谐波电流

阅读 / 问答 / 标签

谐波电流的污染治理

对于现有供电网络或待建电网中的电力污染情况,要进行仔细分析,通常解决的方法有两个:一是局部重组电网结构,分离或隔离产生电力污染的设备;二是使用电源净化滤波设备进行治理,通常电压谐波是由电流谐波产生的,有效地抑制电流谐波就会使电压畸变达到要求的范围。国内外很多单位已开始重视电源污染的治理, 投资安装电源净化滤波装置, 取得了提高电源品质和节能的双重效果。 为解决电力电子装置和其他谐波源的谐波污染问题,基本思路有两条:一条是装设谐波补偿装置来补偿谐波,这对各种谐波源都是适用的;另一条是对电力电子装置本身进行改造,使期不产生谐波,且功率因数可控制为1,这当然只适用于作为主要谐波源的电力电子装置。谐波抑制主要有以下几种方法:1)串联电抗器2)有源滤波补偿3)无源滤波补偿4)增加整流设备的相数5)安装各种突波吸收保护装置,如避雷器等装设谐波补偿装置的传统方法就是采用LC调谐滤波器。这种方法既可补偿谐波,又可补偿无功功率,而且结构简单,一直被广泛使用。这种方法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,导致谐波放大,使LC滤波器过载甚至烧毁。此外,它只能补偿固定频率的谐波,补偿效果也不甚理想。21世纪初期,无源滤波补偿是实际应用最多、效果较好、价格较低的解决方案,它包括三种基本形式:串联滤波、并联滤波和低通滤波(串并混合)。其中串联滤波主要适用于三次谐波的治理;低通滤波主要适用于高次谐波的治理;并联滤波是一种综合装置,它可滤除多次谐波,同时提供系统的无功功率,是应用最广泛的电源净化滤波装置。随着电力电子技术的发展,有源滤波补偿技术日益成熟,并得到了广泛应用。较传统的无源滤波补偿系统,它具有功能多,适应性好及响应速度快等优点,随着价格的不断下降,应用将日益普遍。有源滤波补偿系统在很多重要场所应用效果非常好。 人们对有功功率的理解非常容易,而要深刻认识无功功率却并不是轻而易举的。在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无获得公认的无功功率定义。但是,对无功功率这一概念的重要性,对无功补偿重要性的认识,却是一致的。无功补偿应包含对基波无功功率补偿和对谐波无功功率的补偿。无功功率对供电系统和负荷的运行都是十分重要的。电力系统网络元件的阻抗主要是电感性的。因此,粗略地说,为了输送有功功率,就要求送电端和受电端的电压有一相位差,这在相当宽的范围内可以实现;而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。不仅大多数网络元件消耗无功功率,大多数负载也需要消耗无功功率。网络元件和负载所需要的无功功率必须从网络中某个地方获得。显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。无功补偿的作用主要有以下几点:(1) 提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗。(2) 稳定受电端及电网的电压,提高供电质量。在长距离输电线中合适的地点设置动态无功补偿装置还可以改善输电系统的稳定性,提高输电能力。(3) 在电气化铁道等三相负载不平衡的场合,通过适当的无功裣可以平衡三相的有功及无功负载。

变频器输入谐波电流大吗?

一般变频器是三相桥整流模式,其产生的谐波电流是3、5、7次,总的谐波畸变率一般在35%左右,如果有采用大功率的变频器,最好是采用有源滤波器进行谐波治理。

单相变压器中谐波电流的特点

大电流导致电。单相变压器中的谐波电流的特点是因谐波引起的大电流导致电容补偿装置无法正常工作。单相变压器是一次绕组和二次绕组均为单相绕组的变压器。

直流电路会产生谐波电流吗

谐波电流肯定还是有的,绿波杰能多次验证的结果,对于一般的谐波,加入lc滤波器之后,谐波电流会降至25%左右,这个数值根据系统本身谐波电流的大小而略有不同。

为什么总谐波电流等于各谐波电流的方均根呢?有什么计算方法或依据呢,谢谢!

电流的数学表达式 I= a*sin(αω+θ) 可以根据数学中的傅里叶级数,变换成 I = A + Σ[ B*sin(αnω + θ1) + C*cos(βnω + θ2)] 的傅里叶级数形式,其中 n 是从 1 到 +∞ 取值,n为几,则称 nω 对应的表达式为几次谐波,A代表了谐波中的直流分量。如果要计算幅值,那么需要对 I 的傅里叶级数右边进行取模,则需要求方均根,所以,总的谐波电流就等于各谐波电流的方均根。计算的依据就是数学中的傅里叶级数,或者信号与系统中所称的傅里叶变换。具体公式请参见高数或《信号与系统》

单相变压器的谐波电流特点

变压器谐波特点如下:1、单相变压器空载运行时,输入电流主要为励磁电流,波形呈现尖顶波,主要含3、5、7次谐波。2、单相变压器负载运行时,谐波主要取决于负载。3、三相变压器空载运行时,输入电流主要为励磁电流,含有较丰富的谐波,副边按照三角型。4、连接时,无三次谐波。副边按照星型连接时,与单相变压器相同。5、三相变压器负载运行时,谐波主要取决于负载。6、正常运行时,接地与否不影响谐波

总谐波电流是怎么计算出来的

电流谐波含量计算方法:所谓电力系统谐波潮流计算,就是通过求解网络方程In=YnUn (n=3,5,7…...n:谐波次数。In为谐波源负荷注入电网的n次谐波电流列向量。Yn为电网的n次谐波导纳阵。Un为电网中各节点母线的n次谐波电压列向量)。求得电网中各节点(母线)得谐波电压,进而求得各支路中的谐波电流。当电力系统中存在有谐波源时,此时系统中个接点电压和支路电流均会有高次谐波。为了确定谐波电压和谐波电流在供电系统中的分布,需要对谐波阻抗构成的等效电路进行潮流计算,同时当整流装置供电系统中有容性元件存在时,还要根据各支路谐波阻抗的性质和大小,来检验有无谐振的情况。进行谐波潮流计算,首先必须确定电网元件的谐波阻抗。

谐波电流为什么主要为57次电流

因为电动机为感性复合,容易产生250HZ 350HZ的震荡

根据谐波电流多少怎么选则APF容量

根据实测结果还要考虑10%~15%的裕量,比如75×1.15=86.25A,那么可以选择100A容量的APF,或者仍选择75A的,但谐波治理效果稍微差些,这样可以给用户节约投资。

谐波电流怎么引起短路器跳闸

这个跳闸呢,原因两种:谐波引起相线过载,或中性线过载而使得断路器跳闸。设备的泄露电流过大引起RCD动作。但绝对不可能是由于谐波电流引起RCD动作,因为假设相线谐波电流为I0,中性线为3I0,在RCD上产生的电磁效应相互抵消了。而2的可能性较大,可以多分几个回路,或者是加大RCD的动作值。

谐波电流怎么引起短路器跳闸

这个跳闸呢,原因两种:1.谐波引起相线过载,或中性线过载而使得断路器跳闸。2.设备的泄露电流过大引起RCD动作。但绝对不可能是由于谐波电流引起RCD动作,因为假设相线谐波电流为I0,中性线为3I0,在RCD上产生的电磁效应相互抵消了。而2的可能性较大,可以多分几个回路,或者是加大RCD的动作值。

高次谐波电流什么是?

