太阳能

阅读 / 问答 / 标签

太阳能热水器能热水的原理是什么

太阳能热水器加热热水的原理:太阳光透过透明玻璃板照射到黑色集热板上,黑色集热板吸收太阳光把光能转变成热能,并把热能传导给贮热水箱内的水,由于太阳能热水器的保温系统有效地减少了热量损失,从而使贮热 水箱内的水温不断升高。

太阳能热水器自动上水是什么原因?

你家热水器应该是有全自动控制仪的,可以根据说明设置好时间和水位,到设定的时间或低于你设置的水位时就会自动上水的,一般会有默认设置。不过那个控制仪要是断开电源,你的设置会归零的,还得重新设置,如果对你有点帮助,请采纳

【图解】自制太阳能热水器

  现在热水器成了很多家庭热水洗澡的一个非常常见的产品,在近几年,我们越来越提倡环保。因此,太阳能热水器这样既环保节能,又可以方便我们使用热水得产品就诞生了。但是对于对于在夏天想使用热水洗澡的朋友,有的人更喜欢自己去动手制作一个太阳能热水器。当然啦,如果材料工具具备,自制的太阳能热水器也是可行的。那么,下面小兔就来为大家介绍一些自制太阳能热水器的小窍门吧。    自制太阳能热水器:  所需材料:太阳能板、PVC管材、三通、弯头、内牙接头、胶水、保温管、油漆、电子温度计、旧铁皮、泡沫塑料、旧海棉等。(制作的示意图如上图)  1、自制太阳能热水器,首先需要找一些坚固材质好的木料简单的做个2.1X1.2米的框架。之后将三通管做成类型与热水器装置的热排管,这样的效果几乎是一样的,然后将泡沫扑在框架上面,将泡沫和旧铁皮漆黑(如下图)。  2、将阳光板做成的架子与热拍管连接好,注意这时候需要将管道装上保温管,有电子电子温度计的可以安装一个电子温度计,便于探测水的温度。    3、自制太阳能热水器到这一步,然后在做好的在支架和纸板的后面安装立杆,最好这个立杆是可以随意调整高度与斜度的(如下图)。之后再将玻璃管灌水,玻璃管先封闭起来,然后放在支架上。接下来这一步治调整立杆,观察太阳的直射角度,将立杆调整到相对应的饿高度,尽可能接触阳光的面积越多越好。  4、当然啦,此时进行调整立杆的凹陷弧形时候,需要有阳光的楼顶或者是高处,太阳的反射焦点在玻璃管上效果是最好的。之后在将支架进行简单的固定。    5、经过一段时间后,自制太阳能热水器利用冷水下沉、热水上浮的原理,可以进行探视水温。然后在过一阵子探视所得的热水的多少。也可以根据当天的试剂天气对自制太阳能热水器进行适量的灌水,连接出水口的管道到需要使用热水的地方。  6、经过以上的步骤,基本的自制太阳能热水器算完成了,一般情况下自制好的使用起来效果事很不错的,如果有安装了电子上水控制的,在不适用的情况下最好不要上太多的,容易造成阳光板老化。    以上就是关于自制太阳能热水器的简单介绍。我们知道,在我们的日常生活中,不少人都可以使用太阳能热水器了,但是对于一些经济没有那么好的家庭。其实这也算一种方法,可以简单的进行自制太阳能热水器。今天小编介绍的自制太阳能热水器就到这里,希望能够对大家了解怎么自制太阳能热水器有所帮助。

分体式太阳能热水器原理

太阳能是一种可再生能源,其作为绿色环保的能源在现今社会的使用相当普及,其中在家电领域上太阳能被运用到热水器上。而目前的太阳能热水器大多数都是分体式的,那么分体式太阳热水器的原理又是怎么样呢?那么下面大家就和小编一起来看一下分体式太阳能热水器原理以及太阳能热水器选购技巧吧。一、分体式太阳能热水器原理1、吸热:分体式太阳能是通过玻璃盖板进行吸热的,吸收的热量会集中到管壁内,通过管壁传送到热水管的水里面。吸热管的温度不断的升高,就会将水温不管的加热。加热的水会不断的通过储水缸进行上升,然后一直往低温的水补充过去。这样一来水缸内的水自然而然就会渐渐的达到同样的温度。2、集热箱:分体式太阳能是有进水口和出水口的,它有一个集热箱,这个集热箱的水是通过加热管流进去的,当没有阳光的时候。分体式太阳能热水器会利用循环管路进行制热。循环管路会将太阳能吸收进来的热量储存起来,在没有太阳的时候进行循环运作,将水加热。3、承压器:分体式太阳能热水器是有承压器装置的,主要利用的就是一个水压的原理。然后通过吸收热量改变水箱和集热箱的压强,形成一个冷水和热水的循坏,从而加热。这个装置是为了调节冷水和热水,从而进行控制水温度的。二、太阳能热水器选购技巧1、很多消费者买回太阳能会觉得上水,电加热等操作很麻烦,所以我们在选购时还要考虑使用的便捷性,是选择全自动,只要一键就能轻松有热水。2、在选购时,消费者可将“家庭人数*30升”就是所需的总容量。不过,除了洗澡用还要考虑洗碗,洗手的用途,消费者选购容量稍微大些的。3、水箱内胆的保温材料直接决定了水箱的保温性能,目前行业内进的发泡材料是绿色无氟发泡,安全无毒。4、在选购时,消费者可将“家庭人数*30升”就是所需的总容量。不过,除了洗澡用还要考虑洗碗,洗手等用途,消费者选购容量稍微大些的。以上内容就是小编根据分体式太阳能热水器原理介绍以及太阳能热水器选购技巧的编辑整理,希望看完此篇文章后可以让更多消费者对热水器更加了解哦。

太阳能热水器控制器原理是什么?

太阳热水器是利用太阳的能量将水从低温度加热到高温度的装置,是由全玻璃真空集热管、储水箱、支架及相关附件组成,把太阳能转换成热能主要依靠玻璃真空集热管。集热管受阳光照射面温度高,集热管背阳面温度低,而管内水便产生温差反应,利用热水上浮冷水下沉的原理,使水产生微循环而达到所需热水。太阳能(solar energy),是指太阳的热辐射能(参见热能传播的三种方式:辐射),主要表现就是常说的太阳光线。在现代一般用作发电或者为热水器提供能源。自地球上生命诞生以来,就主要以太阳提供的热辐射能生存,而自古人类也懂得以阳光晒干物件,并作为制作食物的方法,如制盐和晒咸鱼等。在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,并不断得到发展。太阳能的利用有光热转换和光电转换两种方式,太阳能发电是一种新兴的可再生能源。广义上的太阳能也包括地球上的风能、化学能、水能等。

太阳能电池片经过几道工序生产?

一、硅片检测硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术参数进行在线测量,这些参数主要包括硅片表面不平整度、少子寿命、电阻率、P/N型和微裂纹等。该组设备分自动上下料、硅片传输、系统整合部分和四个检测模块。其中,光伏硅片检测仪对硅片表面不平整度进行检测,同时检测硅片的尺寸和对角线等外观参数;微裂纹检测模块用来检测硅片的内部微裂纹;另外还有两个检测模组,其中一个在线测试模组主要测试硅片体电阻率和硅片类型,另一个模块用于检测硅片的少子寿命。在进行少子寿命和电阻率检测之前,需要先对硅片的对角线、微裂纹进行检测,并自动剔除破损硅片。硅片检测设备能够自动装片和卸片,并且能够将不合格品放到固定位置,从而提高检测精度和效率。二、表面制绒单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。三、扩散制结太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。四、去磷硅玻璃该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。五、等离子刻蚀由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结。通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激发下,产生电离并形成等离子体。等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,除了转变成离子外,还能吸收能量并形成大量的活性基团。活性反应基团由于扩散或者在电场作用下到达SiO2表面,在那里与被刻蚀材料表面发生化学反应,并形成挥发性的反应生成物脱离被刻蚀物质表面,被真空系统抽出腔体。六、镀减反射膜抛光硅表面的反射率为35%,为了减少表面反射,提高电池的转换效率,需要沉积一层氮化硅减反射膜。现在工业生产中常采用PECVD设备制备减反射膜。PECVD即等离子增强型化学气相沉积。它的技术原理是利用低温等离子体作能量源,样品置于低气压下辉光放电的阴极上,利用辉光放电使样品升温到预定的温度,然后通入适量的反应气体SiH4和NH3,气体经一系列化学反应和等离子体反应,在样品表面形成固态薄膜即氮化硅薄膜。一般情况下,使用这种等离子增强型化学气相沉积的方法沉积的薄膜厚度在70nm左右。这样厚度的薄膜具有光学的功能性。利用薄膜干涉原理,可以使光的反射大为减少,电池的短路电流和输出就有很大增加,效率也有相当的提高。七、丝网印刷太阳电池经过制绒、扩散及PECVD等工序后,已经制成PN结,可以在光照下产生电流,为了将产生的电流导出,需要在电池表面上制作正、负两个电极。制造电极的方法很多,而丝网印刷是目前制作太阳电池电极最普遍的一种生产工艺。丝网印刷是采用压印的方式将预定的图形印刷在基板上,该设备由电池背面银铝浆印刷、电池背面铝浆印刷和电池正面银浆印刷三部分组成。其工作原理为:利用丝网图形部分网孔透过浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动。油墨在移动中被刮刀从图形部分的网孔中挤压到基片上。由于浆料的粘性作用使印迹固着在一定范围内,印刷中刮板始终与丝网印版和基片呈线性接触,接触线随刮刀移动而移动,从而完成印刷行程八、快速烧结经过丝网印刷后的硅片,不能直接使用,需经烧结炉快速烧结,将有机树脂粘合剂燃烧掉,剩下几乎纯粹的、由于玻璃质作用而密合在硅片上的银电极。当银电极和晶体硅在温度达到共晶温度时,晶体硅原子以一定的比例融入到熔融的银电极材料中去,从而形成上下电极的欧姆接触,提高电池片的开路电压和填充因子两个关键参数,使其具有电阻特性,以提高电池片的转换效率。烧结炉分为预烧结、烧结、降温冷却三个阶段。预烧结阶段目的是使浆料中的高分子粘合剂分解、燃烧掉,此阶段温度慢慢上升;烧结阶段中烧结体内完成各种物理化学反应,形成电阻膜结构,使其真正具有电阻特性,该阶段温度达到峰值;降温冷却阶段,玻璃冷却硬化并凝固,使电阻膜结构固定地粘附于基片上。九、外围设备在电池片生产过程中,还需要供电、动力、给水、排水、暖通、真空、特汽等外围设施。消防和环保设备对于保证安全和持续发展也显得尤为重要。一条年产50MW能力的太阳能电池片生产线,仅工艺和动力设备用电功率就在1800KW左右。工艺纯水的用量在每小时15吨左右,水质要求达到中国电子级水GB/T11446.1-1997中EW-1级技术标准。工艺冷却水用量也在每小时15吨左右,水质中微粒粒径不宜大于10微米,供水温度宜在15-20℃。真空排气量在300M3/H左右。同时,还需要大约氮气储罐20立方米,氧气储罐10立方米。考虑到特殊气体如硅烷的安全因素,还需要单独设置一个特气间,以绝对保证生产安全。另外,硅烷燃烧塔、污水处理站等也是电池片生产的必备设施。

太阳能恒温阀安装方法及特点介绍

  我们在洗浴的时候有可能会发现水忽冷忽热的情况,有时候我们不注意有可能就会出现被烫伤的情况,太阳能恒温阀的出现为我们很好的解决了这个问题,但是很多人在购买了太阳能恒温阀之后,不知道怎么安装,那太阳能恒温阀安装方法是怎样的呢?一起来了解一下。    太阳能恒温阀安装方法  太阳能恒温阀的安装是非常方便的,只需要接上冷水管还有热水管就可以实现自动调节恒温水了,我们在接热水管和冷水管的时候要注意,热水进口是红色标记的,蓝色标记的是冷水进口,安装的时候不要安装反了。  之后就是设定温度,一般会先设定安全保护温度,温度设定好了之后,当水温发生变化,或者压力有变化的时候,水温的变化值一般在上下2度。这样可以防止水温过高造成伤害。    如果我们的热水还有冷水的压力是不一样的,那我们在安装太阳能恒温阀的时候要在进口加装单向止回阀,这样我们就可以有效的防止冷、热水互串。  如果我们居住的地方冷热水的压力会超过八比一,那我们在安装太阳能恒温阀的时候要注意在压力大的一侧安装一个限流减压阀,这样如果冷热水的水压超过比例之后混合水阀就可以进行调节,不至于我们使用太阳能的时候有忽冷忽热的情况。  我们在选择太阳能恒温阀以及安装的时候要注意,公称压力,以及混水温度的范围是不是和我们选择产品想符合,这和我们用水也有很大的关系。    太阳能恒温阀主要特点:  家庭用水出了洗菜淘米,还会有洗漱以及沐浴等等,因此在我们用水的时候由于水压的变化我们的冷热水就有可能出现温度不稳的情况,因此忽冷忽热的现象也时有发生,这样我们用水就有可能被突然凉到或者烫到,太阳能恒温阀安装之后就可以达到恒定水温,保证我们用水安全。  太阳能恒温阀更加智能,更加精准,因此即使我们的水温或者水压发生了一点点的变化,也能及时的进行工作,更加安全放心。  当我们用水突然出现断水的情况,太阳能恒温阀能瞬间启动关闭功能,因此保证我们用水不会出现高温烫伤的情况。    太阳能恒温阀在很短的时间内就可以的达到我们设定的温度,更加节水环保,而且太阳能恒温阀安装起来更加方便,还配有三角阀,使用更加方便,对于我们家庭中的燃气热水器以及电热水器,还有锅炉水等等都可以使用,使用范围广。

太阳能的混水阀是什么原理

太阳能专用的恒温混水阀,就是将冷热水在阀门中混合后,通过阀门中的温度传感元件调整出水温度,使出水温度达到恒温(例如50度),以免烫伤人员。这种阀有家用小口径的,做工比较精美,也有工程用的大口径阀门。

两种太阳能电池片参数介绍

太阳能电池片是利用光电转换原理使太阳的辐射光通过半导体物质转变为电能的一种器件,太阳能电池片分为单晶电池片和多晶电池片。太阳能电池片的型号多种多样,主要有125S晶体硅太阳电池和SF156M多晶体硅太阳电池等,但是不同的太阳能电池片参数也是不同的。在这篇文章中,我将为大家介绍这两种太阳能电池片参数。太阳能电池片原理太阳能电池片原理是太阳电池能量转换的基础是结的光生伏特效应。当光照射到pn结上时,产生电子一空穴对,在半导体内部结附近生成的载流子没有被复合而到达空间电荷区,受内建电场的吸引,电子流入n区,空穴流入p区,结果使n区储存了过剩的电子,p区有过剩的空穴。它们在pn结附近形成与势垒方向相反的光生电场。光生电场除了部分抵消势垒电场的作用外,还使p区带正电,N区带负电,在N区和P区之间的薄层就产生电动势,这就是光生伏特效应。此时,如果将外电路短路,则外电路中就有与入射光能量成正比的光电流流过,这个电流称作短路电流,另一方面,若将PN结两端开路,则由于电子和空穴分别流入N区和P区,使N区的费米能级比P区的费米能级高,在这两个费米能级之间就产生了电位差VOC。可以测得这个值,并称为开路电压。由于此时结处于正向偏置,因此,上述短路光电流和二极管的正向电流相等,并由此可以决定VOC的值。太阳能电池片参数介绍1.125S晶体硅太阳电池片125S晶体硅太阳电池片有不同的档次,不同档次的太阳能电池片的参数也是不同的。档次A的转换效率是18.00%,最大功率是2.674-2.696Pm,最大功率点电流是5.135Im,最小功率点电流是5.093Im,最大功率点电压是0.525Vm,短路电流是5.440Isc,开路电压是0.630Voc。档次B的转换效率是17.80%,最大功率是2.645-2.673Pm,最大功率点电流是5.111Im,最小功率点电流是5.057Im,最大功率点电压是0.523Vm,短路电流是5.410Isc,开路电压是0.628Voc。档次C的转换效率是17.60%,最大功率是2.615-2.644Pm,最大功率点电流是5.075Im,最小功率点电流是5.019Im,最大功率点电压是0.521Vm,短路电流是5.380Isc,开路电压是0.627Voc。2.SF156M多晶体硅太阳电池片SF156M多晶体硅太阳电池片有不同的档次。档次A的转换效率是17.50%,最大功率是4.258Pm,最大功率点电流是8.189Im,最小功率点电流是520Im,最大功率点电压是9.30±5%Vm,短路电流是Isc,开路电压是625±5%Voc。档次B的转换效率是17.25%,最大功率是4.198Pm,最大功率点电流是8.072Im,最小功率点电流是520Im,最大功率点电压是9.22±5%Vm,短路电流是625±5%Isc,开路电压是625±5%Voc。太阳能电池片价格苏州尚韵达电子科技有限公司1、低价供应太阳能125/156多晶电池片¥2.452、低价出售太阳能光伏电池片,125电池片¥70.003、低价出售太阳能光伏电池片,单晶电池片¥2.454、出售光伏太阳能电池片¥2.455、低价出售太阳能单晶电池片125/156¥2.456、出售太阳能电池片,156单晶电池片,156多晶电池片¥70.00太阳能电池片厂家无锡尚德,保定天利,河北晶澳,常州天合,苏州阿特斯,南京中电等,这些是国内的,价钱相对比较便宜。太阳能电池片生产流程太阳能电池片的生产工艺流程分为硅片检测--表面制绒及酸洗--扩散制结--去磷硅玻璃--等离子刻蚀及酸洗--镀减反射膜--丝网印刷--快速烧结等。具体介绍如下:一、硅片检测硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。在进行少子寿命和电阻率检测之前,需要先对硅片的对角线、微裂纹进行检测,并自动剔除破损硅片。硅片检测设备能够自动装片和卸片,并且能够将不合格品放到固定位置,从而提高检测精度和效率。二、表面制绒单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。三、扩散制结太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。四、去磷硅玻璃该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。五、等离子刻蚀由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激发下,产生电离并形成等离子体。等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,除了转变成离子外,还能吸收能量并形成大量的活性基团。活性反应基团由于扩散或者在电场作用下到达SiO2表面,在那里与被刻蚀材料表面发生化学反应,并形成挥发性的反应生成物脱离被刻蚀物质表面,被真空系统抽出腔体。六、镀减反射膜抛光硅表面的反射率为35%,为了减少表面反射,提高电池的转换效率,需要沉积一层氮化硅减反射膜。工业生产中常采用PECVD设备制备减反射膜。PECVD即等离子增强型化学气相沉积。它的技术原理是利用低温等离子体作能量源,样品置于低气压下辉光放电的阴极上,利用辉光放电使样品升温到预定的温度,然后通入适量的反应气体SiH4和NH3,气体经一系列化学反应和等离子体反应,在样品表面形成固态薄膜即氮化硅薄膜。一般情况下,使用这种等离子增强型化学气相沉积的方法沉积的薄膜厚度在70nm左右。这样厚度的薄膜具有光学的功能性。利用薄膜干涉原理,可以使光的反射大为减少,电池的短路电流和输出就有很大增加,效率也有相当的提高。七、丝网印刷太阳电池经过制绒、扩散及PECVD等工序后,已经制成PN结,可以在光照下产生电流,为了将产生的电流导出,需要在电池表面上制作正、负两个电极。制造电极的方法很多,而丝网印刷是目前制作太阳电池电极最普遍的一种生产工艺。丝网印刷是采用压印的方式将预定的图形印刷在基板上,该设备由电池背面银铝浆印刷、电池背面铝浆印刷和电池正面银浆印刷三部分组成。其工作原理为:利用丝网图形部分网孔透过浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动。油墨在移动中被刮刀从图形部分的网孔中挤压到基片上。由于浆料的粘性作用使印迹固着在一定范围内,印刷中刮板始终与丝网印版和基片呈线性接触,接触线随刮刀移动而移动,从而完成印刷行程。八、快速烧结经过丝网印刷后的硅片,不能直接使用,需经烧结炉快速烧结,将有机树脂粘合剂燃烧掉,剩下几乎纯粹的、由于玻璃质作用而密合在硅片上的银电极。烧结炉分为预烧结、烧结、降温冷却三个阶段。预烧结阶段目的是使浆料中的高分子粘合剂分解、燃烧掉,此阶段温度慢慢上升;烧结阶段中烧结体内完成各种物理化学反应,形成电阻膜结构,使其真正具有电阻特性,该阶段温度达到峰值;降温冷却阶段,玻璃冷却硬化并凝固,使电阻膜结构固定地粘附于基片上。九、外围设备在电池片生产过程中,还需要供电、动力、给水、排水、暖通、真空、特汽等外围设施。消防和环保设备对于保证安全和持续发展也显得尤为重要。考虑到特殊气体如硅烷的安全因素,还需要单独设置一个特气间,以绝对保证生产安全。另外,硅烷燃烧塔、污水处理站等也是电池片生产的必备设施。

太阳能电池片制造的生产工艺

现在太阳能电池分为好几种,有单晶硅、多晶硅的、砷化镓(CPV太阳能),非晶硅的。你想知道哪一种的?

