能用高效液相色谱法分离、分析,而且由于此法条件温和,不破坏样品,因此特别适合高沸点、难气化挥发、热稳定性差的有机化合物和生命物质。HPLC系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部位。有的仪器还有梯度洗脱装置、在线脱气机、自动进样器、与柱或保护住、柱温控制器等,现代HPLC仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC仪还备有自动馏分收集装置。目前常见的HPLC仪生产厂家国外有Waters 公司、Agilent 公司(原HP公司)、岛津公司等,国内有上海伍丰科学仪器有限公司,上海禾工科学仪器有限公司,大连依利特公司、北京创新通恒、北京温分等。一、输液泵1.泵的构造和性能输液泵是HPLC系统中最重要的部件之一。泵的性能好坏直接影响到整个质量和分析结果的可靠性。输液泵应具备如下性能:①流量稳定,其RSD应小于0.5%,这关系到定性定量的准确性;②流量范围宽,分析型应在0.1~10ml/min范围内连续调,制备型应能达到100ml/min;③输出压力高,一般应能达到150~300KG/CM2:④液缸容积小;⑤密封性能好,耐腐蚀。泵的种类很多,按输液性质可分为恒压泵和恒流泵。恒流泵按结构又可分为螺旋注射泵、柱塞往复泵和隔往复泵。恒压泵受柱阴影响,流量不稳定;螺旋泵缸体太大,这两种泵己被淘汰目前应用最多的是柱塞往复泵。柱塞往复泵的液缸容积小,可至0.1ml,因此易于清洗和更换流动相,特别适合于再循环和梯度洗脱;改变电机转速能方便地调节流量,流量不受柱压影响;泵压可达400KG/CM2。ADW主要缺点是输出的脉冲性较大,现多彩采用双泵系统来克服。双泵按连接方式可分为并联式和串联式,一般说来并联泵的流量重现性较好(RSD为0.1%左右,串联泵为0.2~0.3%),但出现故障的机会较多(因多了单向阀),价格也较贵。二、进样器一般HPLC分析常用六通进样阀(以美国RHEODYNE公司的7725和7725I型最常见),其关键部件由圆形密封垫子(转子)和固定底座(定子)组成。耐高压(35~40MPA),进样量准确,重复性好(0.5%),操作方便。六通阀进样方式有部分装液法和完全装液法两种。①用部分装液法进样时,进样量应不大于定量环体积的50%(最多75%),并要求每次进样体积准确、相同。此法进样的准确度和重复性决定于注器取样的熟练程度,而且易产生由进样引起的峰展宽。②用完全装液法进样时,进样量应不小于定量环体积的5~10倍9最少3倍,这样才能完全置换定量环内和流动相,消除管壁效应,确保进样的准确度及重复性。三、色谱柱色谱是一种分离分析手段,分离是核心,因此担负分离作用的色谱柱是色谱系统的心脏。对色谱柱的要求是柱效高、选择性好,分析速度快等。市售的用于HPLC的各种微粒填料好多孔硅胶以及以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)、多孔碳等,其粒度一般为3,5,7,10UM等,柱效理论值可达5~16万/米。对于一般的分析只需5000塔板数的柱效;对于同系物分析,只要500即可;对于较难的分离物质对则可采用高达2万的柱子,因此一般10~30CM左右的柱长就能满足复杂混合物分析的需要。柱效受柱内外因素影响,为使色谱柱达到最佳效率,除柱外死体积要小外,不要有合理的柱结构(尽可能减少填充床以外的死体积)及装填技术。即使最好的装填技术,在柱中心部位和沿管壁部位的填充情况总是不一样的,靠近管壁的部位比较疏松,易产生沟流,流速较快,影响冲洗剂的流形,使谱带加宽,这就是管壁效应。这种管壁区大约是从管壁向内算起30倍料径的厚度。在一般的液相色谱系统中,柱外效应对柱效的影响远远大于管壁效应。四、检测器HPLC的检测器分为两类:通用型检测器和专用型检测器。1.通用型检测器可连续测量色谱柱的流出物的全部特性变化,通常采用差分测量法,这类检测器包括示差折光检测器、介电常数检测器、电导检测器等,通用检测器适用范围广,但由于对流动相有响应,因此易受温度变化、流动相和组分的变化的影响,噪声和漂移都比较大,灵敏度较低,不能用梯度洗脱。2.专用型检测器用以测量被分离样品组分某种特性的变化。这类检测器对样品中组分的某种物理或化学性质敏感,而这一性质是流动相所不具备的,或至少在操作条件下不显示。这类检测器包括紫外检测器、荧光检测器、放射性检测器等。