高次谐波结构 高次谐波结构 高次谐波的定义 “高次谐波” 英文对照 : high order harmonic; higherharmonic; "高次谐波" 在学术文献中的解释: 1、对于任意一复合周期振动函数Y(T)按傅氏级数分解表示为:第一项称均值或直流分量,第二项为基波或基本振动,第三项称二次谐波,依次类推或把二次谐波以后的统称为高次谐波 。 2、在电子电气设备控制系统中,遇到的大量和经常需要解决的主要接地问题是系统接地.x3:反映控制节点性质的优先级相对大小,借助模糊聚类分析理论中的标定方法,将三项指标归并为一项综合控制指标aij来反映控制节点nj对故障节点n、的电压控制程度和控制能力 3、2倍以上的正弦波均称为高次谐波.▲高次谐波是电力系统的公害,其危害主要有:(1)谐波电流使输电线路、发电机、电动机、变压器产生附加损耗,温度升高 。 4、由于谐波的频率是基波频率的整数倍数也常称为高次谐波. 高次谐波电流 由于目前的变频器几乎都采用PWM控制方式,这样的脉冲调制形式使得变频器运行时在电源 侧产生高次谐波电流,并造成电压波形畸变,对电源系统产生严重影响。 随着电力电子技术的飞速发展,各种新型用电设备越来越多地问世和使用,高次谐波的影响越来越严重。电力系统受到谐波污染后,轻则影响系统的运行效率,重则损坏设备以至危害电力系统的安全运行。以前,电力系统考核电能质量的主要指标是电压的幅值和频率,现在世界各国都把电网电压正谐波形畸变率极限值作为电能质量考核指标之一,正确认识谐波已成为电力工作者的重要任务之一。因此,研究和分析谐波产生的原因、危害和抑制谐波的措施具有重要的实际意义。

谐波电流含有率的标准是什么?

注入公共连接点的谐波电流允许值谐波次数和谐波电流允许值(A)标称电压(kv)基准短路容量(MVA)23456789101112.........0.38V107862396226441921162823610043342134142411118.5167.110100262013208.5156.46.85.19.34.335250...................................................................差表当公共连接点的最小短路容量与标所列基准短路容量不同时,谐波电流允许Ih=(Sk1/Sk2)*IhpSk1:公共连接点最小短路容量SK2:表中的基准短路容量Ihp:表中电流两个谐波源叠加Ih=(Ih1^2+Ih2^2+2Ih1Ih2cosθ)

怎样抑制谐波电流

加装滤波装置是治本的方法

谐波电流对电流互感器有什么影响?

  如果是常用的测量用互感器,谐波通常对它没有太大影响,反过来,互感器会滤掉一些谐波,不会把谐波的准确数据传送到仪表,从而导致测量误差。因为互感器是按照50Hz设计的。  互感器:互感器(instrument transformer)又称为仪用变压器,是按比例变换电压或电流的设备及电流互感器和电压互感器的统称。其功能主要是将高电压或大电流按比例变换成标准低电压(100V)或标准小电流(5A或1A,均指额定值),以便实现测量仪表、保护设备及自动控制设备的标准化、小型化。同时互感器还可用来隔开高电压系统,以保证人身和设备的安全。按比例变换电压或电流的设备。互感器主要分为电压互感器和电流互感器两种。

变频器是怎样产生谐波电流的?

单相整流器由整流桥和平滑电容构成。一般情况下,负载的电流由平滑电容供给,仅当正弦波的电压高于平滑电容的电压时,才会有电流流入电容和负载中,因此仅在电压 峰值处产生脉冲状,这种脉冲电流中包含了丰富的谐波成分。同样的道理,三相整流器也会产生谐波电流,但是这时对应每个波峰,不是一个脉冲电流,而是两个脉冲电流。 无论单相整流器还是三相整流器,他们的电流波形都发生了畸变,不再是正弦电流,因此包含了谐波成分。 产生谐波电流的负载称为非线性负载,与之对应,不产生谐波电流的负载称为线性负载。线性负载的阻抗不会随着施加在其上面的电压发生变化。这时,流过负载的电流I=U/R,这意味着电流I与电压U是线性关系,线性负载由此得名。当电压为正弦波时,充过线性负载的电流依然为正弦电流,因此不会产生谐波电流成份。 理想的电阻、电感和电容都是线性负载。但是实际的电感可能是非线性负载,例如,带有铁芯的电感,其电感量随着外加电压而变化(随之而来的是阻抗变化),因此是非线性负协。变压器产生谐波电流就是这个道理。 非线性负载的阻抗随着施加在其上的电压 变化,这时流过它的电流与施加在它上面的电压 不是线必关系,故称其为非线性负载。对这样的负载施加正弦波电压时,流过负载的电流值不再是正弦波,其中包含量谐波成分。 带平滑电容的整流器是最常见的非线性负载,它产生的谐波电流与电路结构有关。整流器从电网吸取脉冲电流,每个交流电周期整流出的脉冲称为这个整流器的脉数。例如:对于单相整流电路,每个周期输出2个直流脉冲,因此称为二脉整流器;对于三相整流电路,每个周期输出6个脉冲,因些称为6脉整流器。除此以外,还有12脉整流器、13脉整流器等。 总结:变频器的谐波电流是由变频器整流输入电路导致的。不同脉数的整流器产生的谐波成分不同,三相六脉整流器产生的谐波电流以5次、7次、11次、13次为主。增加变频器输入整流器的脉数可以减小谐波电流。

谐波电压和谐波电流是什么关系?急急!!

他们两者都是相互存在的吧,只不过在某一些谐波是他们的阻抗是不一样的,所以存在你上面说的情况,谐波源指的的是产生谐波的设备

谐波电流算是消耗有功吗?

有功消耗只有在电压和电流同频率下才会产生,比如基波电压和5次谐波电流不会产生有功(原因是三角函数的正交性),而一般情况下谐波电压较小,所以谐波有功功率较小,基本可以忽略。另外,谐波功率可正可负,这点与基波功率不同。

三次谐波电流为什么是无功电流

因为三次谐波是零序的吧?

变频器谐波电流会做功吗?