太阳能热水器智能恒温阀好用吗

好用

太阳能热水器恒温阀使用效果怎么样?

不是很精确,但基本能用

太阳能电池片生产工艺,哪位大神可以帮忙?

http://wenku.baidu.com/view/bdcff81ec5da50e2524d7f9f.html这个网址上有详细的生产工艺,因为太多弄不过来,你就直接看就行了。

太阳能恒温阀原理 太阳能恒温阀介绍

1、太阳能恒温阀原理: 在恒温出水处装有高灵敏记忆合金螺旋式温感探头,探头感温自身伸长或收缩直接控制冷热水的进水流量使出水温度始终达到所设定的温度(25—55)。洗浴过程中若出现冷热水单管断水时,能瞬间自动停水,防止烫伤和着凉;冷热水进口设有单向阀的设置有效的防止了冷热水互串和冷水倒流到太阳能热水器所造成热水器以水现象。 2、太阳能恒温阀是一种新型的阀门,目前广泛用于太阳能热水器、电热水器、燃气等热水器上应用,还可在宾馆酒店、医院、学校等要求提供稳定供水温度的中、小型生活热水系统和洗浴中心、宾馆等要求高稳定大流量供水的热水系统,它取代了普通的混水阀,具有安装简易、安全防烫、舒适恒温,节水节能、无需外接任何电源等特点。

太阳能恒温阀的工作原理?

太阳能恒温阀原理:在恒温出水处装有高灵敏记忆合金螺旋式温感探头,探头感温自身伸长或收缩直接控制冷热水的进水流量使出水温度始终达到所设定的温度(25—55)。洗浴过程中若出现冷热水单管断水时,能瞬间自动停水,防止烫伤和着凉;冷热水进口设有单向阀的设置有效的防止了冷热水互串和冷水倒流到太阳能热水器所造成热水器以水现象。太阳能恒温阀是一种新型的阀门,目前广泛用于太阳能热水器、电热水器、燃气等热水器上应用,还可在宾馆酒店、医院、学校等要求提供稳定供水温度的中、小型生活热水系统和洗浴中心、宾馆等要求高稳定大流量供水的热水系统,它取代了普通的混水阀,具有安装简易、安全防烫、舒适恒温,节水节能、无需外接任何电源等特点。

太阳能智能调水阀门

太阳能智能调水阀门也叫恒温阀,作为一种新型的阀门,代替了普通的混水阀,解决了洗浴过程中压力变化、温度变化出水忽冷忽热和难以调节的问题的问题。 它的工作原理是:在恒温出水处装有高灵敏记忆合金螺旋式温感探头,探头感温自身伸长或收缩直接控制冷热水的进水流量使出水温度始终达到所设定的温度(25—55)。 它的作用:洗浴过程中若出现冷热水单管断水时,能瞬间自动停水,防止烫伤和着凉,特别适合老人和孩子使用。

太阳能恒温阀不出热水怎么办

摘要:太阳能恒温阀是什么?太阳能恒温阀是一种新型的阀门,可代替普通的混水阀,解决了洗浴过程中压力变化、温度变化出水忽冷忽热和难以调节的问题的问题。那么太阳能恒温阀工作原理是什么?太阳能恒温阀如何安装呢?太阳能恒温阀不出热水怎么办?下面一起详细了解一下太阳能恒温阀的相关知识吧。【太阳能恒温阀原理】太阳能恒温阀安装方法太阳能恒温阀不出热水怎么办太阳能恒温阀工作原理太阳能恒温阀将冷热水的开关合并为一个,用一个旋钮来控制冷热水的流量,能够实现同步开关,而且冷热隔离的效果比两个开关的效果要好,同步开关关闭能保证不会窜水、倒流!活塞的左边是热水进水口,活塞的右边是冷水进水口。当活塞向左转动时,就会减少热水的供应,增加冷水的供应;当活塞向右移动时,就会减少冷水的供应,增加热水的供应。当热水温度超过设定温度时,热敏元件就会迅速膨胀,将活塞向左推动,限制热水的供应,从而达到限制温度的目的,这也叫防烫伤功能。当热水减少或用完,热敏元件就会在冷水的刺激下快速收缩,将活塞向右推广,限制冷水的供应,甚至关闭冷水口。每种产品都有冷、热分离的过滤装置,方型的是在阀体的两边,圆棒型的在多功能变径接头里面。要保证进入恒温龙头内水质清洁,延长使用寿命,需要根据自家水质情况定期清洗。有些太阳能热水器冷水压力和冷水流量远远大于热水压力和热水流量,此时我们就需要关小冷水流量,可利用方型的限流螺丝顺时针旋转或圆棒型的冷水角阀。调节冷热水的原则就是冷水流量不要超过热水流量的三倍即可。总结:简单的说太阳能恒温阀原理那就是太阳能恒温阀有一个会因为温度变化而改变形状的热敏元件,当温度与设定的不符时,这个热敏元件就会改变形状,将活塞向左或者向右推动,间接控制冷热进水口的开关,从而达到控制温度的目的。太阳能怎么安装恒温水阀一、安装及注意事项1、红标记的是热水进口。蓝标记的是冷水进口。2、设定温度后,如时水温度或压力有变化,出水温度变化值在±2。3、如果冷热水压力不一致,应在进水口加装单向止回阀防止冷、热水互串。4、如果冷、热水压差比值超过8:1应在压力大的一侧加装限流减压阀以保证混合水阀能正常调节。5、在选用及安装时请注意公称压力、混水温度范围等要求是否与产品参数相符。二、使用及调试注意事项1、调试温度时应把出水流量开到最大。2、调节钮正旋方向是降温、逆旋方向是升温,初次调节请注意从低温方向往高温方向调节,以防烫伤。3、调节钮低温方向听尽头是关闭热水,高温方向的尽头是关闭冷水,如果热水温度不高,可以关闭冷水只用热水洗浴,但使用过后应注意高回低温区域,以免下次使用时发生烫伤。4、如果冷、热水进水压力不一致,且没有安装单向止流阀,请注意每次使用后,将调温钮调到低温方向尽头,即关闭热水状态,最大程度防止冷热水互串。另外,安装恒温水阀之前请参考说明书!太阳能恒温阀不出热水怎么办1、太阳能热水器有漏水现象,可以检查上下水管、真空管、接头。2、检查室内,混水器、水龙头及其他取水点有无漏水或没关好。3、水碱多,用水时给堵了,可取下喷头,放一会,排出水垢即可。4、如是自动上水,可能探头故障,维修探头即可。太阳热水系统(器)维护管理工作十分重要,它直接关系到热水系统的集热效率和使用寿命。常言道:“三分建设,七分管理”是很有道理的,关键是要长期坚持,经常进行。定期进行系统排污,防止管路阻塞;并对水箱进行清洗,保证水质清洁。排污时,只要在保证进水正常的情况下,打开排污阀门,到排污阀流出清水就行了。

恒温阀能解决太阳能热水器水压不稳的问题吗?

水压问题 在太阳能出水口装个增压泵就搞定

太阳能恒温阀的工作原理

  太阳能恒温阀原理:在恒温出水处装有高灵敏记忆合金螺旋式温感探头,探头感温自身伸长或收缩直接控制冷热水的进水流量使出水温度始终达到所设定的温度。洗浴过程中若出现冷热水单管断水时,能瞬间自动停水,防止烫伤和着凉。冷热水进口设有单向阀的设置有效的防止了冷热水互串和冷水倒流到太阳能热水器所造成热水器以水现象。   太阳能恒温阀是一种新型的阀门,目前广泛用于太阳能热水器、电热水器、燃气等热水器上应用,它取代了普通的混水阀,具有安装简易、安全防烫、舒适恒温,节水节能、无需外接任何电源等特点。

太阳能供暖系统是什么 优势有哪些

众所周知太阳能是清洁能源,自从人类发现太阳能可以利用的时候起,科学家们就一直在不断的探索怎么样能加大太阳能的利用率。太阳能供暖系统就是这些年来新发明出的一套节能的回圈工具。下面我就为您仔细的介绍一下。 太阳能供热采暖系统工作原理 系统包括太阳能集热系统、储热膨胀水箱,生活热水系统、辅助热源系统、末端供暖系统和控制系统。 太阳能集热系统采用多台供热采暖两用太阳热水器并联运行。太阳能可置于任何受光位置。以水为工质,温度控制运行状态。蓄热水箱同时具有膨胀水箱功能。太阳能水箱具有换热、供给热水、供暖和温差发电功能。辅助热源采用电采暖炉,整个系统运行状态无需人工作业。 它是以太阳能集热器作为能源,完全替代或部分替代以煤、石油、天然气、电力等作为能源的锅炉。太阳能集热器获取太阳辐射能而转化的热量, 通过散热系统送至室内进行采暖,过剩热量储存在储热水箱中内;当太阳能集热器收集的热量小于供暖负荷时,由储存的热量来补充;若储存的热量不足时,由备用的辅助热源提供。 太阳能供暖系统的五大优势 太阳能供暖系统优势一:集热快、运行稳定、运输安装方便、使用寿命长。 热能储存:利用保温水箱进行显热储存。 太阳能供暖系统优势二:保温良好、热损失小。辅助能源:利用可采用电力、燃气、燃油和生物质能等。 太阳能供暖系统优势三:节能产品、运行稳定。控制循环系统:采用模组时温度控制。 太阳能供暖系统优势四:可分户控制温度和使用时间、分户计量。散热系统:可采用地暖盘管、暖气或风机盘管作为散热终端系统。 太阳能供暖系统优势五:地暖盘管比暖气和风机盘管作为散热终端更加节能。 阳能供暖系统比之传统家庭供暖,结构简单,运行可靠,热流密度较低,即工质的温度也较低,安全可靠,具有承压能力强、吸热面积大等特点, 是太阳能与建筑一体化最佳选择供暖选择之一。 目前,太阳能供暖系统已被充分用于企业事业单位、工厂、院校、酒店宾馆、游泳池等阳光充足且需供暖的区域。随着绿色环保、节能减排概念不断升级,太阳能供暖将逐步踏入千家万户,家庭采暖将逐步趋向低碳、节能环保化。 太阳能供热采暖系统特点 1、采用高效供热采暖两用太阳热水器,使用寿命长,运行安全可靠,全年综合得热量高。 2、太阳能循环系统采用家用暖通循环系统,安装方法与土暖气相似。 3、太阳能的安装位置不受地理的限制,实现太阳能系统与建筑完美结合。 4、太阳能水箱具有常压承压两个压力状态,保证系统长寿命和在恶劣情况下无故障运行。 5、生活热水与采暖水相互隔离,保证了水质。 6、系统实现全自动运行,保证在停电、停水等意外工况的系统安全。 7、辅助热源用户可自选,利用电采暖炉作辅助热源有利于系统的全自动。 系统参数: 1、采暖面积:100㎡ 2、集热面积10-15㎡,每平方米采暖面积选用58*1800真空管一支。 3、蓄热膨胀水箱0。5-1t 4、电加热功率6KW 散热设备采用超导散热器或集成地暖。 系统节能效益 系统使用寿命15年以上。太阳能系统初投资210元/㎡左右。每年可节电1500KW·h,采暖季节煤1320kg。 系统运行情况 地板采暖供水温度35-40℃,室内温度18℃以上。 用户多采用经济运行方法,即调节散热器阀门或地暖分水器阀门,控制房间温度。达到最佳节能状态。 太阳能供暖系统价格 如果在建房时同步装上太阳能供暖系统,价格相对要便宜些,每平方米的造价在400元左右,使用年限在50年以上。可以说,一次性投入是永久受益,因为应用太阳能采暖系统平均每年每平方米的运行成本只有3元钱,而同比应用电锅炉、燃油锅炉采暖系统所需49元钱和44元钱的费用来说,运行费用不足1/10。 即调节散热器阀门或地暖分水器阀门,控制房间温度。达到最佳节能状态。 太阳能供暖系统价格 如果在建房时同步装上太阳能供暖系统,价格相对要便宜些,每平方米的造价在400元左右,使用年限在50年以上。可以说,一次性投入是永久受益,因为应用太阳能采暖系统平均每年每平方米的运行成本只有3元钱,而同比应用电锅炉、燃油锅炉采暖系统所需49元钱和44元钱的费用来说,运行费用不足1/10。

太阳能热水器拔掉电源还能自动上水

储水式电热水器太阳能发电热水器——太阳能发电原理发电管:细心的人不难看出,在电龙这款太阳能集热管中,深色圆柱状管,是用来集热的集热管;还有一根与众不同的管子,就是最边上的一根布满小格子的管子,它就是发电管。当阳光照射在发电管上时,发电管不断吸收阳光,光伏电池板将吸收到的光能迅速转化成电能,储存在电池中。发电管采用高效多晶硅光伏电池板,转化效率高,与热水器真空管寿命匹配,寿命可高达15年以上,安装简单方便。锂电池:作为发电太阳能标配,电龙热水器配备一块12伏4400毫安锂电池。发电管所转化的电能就是源源不断地储存在电池中,以备不时之需。LED5W节能灯:LED节能灯是太阳能另一标配配件,小灯泡通过连接锂电池,就能用太阳能发的电来照明了。集成控制盒:集成控制盒就相当于遥控器,是灯泡的开关,也可以控制锂电池充电,防止过充。控制盒可以随处安装,不受。ED灯装在卫生间,控制盒装在卫生间墙上的。要是LED灯装在院子里,那控制盒就可以装在大门附近。哪方便就装在哪,只要一伸手,光亮马上有。储水式电热水器太阳能发电热水器特点1、合理利用黑铬独有的耐久性和其不定形的氧化物结晶体能完全和全方位聚光的特性,将收聚到的高温热水进入到用高科技纳米保温材料的具有超强保温功能的保温桶内,、利用冷热水的温差发电等生活方便之用,达到其他太阳能热水器无法比拟的理想效果。2、由于黑铬的氧化晶体能全方位接收光波,所以比普通太阳能热水器聚光效果好,一般2小时能达到水的沸点。具有超强保温:应用高科技纳米保温材料使太阳能热水器的保温系数成倍提高,是市面上其他太阳能的3-5倍。一般太阳能内胆采用1mm---2mm厚的不锈钢材料,且为金属结构,保温性差。而本技术采用的是5mm~6mm厚的轻质食品级的塑钢材料保温效果是普通太阳能的一倍。综合起来本产品保温系数是其他太阳能产品的4-6倍。仅此一项可延长高温热水保温时间24小时----48小时(保温120小时),节电在80%以上。3、最大限度地利用光热能源巧妙利用太阳能热水器内热水和自然界的温差发电,特别适合广大农村、山区、城乡易停电地方的照明、看电视、用风扇等与生活息息相关的电能应用。尤其适合有些单位及场所;保密及重要机关的监控录像系统;财务室的监控录像系统;机关工厂门卫及楼道应急灯系统;学校及政府办公必须场所的照明应用;边远农村照明等应用;边防哨所应用;房地产开发商生活热水及财务室防盗应用等等。如果一台15支管的太阳能热水器按50%发电应用来说,日发电可满足一家六个人的照明用电。4、由于保温桶不使用金属外壳,所以不会有生锈现象,使用先进的有机和无机原材料经科学的轻质钢塑材料确保使用寿命长达30-50年,增加国际先进的全自动缩空防冻功能,不冻管,不炸管,提高了使用的舒适性及安全性。

太阳能板发电的原理是不是依靠温差发电?

的靠光发电

太阳能光伏发电是怎么产生电的?

