元分析

阅读 / 问答 / 标签

通过哪些方法来判断有限元分析结果的可靠性

1、经过验证的相同或类似分析;2、相同或类似情况的实验验证;3、建模的合理简化和材料属性、单元选择、荷载和边界条件等选择和设置的合理设置与选取;4、保证网格质量的前提下,在结果梯度大的位置适当细化网格,其他位置适当粗划网格;5、使用合适的求解器和计算方法;6、避免刚度矩阵奇异等低级错误,保证荷载与内力平衡、验证解的网格无关性;7、提取合适的结果;8、多次求解验证;9、控制计算规模与计算时间,以满足硬件性能和完成时间要求;9、多人交叉检查;10、用自己学到的有限元理论知识去判断;11、理解软件或理论中的各种简化和假设,及其与真实的需要模拟的状况的差异;12、收敛是计算正确的必要性条件,但是绝对不是充分性条件。暂时说这么多

有限元分析的学习

ANSYS软件提供的仿真分析类型:1.结构静力分析   用来求解外载荷引起的位移、应力和力。静力分析很适合求解惯性和阻尼对结构的影响并不显著的问题。ANSYS程序中的静力分析不仅可以进行线性分析,而且也可以进行非线性分析,如塑性、蠕变、膨胀、大变形、大应变及接触分析。   2.结构动力学分析   结构动力学分析用来求解随时间变化的载荷对结构或部件的影响。与静力分析不同,动力分析要考虑随时间变化的力载荷以及它对阻尼和惯性的影响。ANSYS可进行的结构动力学分析类型包括:瞬态动力学分析、模态分析、谐波响应分析及随机振动响应分析。   3.结构非线性分析   结构非线性导致结构或部件的响应随外载荷不成比例变化。ANSYS程序可求解静态和瞬态非线性问题,包括材料非线性、几何非线性和单元非线性三种。   4.动力学分析   ANSYS程序可以分析大型三维柔体运动。当运动的积累影响起主要作用时,可使用这些功能分析复杂结构在空间中的运动特性,并确定结构中由此产生的应力、应变和变形。   5.热分析   程序可处理热传递的三种基本类型:传导、对流和辐射。热传递的三种类型均可进行稳态和瞬态、线性和非线性分析。热分析还具有可以模拟材料固化和熔解过程的相变分析能力以及模拟热与结构应力之间的热-结构耦合分析能力。   6.电磁场分析   主要用于电磁场问题的分析,如电感、电容、磁通量密度、涡流、电场分布、磁力线分布、力、运动效应、电路和能量损失等。还可用于螺线管、调节器、发电机、变换器、磁体、加速器、电解槽及无损检测装置等的设计和分析领域。   7.流体动力学分析   ANSYS流体单元能进行流体动力学分析,分析类型可以为瞬态或稳态。分析结果可以是每个节点的压力和通过每个单元的流率。并且可以利用后处理功能产生压力、流率和温度分布的图形显示。另外,还可以使用三维表面效应单元和热-流管单元模拟结构的流体绕流并包括对流换热效应。   8.声场分析   程序的声学功能用来研究在含有流体的介质中声波的传播,或分析浸在流体中的固体结构的动态特性。这些功能可用来确定音响话筒的频率响应,研究音乐大厅的声场强度分布,或预测水对振动船体的阻尼效应。   9.压电分析   用于分析二维或三维结构对AC(交流)、DC(直流)或任意随时间变化的电流或机械载荷的响应。这种分析类型可用于换热器、振荡器、谐振器、麦克风等部件及其它电子设备的结构动态性能分析。可进行四种类型的分析:静态分析、模态分析、谐波响应分析、瞬态响应分析

有限元分析多久能学会

两个月。通常学习有限元分析需要两个月的时间,学习完成300多页的有限元分析需要两个月的时间。有限元分析利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。

各种有限元分析软件比较

ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSCCAE软件|CAE培训|有限元分析|广州工程仿|真科技|有限公司

做matlab编程,ANSYS有限元分析,前途如何?

掌握这些工具的使用操作及基础理论,前景都不错。MATLAB 产品族可以用来进行以下各种工作:1)数值分析2)数值和符号计算3)工程与科学绘图4)控制系统的设计与仿真5)数字图像处理技术6)数字信号处理技术7)MATLAB在通讯系统设计与仿真的应用8)通讯系统设计与仿真9)财务与金融工程10)管理与调度优化计算(运筹学)因此,如果精通matlab 的话,可以适应众多数据分析、数据处理的岗位,很有前途。ANSYS是计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换。并且功能强大。应用范围:1.结构静力分析2.结构动力学分析3.结构非线性分析4.动力学分析5.热分析6.电磁场分析7.流体动力学分析8.声场分析9.压电分析如果各个熟悉ANSYS操作的同时,熟悉各领域基本理论,应该是非常有前途的,可以到汽车、航天、船舶、海洋工程等领域从事设计分析等工作。

有限元分析软件有哪些

1、《ANSYS》:美国ANSYS公司研制的大型通用有限元分析软件,是世界范围内增长最快的计算机辅助工程软件。2、《Abaqus》:一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。3、《Adina》:出现于上个世纪70年代,以有限元理论为基础,通过求解力学线性、非线性方程组的方式获得固体力学、结构力学、温度场问题的数值解。4、《MARC》:功能齐全的高级非线性有限元软件,具有极强的结构分析能力。5、《DYNA》:功能齐全的几何非线性、材料非线性和接触非线性软件。

什么是机械结构有限元分析?