谐波电流你可以理解为电能质量中的污染,污染当然是不能使用的了

基波、谐波、谐波电流、谐波电压的关系及定义

基波,就是电气产品正常工作所需要的频率的波,称之为基波。像我们国家电源的基波频率为50Hz。凡频率不是基波频率的波,统称为谐波,谐波频率一般是基波频率的整数倍。谐波的表征,除了频率之外,还有电流和电压两个参数,这就是谐波电流和谐波电压了。

怎样度量谐波电流与谐波电压

谐波电流与谐波电压用畸变率来表示,有以下几种定义:总谐波电流畸变率THID:THID = 总谐波电流的有效值/基波电流的有效值总谐波电流的有效值为:总谐波电压畸变率THVD:THVD = 总谐波电压的有效值/基波电压的有效值总谐波电压的有效值为:单次谐波电流畸变率:这个量用于度量某一次谐波电流所占的比例,例如N次谐波电流的有效值为IN,基波电流的有效值为I1,则N次谐波电流的畸变率为:N次谐波电流畸变率 = IN / I1谐波电流与谐波电压的危害1、高次谐波能使电网的电压与电流波形发生畸变,另外相同频率的谐波电压和谐波电流要产生同次谐波的有功功率和无功功率,从而降低电网电压,增加线路损耗,浪费电网容量, 2、影响供电系统的无功补偿设备,谐波注入电网时容易造成变电站高压电容过电流和过负荷,在谐波场合下,电容柜无法正常投切,更严重的请况下,电容柜会将电网谐波进一步放大。 3、影响设备的稳定性,尤其是对继电保护装置,危害特大。 4、谐波的存在会造成异步电动机效率下降,噪声增大;使低压开关设备产生误动作;对工业企业自动化的正常通讯造成干扰,影响电力电子计量设备的准确性。 5、谐波的存在会使电力变压器的铜损和铁损增加,直接影响变压器的使用容量和使用效率;还会 造成变压器噪声增加,缩短变压器的使用寿命。 6、影响工业设备的正常运转,就像行车,在有谐波的情况下,你按左行开关,它偏往右走,电动葫芦,你让它往下走,它却往上走。