太阳能光伏发电利用光伏效应将太阳光转化为电能。下面是太阳能光伏发电的基本原理:1、光照:太阳发出的光包含各种频率的光子,其中一部分能量处在可见光范围内。2、光伏效应:太阳能光子照射到光伏电池的半导体材料中(通常是硅),光子能量被半导体材料中的原子吸收,使其电子获得足够的能量跃迁至导带,形成自由电子和空穴。3、电子流动:自由电子和空穴在半导体中形成电荷分离,自由电子向带负电极(n型)流动,空穴向带正电极(p型)流动。4、电流输出:电子流和空穴流通过电路连接,形成电流。这个电流可以被用来驱动电子设备、充电电池或者输送到电力网络中供应给其他用户。5、直流-交流转换:太阳能光伏电池输出的电流是直流(DC),而大部分家庭和工业设备使用的是交流(AC)电。所以,光伏系统通常包含一个逆变器,将直流电转换为交流电,以便在家庭和工业用途中使用。总结来说,太阳能光伏发电通过光伏效应将太阳光转化为电能,利用电子流动产生直流电,并经过逆变器转换为交流电,以供我们使用。

太阳能光伏发电系统

白天,在光照条件下,太阳电池组件产生一定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输入电压的要求。再通过充放电控制器对蓄电池进行充电,将由光能转换而来的电能贮存起来。晚上,蓄电池组为逆变器提供输入电,通过逆变器的作用,将直流电转换成交流电,输送到配电柜,由配电柜的切换作用进行供电。蓄电池组的放电情况由控制器进行控制,保证蓄电池的正常使用。光伏电站系统还应有限荷保护和防雷装置,以保护系统设备的过负载运行及免遭雷击,维护系统设备的安全使用。太阳能→电能→化学能→电能→光能。太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材料太阳能光伏发电图的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。发电原理编辑太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。(1)电池单元:由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,于是就有“光生电流”流过,太阳能电池组件就实现了对负载的功率P输出。(2)电能储存单元:太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。设置原理编辑太阳能光伏发电系统的设计需要考虑的因素:1、 需要考虑太阳能光伏发电系统使用的地方以及该地日光辐射情况;2、 需要考虑太阳能光伏发电系统需要承载的负载功率;3、 系统所输出电压,以及考虑应该使用直流电还是交流电;4、 系统每天需要工作的小时数;5、 如遇到没有日光照射的阴雨天气,系统需连续供电多少天;6、 考虑负载的情况,是纯电阻性、电容性还是电感性,启动电流的大小。系统组成编辑光伏系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器,交流配电柜、自动太阳能跟踪系统、自动太阳能组件除尘系统等设备组成。其各部分设备的作用是:太阳能电池在有光照(无论是太阳光,还是其它发光体产生的光照)情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏特效应”。在光生伏特效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,是能量转换的器件。太阳能电池一般为硅电池,分为单晶硅太阳能电池,多晶硅太阳能电池和非晶硅太阳能电池三种。原材料特点:电池片:采用高效率(16.5%以上)的单晶硅太阳能片封装,保证太阳能电池板发电功率充足。太阳能电池图玻璃: 采用低铁钢化绒面玻璃(又称为白玻璃), 厚度3.2mm,在太阳电池光谱响应的波长范围内(320-1100nm)透光率达91%以上,对于大于1200 nm的红外光有较高的反射率。此玻璃同时能耐太阳紫外光线的辐射,透光率不下降。EVA:采用加有抗紫外剂、抗氧化剂和固化剂的厚度为0.78mm的优质EVA膜层作为太阳电池的密封剂和与玻璃、TPT之间的连接剂。具有较高的透光率和抗老化能力。TPT:太阳电池的背面覆盖物—氟塑料膜为白色,对阳光起反射作用,因此对组件的效率略有提高,并因其具有较高的红外发射率,还可降低组件的工作温度,也有利于提高组件的效率。当然,此氟塑料膜首先具有太阳电池封装材料所要求的耐老化、耐腐蚀、不透气等基本要求。边框:所采用的铝合金边框具有高强度,抗机械冲击能力强。也是家用太阳能发电中价值最高的部分。蓄电池组其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。太阳能电池发电对所用蓄电池组的基本要求是:a.自放电率低;b.使用寿命长;c.深放电能力强;d.充电效率高;e.少维护或免维护;f.工作温度范围宽;g.价格低廉。目前我国与太阳能发电系统配套使用的蓄电池主要是铅酸蓄电池和镉镍蓄电池。配套200Ah以上的铅酸蓄电池,一般选用固定式或工业密封式免维护铅酸蓄电池,每只蓄电池的额定电压为2VDC;配套200Ah以下的铅酸蓄电池,一般选用小型密封免维护铅酸蓄电池,每只蓄电池的额定电压为12VDC。充放电控制器是能自动防止蓄电池过充电和过放电的设备。由于蓄电池的循环充放电次数及放电深度是决定蓄电池使用寿命的重要因素,因此能控制蓄电池组过充电或过放电的充放电控制器是必不可少的设备。逆变器是将直流电转换成交流电的设备。由于太阳能电池和蓄电池是直流电源,而负载是交流负载时,逆变器是必不可少的。逆变器按运行方式,可分为独立运行逆变器和并网逆变器。独立运行逆变器用于独立运行的太阳能电池发电系统,为独立负载供电。并网逆变器用于并网运行的太阳能电池发电系统。逆变器按输出波型可分为方波逆变器和正弦波逆变器。方波逆变器电路简单,造价低,但谐波分量大,一般用于几百瓦以下和对谐波要求不高的系统。正弦波逆变器成本高,但可以适用于各种负载。逆变器保护功能:a、 过载保护;b、短路保护;c、接反保护;d、欠压保护;e、过压保护;f、过热保护。交流配电柜其在电站系统的主要作用是对备用逆变器的切换功能,保证系统的正常供电,同时还有对线路电能的计量。系统分类编辑太阳能光伏发电系统分为独立光伏发电系统、并网光伏发电系统及分布式光伏发电系统:1、独立光伏发电系统也叫离网光伏发电系统。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。2、并网光伏发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电这后直接接入公共电网。并网光伏发电系统有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,发展难度较大。而分散式小型并网光伏系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网光伏发电的主流。3、分布式光伏发电系统,又称分散式发电或分布式供能,是指在用户现场或靠近用电现场配置较小的光伏发电供电系统,以满足特定用户的需求,支持现存配电网的经济运行,或者同时满足这两个方面的要求。  分布式光伏发电系统的基本设备包括光伏电池组件、光伏方阵支架、直流汇流箱、直流配电柜、并网逆变器、交流配电柜等设备,另外还有供电系统监控装置和环境监测装置。其运行模式是在有太阳辐射的条件下,光伏发电系统的太阳能电池组件阵列将太阳能转换输出的电能,经过直流汇流箱集中送入直流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接电网来调节。系统优劣编辑优点1、太阳能取之不尽,用之不竭,地球表面接受的太阳辐射能,能够满足全球能源需求的1万倍。只要在全球4%沙漠上安装太阳能光伏系统,所发电力就可以满足全球的需要。太阳能发电安全可靠,不会遭受能源危机或燃料市场不稳定的冲击;2、太阳能随处可处,可就近供电,不必长距离输送,避免了长距离输电线路的损失;3、太阳能不用燃料,运行成本很低;4、太阳能发电没有运动部件,不易用损坏,维护简单,特别适合于无人值守情况下使用;5、太阳能发电不会产生任何废弃物,没有污染、噪声等公害,对环境无不良影响,是理想的清洁能源;6、太阳能发电系统建设周期短,方便灵活,而且可以根据负荷的增减,任意添加或减少太阳能方阵容量,避免浪费。缺点1、地面应用时有间歇性和随机性,发电量与气候条件有关,在晚上或阴雨天就不能或很少发电;2、能量密度较低,标准条件下,地面上接收到的太阳辐射强度为1000W/M^2。大规格使用时,需要占用较大面积;3、价格仍比较贵,为常规发电的3~15倍,初始投资高。

太阳能光伏发电是怎样发电的?

太阳能光伏发电的最重要意义就在于它能在连续20年内使用太阳的清洁能源来发电,而不使用任何地球上的化石能源。光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。不论是独立使用还是并网发电,光伏发电系统主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。太阳能光伏发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。(二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项;(三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。(四)逆变器:太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。

太阳能光伏发电是怎么回事

太阳能光伏发电是根据光生伏特效应原理,利用太阳电池将太阳光能直接转化为电能。不论是独立使用还是并网发电,光伏发电系统主要由太阳电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,但不涉及机械部件。对于太阳能以逆变器作为输出的能源控制系统,可以选择混合能源控制器来进行系统控制!混合能源控制器可以控制输出断路器的合分闸及逆变器的开机停止、输出功率大小等,根据系统应用可设置为固定功率、母排控制功率和逆变器控制功率等多种模式,可以显示太阳能PV发电的所有数据和状态。适用于光伏(太阳能)以逆变器为输出的混合能源控制器,能适用于(8-35)VDC电源电压的环境。控制器电源B+和B-到电源正负极连接线的截面积不能小于2.5mm2,如果装有浮充充电器,请将充电器的输出线直接连到电源正负极上,再从电源正负极上单独连线到控制器正负电源输入端,以防止充电器干扰控制器的正常运行。控制器所有输出均为继电器触点输出,若需要扩展继电器时,请将扩展继电器的线圈两端增加续流二极管(当扩展继电器线圈通直流电时)或增加阻容回路(当扩展继电器线圈通交流电时),以防止干扰控制器或其它设备。控制器电流输入必须外接电流互感器,电流互感器二次侧电流必须是 5A,同时电流互感器的相位和输入电压的相位必须正确,否则采样到的电流及有功功率可能会不正确。

太阳能光伏发电并网原理

太阳能光伏发电并网原理   太阳能光伏发电并网原理,光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。下面看看太阳能光伏发电并网原理。   太阳能光伏发电并网原理1   光伏发电并网原理:依靠太阳能电池组件,利用半导体材料的电子学特性,当太阳光照射在半导体PN结上,产生了较强的内建静电场,在内建静电场的作用下,将光能转化成电能。   其工作原理是:太阳电池组件产生的直流电经并网逆变器转换成符合电网要求的交流电之后,直接进入公共电网,光伏电池方阵所产生的电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者电能不能满足负载需求时,就由电网供电。   由于太阳能发电直接供入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,减少了能量的损耗,并降低了系统的成本。但是,系统需要专用的并网逆变器,以保证输出的电力满足电网对电压、频率等指标的要求。因为逆变器效率的问题,会有部分能量损失。   太阳能光伏发电并网原理2    光伏发电的基本原理   独立光伏发电系统由太阳能电池阵列、蓄电池、逆变器组件、控制器和负载(直流负载和交流负载)组成。因为太阳能电池产生的电能为直流,但是由于光照强度实时变化,太阳能电池输出的电压也不稳定,这时也需要蓄电池来起到一个滤波的作用,将太阳能电池产生的电压稳定在蓄电池的电压值上,   在另外一种意义上,用蓄电池也有储能的作用,可以将过剩的电能储存起来供在光照强度较低的时候使用。如果是直流负载就可以直接接在蓄电池上工作,如果是交流负载,那么需要经过逆变器的DC-AC 变换,将直流电变成交流电,供给交流负载。    并网光伏发电的基本原理   独立光伏发电系统由太阳能电池阵列、蓄电池、逆变器组件、控制器和负载组成。因为需要将光伏发出来的电回馈给电网,这就需要将直流电转换为电网要求的220V、50HZ 的交流电,并且在相同相位的情况下并网,像电网供电。   无论是独立光伏发电系统还是并网光伏发电系统,逆变系统对于交流负载和并网发电都是必不可少的,接下来我们主要就光伏分布发电中的逆变系统的相关设计进行研究。    光伏发电逆变系统的组成   光伏发电系统主要由太阳能电池、主回路、控制电路和负载组成。主回路主要包括DC/DC 电路、DC/AC 电路、滤波器组件。下面主要对于主回路部分的设计做介绍,其中包括主回路的拓扑结构进行分析,介绍一下全桥逆变电路的工作原理以及逆变器模块的选型,以及相关保护的设计。    光伏发电逆变系统的拓扑结构   通常单相电压型逆变器主要分为推挽式、半桥和全桥逆变电路三种。这三种方式根据其不同的特点应用于不同的场合。   推挽式逆变电路的电路结构比较简单,如图3-1 所示。其上电路只需要两个晶闸管,基极驱动电路不需要隔离,驱动电路比较简单,但是晶闸管需要承受2 倍的线路峰值电压,所以适合于低输入电压的场合应用。   同时变压器存在偏磁现象,初级绕组有中心抽头,流过的电流有效值和铜耗较大,初级绕阻两部分应紧密藕合,绕制工艺复杂。因为推挽式逆变电路对于晶闸管的耐压要求比较高,不适合作为光伏发电的.逆变系统主回路。   相比于推挽式逆变电路,单相半桥式逆变电路中所使用的晶闸管的耐压要求就相对较低,不会有线电压峰值2 倍这么多,绝对不会超过线电压峰值。其逆变出来的波形也相对推挽式比较接近于正弦波,所以滤波的要求也相对较低。由于晶闸管的饱和压降减小到了最小,所以不是最重要的影响因素之一。   但是由于半桥式逆变电路的结构决定其集电极电流在晶闸管导通时会增加一倍,使得在晶闸管选型的过程中,要考虑大电流、承受高压的情况,就难免会因为其价格昂贵,所以不适合作为光伏发电的逆变系统主回路。   太阳能光伏发电并网原理3   太阳能发电主要分为两种,一种是并网型发电,一种是独立光伏系统。二者的区别主要在于一个需要并网,可以不适用蓄电池,一个是自给自足,需要蓄电池,其他基本一致。   基本组成如下: 光伏阵列将太阳能转变成直流电能,经逆变器的直流和交流逆变后,根据光伏电站接入电网技术规定光伏电站容量确定光伏电站接入电网的电压等级,由变压器升压后,接入中压或高压电网。   原理如下: 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。   目前市面上太阳能光伏发电站的“并网模式”通常有三种:自发自用余电上网模式、全额上网模式、全部自用模式。   首先,在这三种并网模式中选择其中一种,那么就需要根据自身的实际情况来进行选择了:比如说像普通家庭住户,大多数的人都选择自发自用余电上网的模式,这也是现在分布式光伏发电站中所用比例占最高的一种选择方式。   这种模式的好处,是光伏电站发出来的电优先给自己家里面供电使用,然后用不掉多余的电直接自动并入到电网里面,这样的话就避免了浪费,还能赚钱。这种模式是比较适合普通家庭用户选择的,也是非常经济实惠,因为不用额外花钱买电池来储存电量。   除了家庭用电以外,比如说工业用电、厂房屋顶、工商业楼房屋顶这些地方就是商业用电,也是比较适合自发自用余电上网模式的。   为什么这么说呢?因为商业用电的费用比民用电费更高,如果工商业以及厂房屋顶安装光伏电站的话,那么经济效益会大大地增高,回本时间也会更短,这种选择方式是非常有利的,用不掉的电直接并网到电网上面。

太阳能光伏发电会产生辐射吗?对身体有危害吗?

说个现实情况,就是有些屋顶因为安装光伏板不规范,会出现漏水的问题,这个是最大的危害了,其他方面户用光伏电站没有什么危害。所以,施工方面一定要找靠谱的人啊~比如像碳银光伏,都有一套根据不同屋顶情况定制的施工标准,不达标就会要求施工方整改到合格为止,还是比较值得信赖的

太阳能发电优点和缺点

优点环保低碳去,缺点成本太高。

太阳能转化成电能的原理

我的人都有一个人的人都有一个人的人都有一个很大程度上也存在白针一个人是从什么时候回来后者是个

太阳能光伏板结构原理及光生伏打效

原理很简单,1电子受光子激发跃迁,2电子由从内部移动到外部,并被PN结内建电场定向分离从而导致一面正压,一面负压,即光生 伏特效应

太阳能转化为什么能如太阳灶太阳能热水器

目前人们直接利用太阳能的方式有三种:其一是把太阳能转化为电能,太阳能电池是把太阳能转化为电能.其二是把太阳能转化为化学能.植物通过太阳进行光合作用,生长粮食、水果等为人类提供丰富的食物.其三是把太阳能转化为内能.太阳能热水器是把太阳能转化为内能. 故答案为:太阳能电池、植物通过太阳进行光合作用,生长粮食、水果等为人类提供丰富的食物、内能.

现在都有哪些太阳能的利用方法

太阳能热水器,太阳能光伏发电,太.未系列产品,净水机,太阳能微厨等等

太阳能集热器的热转换原理是什么?

太阳能集热器的种类很多,分类方法也不同。1、按传热介质分类:可分为液体集热器和空气集热器两大类,其中以液体为传热介质的大多用水作介质,即构成各种太阳能热水器;以空气为传热介质的,则构成多种太阳能干燥器。太阳能集热器的核心是吸热板,它的功能是吸收太阳的辐射能,并向传热介质传递热量。在以液体为介质时,此种吸热板有管板式、翼管式、扁盒式、蛇管式等,可用金属材料和非金属材料制成。吸热板的向阳表面涂有黑色吸热涂层。以空气为传热介质的太阳能集热器吸热板的结构常有网格式、蜂窝式和多孔床式等。2、按采光方式分类:可分为聚光型集热器和非聚光型集热器 两大类。非聚光式集热器是利用热箱原理(也称温室效应)将太阳能转变为内能的设备。最常见的太阳能集热器是非聚光式平板型集热器。它的吸热体基本上为平板形状,吸热面积与采光面积近似相等,其结构如图(a)是利用温室效应的非聚光型集热器。在温室充入CO2可提高温室效应。聚光型集热器利用聚焦原理,即利用光线的反射和折射原理,采用反射器或折射器使阳光改变方向,把太阳光聚集集中照射在吸热体较小的面积上,增大单位面积的辐射强度,从而使集热器获得更高的温度。世界上最大的一面太阳能聚光集热器是法国比利牛斯山坡上的太阳能高温炉。它的抛物面聚光反射镜有9层楼高,面积有1830米2,它是由9500块小镜片拼接而成的。反射镜把安装在对面山坡上的63块巨型平面镜反射过来的阳光聚焦,焦点处安装高温熔炉,温度可达4000度以上。

太阳能光热利用指的是什么?

光热利用:它是将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。目前使用最多的太阳能收集装置,主要有平板型集热器、真空管集热器和聚焦集热器等3种。太阳能发电:未来太阳能的大规模利用是用来发电。利用太阳能发电的方式主要有两种:光—热—电转换。即利用太阳辐射所产生的热能发电。一般是用太阳能集热器将所吸收的热能转换为工质的蒸汽,然后由蒸汽驱动气轮机带动发电机发电。前一过程为光—热转换,后一过程为热—电转换。光—电转换。其基本原理是利用光生伏特效应将太阳辐射能直接转换为电能,它的基本装置是。

太阳能通常通过4个渠道被人类利用,它们分别是

目前人类利用太阳能主要通过以下4种方式来实现,即:1、光伏(太阳能电池)发电系统,将太阳能直接转换为电能; 2、太阳能聚热系统,利用太阳的热能产生电能;太阳能热发电是太阳能热利用的一个重要方面,这项技术是利用集热器把太阳辐射热能集中起来给水加热产生蒸汽,然后通过汽轮机、发电机来发电。根据集热方式不同,又分高温发电和低温发电。美国、日本、意大利等国在太阳能热发电方面较领先,我国才刚刚起步。 3、太阳能光热利用,除太阳能热水器外,还有太阳房、太阳灶、太阳能温室、太阳能干燥系统、太阳能土壤消毒杀茵技术等。 4、太阳能建筑。若用太阳能全方位地解决建筑内热水、采暖、空调和照明用能,这将是最理想的方案,太阳能与建筑(包括高层)一体化研究与实施,是未来太阳能开发利用的重要方向,也是整个太阳能行业做大的根本所在。

人类对太阳能的利用有?举例4种

发展到现代,太阳能的利用已日益广泛,它包括太阳能的光热利用,太阳能的光电利用和太阳能的光化学利用等。(1)发展太阳能光电池(2)建立太阳能聚光器(如太阳灶)(3)发展收集太阳能的储能材料(大规模转化为电能)(4)直接利用太阳能(如太阳能热水器)等

谁知道人类利用太阳能的历史?太阳灶是谁发明的?