高效液相色谱仪的操作步骤及注意事项

  一、操作步骤:   1.开机前先将流动相过滤和超声:水流动相用混合滤膜(0.2μm)过滤,有机流动相用有机滤膜过滤,之后超声脱气15-20分钟。(过滤的目的是除去流动相里的杂质,以免杂质进入色谱柱堵塞色谱柱;超声的目的是排除流动相里面的气体,以防气体进入色谱柱损害色谱柱,影响柱效能)   注:试验过程中由于只有0.45μm的混合滤膜,第一次使用时感觉效果不好,于是过滤水时同时使用两张混合滤膜过滤水流动相。   2.超声结束后,将流动相放置到规定位置(1号泵接水流动相,2号泵接有机流动相),开机逐个排气(先启动泵,排气结束后再打开检测器)。   3.排气结束后,关闭所有排气阀。先用纯有机流动相冲洗色谱柱20-30分钟,基线走稳之后,再打开水流动相(注意:水流动相和有机流动相流速之和为1ml/min),继续走基线,直到基线平稳。   注意:实验结束后,再用纯有机流动相冲洗色谱柱20-30分钟,冲出色谱柱内残留的样品物质,预防长时间不使用仪器样品的残留物质沉积在色谱柱内,导致下次使用难以冲出,色谱柱柱压偏高,基线不稳,出现大量鬼峰。(不同规格的色谱柱其所允许的.最大流速之和不同)   4.走基线时,应将进样阀处于Load状态,用注射器进样时应快速进样,进样后将进样阀立即扳回到Inject状态,此时液相系统开始进入采样状态。采样结束后,可在数据分析里面查看分析结果并可进行编辑,也可以在脱机状态下查看样品的分析结果并编辑。   二、使用中常见的问题及注意事项   1.过滤时有时会出现流动相漏液。可能的原因是滤膜放置不正确(有点偏)和接头有点错位,导致流动相从缝隙中漏出。   注意:操作时,应先向滤瓶内倒入少量流动相,观察是否漏液并开始过滤,若未漏液,再向滤瓶中添加流动相。   2.超声时,瓶外液体的液面应高于瓶内流动相的液面,否则流动相内的气体可能无法排出液体,气体仍然残留在流动相内,以致开机排气时无气泡排出。   3.开机排气结束后,应先将流动相流量调小,再关闭排气阀,否则会导致柱压瞬间升高超过压力上限,致使泵停止工作。   4.反相高效液相色谱仪冲洗柱子时,应尽量避免使用纯水流动相冲洗柱子,因为水极性强,会损害色谱柱(反相高效液相色谱仪的色谱柱C18是非极性的),导致柱效下降。   5.冲洗色谱柱时,还可辅助以不同比例的混合流动相冲洗色谱柱,以冲出不同极性的残留物质,但最后还是要用纯有机流动相冲洗色谱柱一段时间。   6.在实验过程中会出现压力超过上限或压力偏高(在压力上限范围内有机流动相和水流动相流速之和无法达到1ml/min),有可能是柱内有残留物质未被冲出,此时应用较大流速(≤1ml/min)的有机流动相充分冲洗色谱柱。若条件允许,也可采用梯度洗脱的方式冲洗色谱柱。压力过高也有可能是滤头堵塞,此时可将滤头取出放到有机溶剂中超声。   7.若隔天或更长时间不使用液相色谱仪,应将两流动相瓶中均倒入纯的有机流动相(因为水流动相长时间不用会滋生细菌,污染滤头和色谱柱,导致下次开机使用时会出现鬼峰,基线不稳)。   8.进样时所进样品的体积应不小于色谱柱的最大容积,且进样时注射器里的气泡一定要排出,不可将气泡打进色谱柱。   工作原理   系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来高效液相色谱仪主要有进样系统、输液系统、分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。   进样系统   一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。   输液系统   该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l.47~4.4X10Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。流动相贮存器和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH值,或改用竞争性抑制剂或变性剂等。这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。   分离系统   该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成).固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基因基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基因(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。因此,这类固定相对结构不同的物质有良好的选择性。例如,在多孔性硅胶表面偶联豌豆凝集素(PSA)后,就可以把成纤维细胞中的一种糖蛋白分离出来。   另外,固定相基质粒小,柱床极易达到均匀、致密状态,极易降低涡流扩散效应。基质粒度小,微孔浅,样品在微孔区内传质短。这些对缩小谱带宽度、提高分辨率是有益的。根据柱效理论分析,基质粒度小,塔板理论数N就越大。这也进一步证明基质粒度小,会提高分辨率的道理。   再者,高效液相色谱的恒温器可使温度从室温调到60C,通过改善传质速度,缩短分析时间,就可增加层析柱的效率。

高效液相色谱仪的工作原理?