谐波电流的危害研究

谐波的危害十分严重。谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。“谐波”一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1) 称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种 干扰量,使电网受到“污染”。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般 为2≤n≤40。 在工业和生活用电负载中,感性负载占有很大的比例。异步电动机、变压器、荧光灯等都是典型的阻感负载。异步电动机和变压器所消耗的无功功率在电力系统所提供的无功功率中占有很高的比例。电力系统中的电抗器和架空线等也消耗一些无功功率。阻感负载必须吸收无功功率才能正常工作,这是由其本身的性质所决定的。电力电子装置等非线性装置也要消耗无功功率,特别是各种相控装置。 如相控整流器、相控交流功率调整电路和周波变流器,在工作时基波电流滞后于电网电压,要消耗大量的无功功率。另外,这些装置也会产生大量的谐波电流,谐波源都是要消耗无功功率的。二极管整流电路的基波电流相位和电网电压相位大致相同,所以基本不消耗基波无功功率。但是它也产生大量的谐波电流,因此也产生一定的无功功率。近30年来,电力电子装置的应用日益广泛,也使得电力电子装置成为最大的谐波源。在各种电力电子装置中,整流装置所占的比例最大。常用的整流电路几乎都采用晶闸管相控整流电路或二极管整流电路,其中以三相桥式和单相桥式整流电路为最多。带阻感负载的整流电路所产生的谐波污染和功率因数滞后已为人们所熟悉。直流侧采用电容滤波的二极管整流电路也是严重的谐波污染源。这种电路输入电流的基波分量相位与电源电压相位大体相同,因而基波功率因数接近1。 但其输入电流的谐波分量却很大,给电网造成严重污染,也使得总的功率因数很低。另外,采用相控方式的交流电力调整电路及周波变流器等电力电子装置也会在输入侧产生大量的谐波电流。(1)发电源质量不高产生谐波发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。(2)输配电系统产生谐波输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。(3)用电设备产生的谐波:晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。理想的公用电网所提供的电压应该是单一而固定的频率以及规定的电压幅值。谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的用电设备造成影响。电力电子设备广泛应用以前,人们对谐波及其危害就进行过一些研究,并有一定认识,但那时谐波污染还没有引起足够的重视。近三四十年来,各种电力电子装置的迅速发展使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。谐波对公用电网和其他系统的危害大致有以下几个方面。(1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热甚至发生火灾。(2)谐波影响各种电气设备的正常工作。 谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以至损坏。(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。(4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。(5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;重者导致住处丢失,使通信系统无法正常工作。 谐波简单地说,就是一定频率的电压或电流作用于非线性负载时,会产生不同于原频率的其它频率的正弦电压或电流的现象。纹波是指在直流电压或电流中,叠加在直流稳定量上的交流分量。它们虽然在概念上不是一回事,但它们之间有联系。如电源上附加的纹波在用电器上很容易产生各频率的谐波;电源中各频率谐波的存在无疑导致电源中纹波成分的增加。除了在电路中我们所需要产生谐波的情况以外,它主要有以下主要危害:1、使电网中发生谐振而造成过电流或过电压而引发事故;2、增加附加损耗,降低发电、输电及用电设备的效率和设备利用率;3、使电气设备(如旋转电机、电容器、变压器等)运行不正常,加速绝缘老化,从而缩短它们的使用寿命;4、使继电保护、自动装置、计算机系统及许多用电设备运转不正常或不能正常动作或操作;5、使测量和计量仪器、仪表不能正确指示或计量;6、干扰通信系统,降低信号的传输质量,破坏信号的正常传递,甚至损坏通信设备。纹波的害处:1、容易在用电器上产生谐波,而谐波会产生较多的危害;2、降低了电源的效率;3、较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器;4、会干扰数字电路的逻辑关系,影响其正常工作;5、会带来噪音干扰,使图像设备、音响设备不能正常工作。总之,它们在我们不需要的地方出现都是有害的,需要我们避免的。对于如何抑制和去除谐波和纹波的方式方法有很多,但想完全消除,似乎是很难办到的,我们只有将其控制在一个允许的范围之内,不对环境和设备产生影响就算达到了我们的目的。电力网中非线性负载的逐渐增加是全世界共同的趋势,如变频驱动或晶闸管整流直流驱动设备、计算机、重要负载所用的不间断电源(UPS) 、节能荧光灯系统等,这些非线性负载将导致电网污染,电力品质下降,引起供用电设备故障, 甚至引发严重火灾事故等。电力污染及电力品质恶化主要表现在以下方面:电压波动、浪涌冲击、谐 波、三相不平衡等。1.电源 污染的危害电源污染会对用电设备造成严重危害,主要有:uf06c 干扰通讯设备、计算机系统等电子设备的正常工作,造成数据丢失或死机。uf06c 影响无线电发射系统、雷达系统、核磁共振等设备的工作性能, 造成噪声干扰和图像紊乱。uf06c 引起电气自动装置误动作,甚至发生严重事故。uf06c 使电气设备过热,振动和噪声加大,加速绝缘老化,使用寿命缩短,甚至发生故障或烧毁。uf06c 造成灯光亮度的波动(闪变),影响工作效益。uf06c 导致供电系统功率损耗增加。 电压波动及闪变电压波动是指多个正弦波的峰值,在一段时间内超过(低于)标准电压值,大约从半周波到几百个周波,即从10MS到2.5秒, 包括过压波动和欠压波动。普通避雷器和过电压保护器,完全不能消除过压波动,因为它们是用来消除瞬态脉冲的。普通避雷器在限压动作时有相当大的电阻值,考虑到其额定热容量(焦尔),这些装置很容易被烧毁,而无法提供以后的保护功能。这种情况往往很容易忽视掉,这是导致计算机、控制系统和敏感设备故障或停机的主要原因。另一个相反的情况是欠压波动,它是指多个正弦波的峰值,在一段时间内低于标准电压值,或如通常所说:晃动或降落。长时间的低电压情况可能是由供电公司造成或由于用户过负载造成,这种情况可能是事故现象或计划安排。更为严重的是失压,它大多是由于配电网内重负载的分合造成,例如大型电动机、中央空调系统、电弧炉等的启停以及开关电弧、保险丝烧断、断路器跳闸等,这些都是通常导致电压畸变的原因。大型用电设备的频繁启动导致电压的周期性波动,如电焊机、冲压机、吊机、电梯等,这些设备需要短时冲击功率,主要是无功功率。电压波动导致设备功率不稳,产品质量下降;灯光的闪变引致眼睛疲劳,降低工作效率。浪涌冲击浪涌冲击是指系统发生短时过(低)电压,即时间不超过1毫秒的电压瞬时脉冲,这种脉冲可以是正极性或负极性,可以具有连串或振荡性质。它们通常也被叫作:尖峰、缺口、干扰、毛刺或突变。电网中的浪涌冲击既可由电网内部大型设备(电机、电容器等)的投切或大型晶闸管的开断引起,也可由外部雷电波的侵入造成。浪涌冲击容易引起电子设备部件损坏,引起电气设备绝缘击穿;同时也容易导致计算机等设备数据出错或死机。谐波线性负载,例如纯电阻负载,其工作电流的波形与输入电压的正弦波形完全相同,非线性负载,例如斩波直流负载,其工作电流是非正弦波形。传统的线性负载的电流/电压只含有基波(50Hz),没有或只有极小的谐波成分,而非线性负载会在电力系统中产生可观的谐波。谐波与电力系统中基波叠加,造成波形的畸变,畸变的程度取决于谐波电流的频率和幅值。非线性负载产生陡峭的脉冲型电流,而不是平滑的正弦波电流,这种脉冲中的谐波电流引起电网电压畸变,形成谐波分量,进而导致与电网相联的其它负载产生更多的谐波电流。计算机是此类非线性负载之一,象绝大多数办公室电子设备一样,计算机装有一个二极管/电容型的供电电源,这类供电电源仅在交流正弦波电压的峰值处产生电流,因此产生大量的三次谐波电流(150Hz)。其它产生谐波电流的设备主要有:电动机变频调速器,固态加热器,和其他一些产生非正弦波变化电流的设备。荧光灯照明系统也是一个重要的谐波源,在普通的电磁整流器灯光电路中,三次谐波的典型值约为基波(50Hz)值的13%-20%。而在电子整流器灯光电路中,谐波分量甚至高达80%。非线性负载所产生的谐波电流会影响电力系统的多个工作环节,包括变压器,中性线,还有电动机,发电机和电容器等。谐波电流会导致变压器,电动机和备用发电机的运行温度(K参数)严重升高。中性线上的过电流(由谐波和不平衡引起)不仅会使导线温度升高,造成绝缘损坏,而且会在三相变压器线圈中产生环流,导致变压器过热。无功补偿电容器会因电网电压谐波畸变而产生过热,谐波将导致严重过流;另外,电容器还会与电力系统中的电感性元件形成谐振电路,这将导致电容器两端的电压明显升高,引致严重故障。照明装置的启辉电容器对于由高频电流引起的过热也是十分敏感的,启辉电容器的频繁损坏显示了电网中存在谐波的影响。谐波还会引起配电线路的传输效率下降,损耗增大,并干扰电力载波通讯系统的工作,如电能管理系统(EMS)和时钟系统。而且,谐波还会使电力测量表计,有功需量表和电度表的计量误差增大。三相不平衡三相不平衡会在中性线上产生过电流(由谐波和不平衡引起)不仅会使导线温度升高,甚至引发严重火灾事故等。电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量,甚至会影响电能表的精度而造成计量损失。理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。不平衡电流对系统铜损的影响设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡,IA=100A,IB=100A,IC=100A,则总铜损=1002R+1002R+1002R=30000R。如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损=502R+1002R+1502R=35000R,比平衡状态的铜损增加了17%。在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损=1502R+1502R=45000R,比平衡状态的铜损增加了50%。在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=3002R=90000R,比平衡状态的铜损增加了3倍。不平衡电流对变压器的影响现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大会引起某些相电压过高而导致铁心磁饱和,使铁损急剧增加,加上紧固件过热等因素,可能会发生任何一相电流均未过载而变压器却因局部过热而损坏的事故。由于Yyn0结线组的配电变压器与的零序激磁阻抗较大,因此零线电流会造成较大的电压变化,形成比较严重的三相电压不平衡现象,不但影响单相用户,对三相用户的影响更大 。三相负荷不平衡的危害对配电变压器的影响(1)三相负荷不平衡将增加变压器的损耗:变压器的损耗包括空载损耗和负荷损耗。正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。从数学定理中我们知道:假设a、b、c 3个数都大于或等于零,那么a+b+c≥33√abc 。当a=b=c时,代数和a+b+c取得最小值:a+b+c=33√abc 。因此我们可以假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。则变压器的损耗表达式如下:Qa+Qb+Qc≥33√〔(Ia2 R)(Ib2 R)(Ic2 R)〕由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压器的损耗最小。则变压器损耗:当变压器三相平衡运行时,即Ia=Ib=Ic=I时,Qa+Qb+Qc=3I2R;当变压器运行在最大不平衡时,即Ia=3I,Ib=Ic=0时,Qa=(3I)2R=9I2R=3(3I2R);即最大不平衡时的变损是平衡时的3倍。(2)三相负荷不平衡可能造成烧毁变压器的严重后果:上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器寿命(温度每升高8℃,使用年限将减少一半),甚至烧毁绕组。(3)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高:在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序磁通,这些零序磁通就会在变压器的油箱壁或其他金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重时将导致变压器运行事故。3.2 对高压线路的影响(1)增加高压线路损耗:低压侧三相负荷平衡时,6~10k V高压侧也平衡,设高压线路每相的电流为I,其功率损耗为: ΔP1 = 3I2R低压电网三相负荷不平衡将反映到高压侧,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为:ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R);即高压线路上电能损耗增加12.5%。(2)增加高压线路跳闸次数、降低开关设备使用寿命:我们知道高压线路过流故障占相当比例,其原因是电流过大。低压电网三相负荷不平衡可能引起高压某相电流过大,从而引起高压线路过流跳闸停电,引发大面积停电事故,同时变电站的开关设备频繁跳闸将降低使用寿命。3.3 对配电屏和低压线路的影响(1)三相负荷不平衡将增加线路损耗:三相四线制供电线路,把负荷平均分配到三相上,设每相的电流为I,中性线电流为零,其功率损耗为: ΔP1 = 3I2R在最大不平衡时,即某相为3I,另外两相为零,中性线电流也为3I,功率损耗为:ΔP2 = 2(3I)2R = 18I2R = 6(3I2R);即最大不平衡时的电能损耗是平衡时的6倍,换句话说,若最大不平衡时每月损失1200 kWh,则平衡时只损失200 kWh,由此可知调整三相负荷的降损潜力。(2)三相负荷不平衡可能造成烧断线路、烧毁开关设备的严重后果:上述不平衡时重负荷相电流过大(增为3倍),超载过多。由于发热量Q=0.24I2Rt,电流增为3倍,则发热量增为9倍,可能造成该相导线温度直线上升,以致烧断。且由于中性线导线截面一般应是相线截面的50%,但在选择时,有的往往偏小,加上接头质量不好,使导线电阻增大。中性线烧断的几率更高。同理在配电屏上,造成开关重负荷相烧坏、接触器重负荷相烧坏,因而整机损坏等严重后果。3.4 对供电企业的影响供电企业直管到户,低压电网损耗大,将降低供电企业的经济效益,甚至造成供电企业亏损经营。农电工承包台区线损,线损高农电工奖金被扣发,甚至连工资也得不到,必然影响农电工情绪,轻则工作消极,重则为了得到钱违法犯罪。变压器烧毁、线路烧断、开关设备烧坏,一方面增大供电企业的供电成本,另一方面停电检修、购货更换造成长时间停电,少供电量,既降低供电企业的经济效益,又影响供电企业的声誉。3.5 对用户的影响三相负荷不平衡,一相或两相畸重,必将增大线路中的电压降,降低电能质量,影响用户的电器使用。变压器烧毁、线路烧断、开关设备烧坏,影响用户供电,轻则带来不便,重则造成较大的经济损失,如停电造成养殖的动植物死亡,或不能按合同供货被惩罚等。中性线烧断还可能造成用户大量低压电器被烧毁的事故。