近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀作功而抽水的机器。在1615年-1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,发动机功率不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。20世纪的100年间,太阳能科技发展历史大体可分为七个阶段,下面分别予以介绍。1.1第一阶段1900-1920在这一阶段,世界上太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平板集热器和低沸点工质,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造的典型装置有:1901年,在美国加州建成一台太阳能抽水装置,采用截头圆锥聚光器,功率:7.36kW;1902-1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。1.2第二阶段(1920-1945)在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃料的大量开发利用和发生第二次世界大战(1935-1945)有关,而太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。1.3第三阶段(1945-1965)在第二次世界大战结束后的20年中,一些有远见的人士已经注意到石油和天然气资源正在迅速减少,呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展,并且成立太阳能学术组织,举办学术交流和展览会,再次兴起太阳能研究热潮。在这一阶段,太阳能研究工作取得一些重大进展,比较突出的有:1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件;1954年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础。此外,在这一阶段里还有其它一些重要成果,比较突出的有:1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨-水吸收式空调系统,制冷能力为5冷吨。1961年,一台带有石英窗的斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。太阳能吸收式空调的研究取得进展,建成一批实验性太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。1.4第四阶段门(1965-1973)这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。1.5第五阶段(1973-1980)自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退的关键因素,1973年10月爆发中东战争,石油输出国组织采取石油减产、提价等办法,支持中东人民的斗争,维护本国的利益。其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。于是,西方一些人惊呼:世界发生了“能源危机”(有的称“石油危机”)。这次“危机”在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房、工业太阳能系统、太阳热发电、太阳电他生产系统、分散型和大型光伏发电系统等。为实施这一计划,日本政府投入了大量人力、物力和财力。70年代初世界上出现的开发利用太阳能热潮,对我国也产生了巨大影响。一些有远见的科技人员,纷纷投身太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用太阳灶,在城市研制开发太阳热水器,空间用的太阳电池开始在地面应用……。1975年,在河南安阳召开“全国第一次太阳能利用工作经验交流大会”,进一步推动了我国太阳能事业的发展。这次会议之后,太阳能研究和推广工作纳入了我国政府计划,获得了专项经费和物资支持。一些大学和科研院所,纷纷设立太阳能课题组和研究室,有的地方开始筹建太阳能研究所。当时,我国也兴起了开发利用太阳能的热潮。这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:(1)各国加强了太阳能研究工作的计划性,不少国家制定了近期和远期阳光计划。开发利用太阳能成为政府行为,支持力度大大加强。国际间的合作十分活跃,一些第三世界国家开始积极参与太阳能开发利用工作。(2)研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、光解水制氢、太阳能热发电等。(3)各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在较短的时间内取代矿物能源,实现大规模利用太阳能。例如,美国曾计划在1985年建造一座小型太阳能示范卫星电站,1995年建成一座500万kW空间太阳能电站。事实上,这一计划后来进行了调整,至今空间太阳能电站还未升空。(4)太阳热水器、太阳电他等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想1.6第六阶段(1980-1992)70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。受80年代国际上太阳能低落的影响,我国太阳能研究工作也受到一定程度的削弱,有人甚至提出:太阳能利用投资大、效果差、贮能难、占地广,认为太阳能是未来能源,主张外国研究成功后我国引进技术。虽然,持这种观点的人是少数,但十分有害,对我国太阳能事业的发展造成不良影响。这一阶段,虽然太阳能开发研究经费大幅度削减,但研究工作并未中断,有的项目还进展较大,而且促使人们认真地去审视以往的计划和制定的目标,调整研究工作重点,争取以较少的投入取得较大的成果。1.7第七阶段(1992-至今)由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》,《2I世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,我国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确了太阳能重点发展项目。1995年国家计委、国家科委和国家经贸委制定了《新能源和可再生能源发展纲要》(1996-2010),明确提出我国在1996-2010年新能源和可再生能源的发展目标、任务以及相应的对策和措施。这些文件的制定和实施,对进一步推动我国太阳能事业发挥了重要作用。1996年,联合国在津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言)},会上讨论了《世界太阳能10年行动计划》(1996-2005),《国际太阳能公约》,《世界太阳能战略规划》等重要文件。这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动,广泛利用太阳能。1992年以后,世界太阳能利用又进入一个发展期,其特点是:太阳能利用与世界可持续发展和环境保护紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,处于低潮的时间大约有45年。太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复多,发展时间长。这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;另一方面也说明太阳能利用还受矿物能源供应,政治和战争等因素的影响,发展道路比较曲折。尽管如此,从总体来看,20世纪取得的太阳能科技进步仍比以往任何一个世纪都大。2太阳能科技进步太阳能利用涉及的技术问题很多,但根据太阳能的特点,具有共性的技术主要有四项,即太阳能采集、太阳能转换、太阳能贮存和太阳能传输,将这些技术与其它相关技术结合在一起,便能进行太阳能的实际利用。2.1太阳能采集太阳辐射的能流密度低,在利用太阳能时为了获得足够的能量,或者为了提高温度,必须采用一定的技术和装置(集热器),对太阳能进行采集。集热器按是否聚光,可以划分为聚光集热器和非聚光集热器两大类。非聚光集热器(平板集热器,真空管集热器)能够利用太阳辐射中的直射辐射和散射辐射,集热温度较低;聚光集热器能将阳光会聚在面积较小的吸热面上,可获得较高温度,但只能利用直射辐射,且需要跟踪太阳。2.1.1平板集热器历史上早期出现的太阳能装置,主要为太阳能动力装置,大部分采用聚光集热器,只有少数采用平板集热器。平板集热器是在17世纪后期发明的,但直至1960年以后才真正进行深入研究和规模化应用。在太阳能低温利用领域,平板集热器的技术经济性能远比聚光集热器好。为了提高效率,降低成本,或者为了满足特定的使用要求,开发研制了许多种平板集热器:按工质划分有空气集热器和液体集热器,目前大量使用的是液体集热器;按吸热板芯材料划分有钢板铁管、全铜、全铝、铜铝复合、不锈钢、塑料及其它非金属集热器等;按结构划分有管板式、扁盒式、管翅式、热管翅片式、蛇形管式集热器,还有带平面反射镜集热器和逆平板集热器等;按盖板划分有单层或多层玻璃、玻璃钢或高分子透明材料、透明隔热材料集热器等。目前,国内外使用比较普遍的是全铜集热器和铜铝复合集热器。铜翅和铜管的结合,国外一般采用高频焊,国内以往采用介质焊,199S年我国也开发成功全铜高频焊集热器。1937年从加拿大引进铜铝复合生产线,通过消化吸收,现在国内已建成十几条铜铝复合生产线。为了减少集热器的热损失,可以采用中空玻璃、聚碳酸酯阳光板以及透明蜂窝等作为盖板材料,但这些材料价格较高,一时难以推广应用。2.1.2真空管集热器为了减少平板集热器的热损,提高集热温度,国际上70年代研制成功真空集热管,其吸热体被封闭在高真空的玻璃真空管内,大大提高了热性能。将若干支真空集热管组装在一起,即构成真空管集热器,为了增加太阳光的采集量,有的在真空集热管的背部还加装了反光板。真空集热管大体可分为全玻璃真空集热管,玻璃七型管真空集热管,玻璃。金属热管真空集热管,直通式真空集热管和贮热式真空集热管。最近,我国还研制成全玻璃热管真空集热管和新型全玻璃直通式真空集热管。我国自1978年从美国引进全玻璃真空集热管的样管以来,经20多年的努力,我国已经建立了拥有自主知识产权的现代化全玻璃真空集热管的产业,用于生产集热管的磁控溅射镀膜机在百台以上,产品质量达世界先进水平,产量雄居世界首位。我国自80年代中期开始研制热管真空集热管,经过十几年的努力,攻克了热压封等许多技术难关,建立了拥有全部知识产权的热管真空管生产基地,产品质量达到世界先进水平,生产能力居世界首位。目前,直通式真空集热管生产线正在加紧进行建设,产品即将投放市场。2。1.3聚光集热器聚光集热器主要由聚光器、吸收器和跟踪系统三大部分组成。按照聚光原理区分,聚光集热器基本可分为反射聚光和折射聚光两大类,每一类中按照聚光器的不同又可分为若干种。为了满足太阳能利用的要求,简化跟踪机构,提高可靠性,降低成本,在本世纪研制开发的聚光集热器品种很多,但推广应用的数量远比平板集热器少,商业化程度也低。在反射式聚光集热器中应用较多的是旋转抛物面镜聚光集热器(点聚焦)和槽形抛物面镜聚光集热器(线聚焦)。前者可以获得高温,但要进行二维跟踪;后者可以获得中温,只要进行一维跟踪。这两种聚光集热器在本世纪初就有应用,几十年来进行了许多改进,如提高反射面加工精度,研制高反射材料,开发高可靠性跟踪机构等,现在这两种抛物面镜聚光集热器完全能满足各种中、高温太阳能利用的要求,但由于造价高,限制了它们的广泛应用。70年代,国际上出现一种“复合抛物面镜聚光集热器”(CPC),它由二片槽形抛物面反射镜组成,不需要跟踪太阳,最多只需要随季节作稍许调整,便可聚光,获得较高的温度。其聚光比一般在10以下,当聚光比在3以下时可以固定安装,不作调整。当时,不少人对CPC评价很高,甚至认为是太阳能热利用技术的一次重大突破,预言将得到广泛应用。但几十年过去了,CPC仍只是在少数示范工程中得到应用,并没有象平板集热器和真空管集热器那样大量使用。我国不少单位在七八十年代曾对CPC进行过研制,也有少量应用,但现在基本都已停用。其它反射式聚光器还有圆锥反射镜、球面反射镜、条形反射镜、斗式槽形反射镜、平面。抛物面镜聚光器等。此外,还有一种应用在塔式太阳能发电站的聚光镜--定日镜。定日镜由许多平面反射镜或曲面反射镜组成,在计算机控制下这些反射镜将阳光都反射至同一吸收器上,吸收器可以达到很高的温度,获得很大的能量。利用光的折射原理可以制成折射式聚光器,历史上曾有人在法国巴黎用二块透镜聚集阳光进行熔化金属的表演。有人利用一组透镜并辅以平面镜组装成太阳能高温炉。显然,玻璃透镜比较重,制造工艺复杂,造价高,很难做得很大。所以,折射式聚光器长期没有什么发展。70年代,国际上有人研制大型菲涅耳透镜,试图用于制作太阳能聚光集热器。菲涅耳透镜是平面化的聚光镜,重量轻,价格比较低,也有点聚焦和线聚焦之分,一般由有机玻璃或其它透明塑料制成,也有用玻璃制作的,主要用于聚光太阳电池发电系统。我国从70年代直至90年代,对用于太阳能装置的菲涅耳透镜开展了研制。有人采用模压方法加工大面积的柔性透明塑料菲涅耳透镜,也有人采用组合成型刀具加工直径1.5m的点聚焦菲涅耳透镜,结果都不大理想。近来,有人采用模压方法加工线性玻璃菲涅耳透镜,但精度不够,尚需提高。还有两种利用全反射原理设计的新型太阳能聚光器,虽然尚未获得实际应用,但具有一定启发性。一种是光导纤维聚光器,它由光导纤维透镜和与之相连的光导纤维组成,阳光通过光纤透镜聚焦后由光纤传至使用处。另一种是荧光聚光器,它实际上是一种添加荧光色素的透明板(一般为有机玻璃),可吸收太阳光中与荧光吸收带波长一致的部分,然后以比吸收带波长更长的发射带波长放出荧光。放出的荧光由于板和周围介质的差异,而在板内以全反射的方式导向平板的边缘面,其聚光比取决于平板面积和边缘面积之比,很容易达到10一100,这种平板对不同方向的入射光都能吸收,也能吸收散射光,不需要跟踪太阳。2.2太阳能转换太阳能是一种辐射能,具有即时性,必须即时转换成其它形式能量才能利用和贮存。将太阳能转换成不同形式的能量需要不同的能量转换器,集热器通过吸收面可以将太阳能转换成热能,利用光伏效应太阳电池可以将太阳能转换成电能,通过光合作用植物可以将太阳能转换成生物质能,等等。原则上,太阳能可以直接或间接转换成任何形式的能量,但转换次数越多,最终太阳能转换的效率便越低。2.2.1太阳能-热能转换黑色吸收面吸收太阳辐射,可以将太阳能转换成热能,其吸收性能好,但辐射热损失大,所以黑色吸收面不是理想的太阳能吸收面。选择性吸收面具有高的太阳吸收比和低的发射比,吸收太阳辐射的性能好,且辐射热损失小,是比较理想的太阳能吸收面。这种吸收面由选择性吸收材料制成,简称为选择性涂层。它是在本世纪40年代提出的,1955年达到实用要求,70年代以后研制成许多新型选择性涂层并进行批量生产和推广应用,目前已研制成上百种选择性涂层。我国自70年代开始研制选择性涂层,取得了许多成果,并在太阳集热器上广泛使用,效果十分显著。2.2.2太阳能一电能转换电能是一种高品位能量,利用、传输和分配都比较方便。将太阳能转换为电能是大规模利用太阳能的重要技术基础,世界各国都十分重视,其转换途径很多,有光电直接转换,有光热电间接转换等。这里重点介绍光电直接转换器件--太阳电池。世界上,1941年出现有关硅太阳电池报道,1954年研制成效率达6%的单晶硅太阳电池,1958年太阳电池应用于卫星供电。在70年代以前,由于太阳电池效率低,售价昂贵,主要应用在空间。70年代以后,对太阳电池材料、结构和工艺进行了广泛研究,在提高效率和降低成本方面取得较大进展,地面应用规模逐渐扩大,但从大规模利用太阳能而言,与常规发电相比,成本仍然大高。目前,世界上太阳电他的实验室效率最高水平为:单晶硅电池24%(4cm2),多晶硅电池18。6%(4cm2),InGaP/GaAs双结电池30.28%(AM1),非晶硅电池14.5%(初始)、12.8(稳定),碲化镐电池15.8%,硅带电池14.6%,二氧化钛有机纳米电池10.96%。我国于1958年开始太阳电他的研究,40多年来取得不少成果。目前,我国太阳电他的实验室效率最高水平为:单晶硅电池20.4%(2cm×2cm),多晶硅电池14.5%(2cm×2cm)、12%(10cm×10cm),GaAs电池20.1%(lcm×cm),GaAs/Ge电池19.5%(AM0),CulnSe电池9%(lcm×1cm),多晶硅薄膜电池13.6%(lcm×1cm,非活性硅衬底),非晶硅电池8.6%(10cm×10cm)、7.9%(20cm×20cm)、6.2%(30cm×30cm),二氧化钛纳米有机电池10%(1cm×1cm)。2.2.3太阳能一氢能转换氢能是一·种高品位能源。太阳能可以通过分解水或其它途径转换成氢能,即太阳能制氢,其主要方法如下:(1)太阳能电解水制氢电解水制氢是目前应用较广且比较成熟的方法,效率较高(75%-85%),但耗电大,用常规电制氢,从能量利用而言得不偿失。所以,只有当太阳能发电的成本大幅度下降后,才能实现大规模电解水制氢。(2)太阳能热分解水制氢将水或水蒸汽加热到3000K以上,水中的氢和氧便能分解。这种方法制氢效率高,但需要高倍聚光器才能获得如此高的温度,一般不采用这种方法制氢。(3)太阳能热化学循环制氢为了降低太阳能直接热分解水制氢要求的高温,发展了一种热化学循环制氢方法,即在水中加入一种或几种中间物,然后加热到较低温度,经历不同的反应阶段,最终将水分解成氢和氧,而中间物不消耗,可循环使用。热化学循环分解的温度大致为900-1200K,这是普通旋转抛物面镜聚光器比较容易达到的温度,其分解水的效率在17.5%-75.5%。存在的主要问题是中间物的还原,即使按99.9%-99.99%还原,也还要作0.1%-0.01%的补充,这将影响氢的价格,并造成环境污染。(4)太阳能光化学分解水制氢这一制氢过程与上述热化学循环制氢有相似之处,在水中添加某种光敏物质作催化剂,增加对阳光中长波光能的吸收,利用光化学反应制氢。日本有人利用碘对光的敏感性,设计了一套包括光化学、热电反应的综合制氢流程,每小时可产氢97升,效率达10%左右。(5)太阳能光电化学电池分解水制氢1972年,日本本多健一等人利用n型二氧化钛半导体电极作阳极,而以铂黑作阴极,制成太阳能光电化学电池,在太阳光照射下,阴极产生氢气,阳极产生氧气,两电极用导线连接便有电流通过,即光电化学电池在太阳光的照射下同时实现了分解水制氢、制氧和获得电能。这一实验结果引起世界各国科学家高度重视,认为是太阳能技术上的一次突破。但是,光电化学电他制氢效率很低,仅0.4%,只能吸收太阳光中的紫外光和近紫外光,且电极易受腐蚀,性能不稳定,所以至今尚未达到实用要求。(6)太阳光络合催化分解水制氢从1972年以来,科学家发现三联毗啶钉络合物的激发态具有电子转移能力,并从络合催化电荷转移反应,提出利用这一过程进行光解水制氢。这种络合物是一种催化剂,它的作用是吸收光能、产生电荷分离、电荷转移和集结,并通过一系列偶联过程,最终使水分解为氢和氧。络合催化分解水制氢尚不成熟,研究工作正在继续进行。(7)生物光合作用制氢40多年前发现绿藻在无氧条件下,经太阳光照射可以放出氢气;十多年前又发现,兰绿藻等许多藻类在无氧环境中适应一段时间,在一定条件下都有光合放氢作用。目前,由于对光合作用和藻类放氢机理了解还不够,藻类放氢的效率很低,要实现工程化产氢还有相当大的距离。据估计,如藻类光合作用产氢效率提高到10%,则每天每平方米藻类可产氢9克分子,用5万平方公里接受的太阳能,通过光合放氢工程即可满足美国的全部燃料需要。2.2.4太阳能-生物质能转换通过植物的光合作用,太阳能把二氧化碳和水合成有机物(生物质能)并放出氧气。光合作用是地球上最大规模转换太阳能的过程,现代人类所用燃料是远古和当今光合作用固定的太阳能,目前,光合作用机理尚不完全清楚,能量转换效率一般只有百分之几,今后对其机理的研究具有重大的理论意义和实际意义。2.2.5太阳能-机械能转换20世纪初,俄国物理学家实验证明光具有压力。20年代,前苏联物理学家提出,利用在宇宙空间中巨大的太阳帆,在阳光的压力作用下可推动宇宙飞船前进,将太阳能直接转换成机械能。科学家估计,在未来10~20年内,太阳帆设想可以实现。通常,太阳能转换为机械能,需要通过中间过程进行间接转换。2.3太阳能贮有地面上接受到的太阳能,受气候、昼夜、季节的影响,具有间断性和不稳定性。因此,太阳能贮存十分必要,尤其对于大规模利用太阳能更为必要。太阳能不能直接贮存,必须转换成其它形式能量才能贮存。大容量、长时间、经济地贮存太阳能,在技术上比较困难。本世纪初建造的太阳能装置几乎都不考虑太阳能贮存问题,目前太阳能贮存技术也还未成熟,发展比较缓慢,研究工作有待加强。2.3.1太阳能贮热(1)显热贮存利用材料的显热贮能是最简单的贮能方法。在实际应用中,水、沙、石子、土壤等都可作为贮能材料,其中水的比热容最大,应用较多。七八十年代曾有利用水和土壤进行跨季节贮存太阳能的报道。但材料显热较小,贮能量受到一定限制。(2)潜热贮存利用材料在相变时放出和吸入的潜热贮能,其贮能量大,且在温度不变情况下放热。在太阳能低温贮存中常用含结晶水的盐类贮能,如10水硫酸钠/水氯化钙、12水磷酸氢钠等。但在使用中要解决过冷和分层问题,以保证工作温度和使用寿命。太阳能中温贮存温度一般在100℃以上、500℃以下,通常在300℃左右。适宜于中温贮存的材料有:高压热水、有机流体、共晶盐等。太阳能高温贮存温度一般在500℃以上,目前正在试验的材料有:金属钠、熔融盐等。1000℃以上极高温贮存,可以采用氧化铝和氧化锗耐火球。(3)化学贮

太阳能在生活中应用的例子

太阳能路灯

太阳能的光热利用有哪些项目?太阳能光热利用的原理是怎样的 ...