你可以下载一本[有限元分析及应用]在里面能对你有所帮助吧!

有限元分析的结果怎么验证

三套方法来验证。第一种,用不同的软件(例如分别用ansys和abaqus)计算同一个问题,模拟得到的结果非常近似(不太可能保证完全一样)。这样就是让人信服的。第二种,先证明你的方法是正确的,比如用你的方法去做一个别人已经做过的结果(例如已发布的文献中提到的模型和结果,你的模型和他近似,过程自己来操作,得到的结果和他一致,这样就可以说明你的方法是可信的)。然后就用这个证明过的操作方法,去完成需要完成的项目,得出的结果也较为可信。第三种,试验模型验证。做一个实际比例模型,约束和加载与数值仿真的完全一致,然后比较试验结果和数值结果,曲线走向和趋势基本一致,数量级一致等等等等,就是可信的。三种方法比较。第三种最好,但难以实现,一般在研究所里有条件才采用,耗时耗力;第二种其次,最为简单,并且与权威杂志的结果有个比较,比较有说服力;第三种也可以,但一般是分别分给两个人用不同软件计算,或者两个人在没有交流的情况下用同一软件计算,这样的结果才具有一定可信性,在正式项目中一般不会采用,或在团队中具有较高资质的仿真工程师的情况下采用,毕业生或实习生的结果是不可信的。

有限元分析自学容易吗

有限元分析自学的难度因人而异。首先要了解有限元理论,买本有限元理论方面的书,不过比较晦涩难懂。然后买本ANSYS分析实例看看,照着书上写的做一遍,就对有限元分析有一定的认识了。ANSYS主要是进入中国市场早,使用最广泛,只要做CAE基本都知道ANSYS,名气大,甚至有些甲方点名只要ANSYS的计算书。ABAQUS感觉主要在科研行业流行,可能是因为清华的庄茁教授最早把ABAQUS引进来的吧,GUI界面ABAQUS要友好的多,前处理非常方便。更多关于有限元分析自学容易吗,进入:https://www.abcgonglue.com/ask/3849881615437781.html?zd查看更多内容

有限元分析应力图谱如何理解。

根据应力结果,决定结构设计是否合理。

常用的有限元分析软件有什么?

一般结构分析(应力、振动模态等):MSC公司Nastran,达索SIMULIA公司的AbaqusAdina公司的AdinaANSYS公司的ANSYS非线性(接触、冲击):LSTC公司的LS-DYNAMSC公司的MARC,DYTRAN达索SIMULIA公司的AbaqusAdina公司的AdinaANSYS公司的ANSYS疲劳寿命:MSC公司Fatigue,Ncode公司NsoftLMS公司FalancsSafe Technology公司FE-Safe流固耦合:Adina公司的Adina达索SIMULIA公司的AbaqusANSYS公司的ANSYSMSC公司NASTRAN

有限元分析时是网格画的越细越精确吗?

有限元分析时,网格划分越密,计算结果一般来说越趋近于真实解。网格划分越密,就直接导致计算的规模和存储空间迅速增加,从而降低计算效率,尤其是对于碰撞、冲击、爆炸、波传播仿真等动力学分析来说更是如此。有限元的定义有限元分析就是利用数学近似的的方法,对真实的物理系统就行模拟的一种的过程。有限分析就是把一些看起来无法直接得到具体因素结论的物体,进行简单化的分析从而得出最接近真实答案的方法,比如说对于圆形面积的求解,就是把圆形一步一步分解成多边形,正方形离最真实的答案最远,但每增加一条边,对于最终算圆形的面积答案越接近。什么是网格分析网格分析就是把真实但不可以被直接计算的物体,分化成数学上面的可以计算的网格形式进行的一种构图分析。这个方式在数学上经常会有体现,比如我们在上小学的时候就有学过梯形的面积求解公式。但在分析的时候,老师就用了网格分析的方法,老师把梯形分成了俩个三角形进行了面积求解,这就是我们最早遇到的网格分析。有限元分析和网格疏密的关系简单而言,网格画的越密,有限元分析越精确,网格画的越疏,有限元分析越远离真实。拿球体来说,当我们进行网格分析的时候,总是把球体看出圆柱体或者是正方体,然后在一点一点的却掉外部多出来的部分,体积越小那么体积越接近真实的球体。这只是我的一点小小的看法,如果不对之处,还望各位看客原谅

力学理论分析、有限元分析在机械设计中有什么作用呢?