高次谐波电流什么是?

高次谐波结构 高次谐波结构 高次谐波的定义 “高次谐波” 英文对照 : high order harmonic; higherharmonic; "高次谐波" 在学术文献中的解释: 1、对于任意一复合周期振动函数Y(T)按傅氏级数分解表示为:第一项称均值或直流分量,第二项为基波或基本振动,第三项称二次谐波,依次类推或把二次谐波以后的统称为高次谐波 。 2、在电子电气设备控制系统中,遇到的大量和经常需要解决的主要接地问题是系统接地.x3:反映控制节点性质的优先级相对大小,借助模糊聚类分析理论中的标定方法,将三项指标归并为一项综合控制指标aij来反映控制节点nj对故障节点n、的电压控制程度和控制能力 3、2倍以上的正弦波均称为高次谐波.▲高次谐波是电力系统的公害,其危害主要有:(1)谐波电流使输电线路、发电机、电动机、变压器产生附加损耗,温度升高 。 4、由于谐波的频率是基波频率的整数倍数也常称为高次谐波. 高次谐波电流 由于目前的变频器几乎都采用PWM控制方式,这样的脉冲调制形式使得变频器运行时在电源 侧产生高次谐波电流,并造成电压波形畸变,对电源系统产生严重影响。 随着电力电子技术的飞速发展,各种新型用电设备越来越多地问世和使用,高次谐波的影响越来越严重。电力系统受到谐波污染后,轻则影响系统的运行效率,重则损坏设备以至危害电力系统的安全运行。以前,电力系统考核电能质量的主要指标是电压的幅值和频率,现在世界各国都把电网电压正谐波形畸变率极限值作为电能质量考核指标之一,正确认识谐波已成为电力工作者的重要任务之一。因此,研究和分析谐波产生的原因、危害和抑制谐波的措施具有重要的实际意义。

谐波电流含有率的标准是什么?

注入公共连接点的谐波电流允许值 谐波次数和谐波电流允许值(A)标称电压(kv) 基准短路容量(MVA) 2 3 4 5 6 7 8 9 10 11 12 .........0.38V 10 78 62 39 62 26 44 19 21 16 28 236 100 43 34 21 34 14 24 11 11 8.5 16 7.110 100 26 20 13 20 8.5 15 6.4 6.8 5.1 9.3 4.335 250 ...................................................................差表 当公共连接点的最小短路容量与标所列基准短路容量不同时,谐波电流允许Ih=(Sk1/Sk2)*IhpSk1:公共连接点最小短路容量SK2:表中的基准短路容量Ihp:表中电流 两个谐波源叠加Ih =(Ih1^2+Ih2^2+2Ih1Ih2cosθ)

变频器是怎样产生谐波电流的?

单相整流器由整流桥和平滑电容构成。一般情况下,负载的电流由平滑电容供给,仅当正弦波的电压高于平滑电容的电压时,才会有电流流入电容和负载中,因此仅在电压 峰值处产生脉冲状,这种脉冲电流中包含了丰富的谐波成分。同样的道理,三相整流器也会产生谐波电流,但是这时对应每个波峰,不是一个脉冲电流,而是两个脉冲电流。 无论单相整流器还是三相整流器,他们的电流波形都发生了畸变,不再是正弦电流,因此包含了谐波成分。 产生谐波电流的负载称为非线性负载,与之对应,不产生谐波电流的负载称为线性负载。线性负载的阻抗不会随着施加在其上面的电压发生变化。这时,流过负载的电流I=U/R,这意味着电流I与电压U是线性关系,线性负载由此得名。当电压为正弦波时,充过线性负载的电流依然为正弦电流,因此不会产生谐波电流成份。 理想的电阻、电感和电容都是线性负载。但是实际的电感可能是非线性负载,例如,带有铁芯的电感,其电感量随着外加电压而变化(随之而来的是阻抗变化),因此是非线性负协。变压器产生谐波电流就是这个道理。 非线性负载的阻抗随着施加在其上的电压 变化,这时流过它的电流与施加在它上面的电压 不是线必关系,故称其为非线性负载。对这样的负载施加正弦波电压时,流过负载的电流值不再是正弦波,其中包含量谐波成分。 带平滑电容的整流器是最常见的非线性负载,它产生的谐波电流与电路结构有关。整流器从电网吸取脉冲电流,每个交流电周期整流出的脉冲称为这个整流器的脉数。例如:对于单相整流电路,每个周期输出2个直流脉冲,因此称为二脉整流器;对于三相整流电路,每个周期输出6个脉冲,因些称为6脉整流器。除此以外,还有12脉整流器、13脉整流器等。 总结:变频器的谐波电流是由变频器整流输入电路导致的。不同脉数的整流器产生的谐波成分不同,三相六脉整流器产生的谐波电流以5次、7次、11次、13次为主。增加变频器输入整流器的脉数可以减小谐波电流。

请问法师,谐波电流和谐波电压怎么计算?公式是什么?