高效液相色谱分离是利用试样中各组分在色谱柱中的淋洗液和固定相间的分配系数不同,当试样随着流动相进入色谱柱中后,组分就在其中的两相间进行反复多次(103-106)的分配(吸附-脱附-放出)由于固定相对各种组分的吸附能力不同(即保存作用不同),因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,顺序离开色谱柱进入检测器,产生的离子流信号经放大后,在记录器上描绘出各组分的色谱峰。

高效液相色谱仪的原理

分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,离子交换色谱法为选择性系数 (或称交换系数),凝胶色谱法为渗透参数。但一般情况可用分配系数来表示。在条件(流动相、固定相、温度和压力等)一定,样品浓度很低时(Cs、Cm很小)时,K只取决于组分的性质,而与浓度无关。这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰;在许多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;而有时随着溶质浓度增大,K也增大,这时色谱峰为前延峰。因此,只有尽可能减少进样量,使组分在柱内浓度降低,K恒定时,才能获得正常峰。

高效液相色谱仪器原理是什么?

高效液相色谱仪主要的组成部件为高压输液泵、进样装置、色谱柱、检测器和色谱数据处理装置。1.高压输液泵由于高效液相色谱所使用的色谱柱一般装填小于10μm的固定相颗粒,故对流动相有较大的阻力,所以对于泵的耐压有一定的要求。除此之外,对于输液泵还有泵体材料耐化学腐蚀、输出流量范围宽、输出流量稳定等要求。高压输液泵可以分为恒压泵和恒流泵两大类。恒压泵是指输出恒定压力的泵,当系统阻力不变时可以保持恒定流量,但系统阻力发生变化时,就会影响到系统流量稳定,因此现在基本已不使用。恒流泵是指可输出恒定体积流量的泵,又分为注射型泵和往复式柱塞泵两类。注射型泵由于其工作过程中需停流吸液以及价格昂贵等原因,目前基本不用于高效液相色谱仪中。往复式柱塞泵则可以提供低脉动的连续稳定液流,广泛应用于各种商品化仪器中,并衍生出了双柱塞往复式并联泵、双柱塞往复式串联泵、双柱塞独立驱动的往复式串联泵等多种设计。2.进样装置在HPLC分析中由于使用了高效颗粒填料和高压的流动相,因而对样品的进样方式要求提高,需要使样品在进入色谱柱头时准确地注人其上端填料的中心,形成集中的一点,以保证扩散效应影响降到最低。为实现以上要求有两种设计:停流进样和六通阀进样,但现在停流进样技术已经完全被简单易用的六通阀进样方式所取代。3.色谱柱色谱柱一般使用内壁抛光的直型不锈钢管作为柱管以获得高柱效。当使用粗内径短柱和细内径色潜柱时,需要注意柱外效应所引起的色谱峰展宽,应该尽量缩短进样器至检测器之间的连接管路,以获得更小的柱外死体积。HPLC色谱柱装填的固定相,其基体材料多为全多孔球形或无定形的硅胶颗粒,在高压下使用匀浆装柱法装填,并在色谱柱两端使用多孔不锈钢烧结材料的过滤片以阻挡流动相中的微小机械杂质进入,并防止固定相流失。4.检测器检测器主要用于检测经色谱柱分离后的组分浓度变化。常用的检测器为紫外/可见光检测器、荧光检测器、示差折光检测器、蒸发光散射检测器等。5.色谱数据处理装置高效液相色谱的分析结果数据现已广泛使用色谱数据工作站来记录和处理。色谱工作站基于微型计算机的硬件,可以实现如下功能:(1) 仪器操作参数的控制功能——色谱仪的所有可控参数,均可预先设定并保存记录,在运行样品时自动调用并传输至仪器。(2) 数据采集和处理功能——可通过计算机和仪器之间的数据传输接口自动采集色谱数据。并根据指定处理参数进行数据处理,提供色谱图的相关积分数据,还可以选择不同的标准计算方式来对样品自动进行计算,得到定性或定量的结果。还具有计算柱效、绘制工作曲线等其他功能。