太阳能光热利用根据所能达到的温度和用途的不同,把太阳能光热利用分为低温利用(三200oc)、中温利用(200~s000C)和高温利用(七s000C)[‘]。目前低温利用主要有太阳能热水器、太阳能干燥器、太阳能蒸馏器、太阳房、太阳能温室、太阳能空调制冷系统等,中温利用主要有太阳灶、太阳能热发电聚光装置,高温利用主要有高温太阳炉,太阳能高温热发电,以及太阳能激光,生物医疗等领域。在国内外的研究中,太阳能高倍聚光后形成较高的光强密度,主要应用于大型的太阳能光热和光电转换系统中。太阳能集热器要同时满足聚光效率最大化,吸收器太阳辐射均匀,稳定的太阳能辐射流水平等主要条件!2},实现聚光效率最大化,太阳能几何聚光比逐步由1沪级提升到1沪级,并设计了不同形式的聚光方法。本文基于热力学第一定律和第二定律对太阳能光热转换利用系统能量传递过程进行分析,发现结合能量利用装置,在太阳能高温利用方面存在利用效率优化的潜力,可计算获得能量转化最优条件下的集热温度。进一步基于此优化温度设计了高倍聚光的太阳能抛物反射镜的结构,同时考虑能量传输工程热物理学报28卷最大化,找出优化的光纤接收半角

太阳能灶的原理

太阳能灶的镜面设计,大都采用旋转抛物面的聚光原理。在数学上若抛物线绕主轴旋转一周,所得的面,即称为“旋转抛物面”。若有一束平行光沿主轴射向这个抛物面,遇到抛物面的反光,则光线都会集中反射到 定点的位置,于是形成聚光,或叫“聚焦”作用。作为太阳灶使用,要求在锅底形成一个焦面,才能达到加热的目的。换言之,它并不要求严格地将阳光聚集到一个点上,而是要求一定的焦面。确定了焦面之后,我们就不难研究聚光器的聚光比,它是决定聚光式太阳灶的功率和效率的重要因素。聚光比K可用公式求得:K=采光面积/焦面面积。采光面积是指太阳灶在使用时反射镜面阳光的有效投影面积。根据我国推广太阳灶的经验,设计一个700~1200瓦功率的聚光式太阳灶,通常采光面积约为1.5~2.0平方米。个别大型蒸汽太阳灶也是聚光式太阳灶,但其采光面积较大,有的要在5平方米以上。旋转抛物面聚光镜是按照阳光从主轴线方向入射,所以往往在通过焦点上的锅具时会留下一个阴影,这就要减少阳光的反射,直接影响太阳灶的功率。我国大部分太阳灶的设计均采用了偏轴聚焦原理。聚光式太阳灶除采用旋转抛物面反射镜外,还有将抛物面分割成若干段的反射镜,光学上称之为菲涅耳镜,也有把菲涅耳镜做成连续的螺旋式反光带片,俗称“蚊香式太阳灶”。这类灶型都是可折叠的便携式太阳灶。 聚光式太阳灶的镜面,有用玻璃整体热弯成型,也有用普通玻璃镜片碎块粘贴在设计好的底板上,或者用高反光率的镀铝涤纶薄膜裱糊在底板上。底板可用水泥制成,或用铁皮、钙塑材料等加工成型。也可直接用铝板抛光并涂以防氧化剂制成反光镜。聚光式太阳灶的架体用金属管材弯制,锅架高度应适中要便于操作,镜面仰角可灵活调节。为了移动方便,也可在架底安装两个小轮,但必须保证灶体的稳定性。在有风的地方,太阳灶要能抗风不倒。可在锅底部位加装防风罩,以减少锅底因受风的影响而功率下降。有的太阳灶装有自动跟踪 太阳的跟踪器,但是一般认为这只会增加整灶的造价。中国农村推广的一些聚光式太阳灶。大部分为水泥壳体加玻璃镜面,造价低,便于就地制作,但不利于工业化生产和运输。

太阳灶是把太阳能转化为什么能

【分析】 直接利用太阳能的方式有多种,其中主要的三种是:将太阳能转化为物质的内能,如太阳灶、太阳能热水器;将太阳能转化为电能,如太阳能电池板;将太阳能转化为化学能,像植物的光合作用。 【点评】 太阳能是新能源,虽然太阳能是可再生能源,但目前尚未广泛应用,有待进一步开发。

太阳灶是把太阳能转化为什么能

太阳灶工作时,消耗太阳能,产生内能,故是将太阳能直接转化为内能的过程; 硅光电池消耗太阳能,产生电能,故是将太阳能转化为电能的过程; 绿色植物的光合作用中,消耗太阳能,产生植物的化学能,故是将太阳能转化为化学能的过程. 故答案为:内;电;化学.

古人如何利用太阳能

周代,我国人民即能利用凹面镜的聚光焦点向日取火,这是我国和世界上对太阳能的最早利用。古代用太阳能取火,还有冰透镜和火珠。古代还用太阳能贮存粮食。《种树说》:收藏麦子“宜烈日中乘热而收,用苍耳叶或麻叶碎杂其中,则免化蛾。”

制作太阳能灶过程和材料

  太阳灶制作  太阳灶的灶体是太阳灶最重要的组成部分。它可以用有机的、无机的,金属的或者非金属材料制作。目前,我国所拥有的大阳灶,绝大多数是菱苦土灶体、水泥砂浆或铸铁灶体。而其它材料的灶体却由于种种原因没有得到广泛应用。 在农村批量生产太阳灶,可以采用菱苦土或水泥砂浆制作灶体。步骤是这样的: 1.制作模型。为了保证太阳能灶灶体的凹面是旋转抛物面,灶体应该在具有抛物面凸面的模型上制作。模型表面的旋转抛物面形状是用有抛物线刃口的刮板刊出来的。 刮板一般用金属板制做。首先在坐标纸上精确地画出焦距为750或800毫米的抛物线,抛物线的横坐标一般取1200毫米左右。然后在钢板上画出同样的,抛物线,切割出刮板的凹形刃口,经过仔细打磨并与坐标纸上的抛物线进行比对,最后固定在一条金属轴上,一方面使它的因形刃口与坐标纸上的抛物线贴合,同时,轴的中心线与坐标纸上的抛物线的纵坐标重合。需要强调的是,制作刮板是保证太阳灶质量最关键的一步,必须认真仔细。 太阳灶模型一般用混凝土制做。模型表面用具有抛物线刃口的刮板竣转刮制而成。具体做法是:在地面上画出一个直径为2.4厘米(假定我们准备生产的太阳灶,其截光面积为2平方米〕的圆,周围用砖或石头砌成20厘米高的墙、中间填土夯实,同时在土里埋好用于支撑刮板轴的支架,在突起的土堆上面糊5厘米厚的草泥,待草泥基本干燥后、上面覆盖50毫米厚的100号混凝土,架好刮板,使其刃口与混凝土表面之间有15至20毫米的间隙,随后在混凝土上抹150号水泥砂浆,旋转刮板把砂浆刮匀,然后用泥刀赶压。在砂浆表面上还需要上一层素灰浆。上浆前把刮板提起少许,擦净刃口上的沙粒,调整刮板,使其刃口距离砂浆表面大约5毫米,待砂浆表面略干,在砂浆表面浇一层素灰浆。具体做法是:把素灰浆浇到刮板的根部(也就是凸模的顶部〕,在均匀而缓慢地转动刮板的同时,轻轻敲打刮板,使灰浆顺畅地流到摸型的边缘。模型上浇满灰浆后,提起刮板,对摸型进行养护。养护时间一般需要10至15天,在浇灰浆的过程中,由于刮板的振动,可能会在模型表面形成径向型波纹。养护完毕,需要用砂纸模型表面上的波纹轻轻磨光,以保证模型表面光滑。 2.画线及制作围框。太阳灶的模型表面就是一个旋转抛物面凸面,制作太阳灶的灶体只需要这个表面的一部分。在不同地区,根据对太阳灶功能的不同要求,太阳灶灶体可能设计成不同形状和大小。这就需要根据设计在模型表面画出太阳灶灶体的轮廓线。在太阳灶设计中,一般只给出灶体的投影形状,那么,在模型上画灶体的实际轮廓线的时候,就需要使轮廓线在地面上的投影尽可能接近设计的形状、大小。同时,要在模型上标出预埋件和开孔的位置。太阳灶灶体的中部需要预留一个长方形孔,以适应太阳灶进行仰角角调节的需要。孔的宽度一般为50毫米、长度应该与太阳灶仰角调节的角度相适应。如果根据设计需要在灶件内配筋,也应该画出配筋走向。 由于模型的表面为光滑的凸面,制作灶体的材料是水泥砂浆或菱苦土,因而需要按照轮廓线制作围框。围框一般用扁铁或角铁制作,高度为30至50毫米。 3.捣制灶体。水泥砂浆灶体一般刷成溥壳加肋结构。薄壳部分厚度15至20毫米,边缘及肋部分厚度为30至40毫米。加肋部分需配筋,薄壳部分需加玻璃纤维。 菱苦土灶体所需材料主要为氧化美、氯化镁,它们之间的比例大约为4比3,还可以加入8%一10%的锯末、15%一18%的细绵沙,或者其他填充物。此外为了保证灶体有足够的强度;开减少脆裂,还需加入0.3%一0.5%左右的磷酸三钠作为增强剂。在配料时,氧化镁溶液的浓度应该根据气湿的高低掌握在26至28波美度,气温低时浓度高一些。 捣制灶体的过程是这样的:首先在凸模上薄薄地抹上一层废机油(或铺上一层塑料薄膜,注意把严重折叠的部分剪开〕把围框、预埋件、预留孔木块定好位置,布好筋,就可以将搅拌均匀的料撒在围框内,用白木板均匀、拍实,然后在表面苦上薄膜就可以进入养护阶段。菱苦土材料需要养护3天,水泥砂浆需要养护7天,然后就可以起摸。灶体起模后,凹面朝上;下面适当地垫上支撑物,继续养护10至15天,便可以粘贴反光材料。 一个合格的灶体,应当形状规整、尺寸准确、薄厚均白、没有斑疤和裂纹,轻轻敲击时声音清脆,从各个方向搬动时都不发生变形。 4.粘贴反光材料。太阳能灶反光材料可以用2最毫米厚的镀铝玻璃镜片,也可以用镀铝聚酯薄膜。用玻璃镜片时,需要裁成40毫米见方的小块。粘结剂可以是乳胶或乳化沥青。用镀铝薄膜时,以把它裁成100毫米宽的条,直接粘贴。薄膜背后的压敏就是粘结剂。 粘贴反光材料之前,需要把灶体的凹表面上可能存在的小孔填平,打磨光滑,擦去粉尘。在粘贴反光材料的时候,镜片之间要均匀过渡、镜片与灶体间要紧密贴合,以保证反光材料表面尽可能接近旋转抛物面。在粘贴镜片过程中,应该使粘结剂挤满镜片之间的缝隙。贴完镜片以后,需要在太阳灶整个反光表面撒上一些干燥水泥(或氧化镁粉),均匀涂抹,使水泥(或氧化镁粉)填入镜片之间不可避免的缝隙中。  太阳能灶的应用及原理详情  太阳能灶的镜面设计,大都采用旋转抛物面的聚光原理。在数学上若抛物线绕主轴旋转一周,所得的面,即称为“旋转抛物面”。若有一束平行光沿主轴射向这个抛物面,遇到抛物面的反光,则光线都会集中反射到 定点的位置,于是形成聚光,或叫“聚焦”作用。作为太阳灶使用,要求在锅底形成一个焦面,才能达到加热的目的。换言之,它并不要求严格地将阳光聚集到一个点上,而是要求一定的焦面。确定了焦面之后,我们就不难研究聚光器的聚光比,它是决定聚光式太阳灶的功率和效率的重要因素。聚光比K可用公式求得:K=采光面积/焦面面积。采光面积是指太阳灶在使用时反射镜面阳光的有效投影面积。根据我国推广太阳灶的经验,设计一个700~1200瓦功率的聚光式太阳灶,通常采光面积约为1.5~2.0平方米。个别大型蒸汽太阳灶也是聚光式太阳灶,但其采光面积较大,有的要在5平方米以上。 旋转抛物面聚光镜是按照阳光从主轴线方向入射,所以往往在通过焦点上的锅具时会留下一个阴影,这就要减少阳光的反射,直接影响太阳灶的功率。目前,我国大部分太阳灶的设计均采用了偏轴聚焦原理。 聚光式太阳灶除采用旋转抛物面反射镜外,还有将抛物面分割成若干段的反射镜,光学上称之为菲涅耳镜,也有把菲涅耳镜做成连续的螺旋式反光带片,俗称“蚊香式太阳灶”。这类灶型都是可折叠的便携式太阳灶。 聚光式太阳灶的镜面,有用玻璃整体热弯成型,也有用普通玻璃镜片碎块粘贴在设计好的底板上,或者用高反光率的镀铝涤纶薄膜裱糊在底板上。底板可用水泥制成,或用铁皮、钙塑材料等加工成型。也可直接用铝板抛光并涂以防氧化剂制成反光镜。聚光式太阳灶的架体用金属管材弯制,锅架高度应适中要便于操作,镜面仰角可灵活调节。为了移动方便,也可在架底安装两个小轮,但必须保证灶体的稳定性。在有风的地方,太阳灶要能抗风不倒。可在锅底部位加装防风罩,以减少锅底因受风的影响而功率下降。有的太阳灶装有自动跟踪 太阳的跟踪器,但是一般认为这只会增加整灶的造价。中国农村推广的一些聚光式太阳灶。大部分为水泥壳体加玻璃镜面,造价低,便于就地制作,但不利于工业化生产和运输。

太阳能热利用原理与技术

太阳能热利用的基本原理是用集热器将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。目前使用最多的集热器,主要有平板型集热器、真空管集热器、热管式集热器和聚焦型集热器等4种。通常太阳能热利用可分为:低温(80℃以下)、中温(80-350℃)和高温(350℃以上)三类热利用方式。低温热利用包括最简单的地膜、塑料大棚以及干燥器、蒸馏、供暖、太阳热水器。中温热利用有太阳能建筑、空调制冷、制盐以及其它工业用。热高温热利用有简单的聚焦型太阳灶、焊接机和高温炉。目前应用最广泛的是太阳能热水器、太阳能空调降温/制冷等。

太阳能热水器,太阳灶和太阳能温室是怎样利用太阳能的

分类: 教育/科学 >> 科学技术 问题描述: 1、太阳能热水器、太阳灶和太阳能温室是怎样利用太阳能的? 2、比较太阳能热水器与电热水器及燃气热水器各有什么优点和缺点? 3、比较太阳灶、燃煤灶各有什么优点和缺点? 4、阳光可以把东西晒热,但不能把水晒开,为什么太阳灶和一些太阳能热水器却等把水烧开呢?解析: 1、太阳能热水器是把管状容器排列开来,大面积地接受太阳光,这样能很快把容器里的水加热。太阳灶是用一个抛物面,就像手电筒中那个曲面那样,把抛物面对准太阳,而需要加热的物品放在抛物面的焦点上,抛物面能把照射在抛物面上的阳光折射到焦点上,把太阳能集中在一起,利用太阳灶熔化金属是很容易的事情。太阳能温室,是仿照大自然中的“温室效应”,用塑料薄膜把一定的空间覆盖起来,太阳光能穿透塑料薄膜进入里面,热量却不能逃逸出来,里面的温度会越来越高。 2、太阳能热水器最大的优点是节约能源,因为太阳能几乎是取之不尽的清洁能源,完全不会污染环境,又无需缴纳什么费用,属于前期一次性投资,但太阳能热水器的两大缺点是易遭雷击和产热效率低。电热水器的最大优点是使用清洁能源产热以及产热效率高,但是不安全,一旦漏电可能会危及人身安全。燃气热水器的产热效率也高,但是使用不可再生的不清洁能源,在冬日门窗紧锁极易使室内空气不流通而致人窒息,还有排放的废气会污染环境等。 3、太阳灶发热效率虽然算比较高,1平方米的抛物面上的焦点放上一枚硬币几秒钟就会熔化,但遇到阴天就会无法使用。燃煤灶,说过了,污染环境。 4、阳光直接照射在水上,因为水有透明、反射、折射等特征,所以大部分阳光都通过这些途径散失掉了,加上水也会不断蒸发而带走力量,所以阳光无法直接把水晒开。而太阳灶或太阳能热水器,是用容器装水的,就是把容器加热再把热量传递给水,这样能把水晒开。

太阳能有哪些利用方式?

低温应用民用领域民用、商业热水、采暖、工业预热、商用领域度区间为100℃以内中温应用太阳能制冷空调、太阳能工业锅炉、海水淡化等,温度区间为100℃—250℃高温应用太阳能热发电应用,温度区间为400℃以上

太阳能热水器太阳灶设计构造及工作原理

1 以太阳能作为能源进行加热的热水器通常称为太阳能热水器。是与燃气热水器、电热水器相并列的三大热水器之一。  太阳能热水器把太阳光能转化为热能,将水从低温度加热到高温度,以满足人们在生活、生产中的热水使用。太阳热水器是由全玻璃真空集热管、储水箱、支架及相关附件组成,把太阳能转换成热能主要依靠玻璃真空集热管。集热管受阳光照射面温度高,集热管背阳面温度低,而管内水便产生温差反应,利用热水上浮冷水下沉的原理,使水产生微循环而达到所需热水。 2 太阳灶是利用太阳能辐射,通过聚光获取热量,进行炊事烹饪食物的一种装置。它不烧任何燃料;没有任何污染;正常使用时比蜂窝煤炉还要快;和煤气灶速度一致。

太阳能灶利用核裂变?

凹面镜对光线有会聚作用,太阳光照射到凹面镜上,经凹面镜反射后,反射光线会会聚在焦点上,太阳灶就是利用了这一原理. 核电站是利用原子核发生裂变释放出的核能来发电的,核能是不可再生能源,是一次能源. 故答案为:会聚;核反应堆;一.