谐波电流一般都是实测出电流,然后根据傅里叶变化分解出来的。谐波电压理论也是根据电压进行傅里叶分解,但是也可以根据谐波电流和阻抗来计算。谐波电压=谐波电流*谐波阻抗,其中谐波阻抗=系统阻抗*h,h是第h次谐波。另外,俺不是法师。。。。。。

谐波电流是正弦波吗?

假想的谐波波形和正弦波相同,只是频率增高,幅值变小,叠加在基波上。当一个周期性函数的图像发生变形时(例如一个正弦波变成圆顶波或尖顶波),可以使用数学的方法和物理的方法,将这个不规则的波形分解成基波和N次谐波。所以把不规则图像分解成基波和N次谐波只是为了方便分析和计算,就像负序和零序的概念一样,是人为,叠加的,虚拟的。

怎样度量谐波电流与谐波电压

通常谐波电流和谐波电压并不用绝对数值表示,而是用他们与基波的比例来表示。这显然是合理的,例如两台设备产生同样幅度为1A的5次谐波电流,一台设备的基波电流幅度为2A,另一台的基波电流为10A,那么这两台设备产生谐波的情况完全不同,前者是严重的谐波源负载,后者则算不上严重的谐波源。如果用谐波与基波的比例表示,前者的谐波电流为50%,后者的谐波电流为10%,明确地反映了这种关系。 谐波电流与谐波电压用畸变率来表示,有以下几种定义: 总谐波电流畸变率THID: THID = 总谐波电流的有效值/基波电流的有效值 总谐波电流的有效值为: 总谐波电压畸变率THVD: THVD = 总谐波电压的有效值/基波电压的有效值 总谐波电压的有效值为: 单次谐波电流畸变率: 这个量用于度量某一次谐波电流所占的比例,例如N次谐波电流的有效值为IN,基波电流的有效值为I1,则N次谐波电流的畸变率为: N次谐波电流畸变率 = IN / I1 许多标准中不仅规定总谐波电流畸变率,还规定单次谐波电流的畸变率。 单次谐波电压畸变率: 这个量用于度量某一次谐波电压所占的比例,例如N次谐波电压的有效值为VN,基波电压的有效值为V1,则N次谐波电压的畸变率为: N次谐波电压畸变率 = VN / V1 许多标准中不仅规定总谐波电压畸变率,还规定单次谐波电压的畸变率。 总需求电流畸变率:TDD (total demand distortion) 总需求电流畸变率的定义与总谐波电流畸变率十分相近,但是分母是用电户需求的最大基波电流有效值,而不是基波电流的有效值。在工厂新建建时,这个最大需求基波电流可以是协议用电量,对于已经运行的工厂,这个最大需求电流是工厂过去一年中的电流平均值。 TDD通常用于对电源母线上的谐波情况的描述,它是满载时谐波电流与满载时基波电流的比值。 THID = 总谐波电流的有效值/基波电流的有效值 总谐波电流畸变率THID与总需求电流畸变率容易混淆,记住下面的描述: THID用于衡量某个时刻、电网上某个位置的电流畸变情况,在分析电网上的谐波状况时使用,因此在记录THID时往往要标明时刻、位置。另外,也用THID来衡量采取谐波抑制措施后的效果。例如,没有进行谐波治理时,THID=70%;进行谐波治理后,THID=5%,说明谐波减小为原来的14%,也就是86%的谐波电流被消除了。 仔细研究表6-1,观察他们的差别。表中,随着满载电流减小,TDD越来越小,而THD逐渐增加。 表6-1 THID与TDD的差别 THVD 通常用于衡量某个时刻、电网上某个位置的电压畸变情况,电压畸变是导致电子设备误动作的主要原因,因此在分析设备误动作的故障时经常测量这个参数。在受干扰的设备的电源输入端测量THVD,看其是否很大。通常THVD > 5%时,电子设备容易出现误动作。谐波治理的一个目标是保证在电网上特定的位置THVD < 5%。 总结: 通常不用谐波电流或电压的绝对数值表示谐波的严重程度,而用谐波在基波中所占的比例来衡量谐波的严重程度。

关于谐波电流

能产生谐波的负载有很多,变频器是一种,还有可控硅,高压汞灯,整流器等都会产生谐波,你说的谐波电流60A,指的是几次谐波,同时你的变压器是多大的,谐波造成了电容损坏,你检查会发现你的电容柜有很多电容已经没有容量或者已经起鼓了因电容内部短路等造成的熔断器损坏。解决这问题较为廉价的方法就是更换已损坏的电容并加电抗器,贵一点就是做谐波处理

谐波电流计算公式

谐波电流一般都是实测出电流,然后根据傅里叶变化分解出来的。谐波电压理论也是根据电压进行傅里叶分解,但是也可以根据谐波电流和阻抗来计算。谐波电压=谐波电流*谐波阻抗,其中谐波阻抗=系统阻抗*h,h是第h次谐波。另外,俺不是法师。。。。。。

变频器谐波电流会做功吗?

要看你对做功的理解了!如果是电机负载,谐波一般不作我们期望的有用功(这里的有用功不等于常说的有功),但是,谐波流过线圈和传输电缆会产生铜耗,这部分损耗,就如无功电流在传输电缆上产生的损耗类似,可以理解为无功损耗。此外,谐波还可能带来一些不利于电机运行的情况,例如,产生转矩抖动,这也是需要做功的,这部分功率,不是期望的,但不宜理解为无功功率。此外,谐波电流与基波电流一样,通过导体也会发热,发热就会做功!因此,谐波电流做功不是我们期望的,但是,谐波电流一定会做功!

谐波电流有什么危害

对电网而言,有危害的是谐波电流。但是,谐波电流很多时候是由谐波电压造成的,因为电网相当于一个内阻非常小的电源,含谐波的电压源与电网相连之后,电压源的输出被强制拉倒与电网电压相同,即:电压谐波大部分消除了,但是,电压谐波消除的后果是向电网注入谐波电流。

谐波电流有多大,会超过用电设备的电流吗

用电设备工作时零线有电,正常时对地电压为0v。单相电器的零线电流等于相(火)线电流,三相电器的零线电流等于三根相线电流的矢量和。  通常所说的有电没电是指是否存在对地电压。  零线是变压器二次侧中性点引出的线路,与相线构成回路对用电设备进行供电,通常情况下,零线在变压器二次侧中性点处与地线重复接地,起到双重保护作用。  由于零线在变压器二次侧中性点处与地线重复接地,所以正常时对地电压为0v。  零线的主要作用就是与相线构成回路对用电设备进行供电。因为在单一回路中电流处处相等,所以单相电器的零线电流等于相线电流;在三相交流供电中△接入不需要零线;在三相交流供电中y接入方式中三相电流都将经过零线,由于三相交流电的三相间存在相位差,它们的电流之和正常时应为零。

电容放大谐波电流怎么算

公式为Ic=2πfCV。电容放大谐波电流的计算公式是Ic=2πfCV,其中,Ic表示电容器通过的谐波电流,f表示交流电压的频率,C表示电容器的电容值,V表示交流电压的有效值。

谐波电流有多大,会超过用电设备的电流吗

一般设备都能承受!因为谐波衰减的很快!有事还是设备额定电流的几十倍呢!