高效液相色谱法的原理是什么

高效液相色谱法的原理是什么如下:由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。高效液相色谱仪(HPLC)是应用高效液相色谱原理,主要用于分析高沸点不易挥发的、受热不稳定的和分子量大的有机化合物的仪器设备。资料拓展:高效液相色谱法(High Performance Liquid Chromatography HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱。在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术应用。此外高效液相色谱还有色谱柱可反复使用、样品不被破坏、易回收等优点,但也有缺点,与气相色谱相比各有所长,相互补充。高效液相色谱的缺点是有“柱外效应”。在从进样到检测器之间,除了柱子以外的任何死空间(进样器、柱接头、连接管和检测池等)中,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显著地导致色谱峰的加宽,柱效率降低。高效液相色谱检测器的灵敏度不及气相色谱。液相色谱和质谱连接,可以增加额外的分析能力,能够准确鉴定和定量像细胞和组织裂解液,血液,血浆,尿液和口腔液等复杂样品基质中的微量化合物。

质谱仪和高效液相色谱仪的操作规程和区别有哪些?

质谱仪有检测器,高效液相色谱仪没有检测器。一、HPLC从不同的角度出发可以有不同的分类方法,一般液相色谱根据柱子填料和流动相选择的不同分为正相色谱和反相色谱.所说的“高效”和“超高效”,则是涵盖了小颗粒填料、非常低系统体积及快速检测手段等技术。二、由于HPLC检测器(常见为UV类)和MS工作原理不同,有些化合物不会同时在UV和MS上有响应。由于MS检测器对于流动相有要求,比如易挥发,低盐等,有时HPLC适合的流动相条件并不能直接用在液/质联用仪上,需作改动。三、检测器的作用是将柱流出物中样品组成和含量的变化转化为可供检测的信号,常用检测器有紫外吸收、荧光、示差折光、化学发光等。四、PDA检测器:即紫外检测器,点时间可检测单一点处吸收值。DAD检测器:二极管阵列检测器,可理解为无数个PDA检测器串联。即点时间可检测某一波段吸收值,比PDA检测器定性能力强大。

高效液相色谱的使用等各种仪器的使用

仪器信息网上很详细

高效液相色谱原理是什么?

高效液相色谱仪原理是在条件一定,样品浓度很低时时,K只取决于组分的性质,而与浓度无关。这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰;在许多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;而有时随着溶质浓度增大,K也增大,这时色谱峰为前延峰。高效液相色谱仪器使用高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。与试样预处理技术相配合,HPLC所达到的高分辨率和高灵敏度,使分离和同时测定性质上十分相近的物质成为可能,能够分离复杂相体中的微量成分。随着固定相的发展,有可能在充分保持生化物质活性的条件下完成其分离。HPLC成为解决生化分析问题Z有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。

高效液相色谱分析的基本原理

高效液相色谱仪(HPLC)是应用高效液相色谱原理,主要用于分析高沸点不易挥发的、受热不稳定的和分子量大的有机化合物的仪器设备。它由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中做相对运动时,经过反复多次的吸附- 解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。HPLC广泛应用于生命科学、食品科学、药物研究以及环境研究中。储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被转换成电信号传送到记录仪,数据以图谱形式输出检测结果。根据分离机制的不同,HPLC原理可分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法及分子排阻色谱法。

高效液相色谱的原理及使用方法

高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。使用方法:色谱柱的填料和流动相的组分应按各品种项下的规定.常用的色谱柱填料有硅胶和化学键合硅胶。后者以十八烷基硅烷键合硅胶最为常用辛基键合硅胶次之,氰基或氨基键合硅胶也有使用;离子交换填料用于离子交换色谱;凝胶或玻璃微球等,用于分子排阻色谱等。注样量一般为数微升。除另有规定外,柱温为室温,检测器为紫外吸收检测器。在用紫外吸收检测器时,所用流动相应符合紫外分光光度法项下对溶剂的要求。正文中各品种项下规定的条件除固定相种类、流动相组分、检测器类型不得任意改变外,其余如色谱柱内径、长度、固定相牌号、载体粒度、流动相流速、混合流动相各组分的比例、柱温、进 化学键合固定相反应样量、检测器的灵敏度等,均可适当改变 以适应具体品种并达到系统适用性试验的要求。一般色谱图约于20分钟内记录完毕。2.系统适用性试验 按各品种项下要求对仪器进行适用性试验,即用规定的对照品对仪器进行试验和调整,应达到规定的要求;或规定分析状态下色谱柱的最小理论板数、分离度和拖尾因子.

高效液相色谱(HPLC)系统适用性试验是指哪些内容?进行该试验的目的是什么?

理论板数,分离度,灵敏度,拖尾因子,重复性 五项指标