太阳能恒温阀原理

1、太阳能恒温阀原理:在恒温出水处装有高灵敏记忆合金螺旋式温感探头,探头感温自身伸长或收缩直接控制冷热水的进水流量使出水温度始终达到所设定的温度(25—55)。洗浴过程中若出现冷热水单管断水时,能瞬间自动停水,防止烫伤和着凉;冷热水进口设有单向阀的设置有效的防止了冷热水互串和冷水倒流到太阳能热水器所造成热水器以水现象。2、太阳能恒温阀是一种新型的阀门,目前广泛用于太阳能热水器、电热水器、燃气等热水器上应用,还可在宾馆酒店、医院、学校等要求提供稳定供水温度的中、小型生活热水系统和洗浴中心、宾馆等要求高稳定大流量供水的热水系统,它取代了普通的混水阀,具有安装简易、安全防烫、舒适恒温,节水节能、无需外接任何电源等特点。

求太阳能热水器恒温阀原理

概述原理及应用范围 在混水阀的混合水侧装有一个温度传感器,当系统的热水或冷水温度发生变化时,传感器和弹簧系统配合作用,使出水温度保持在设定值。对于单管的水龙头,使用恒温混水阀的优点更突出,因为混合水的温度不会随用水量的变化而变化。恒温混水阀安装在生活热水系统中,可以节约能源和舒适的使用热水,及避免被高温热水烫伤。恒温混水阀可安装在锅炉间的生活热水主管上,靠近壁挂式或客式锅炉或装在分水器系统中。恒温混水阀还可安装在太阳能热水系统中,在太阳能系统中储水箱的水温可能达到很高,特别是在夏天的时候水温更高,安装恒温混水阀的作用更显著。

核裂变,核聚变都有什么例子?太阳能,原子弹是核裂变,对不对?

核聚变 太阳和氢弹核裂变 原子弹

急!急!急!即热式电热水器 和 太阳能 都装,怎么个工作原理!

年前装修,正好两个都好装好了,用起来很爽,冬天阴天太阳能升到30度左右,再通过即热加热到40度,洗澡又舒服,又节约电(太阳能帮加热了一部分),又不用慢慢等加热。工作原理很简单,1、太阳能正常安装。2、即热式电热水器正常安装。3,把太阳能与自来水的冷热混水阀(我家是安的是那种入墙式冷热把手水龙头)的出水口,通过金属软水管(市面上10元、8元那种)连接到即热式电热水器的入水口处即可。夏天时,太阳能够热,冷热混水阀调好水温即可,即热式热水器不开电,即不工作,不用一分钱的电。冬天时,混水阀全打到太阳能的热水,再开即热式热水器,开的合适功率,调到合适水温即可,可节约不少电。

在太阳能电池上涂什么膜,才能提高收集太阳能的效率

增透膜: 利用薄膜干涉原理,使薄膜上,下表面对某种色光的反射光产生相消干涉,其结果是减小了该光的反射,增加了它的透射。如:眼睛,照相机镜头。增反膜: 利用薄膜干涉原理,使薄膜上,下表面对某种色光的反射光发生相长干涉,其结果是增加了该光的反射,减小了它的透射。如:宇航服。呵呵,现在你应该能自己判断了。

太阳能灯发光原理是什么

太阳能发电系统组成要件:1、太阳能电池组(将光能转换成电能);2、太阳能控制器(控制对蓄电池的充电管理及输出控制);3、蓄电池组(将太阳能电池组产生的电能以化学能的形式储存下来);4、逆变器(将蓄电池的电压与用电设备的电压进行转换匹配)。 原理: 白天太阳能发电系统接受太阳光辐射产生电能以化学能的形式储存在蓄电池组中,晚上(或亮度低于设定值时)太阳能控制器控制逆变器工作,给太阳能灯(此发光器件可以是高效长寿的LED也可以是普通的节能灯)输入电能,使其发光工作。当白天来临亮度高于于设定值时,太阳能控制器控制关断输出,太阳能能灯停止发光。

非晶硅与单晶硅和多晶硅的太阳能电池板区别?各自的优越性等

半导体材料的结构不一样,效率排列是:单晶>多晶>非晶,单晶效率最高,但成本也最高,多晶居中,非晶最节约材料,弱光响应好,可做成柔性的,但转换效率最低,目前估计10%左右。

关于太阳能制冷的原理

吸收式制冷是利用两种物质所组成的二元溶液作为工质来进行的。这两种物质在同一压强下有不同的沸点,其中高沸点的组分称为吸收剂,低沸点的组分称为制冷剂。常用的吸收剂—制冷剂组合有两种:一种是溴化锂—水,通常适用于大型中央空调;另一种是水—氨,通常适用于小型空调。 吸收式制冷机主要由发生器、冷凝器、蒸发器和吸收器组成。 本文以溴化锂吸收式制冷机为例。在制冷机运行过程中,当溴化锂水溶液在发生器内受到热媒水加热后,溶液中的水不断汽化;水蒸气进入冷凝器,被冷却水降温后凝结;随着水的不断汽化,发生器内的溶液浓度不断升高,进入吸收器;当冷凝器内的水通过节流阀进入蒸发器时,急速膨胀而汽化,并在汽化过程中大量吸收蒸发器内冷媒水的热量,从而达到降温制冷的目的;在此过程中,低温水蒸气进入吸收器,被吸收器内的浓溴化锂溶液吸收,溶液浓度逐步降低,由溶液泵送回发生器,完成整个循环

太阳能净化器的工作原理

太阳能空气净化器通常由高压产生电路负离子发生器、微风扇、空气过滤器等系统组成。 它的工作原理如下:机器内的微风扇(又称通风机)使室内空气循环流动,污染的空气通过机内的空气过滤 器(两次过滤)后将各种污染物清除或吸附,然后经过装在出风口的负离子发生器(工作时负离子发生器中的高压产生直流负高压),将空气不断电离,产生大量负离子,被微风扇送出,形成负离子气流,达到清洁、净化空气的目的。目前还有带太阳能电池板的车载净化器,不用接电也可以常时间运行和一些最新的除车内污染的技术,如UFCO技术等!目前市场销售的车载空气净化器型号很多,主要有五种净化元素主成,大致功能分别是:超级常温甲醛催化氧化技术(UFCO)贺泓博士及其研究小组发明的专利技术,用金属的硝酸盐或者碳酸盐等可溶性无机盐类,通过氧化沉淀得到金属氧化物。在金属氧化物上负载少量的贵金属,获得高的室温条件下甲醛氧化活性。该催化剂由金属氧化物为主体,在金属氧化物上负载贵金属组分构成。其特征在于,前述金属氧化物组分可以是下列的金属氧化物群中至少一种,前述贵金属组分可以是下列的贵金属群中至少一种。金属氧化物:三氧化二铝,氧化镍,二氧化锰,二氧化硅,三氧化二铁贵金属群:铂、钌、金、铑、钯。本发明的催化剂,由普通金属氧化物和少量贵金属组成,可有效应用于室温条件下甲醛的催化氧化。本发明的催化剂的催化活性高,持续时间长。本发明的催化剂在有效工作时间范围内甲醛的转化率可高达100%。滤网式吸附功能采用风扇强制换气,利用多孔性滤材,如活性碳、滤纸、纤维、泡棉等(目前吸附能力最强的滤材为HEPA),也就是医疗界对空气品质所要求标准的高密度空气滤材,对空气中的悬浮颗粒、有害气体进行吸附,从而使车用净化器可以有效过滤悬浮物和少量有害物质,对臭味异味、病原菌、病毒、微生物及装饰材料造成的空气污染有一定作用。其结构比较简单。静电集尘式用纤维状活性炭滤网及静电滤尘网进行净化空气。静电滤网的原理是在无纺布纤维内植入正负向永久性电荷,使布面上充满高伏特数的强力静电,用来吸附空气中的悬浮粒子,使有害人体的分子在通过滤网时被吸附在滤网内,滤网清净效率可从7%到滤心集尘95%。其结构如图1所示。首先,永久性网孔预过滤器将风机带进的脏空气和大型颗粒如毛发和纤维屑网住。其次,空气清洁器的空气净化滤网内的高压电离器使空气中的污染物小到如细菌和病毒这样0.01微米的微粒带电,并被吸附在收集盘中, 这样可以阻止有害的刺激物在室内流通。然后,活性炭过滤器吸收异味。最后,净化后的空气又回到了车厢内。通过定期洗涤,可以很方便的更新空气净化滤网。(四)臭氧强效杀菌分解功能臭氧(又名三子氧),分子式O3,是氧的同素异性体。臭氧是人类已知的仅次于氟的第二位强氧化剂,臭氧在一定浓度下能与细菌、病毒等微生物产生生物化学氧化反应。臭氧有很高的能量,所以很不稳定,在常温、常压下分子结构易变,很快分解成氧(O2)和单个氧原子(O)。单个氧(O)具有很强的活性,对细菌、病毒等微生物有较强的氧化作用。臭氧消毒是属于用车内的空调循环系统进行消毒的方式,使用专用的消毒液进入循环系统,可将车内的异味除去,有一定的消毒除菌作用,特别是针对胺、烟碱、细菌等。臭氧消毒法操作起来较简单,将一根连接着汽车专用消毒机的胶管伸入车厢内,打开汽车专用消毒机,消毒机把通过高压放电产生的高浓度臭氧送到车内的每个角落,如此只需几分钟就可以了。虽然消毒时间很短,但消灭病菌较彻底。美中不足的是,消毒后车厢里会留有一点臭氧味,不过由于臭氧可以很快分解为无色无味的氧气,所以只要将车窗打开一会儿,味道就一点没有了。(五)负氧离子清新功能空气中的气体分子或原子在某些外界条件作用下形成正负离子。正离子可使人体产生失眠、头痛、血压升高等不良病症;而负离子则对人体健康有益。而负氧离子能改善呼吸道及肺功能,影响人的中枢神经系统和血液循环系统。当人体吸入负氧离子30分钟后,肺增加吸收氧气20%,排出二氧化碳约14.5%。降低血压,改善心机功能,净化血液,活化细胞,改善睡眠,促进新陈代谢,因此称其为“空气中的维生素”。车用负氧离子空气净化器利用高压放电、有选择性地对空气中氧原子进行电离,产生负氧离子。负氧离子具有十分活泼的化学特性,它能迅速与空气中其它化合物结合,使其形成新形态的氧化物,进而使某些气态物质转化为晶态物达到净化空气目的。工作原理:模拟自然界雷电现象产生负离子和臭氧的原理,通过电子线路的作用,将输入的低电压升为直流和交流高电压,由特殊的元件进行放电,使空气电离而产生负离子和臭氧,进而产生活性氧,以改善和调节空气,使空气更加清新、自然。特点:清洁空气作用,有效清除留存在空气中的阳离子烟雾,硫酸气体,氯氧化物,一氧化碳,臭气及各种有机物质的沉淀,以保持车内干净而新鲜的空气。清除灰尘及杀菌作用,可调节温度,将有害臭氧转化成阴离子氧气的过程中产生水,因而自然能够调节湿度。可以清洁血液,振奋精神,改善睡眠,增进食欲,促进细胞的活性化,防止呼吸道疾病,增强机体抗病力而能享受幸福生活,防眩目作用,在有限的空间之内,负氧离子浓度越高,空气越清新。大范围改善空气质量我们还需要较长的时间,但小范围的生存环境我们可以利用空气净化器马上可以达到理想状态。(六)光触媒分解原理光触媒是一种在光的照射下,自身不起变化,却可以促进化学反应的物质,就象植物的光合作用中的叶绿素。它是将附着在有效介质上的纳米级TiO2颗粒通过特定光源的照射,产生一种“电子-空穴”对(一种高能粒子),这种“电子-空穴”对和周围的水、氧气发生作 用后具有极强的氧化—还原能力,能将空气中甲醛、苯等污染物直接 分解成无害无味的物质,以及破坏细菌的细胞壁,杀灭细菌并分解其丝网菌体,从而达到消除空气污染的目的。光触媒在太阳光或室内荧光灯的照射下态产生杀菌、抗毒、除臭、油污分解、防止发霉、防止青苔藻类的产生,起到强大的空气净化作用。一般来说,光触媒必须在紫外线的照射下才能发挥作用。如果不能获得太阳光照,若想激活光触媒,则必须另外加上紫外灯。紫外灯的选择波长应该在254nm或者365nm的效果比较好。

太阳能的配置

太阳能路灯设计中配置常规计算随着传统能源的日益紧缺,太阳能的应用将会越来越广泛,尤其太阳能发电领域在短短 的数年时间内已发展成为成熟的朝阳产业。 1: 目前制约太阳能发电应用的最重要环节之一是价格,以一盏双路的太阳能路灯为例,两路负载共为60瓦,(以长江中下游地区有效光照4.5h/天、每夜放电7小时、增加电池板20%预留额计算)其电池板就需要160W左右,按每瓦30元计算,电池板的费用就要4800元,再加上180AH左右的蓄电池组费用也在1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。 2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到50%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。 3:一些工程商常选用LED灯做为太阳能路灯的照明,但是LED灯的质量层差不齐,光衰严重的LED半年就有可能衰减50%光照度。所以一定要选择光衰较慢的LED灯,或者选用无极灯、低压钠灯等。 4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在100-200元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本,一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在1毫安(MA)以下的控制器。二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。三:应选择具有两路调节功率的控制器,具有功率调节的控制器已被广泛推广,在夜间行人稀少时段可以自动关闭一路或两路照明,节约用电,还可以针对LED灯进行功率调节。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控制器欠压保护值时,尽量把欠压保护值调在 ≥ 11.1V ,防止蓄电池过放。 5: 距离市区较远的地方还应该注意防盗工作,很多工程商因为施工疏忽,没有进行有效的防盗,导致蓄电池、电池板等组件被盗,不仅影响了正常照明,也造成了不必要的财产损失。目前工程案例中被盗居多为蓄电池,蓄电池埋于地下用水泥浇筑是一种有效防盗措施,在灯杆 上加装蓄电池箱的最好将其进行焊接加固。 6: 控制器的防水,控制器一般装于灯罩、电池箱中,一般也不会进水,但在实际工程案例中 控制器端子的连接线往往因为雨水顺着连接线流入控制器造成短路。所以在施工时应该注意将 内部连接线弯成“U”字型并固型,外部连接线也可以固定为“U”型,这样雨水就无法淋入造成 控制器短路,另外还可在内外线接口处涂抹防水胶。 7: 在众多太阳能路灯实际应用中,很多地方的太阳能路灯不能满足正常照明需要,尤其在阴雨天更为突出,除使用了质量较差的相关组件外,另一个主要的原因就是一味降低组件成本,不按需求设计配置,减小电池板和蓄电池的使用标准,所以导致在阴雨天路灯无法提供照明。以下提供太阳能电池板和蓄电池配置计算公式: 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流 = 60W÷12V = 5 A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载 7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池 = 5A × 7h ×( 5+1)天 = 5A × 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V = (5A × 7h × 120%)÷ 4.5h WP÷17.4V = 9.33 WP = 162(W) ★ :4.5h每天光照时间为长江中下游附近地区日照系数。 另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在5%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。 先是太阳能电池 1.太阳能电池组件串联数Ns 太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当.串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电.如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加.因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态. 计算方法如下:Ns=UR/Uoc=(Uf+UD+Uc)/Uoc(2)式中:UR为太阳能电池方阵输出最小电压; Uoc为太阳能电池组件的最佳工作电压;Uf为蓄电池浮充电压;UD为二极管压降,一般取0.7V;UC为其它因数引起的压降. 电池的浮充电压和所选的蓄电池参数有关,应等于在最低温度下所选蓄电池单体的最大工作电压乘以串联的电池数. 2.太阳能电池组件并联数Np 在确定NP之前,我们先确定其相关量的计算方法. (1)将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H:H=Ht×2.778/10000h(3)式中:2.778/10000(h·m2/kJ)为将日辐射量换算为标准光强(1000W/m2)下的平均日辐射时数的系数. (2)太阳能电池组件日发电量Qp Qp=Ioc×H×Kop×CzAh?穴4?雪式中:Ioc为太阳能电池组件最佳工作电流;Kop为斜面修正系数;Cz为修正系数,主要为组合、衰减、灰尘、充电效率等的损失,一般取0.8. (3)两组最长连续阴雨天之间的最短间隔天数Nw,此数据为本设计之独特之处,主要考虑要在此段时间内将亏损的蓄电池电量补充起来,需补充的蓄电池容量Bcb为:Bcb=A×QL×NLAh?穴5?雪 (4)太阳能电池组件并联数Np的计算方法为:Np=(Bcb+Nw×QL)/(Qp×Nw)?穴6?雪式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量. 3.太阳能电池方阵的功率计算 根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P:P=Po×Ns×NpW(7)式中:Po为太阳能电池组件的额定功率. 设计实例 以某地面卫星接收站为例,负载电压为12V,功率为25W,每天工作24h,最长连续阴雨天为15d,两最长连续阴雨天最短间隔天数为30d,太阳能电池采用云南半导体器件厂生产的38D975×400型组件,组件标准功率为38W,工作电压17.1V,工作电流2.22A,蓄电池采用铅酸免维护蓄电池,浮充电压为(14±1)V.其水平面太阳辐射数据参照表1,其水平面的年平均日辐射量为12110(kJ/m2),Kop值为0.885,最佳倾角为16.13°,计算太阳能电池方阵功率及蓄电池容量. 1.蓄电池容量Bc Bc=A×QL×NL×To/CC=1.2×(25/12)×24×15×1/0.75=1200Ah 2.太阳能电池方阵率P因为:Ns=UR/Uoc=(Uf+UD+UC)/Uoc=(14+0.7+)/17.1=0.92≈1Qp=Ioc×H×Kop×Cz=2.22×12110×(2.778/10000)×0.885×0.8≈5.29AhBcb=A×QL×NL=1.2×?穴25/12?雪×24×15=900AhQL=(25/12)×24=50Ah Np=(Bcb+Nw×QL)/(Qp×Nw)=(900+30×50)/(5.29×30)≈15 故太阳能电池方阵功率为:P=Po×Ns×Np=38×1×15=570W 3.计算结果该地面卫星接收站需太阳能电池方阵功率为570W,蓄电池容量为1200Ah---------------------------------------------------------------------接下来 是 太阳能路灯太阳能路灯设计中配置常规计算 随着传统能源的日益紧缺,太阳能的应用将会越来越广泛,尤其太阳能发电领域在短短 的数年时间内已发展成为成熟的朝阳产业。 1: 目前制约太阳能发电应用的最重要环节之一是价格,以一盏双路的太阳能路灯为例,两路负载共为60瓦,(以长江中下游地区有效光照4.5h/天、每夜放电7小时、增加电池板20%预留额计算)其电池板就需要160W左右,按每瓦30元计算,电池板的费用就要4800元,再加上180AH左右的蓄电池组费用也在1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。 2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到50%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。 3:一些工程商常选用LED灯做为太阳能路灯的照明,但是LED灯的质量层差不齐,光衰严重的LED半年就有可能衰减50%光照度。所以一定要选择光衰较慢的LED灯,或者选用无极灯、低压钠灯等。 4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在100-200元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本,一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在1毫安(MA)以下的控制器。二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。三:应选择具有两路调节功率的控制器,具有功率调节的控制器已被广泛推广,在夜间行人稀少时段可以自动关闭一路或两路照明,节约用电,还可以针对LED灯进行功率调节。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控制器欠压保护值时,尽量把欠压保护值调在 ≥ 11.1V ,防止蓄电池过放。 5: 距离市区较远的地方还应该注意防盗工作,很多工程商因为施工疏忽,没有进行有效的防盗,导致蓄电池、电池板等组件被盗,不仅影响了正常照明,也造成了不必要的财产损失。目前工程案例中被盗居多为蓄电池,蓄电池埋于地下用水泥浇筑是一种有效防盗措施,在灯杆 上加装蓄电池箱的最好将其进行焊接加固。 6: 控制器的防水,控制器一般装于灯罩、电池箱中,一般也不会进水,但在实际工程案例中 控制器端子的连接线往往因为雨水顺着连接线流入控制器造成短路。所以在施工时应该注意将 内部连接线弯成“U”字型并固型,外部连接线也可以固定为“U”型,这样雨水就无法淋入造成 控制器短路,另外还可在内外线接口处涂抹防水胶。 7: 在众多太阳能路灯实际应用中,很多地方的太阳能路灯不能满足正常照明需要,尤其在阴雨天更为突出,除使用了质量较差的相关组件外,另一个主要的原因就是一味降低组件成本,不按需求设计配置,减小电池板和蓄电池的使用标准,所以导致在阴雨天路灯无法提供照明。下提供太阳能电池板和蓄电池配置计算公式: 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流 = 60W÷12V = 5 A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载 7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池 = 5A × 7h ×( 5+1)天 = 5A × 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V = (5A × 7h × 120%)÷ 4.5h WP÷17.4V = 9.33 WP = 162(W) ★ :4.5h每天光照时间为长江中下游附近地区日照系数。 另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在5%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。 ---------------------------------------------------------------------接下来 是纯太阳能的计算公式 ①、Q=CMΔt Q:吸收的热量 C:比热容4.2×103J/(kg·℃) Δt:温升 M:吸收面积 ②、A=mCpΔΤ/Iy1(1-y2) A:集热面积 m:水(一天需要的热水) Cp:比热(1Kg水提高一度需要的热量)=4.187Kj/Kg℃ I:太阳平均照射强度Mj/m2 y1:集热器的效率(50%-55%) y2:系统的热损(10%-15%) 注:常州的平均热照射强度是18-19Mj/m2d(春秋) 举例:2个平米的集热器一天吸收的热量 A=mCpΔΤ/Iy1(1-y2) ΔΤ=18× 103Kj/m2×0.5×0.9/100 kg×4.187Kj/Kg℃ =19.34℃ Q=CMΔt×100 kg =4.2KJ/(kg·℃) ×2 m2×38.68℃×100 kg =3249.12 KJ------------------------希望是你想要的 对你有帮助---------------------