基波、谐波、谐波电流、谐波电压的关系及定义

是的,每两项一组。第一项和第二项为一组,为交流信号的直流分量的实部和虚部;第三项和第四项为交流信号基波分量的实部和虚部;接着是2次谐波、3次谐波......每一组的虚部和实部的比值为该分量得相角的正切值。电压基波的相角和电流基波的相角差就是功率因数角。

总谐波电流的计算怎么算的?

总谐波含量是指各次谐波电流的方和根。总谐波畸变率THD是指总谐波含量与电流基波有效值的比例。假设基波有效值为H01,假设总谐波含量为TH,假设电流真有效值为Rms。那么,THD=TH/H01Rms^2=TH^2+H01^2因此,H01^2=Rms^2-TH^2=Rms^2-THD^2*H01^2H01^2=Rms^2/(1+THD^2)H01=Rms/√(1+THD^2)TH=THD*H01=Rms*THD/√(1+THD^2)按照上式即可计算出每项电流的谐波含量。

什么是谐波电流,,

谐波标准解读1不属于EN55015的范围:a车载的灯具b背光灯(装在设备内:如光电鼠标,荧光屏)c专业用于娱乐场所的闪光灯等.2只适用于50Hz或60Hz供电系统的灯具.3灯具属classC。3.1大于25W的灯具谐波限值:2次+3到39次奇次谐波;3.2小于25W的放电灯才有限值,并且在测试过程中先使用等同于classD(软件上选CLASSC+小于25W)的限值(仅有奇次)测试,PASS则测试OVER;如果FALL则再(软件自行执行)测试3次和5次谐波(限制高于CLASSD的3次和5次的限制,标准上有).3.3小于25W的放电灯的测试数据有两种:一种有3到39次奇次谐波(肯定PASS),还有一种只有3次和5次(可能PASS也可能FALL)4由于LED灯不属于放电灯,所以小于25W的LED灯不用测试谐波.

谐波电流的基本定义

一个周期信号可以通过傅里叶变换分解为直流分量c0和不同频率的正弦信号的线性叠加:其中,为m次谐波的表达式,cm表示m次谐波的幅值,其角频率为mω,初始相位为φm,其有效值为cm/√2。当m=1时,为基波分量的表达式,其角频率为ω,初始相位为φ1,其方均根值c1/√2称为基波有效值。ω/2π为基波分量的频率,称为基波频率,基波分量的频率等于交流信号的频率。而m次谐波的频率为基波频率的整数倍(m倍)。谐波电流是其频率为原周期电流频率整数倍的各正弦分量的统称。一般来说, 理想的交流电源应是纯正弦波形,但因现实世界中的输出阻抗及非线性负载的原因,,导致电源波形失真。 若电压频率是60Hz,,将失真的电压经傅立叶转换分析后,可将其电压组成分解为除了基频(60Hz)外,倍频(120Hz, 180Hz,…..)成份的组合。其倍频的成份就称为谐波:harmonic。整流性负载的大量使用,造成大量的谐波电流,谐波电流产生电压的谐波成份,间接污染了市电。另外一些市售的发电机或UPS本身输出电压就非纯正弦波,甚至有方波的情形,失真情形更严重,所含谐波成份占了很大的比例。对该问题的介绍基于以下几个方面:基本原理、主要现象和防止谐波故障的建议。 由于功率转换(整流和逆变)而导致配电系统污染的问题早在1960年代初就被许多专家意识到了。直到1980年代初,日益增长的设备故障和配电系统异常现象,使得解决这一问题成为迫在眉睫的事情。 今天,许多生产过程中没有电力电子装置是不可想象的。以下用电设备在许多工厂都得到了应用:1)照明控制系统(亮度调节)2)开关电源(计算机,电视机)3)电动机调速设备4)自感饱和铁芯5)不间断电源6)整流器7)电焊设备8)电弧炉9)机床(CNC)10)电子控制机构11)EDM机械所有这些非线性用电设备都会产生谐波,它可导致配电系统本身或联接在该系统上的设备故障。 仅考虑导致设备故障的根源就在发生故障现象的用电工厂内可能是错误的。故障也可能是由于相邻工厂产生的谐波影响到公用配电网络而产生的。 在您安装一套功率因数补偿系统之前,如下工作是非常重要的:对配电系统进行测试以确定什么样的系统结构对您是合适的。 可调谐的滤波电路和组合滤波器已经是众所周知的针对谐波问题的解决方案。另外的方法就是使用动态有源滤波器。 1)谐波吸收器(调谐的)由一个扼流线圈和一个电容器串联组成的谐振电路并调谐为对谐波电流具有极小的阻抗。该调谐的谐振电路用于精确地清除配电网络中的主要谐波成分。2)谐波吸收器(非调谐的)由一个扼流线圈和一个电容器串联组成的谐振电路并调谐为低于最低次谐波的频率以防止谐振。3)谐波电流谐波电流是由设备或系统引入的非正弦特性电流。谐波电流叠加在主电源上。4)谐波其频率为配电系统工作频率倍数的波形。按其倍数称为 n 次( 3 、 5 、 7 等)谐波分量。5)谐波电压谐波电压是由谐波电流和配电系统上产生的阻抗导致的电压降。6)阻抗阻抗是在特定频率下配电系统某一点产生的电阻。阻抗取决于变压器和连在系统上的用电设备,以及所采用导体的截面积和长度。7)阻抗系数阻抗系数是 AF (载波)阻抗相对于 50Hz (基波)阻抗的比率。8)并联谐振频率网络阻抗达到最大值的频率。在并联谐振电路中,电流分量 I L 和 I C 大于总电流 I 。9)无功功率电动机和变压器的磁能部分,以及用于能量交换目的的功率转换器等处需要无功功率 Q 。与有功功率不同,无功功率并不做功。计量无功功率的单位是 Var 或 kvar 。10)无功功率补偿供电部门规定一个最小功率因数以避免电能浪费。如果一个工厂的功率因数小于这个最小值,它要为无功功率的部分付费。否则它就应该用电容器提高功率因数,这就必须在用电设备上并联安装电容器。11)谐振在配电系统里的设备,与它们存在的电容 ( 电缆,补偿电容器等 ) 和电感 ( 变压器,电抗线圈等 ) 形成共振电路。后者能够被系统谐波激励而成为谐振。配电系统谐波的一个原因是变压器铁芯非线性磁化的特性。在这种情况下主要的谐波是 3 次的;它在全部 导体内与单相分量具有相同的长度,因而在星形点上不能消除。12)谐振频率每个电感和电容的连接形成一个具有特定共振频率的谐振电路。一个网络有几个电感和电容就有几个谐振频率。13)串联谐振谐电路由电感(电抗器)和电容 ( 电容器 ) 串联的电路。14)串联谐振频率网络的阻抗水平达到最小的频率。在串联谐振电路内分路电压 U L 和 U C 大于总电压 U 。15)分数次谐波频率不是基波分量倍数的正弦曲线波。 MKP 和 MPP 技术之间的区别在于电力电容器在补偿系统中的连接方式。1)MKP( MKK , MKF) 电容器这项技术是在聚丙烯薄膜上直接镀金属。其尺寸小于用 MPP 技术的电容器。因为对生产过程较低的要求,其制造和原料成本比 MPP 技术要相对地低很多。 MKP 是最普遍的电容器技术,并且由于小型化设计和电介质的能力,它具有更多的优点。2)MPP( MKV) 电容器MPP 技术是用两面镀金属的纸板作为电极,用聚丙烯薄膜作为介质。这使得它的尺寸大于采用 MKP 技术的电容器。生产是非常高精密的,因为必须采用真空干燥技术从电容器绕组中除去全部残余水分而且空腔内必须填注绝缘油。这项技术的主要优势是它对高温的耐受性能。3)自愈两种类型的电容器都是自愈式的。在自愈的过程中电容器储存的能量在故障穿孔点会产生一个小电弧。电弧会蒸发穿孔点临近位置的细小金属,这样恢复介质的充分隔离。电容器的有效面积在自愈过程中不会有任何实际程度的减少。每只电容都装有一个过压分断装置以保护电气或热过载。测试是符合 VDE 560 和 IEC 70 以及 70A 标准的。 直到大约1978年,制造电力电容器仍然使用包含PCB的介质注入技术。后来人们发现,PCB 是有毒的,这种有毒的气体在燃烧时会释放出来。这些电容器不再被允许使用并且必须处理,它们必须被送到处理特殊废料的焚化装置里或者深埋到安全的地方。包含PCB 的电容器有大约30 W/kvar的功率损耗值。 电容器本身由镀金属纸板做成。由于这种电容被禁止使用,一种新的电容技术被开发出来。为了满足节能趋势的要求,发展低功耗电容器成为努力的目标。新的电容器是用干燥工艺或是用充入少量油( 植物油)的技术来生产的,用镀金属塑料薄膜代替镀金属纸板,因此新电容充分显示出了其环保的特性,并且功耗仅为0.3 W/kvar。这表明改进后使功耗降至原来的1/100。 这些电容器是根据常规电网条件而开发的。在能源危机的过程中,人们开始相控技术的研究。相位控制的结果是导致电网的污染和其它故障。由于前一代电容器存在一个很高的自电感,高频的电流和电压(谐波) 不能被吸收,而新的电容器则会更多地吸收谐波。因此存在这种可能,即,新、旧电容器工作在相同的母线上时会表现出运行状况和寿命预期的很大差异, 由于上述原因有可能新电容器将在更短的时间内损坏。我们向市场提供的电力电容器是专门为用于补偿系统中而开发的。电网条件已经发生急剧的变化,选择正确的电容器技术越来越重要。 电容器的使用寿命会受到如下因素的影响而缩短: -谐波负载 -较高的电网电压 -高的环境温度 我们配电系统中的谐波负载在持续增长。在可预知的将来,可能只有组合电抗类型的补偿系统会适合使用。 很多供电公司已经规定只能安装带电抗的补偿系统。其它公司必须遵循他们的规定。 如果一个用户决定继续使用无电抗的补偿系统,他起码应该选用更高额定电压的电容器。这种电容器能够耐受较高的谐波负载,但是不能避免谐振事故。