太阳能热水器集热装置与储水装置是怎样实现热交换的?

阳台的太阳能热水器,二次换热占多数, 通过一个介质换热。

太阳能容积式热交换器的工作原理?

容积式热交换器在太阳能热水工程中的应用有主要有三种情况的工作使用。下面就其运行原理介绍如下:1、太阳集热器水溶液在容积式热交换器中直接加热水,洗浴使用。2、太阳能集热器水溶液在双管束容积式热交换器中初次加热热水,同时有第二热源(蒸汽或锅炉高温水)辅助加热热水。3、太阳能集热器水溶液先进入一台单管束容积式热交换器加热水,加热的水,再进入第二台单管束容积式热交换器,用第二热源(蒸汽或锅炉高温水)二次加热热水。通过以上的太阳能容积式热交换器运行连接使用,可以使得整个热水系统有效、温控运行。真诚希望以上的技术回答能帮助到大家,谢谢!

平板太阳能蒸发器是什么原理制成的

转换原理。平板太阳能蒸发器是靠平板集热器里面的翅片将吸收的太阳辐射转换成热能的工作原理。蒸发是液态转化为气态的物理过程。蒸发器即液态物质转化为气态的物体。

太阳能上的自动控水阀原理和使用方法是什么?

太阳能上的自动控水阀原理是利用各种不同的导阀可以组成减压阀、泄压阀、遥控浮球阀、流量控制阀和水泵控制阀等。使用时无需操作,太阳能机器上本身已组装完成。水力控制阀是由主阀、导阀和其他配件组成。这些阀可以使供水管网得到稳定的流量、适宜的压力并保护了管网的安全。产品技术特性:水控阀是一种自动阀门,主阀由膜片把阀体分隔成两个腔。由于阀后或阀前压力的变化会反应到导阀,再由导阀来控制主阀是开还是关,或是半开半关,来达到调节流量或调节压力的目的。扩展资料进水管直径应大于或等于阀门公称通径,出水口应低于浮球阀。浮球阀安装应距离水管一米以上;在水箱内出水管高于水位线处钻一小孔,以防直空回水。使用时,截止阀应全开,如同一水池安装二只以上阀则应保持同一水平面。因主阀关闭要滞后浮球阀关闭约30~50秒,故水箱要有足够的空余容积,以防溢水。为防止杂质、砂粒进入阀内引起工作失灵,阀前应装过滤器。如安装在地下水池,则应在地下泵房安装报警装置。性能特点:1、运用液压原理控制,结构新颖合理。2、工作平稳可靠。在规定的使用压力范围内,可保证无水锤冲击。3、重量轻,体积小。4、安装维修方便。参考资料来源:百度百科-水位控制阀

太阳能热水器怎样安装热水循环泵?

太阳能热水器安装热水循环泵:安装管路,将进水口接上水管。在热水器上面接上进水口的水管。接上到排水管道排水孔里面。接到出水口到沐浴出水口连接口上面。冷水管道内的水流向热水器,从而通过热水器进行加热。循环泵指装置中输送反应、吸收、分离、吸收液再生的循环液用泵。一般采用单级离心泵。 循环泵的流量中等大小,在稳定工作条件下,泵的流量变化比较小。 它的扬程较低,只是用来克服循环系统的压力降。可采用低扬程泵。循环泵是指泵的作用而言,离心泵是指泵的结构而言,两者完全是两个概念。循环泵的工作原理要将水循环起来所用的泵就叫循环泵,例如水暖供热管道中的热水是靠循环泵循环起来的。循环泵优点:1.不漏水 磁力传动没有动密封件,从根本上消除了漏水问题;2.噪声小 关键零件的精度达到千分之二毫米,确保静音性能;3.寿命长 采用镜面陶瓷及陶瓷纳米轴承抗磨损,确保长寿命;4.耗电少 由于匹配合理,电机功率很小,每小时电费约一分钱;5.体积小、重量轻 长×宽×高 =120 × 76 × 105 重量不到一公斤;6.对水质要求低 循环水中若含有微小杂物不影响循环泵工作;7.具有防烧功能 水泵万一被杂物缠绕住,不会因过载损坏电机。安装及使用注意事项1.安装前应检查循环泵进出水口是否有异物堵塞;2.装入系统前应将系统管道内的杂物冲洗干净,以免循环泵运转时杂物缠绕叶轮造成堵转;3.安装时应用力轻柔,请勿大力,以免损坏泵体;4.循环泵的进、出口都要设有由任(活接头),以便装拆。5.安全接线,连线要采用带地线的三股线的插头,地线端与电机外壳联接,以保证安全。6.本产品噪声低,检查是否转动时,需用螺丝刀顶住耳朵细听。7.恩普EP-XB500型泵内潜水转动部分利用水润滑,因此,请勿长时间无水运行。

问下 一个太阳能电池充电器 中的BUCK 斩波电路时什么意思啊 或单单这个电路时啥意思 谢谢

举例太阳能板在正午电压为60V,蓄电池为24V蓄电池组。蓄电池安全充电电压为28.8V,则需要将太阳能板电压降至28V给蓄电池充电。这个降压电路就是BUCK电路

太阳能超导地热采暖原理

太阳能超导地热采暖是把太阳光能转化为热能,将水从低温度加热到高温度保持室内温度,太阳能的超导地热全都埋在楼板中,增加了保温层,有很好的隔音效果,没有噪音。很多人可能对太阳能取暖原理非常好奇。接下来小编就为大家具体介绍一下太阳能超导地热采暖原理和太阳能取暖系统优势的相关问题吧。太阳能超导地热采暖原理1、被动式太阳能取暖通过建筑的朝向和周围环境的合理布置,内部空间和外部形体的巧妙处理,以及建筑材料和结构构造的恰当选择,使建筑物在冬季能充分收集、存储和分配太阳辐射热。太阳能超导地热采暖原理2、主动式太阳能取暖系统主要由太阳能集热系统、蓄热系统、末端供热采暖系统、自动控制系统和其他能源辅助加热、换热设备集合构成,相比于被动式太阳能采暖,其供热工况更加稳定,但同时,投资费用也增大,系统更加复杂。随着经济和社会的发展,主动式太阳能采暖开始大规模应用。太阳能超导地热采暖原理3、光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。太阳能超导地热采暖原理4、光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点。太阳能取暖系统的优势1、环保可再生:太阳能是可再生能源,取之不尽用之不竭,将太阳能转化为热量,不会产生废渣、废水、废气,也没有噪音,更不会影响生态平衡,真正做到节能、环保,无污染。2、高效节能:太阳能供暖系统能最大效率的利用太阳能,对电能和其他能源消耗少,可节约能源成本40-60%以上,运行成本大大降低,使用户无需担心每月过高的电费或燃气费开支。3、安全智能化:太阳能没有常规能源所存在的易燃易爆、中毒、触电等危险,是安全可靠的供热系统。并且,系统采用了智能化控制技术,自行控制,最佳经济运行,可设置全天候供应热水,使用非常方便。4、与建筑一体化结合:平板太阳能集热器可安装在高层阳台、窗下等朝阳的墙面,可应用于高层及多层的住宅、独立别墅,与建筑更好的融为一体。太阳能的超导地热采暖技术非常成熟,安全、可靠,而且非常使用方便,价格也便宜。上是小编为大家整理的太阳能超导地热采暖原理和太阳能取暖系统优势的相关内容了,希望文章内容能够帮助到大家。

太阳能手机充电器原理图,及太阳能便携充电这块DC-DC的原理图和资料。最好中文的。谢谢!

太阳能手机充电器原理图

太阳能充电器电路图

给个邮箱,我可以给你发图的。

求太阳能电池板3V200mA升压充电电路

这个电池板的标的电流太低了 而且这电流也只有正午才有希望。平时你可以认为只有1/3 1/4电池升压是需要浪费能量的 一般的转换效率在80%-90%这样一来电流就更小了。这还没算专用的电池充电电路带来的损失。综合下来能有50%的能量转到电池里就很不错了1000MAH? 镍氢吧,充电怎么说不得有几百MA 远超那个电池板的能力你要是非得买那个 那么把正极加一个1N5817二极管 凑合着玩玩吧估计也就是正午的时候能冲进点太阳能电池板需要超大的冗余设计,否则就是垃圾一个

太阳能热水器为什么要配恒温花洒?

如果不配恒温花洒喷出的水有可能冷热水不稳定。洗澡的时候不安全。容易被热水烫伤。

浴室用的花洒有带恒温功能的吗,适用于太阳能热水器吗

您好!建议您不如换一个恒温阀,在选择恒温阀的同时,也要慎重,选择一个质量有保障的,咱们年轻人还可以,像老人、小孩洗澡的时候,也可以放心使用了,皇明的产品是配套卖的,谢谢,希望我的回答令您满意!

如何将太阳能和热水器并联,共用一个花洒

缺一个阀门

壁挂式太阳能热水器能用恒温花洒吗?为什么?

当然是可以的。因为恒温花洒可以更好地控制水温,平时洗澡的时候更舒服。

半导体激光器,LED和太阳能电池的区别

半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用LED为发光二极管,相比较激光二极管来说的话单色性,指向性等都有不小的差距太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置,和前两者的差别还是比较大的

对太阳能,机器人制作,畜电池这些感兴趣可以学么

我感觉你这些方面的兴趣可以去学汽车专业现在的汽车需要考虑到能源问题,涉及到太阳能,汽车当然也需要蓄电池(现在在开发燃料电池)来供电和启动,汽车中也用到了机器人,比如机械自动变速箱中利用机械臂换档,其实汽车中利用了很多机器人的原理汽车是仅次于航天与军事,集成度最高的行业,而且实用性普及性开发性等等很强,随着社会的发展和人们生活水平的提高,车将一点点的变成生活的必需品,所以很有发展前景,可以赚大钱。

哪个能帮我弄个《关于太阳能电池制备工艺》方面的中英文对照的资料,只要一段制作方面的就可以了??

众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为;[1]可供应太阳电池的头尾料愈来愈少;[2] 对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%。利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。 下面从两个方面对多晶硅电池的工艺技术进行讨论。 2. 实验室高效电池工艺 实验室技术通常不考虑电池制作的成本和是否可以大规模化生产,仅仅研究达到最高效率的方法和途径,提供特定材料和工艺所能够达到的极限。2.1关于光的吸收对于光吸收主要是:(1)降低表面反射;(2)改变光在电池体内的路径;(3)采用背面反射。 对于单晶硅,应用各向异性化学腐蚀的方法可在(100)表面制作金字塔状的绒面结构,降低表面光反射。但多晶硅晶向偏离(100)面,采用上面的方法无法作出均匀的绒面,目前采用下列方法: [1]激光刻槽 用激光刻槽的方法可在多晶硅表面制作倒金字塔结构,在500~900nm光谱范围内,反射率为4~6%,与表面制作双层减反射膜相当。而在(100)面单晶硅化学制作绒面的反射率为11%。用激光制作绒面比在光滑面镀双层减反射膜层(ZnS/MgF2)电池的短路电流要提高4%左右,这主要是长波光(波长大于800nm)斜射进入电池的原因。激光制作绒面存在的问题是在刻蚀中,表面造成损伤同时引入一些杂质,要通过化学处理去除表面损伤层。该方法所作的太阳电池通常短路电流较高,但开路电压不太高,主要原因是电池表面积增加,引起复合电流提高。 [2]化学刻槽 应用掩膜(Si3N4或SiO2)各向同性腐蚀,腐蚀液可为酸性腐蚀液,也可为浓度较高的氢氧化钠或氢氧化钾溶液,该方法无法形成各向异性腐蚀所形成的那种尖锥状结构。据报道,该方法所形成的绒面对700~1030微米光谱范围有明显的减反射作用。但掩膜层一般要在较高的温度下形成,引起多晶硅材料性能下降,特别对质量较低的多晶材料,少子寿命缩短。应用该工艺在225cm2的多晶硅上所作电池的转换效率达到16.4%。掩膜层也可用丝网印刷的方法形成。 [3]反应离子腐蚀(RIE) 该方法为一种无掩膜腐蚀工艺,所形成的绒面反射率特别低,在450~1000微米光谱范围的反射率可小于2%。仅从光学的角度来看,是一种理想的方法,但存在的问题是硅表面损伤严重,电池的开路电压和填充因子出现下降。 [4]制作减反射膜层 对于高效太阳电池,最常用和最有效的方法是蒸镀ZnS/MgF2双层减反射膜,其最佳厚度取决于下面氧化层的厚度和电池表面的特征,例如,表面是光滑面还是绒面,减反射工艺也有蒸镀Ta2O5, PECVD沉积 Si3N3等。ZnO导电膜也可作为减反材料。2.2金属化技术 在高效电池的制作中,金属化电极必须与电池的设计参数,如表面掺杂浓度、PN结深,金属材料相匹配。实验室电池一般面积比较小(面积小于4cm2),所以需要细金属栅线(小于10微米),一般采用的方法为光刻、电子束蒸发、电子镀。工业化大生产中也使用电镀工艺,但蒸发和光刻结合使用时,不属于低成本工艺技术。[1]电子束蒸发和电镀 通常,应用正胶剥离工艺,蒸镀Ti/Pa/Ag多层金属电极,要减小金属电极所引起的串联电阻,往往需要金属层比较厚(8~10微米)。缺点是电子束蒸发造成硅表面/钝化层介面损伤,使表面复合提高,因此,工艺中,采用短时蒸发Ti/Pa层,在蒸发银层的工艺。另一个问题是金属与硅接触面较大时,必将导致少子复合速度提高。工艺中,采用了隧道结接触的方法,在硅和金属成间形成一个较薄的氧化层(一般厚度为20微米左右)应用功函数较低的金属(如钛等)可在硅表面感应一个稳定的电子积累层(也可引入固定正电荷加深反型)。另外一种方法是在钝化层上开出小窗口(小于2微米),再淀积较宽的金属栅线(通常为10微米),形成mushroom—like状电极,用该方法在4cm2 Mc-Si上电池的转换效率达到17.3%。目前,在机械刻槽表面也运用了Shallow angle (oblique)技术。2.3 PN结的形成技术 [1]发射区形成和磷吸杂 对于高效太阳能电池,发射区的形成一般采用选择扩散,在金属电极下方形成重杂质区域而在电极间实现浅浓度扩散,发射区的浅浓度扩散即增强了电池对蓝光的响应,又使硅表面易于钝化。扩散的方法有两步扩散工艺、扩散加腐蚀工艺和掩埋扩散工艺。目前采用选择扩散,15×15cm2电池转换效率达到16.4%,n++、n+区域的表面方块电阻分别为20Ω和80Ω. 对于Mc—Si材料,扩磷吸杂对电池的影响得到广泛的研究,较长时间的磷吸杂过程(一般3~4小时),可使一些Mc—Si的少子扩散长度提高两个数量级。在对衬底浓度对吸杂效应的研究中发现,即便对高浓度的衬第材料,经吸杂也能够获得较大的少子扩散长度(大于200微米),电池的开路电压大于638mv, 转换效率超过17%。 [2]背表面场的形成及铝吸杂技术 在Mc—Si电池中,背p+p结由均匀扩散铝或硼形成,硼源一般为BN、BBr、APCVD SiO2:B2O8等,铝扩散为蒸发或丝网印刷铝,800度下烧结所完成,对铝吸杂的作用也开展了大量的研究,与磷扩散吸杂不同,铝吸杂在相对较低的温度下进行。其中体缺陷也参与了杂质的溶解和沉积,而在较高温度下,沉积的杂质易于溶解进入硅中,对Mc—Si产生不利的影响。到目前为至,区域背场已应用于单晶硅电池工艺中,但在多晶硅中,还是应用全铝背表面场结构。 [3]双面Mc—Si电池 Mc—Si双面电池其正面为常规结构,背面为N+和P+相互交叉的结构,这样,正面光照产生的但位于背面附近的光生少子可由背电极有效吸收。背电极作为对正面电极的有效补充,也作为一个独立的栽流子收集器对背面光照和散射光产生作用,据报道,在AM1.5条件下,转换效率超过19%。2.4 表面和体钝化技术 对于Mc—Si,因存在较高的晶界、点缺陷(空位、填隙原子、金属杂质、氧、氮及他们的复合物)对材料表面和体内缺陷的钝化尤为重要,除前面提到的吸杂技术外,钝化工艺有多种方法,通过热氧化使硅悬挂键饱和是一种比较常用的方法,可使Si-SiO2界面的复合速度大大下降,其钝化效果取决于发射区的表面浓度、界面态密度和电子、空穴的浮获截面。在氢气氛中退火可使钝化效果更加明显。采用PECVD淀积氮化硅近期正面十分有效,因为在成膜的过程中具有加氢的效果。该工艺也可应用于规模化生产中。应用Remote PECVD Si3N4可使表面复合速度小于20cm/s。 3 工业化电池工艺 太阳电池从研究室走向工厂,实验研究走向规模化生产是其发展的道路,所以能够达到工业化生产的特征应该是: [1]电池的制作工艺能够满足流水线作业; [2]能够大规模、现代化生产; [3]达到高效、低成本。 当然,其主要目标是降低太阳电池的生产成本。目前多晶硅电池的主要发展方向朝着大面积、薄衬底。例如,市场上可见到125×125mm2、150×150mm2甚至更大规模的单片电池,厚度从原来的300微米减小到目前的250、200及200微米以下。效率得到大幅度的提高。日本京磁(Kyocera)公司150×150的电池小批量生产的光电转换效率达到17.1%,该公司1998年的生产量达到25.4MW。 (1)丝网印刷及其相关技术 多晶硅电池的规模化生产中广泛使用了丝网印刷工艺,该工艺可用于扩散源的印刷、正面金属电极、背接触电极,减反射膜层等,随着丝网材料的改善和工艺水平的提高,丝网印刷工艺在太阳电池的生产中将会得到更加普遍的应用。 a.发射区的形成 利用丝网印刷形成PN结,代替常规的管式炉扩散工艺。一般在多晶硅的正面印刷含磷的浆料、在反面印刷含铝的金属浆料。印刷完成后,扩散可在网带炉中完成(通常温度在900度),这样,印刷、烘干、扩散可形成连续性生产。丝网印刷扩散技术所形成的发射区通常表面浓度比较高,则表面光生载流子复合较大,为了克服这一缺点,工艺上采用了下面的选择发射区工艺技术,使电池的转换效率得到进一步的提高。 b.选择发射区工艺 在多晶硅电池的扩散工艺中,选择发射区技术分为局部腐蚀或两步扩散法。局部腐蚀为用干法(例如反应离子腐蚀)或化学腐蚀的方法,将金属电极之间区域的重扩散层腐蚀掉。最初,Solarex应用反应离子腐蚀的方法在同一台设备中,先用大反应功率腐蚀掉金属电极间的重掺杂层,再用小功率沉积一层氮化硅薄膜,该膜层发挥减反射和电池表面钝化的双重作用。在100cm2的多晶上作出转换效率超过13%的电池。在同样面积上,应用两部扩散法,未作机械绒面的情况下转换效率达到16%。 c.背表面场的形成 背PN结通常由丝网印刷A浆料并在网带炉中热退火后形成,该工艺在形成背表面结的同时,对多晶硅中的杂质具有良好的吸除作用,铝吸杂过程一般在高温区段完成,测量结果表明吸杂作用可使前道高温过程所造成的多晶硅少子寿命的下降得到恢复。良好的背表面场可明显地提高电池的开路电压。 d.丝网印刷金属电极 在规模化生产中,丝网印刷工艺与真空蒸发、金属电镀等工艺相比,更具有优势,在目前的工艺中,正面的印刷材料普遍选用含银的浆料,其主要原因是银具有良好的导电性、可焊性和在硅中的低扩散性能。经丝网印刷、退火所形成的金属层的导电性能取决于浆料的化学成份、玻璃体的含量、丝网的粗糟度、烧结条件和丝网版的厚度。八十年度初,丝网印刷具有一些缺陷,ⅰ)如栅线宽度较大,通常大于150微米;ⅱ)造成遮光较大,电池填充因子较低;ⅲ)不适合表面钝化,主要是表面扩散浓度较高,否则接触电阻较大。目前用先进的方法可丝网印出线宽达50微米的栅线,厚度超过15微米,方块电阻为2.5~4mΩ,该参数可满足高效电池的要求。有人在15×15平方厘米的Mc—Si上对丝网印刷电极和蒸发电极所作太阳电池进行了比较,各项参数几乎没有差距。4 结束语 多晶硅电池的制作工艺不断向前发展,保证了电池的效率不断提高,成本下降,随着对材料、器件物理、光学特性认识的加深,导致电池的结构更趋合理,实验室水平和工业化大生产的距离不断缩小。丝网印刷和埋栅工艺为高效、低成本电池发挥了主要作用,高效Mc—Si电池组件已大量进入市场,目前的研究正致力于新性薄膜结构、廉价衬底上的电池等,面对用户,我们需要作的工作是实现更大批量的、低成本的生产,愿我们更加努力实现这一目标。