谐波电流用万用表可以测出来吗

不能,用能测量谐波电流的仪表测。谐波电流将非正弦周期性电流函数按傅立叶级数展开时,其频率为原周期电流频率整数倍的各正弦分量的统称。频率等于原周期电流频率k倍的谐波电流称为k次谐波电流,k大于1的各谐波电流也统称为高次谐波电流。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2≤n≤40。扩展资料发展过程“谐波”一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析方法仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。参考资料来源:百度百科-谐波电流

三次谐波电流为什么是无功电流

没有三次谐波电流是无功电流这种说法。三次谐波电流通过电阻也一样消耗有功。

谐波电流怎么产生,为什么示波器测试不到

谐波电流产生是电力系统是由发电、变电、输配电和用电这四个环节所组成的整体,示波器测试不到的原因:谐波的干扰。每个环节均有可能产生谐波,在电力系统中会影响电网供电质量,造成电能浪费,在信号传输中,也会干扰通信系统,降低信号传输质量。谐波的用电环节用电系统中谐波主要是由非线性负载引起,由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等,谐波干扰会使电气设备及导线过载运行从而发热,损耗增大,缩短使用寿命,甚至发生故障或烧毁,造成重大经济损失。在振动学里认为一个振动产生的波里具有一定频率的增幅最大的正弦波叫基波,其他高于基波频率的小波就叫作谐波,电力系统对谐波的定义:对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。

什么是谐波电流

谐波主要产生的原因是电流,就是正弦电压加压于非线性负载,基波电流发生畸变产生谐波。主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等。

谐波电流是什么意思

谐波电流是一种频率高于电源基波频率的电流,是由非线性负载对电源电压进行扭曲而产生的。1、是在电力系统中,产生频率是电源基波频率的整数倍的电流。它会引起电力系统的许多问题,如电能计量误差、电网质量恶化等。2、由于谐波电流的存在,电力系统中的电流波形不再是正弦波,而是扭曲的。这种扭曲导致了电压和电流之间的相位差和频率偏差,从而引起了一系列问题。谐波电流会导致电能计量误差。3、因为传统的电能表无法正确计量非正弦波电流。谐波电流会导致电网电压的波动和不稳定,从而影响电力系统的质量。最后,谐波电流还会引起电力设备的过热和损坏,降低设备的寿命和可靠性。为了减少谐波电流对电力系统的影响,需要采取控制措施。面对谐波电流的采用措施:1、可以采用谐波滤波器来消除谐波电流。谐波滤波器是一种特殊的电路,可以去除谐波电流中的特定频率成分。使用谐波滤波器可以在保证谐波电流消除的同时,不影响基波电流的传输。谐波滤波器的应用范围较广,可以用于电力系统中的各种场合,如UPS电源、电焊机等。2、可以采用变频器等电力电子器件来控制非线性负载的电流,从而减少谐波电流的产生。变频器是一种将交流电转换为可调频率交流电的电力电子器件,可以控制电动机的转速,从而减少电机的能耗。同时,变频器还可以减少非线性负载的电流谐波成分,降低谐波电流的产生。3、可以采用谐波抑制变压器等专用设备来抑制谐波电流。谐波抑制变压器是一种特殊的变压器,能够有效地抑制电力系统中的谐波电流,不影响基波电流的传输。谐波抑制变压器的优点是具有可靠性高、体积小、重量轻等特点,较为适用于电力系统中变电站、发电厂等场合。