哪个能帮我弄个《关于太阳能电池制备工艺》方面的中英文对照的资料,只要一段制作方面的就可以了??

众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为;[1]可供应太阳电池的头尾料愈来愈少;[2] 对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%。利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。 下面从两个方面对多晶硅电池的工艺技术进行讨论。 2. 实验室高效电池工艺 实验室技术通常不考虑电池制作的成本和是否可以大规模化生产,仅仅研究达到最高效率的方法和途径,提供特定材料和工艺所能够达到的极限。2.1关于光的吸收对于光吸收主要是:(1)降低表面反射;(2)改变光在电池体内的路径;(3)采用背面反射。 对于单晶硅,应用各向异性化学腐蚀的方法可在(100)表面制作金字塔状的绒面结构,降低表面光反射。但多晶硅晶向偏离(100)面,采用上面的方法无法作出均匀的绒面,目前采用下列方法: [1]激光刻槽 用激光刻槽的方法可在多晶硅表面制作倒金字塔结构,在500~900nm光谱范围内,反射率为4~6%,与表面制作双层减反射膜相当。而在(100)面单晶硅化学制作绒面的反射率为11%。用激光制作绒面比在光滑面镀双层减反射膜层(ZnS/MgF2)电池的短路电流要提高4%左右,这主要是长波光(波长大于800nm)斜射进入电池的原因。激光制作绒面存在的问题是在刻蚀中,表面造成损伤同时引入一些杂质,要通过化学处理去除表面损伤层。该方法所作的太阳电池通常短路电流较高,但开路电压不太高,主要原因是电池表面积增加,引起复合电流提高。 [2]化学刻槽 应用掩膜(Si3N4或SiO2)各向同性腐蚀,腐蚀液可为酸性腐蚀液,也可为浓度较高的氢氧化钠或氢氧化钾溶液,该方法无法形成各向异性腐蚀所形成的那种尖锥状结构。据报道,该方法所形成的绒面对700~1030微米光谱范围有明显的减反射作用。但掩膜层一般要在较高的温度下形成,引起多晶硅材料性能下降,特别对质量较低的多晶材料,少子寿命缩短。应用该工艺在225cm2的多晶硅上所作电池的转换效率达到16.4%。掩膜层也可用丝网印刷的方法形成。 [3]反应离子腐蚀(RIE) 该方法为一种无掩膜腐蚀工艺,所形成的绒面反射率特别低,在450~1000微米光谱范围的反射率可小于2%。仅从光学的角度来看,是一种理想的方法,但存在的问题是硅表面损伤严重,电池的开路电压和填充因子出现下降。 [4]制作减反射膜层 对于高效太阳电池,最常用和最有效的方法是蒸镀ZnS/MgF2双层减反射膜,其最佳厚度取决于下面氧化层的厚度和电池表面的特征,例如,表面是光滑面还是绒面,减反射工艺也有蒸镀Ta2O5, PECVD沉积 Si3N3等。ZnO导电膜也可作为减反材料。2.2金属化技术 在高效电池的制作中,金属化电极必须与电池的设计参数,如表面掺杂浓度、PN结深,金属材料相匹配。实验室电池一般面积比较小(面积小于4cm2),所以需要细金属栅线(小于10微米),一般采用的方法为光刻、电子束蒸发、电子镀。工业化大生产中也使用电镀工艺,但蒸发和光刻结合使用时,不属于低成本工艺技术。[1]电子束蒸发和电镀 通常,应用正胶剥离工艺,蒸镀Ti/Pa/Ag多层金属电极,要减小金属电极所引起的串联电阻,往往需要金属层比较厚(8~10微米)。缺点是电子束蒸发造成硅表面/钝化层介面损伤,使表面复合提高,因此,工艺中,采用短时蒸发Ti/Pa层,在蒸发银层的工艺。另一个问题是金属与硅接触面较大时,必将导致少子复合速度提高。工艺中,采用了隧道结接触的方法,在硅和金属成间形成一个较薄的氧化层(一般厚度为20微米左右)应用功函数较低的金属(如钛等)可在硅表面感应一个稳定的电子积累层(也可引入固定正电荷加深反型)。另外一种方法是在钝化层上开出小窗口(小于2微米),再淀积较宽的金属栅线(通常为10微米),形成mushroom—like状电极,用该方法在4cm2 Mc-Si上电池的转换效率达到17.3%。目前,在机械刻槽表面也运用了Shallow angle (oblique)技术。2.3 PN结的形成技术 [1]发射区形成和磷吸杂 对于高效太阳能电池,发射区的形成一般采用选择扩散,在金属电极下方形成重杂质区域而在电极间实现浅浓度扩散,发射区的浅浓度扩散即增强了电池对蓝光的响应,又使硅表面易于钝化。扩散的方法有两步扩散工艺、扩散加腐蚀工艺和掩埋扩散工艺。目前采用选择扩散,15×15cm2电池转换效率达到16.4%,n++、n+区域的表面方块电阻分别为20Ω和80Ω. 对于Mc—Si材料,扩磷吸杂对电池的影响得到广泛的研究,较长时间的磷吸杂过程(一般3~4小时),可使一些Mc—Si的少子扩散长度提高两个数量级。在对衬底浓度对吸杂效应的研究中发现,即便对高浓度的衬第材料,经吸杂也能够获得较大的少子扩散长度(大于200微米),电池的开路电压大于638mv, 转换效率超过17%。 [2]背表面场的形成及铝吸杂技术 在Mc—Si电池中,背p+p结由均匀扩散铝或硼形成,硼源一般为BN、BBr、APCVD SiO2:B2O8等,铝扩散为蒸发或丝网印刷铝,800度下烧结所完成,对铝吸杂的作用也开展了大量的研究,与磷扩散吸杂不同,铝吸杂在相对较低的温度下进行。其中体缺陷也参与了杂质的溶解和沉积,而在较高温度下,沉积的杂质易于溶解进入硅中,对Mc—Si产生不利的影响。到目前为至,区域背场已应用于单晶硅电池工艺中,但在多晶硅中,还是应用全铝背表面场结构。 [3]双面Mc—Si电池 Mc—Si双面电池其正面为常规结构,背面为N+和P+相互交叉的结构,这样,正面光照产生的但位于背面附近的光生少子可由背电极有效吸收。背电极作为对正面电极的有效补充,也作为一个独立的栽流子收集器对背面光照和散射光产生作用,据报道,在AM1.5条件下,转换效率超过19%。2.4 表面和体钝化技术 对于Mc—Si,因存在较高的晶界、点缺陷(空位、填隙原子、金属杂质、氧、氮及他们的复合物)对材料表面和体内缺陷的钝化尤为重要,除前面提到的吸杂技术外,钝化工艺有多种方法,通过热氧化使硅悬挂键饱和是一种比较常用的方法,可使Si-SiO2界面的复合速度大大下降,其钝化效果取决于发射区的表面浓度、界面态密度和电子、空穴的浮获截面。在氢气氛中退火可使钝化效果更加明显。采用PECVD淀积氮化硅近期正面十分有效,因为在成膜的过程中具有加氢的效果。该工艺也可应用于规模化生产中。应用Remote PECVD Si3N4可使表面复合速度小于20cm/s。 3 工业化电池工艺 太阳电池从研究室走向工厂,实验研究走向规模化生产是其发展的道路,所以能够达到工业化生产的特征应该是: [1]电池的制作工艺能够满足流水线作业; [2]能够大规模、现代化生产; [3]达到高效、低成本。 当然,其主要目标是降低太阳电池的生产成本。目前多晶硅电池的主要发展方向朝着大面积、薄衬底。例如,市场上可见到125×125mm2、150×150mm2甚至更大规模的单片电池,厚度从原来的300微米减小到目前的250、200及200微米以下。效率得到大幅度的提高。日本京磁(Kyocera)公司150×150的电池小批量生产的光电转换效率达到17.1%,该公司1998年的生产量达到25.4MW。 (1)丝网印刷及其相关技术 多晶硅电池的规模化生产中广泛使用了丝网印刷工艺,该工艺可用于扩散源的印刷、正面金属电极、背接触电极,减反射膜层等,随着丝网材料的改善和工艺水平的提高,丝网印刷工艺在太阳电池的生产中将会得到更加普遍的应用。 a.发射区的形成 利用丝网印刷形成PN结,代替常规的管式炉扩散工艺。一般在多晶硅的正面印刷含磷的浆料、在反面印刷含铝的金属浆料。印刷完成后,扩散可在网带炉中完成(通常温度在900度),这样,印刷、烘干、扩散可形成连续性生产。丝网印刷扩散技术所形成的发射区通常表面浓度比较高,则表面光生载流子复合较大,为了克服这一缺点,工艺上采用了下面的选择发射区工艺技术,使电池的转换效率得到进一步的提高。 b.选择发射区工艺 在多晶硅电池的扩散工艺中,选择发射区技术分为局部腐蚀或两步扩散法。局部腐蚀为用干法(例如反应离子腐蚀)或化学腐蚀的方法,将金属电极之间区域的重扩散层腐蚀掉。最初,Solarex应用反应离子腐蚀的方法在同一台设备中,先用大反应功率腐蚀掉金属电极间的重掺杂层,再用小功率沉积一层氮化硅薄膜,该膜层发挥减反射和电池表面钝化的双重作用。在100cm2的多晶上作出转换效率超过13%的电池。在同样面积上,应用两部扩散法,未作机械绒面的情况下转换效率达到16%。 c.背表面场的形成 背PN结通常由丝网印刷A浆料并在网带炉中热退火后形成,该工艺在形成背表面结的同时,对多晶硅中的杂质具有良好的吸除作用,铝吸杂过程一般在高温区段完成,测量结果表明吸杂作用可使前道高温过程所造成的多晶硅少子寿命的下降得到恢复。良好的背表面场可明显地提高电池的开路电压。 d.丝网印刷金属电极 在规模化生产中,丝网印刷工艺与真空蒸发、金属电镀等工艺相比,更具有优势,在目前的工艺中,正面的印刷材料普遍选用含银的浆料,其主要原因是银具有良好的导电性、可焊性和在硅中的低扩散性能。经丝网印刷、退火所形成的金属层的导电性能取决于浆料的化学成份、玻璃体的含量、丝网的粗糟度、烧结条件和丝网版的厚度。八十年度初,丝网印刷具有一些缺陷,ⅰ)如栅线宽度较大,通常大于150微米;ⅱ)造成遮光较大,电池填充因子较低;ⅲ)不适合表面钝化,主要是表面扩散浓度较高,否则接触电阻较大。目前用先进的方法可丝网印出线宽达50微米的栅线,厚度超过15微米,方块电阻为2.5~4mΩ,该参数可满足高效电池的要求。有人在15×15平方厘米的Mc—Si上对丝网印刷电极和蒸发电极所作太阳电池进行了比较,各项参数几乎没有差距。4 结束语 多晶硅电池的制作工艺不断向前发展,保证了电池的效率不断提高,成本下降,随着对材料、器件物理、光学特性认识的加深,导致电池的结构更趋合理,实验室水平和工业化大生产的距离不断缩小。丝网印刷和埋栅工艺为高效、低成本电池发挥了主要作用,高效Mc—Si电池组件已大量进入市场,目前的研究正致力于新性薄膜结构、廉价衬底上的电池等,面对用户,我们需要作的工作是实现更大批量的、低成本的生产,愿我们更加努力实现这一目标。

太阳能热水器温差控制器的DS18B20数字温度传感器

1.1 独特的单线接口方式,在与DS18B20微处理器连接时仅 需要一条口线即可实现微处理器与DS18B20的双向通讯。1.2 测温范围 -55℃~+125℃,固有测温分辨率0.5℃。1.3 支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现多点测温1.4 工作电源: 3~5V/DC1.5 在使用中不需要任何外围元件,测量结果以9~12位数字量方式串行传送1.6 保护管直径/插入深度 Φ6 /35mm, Φ6 /105mm, Φ6 /150mm等1.7 适用于各种介质工业管道和狭小空间设备测温1.8 标准安装螺纹 M10X1, M12X1.5, G1/2”任选1.9 PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。 2.1 该产品适用于太阳能热水器室内水箱的测温和控制2.2: 也可以用于供热/制冷管道温度计量和工业领域测温和控制3: 型 号 测温范围 安装螺纹 保护管直径 电缆长度TS- 18B20 -55~125 无 Φ6 1.5 mTS- 18B20A -55~125 M10X1 Φ6 1.5mTS- 18B20B -55~125 G 1/2” Φ6 接线盒

太阳能节能灯工作原理太阳能节能灯价格

太阳能是一种绿色的可再生能源,为了可持续发展,现在市场上都在大力推出太阳能产品,而太阳能节能灯则是其中的一种。接下来就一起去看看太阳能节能灯的工作原理,以及太阳能节能灯价格是怎么样的。太阳能节能灯工作原理太阳能节能灯主要包括由太阳能电池板、充放电控制器、蓄电池、灯具外壳、负载这五个组成部分。其中太阳能电池板是让太阳能节能灯能最正常工作的重要的配件,也是最容易出现故障的元件。因此在购买太阳能节能灯的时候要特别留意这个元件,尽量要为自己选择高质量的太阳能节能灯产品。太阳能节能灯的工作原理是:白天太阳光猛烈的时候太阳能电池组对太阳能进行存储,然后将存储到的太阳能通过充放电控制器等各种装置转化成为电能,在在节能灯照明系统需要用电的时候,蓄电池会将电能进行能力的分布和存储下来,在阴天的时候同样可以有电源供给太阳能节能灯利用,为人们带来照明。太阳能节能灯价格市场上的在售的太阳能节能灯产品和品牌有很多,根据太阳能节能灯的尺寸、大小和品牌等不同,价格也不一样,接下来就简单介绍一些常见的产品及价格,供选购时参考:12V太阳能灯泡,8.8元;N600多用途太阳能灯,17元;KOSDA太阳能LED小夜灯,37元;通康节能照明高效太阳能路灯,1479元;海燕照明太阳能路灯,1611元;恒阳灯具制造新农村建设道路照明用超长使用寿命超亮型节能30W低压太阳能灯,1300元。太阳能节能灯的工作原理,以及太阳能节能灯价格就简单介绍到这了。家装网提醒您使用太阳能节能灯也需要注意安全,定期对太阳能节能灯进行检查,发现故障及时维修。
 首页 上一页  1 2 3 4 5 6 7 8  下一页  尾页