让结果更精确

什么是有限元分析?通俗易懂点的,谢谢。

有限元分析软件可以给你介绍,你需要吗,我正在学习fepg

有限元分析应力图表达的意思

应力(Stress):1.在右侧的竖立的色带,颜色由蓝到红在正常情况下,表示应力值从小到大,两端为其最大和最下峰值。2.左侧零件中显示的颜色与右侧色带一致,越红其应力值越高!位移(Displacement):1.在右侧的竖立的色带,颜色由蓝到红在正常情况下,表示位移值从小到大,两端为其最大和最下峰值。2.左侧零件中显示的颜色与右侧色带一致,越红其位移值越大,即零件在此发生的位移越大!

怎样用ansys对齿轮进行有限元分析

1、打开图示界面,直接在菜单栏那里选择PlotCtrls。2、下一步如果没问题,就点击Animate中的Over Time。3、这个时候弹出新的对话框,需要确定设置Current Load Stp。4、这样一来会得到相关结果,即可用ansys对齿轮进行有限元分析了。

怎样判断有限元分析结果合理与否

这个主要凭经验。我是搞固体力学的,采用有限元方法的数值计算也做了很多,初始结果大多与实验相距甚远。理论知识不足除外的主要原因有:结构或构件本身可能具有一定的缺陷;材料基本力学性能测定的失误或误差;实验边界条件与数值计算并一致(不易察觉但很致命);有限元软件的选择及操作是相应的设置(比如说网格化分,细节处理,单元算法,单元类型等);最后就是低级的失误。没有实验验证时,判断有限元结果是否合理依赖于你的力学实践素养和有限元分析方法,理论上说无论改变有限元软件,网格化分,单元类型等,对结果的影响应该在百分之五以内,才算合理,当然还要考虑经济效益!同等精度要求下消耗资源越少越优!

做有限元分析,需要掌握哪方面的知识

材料力学才开始学 那有点困难 数值分析 弹性力学 有限单元法 泛函 fortran 慢慢学吧!

有限元分析学习心得

有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元法分析计算的思路和做法可归纳如下: 1) 物体离散化 将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 2) 单元特性分析 A、 选择位移模式 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如位移,应变和应力等由节点位移来表示。这时可以对单元中位移的分布采用一些能逼近原函数的近似函数予以描述。通常,有限元法我们就将位移表示为坐标变量的简单函数。这种函数称为位移模式或位移函数,如y= 其中 是待定系数, 是与坐标有关的某种函数。 B、 分析单元的力学性质 根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步。此时需要应用弹性力学中的几何方程和物理方程来建立力和位移的方程式,从而导出单元刚度矩阵,这是有限元法的基本步骤之一。 C、 计算等效节点力 物体离散化后,假定力是通过节点从一个单元传递到另一个单元。但是,对于实际的连续体,力是从单元的公共边传递到另一个单元中去的。因而,这种作用在单元边界上的表面力、体积力和集中力都需要等效的移到节点上去,也就是用等效的节点力来代替所有作用在单元上得力。 3) 单元组集 利用结构力的平衡条件和边界条件把各个单元按原来的结构重新连接起来,形成整体的有限元方程(1-1)式中,K是整体结构的刚度矩阵;q是节点位移列阵;f是载荷列阵。 4) 求解未知节点位移 解有限元方程式(1-1)得出位移。这里,可以根据方程组的具体特点来选择合适的计算方法。 通过上述分析,可以看出,有限单元法的基本思想是"一分一合",分是为了就进行单元分析,合则为了对整体结构进行综合分析。 有限元的发展概况 1943年 courant在论文中取定义在三角形域上分片连续函数,利用最小势能原理研究St.Venant的扭转问题。 1960年 clough的平面弹性论文中用“有限元法”这个名称。 1970年 随着计算机和软件的发展,有限元发展起来。 涉及的内容:有限元所依据的理论,单元的划分原则,形状函数的选取及协调性。 有限元法涉及:数值计算方法及其误差、收敛性和稳定性。 应用范围:固体力学、流体力学、热传导、电磁学、声学、生物力学 求解的情况:杆、梁、板、壳、块体等各类单元构成的弹性(线性和非线性)、弹塑性或塑性问题(包括静力和动力问题)。能求解各类场分布问题(流体场、温度场、电磁场等的稳态和瞬态问题),水流管路、电路、润滑、噪声以及固体、流体、温度相互作用的问题。

请问一下有限元分析自学容易吗

有限元分析自学的难度因人而异。首先要了解有限元理论,买本有限元理论方面的书,不过比较晦涩难懂。然后买本ANSYS分析实例看看,照着书上写的做一遍,就对有限元分析有一定的认识了。ANSYS主要是进入中国市场早,使用最广泛,只要做CAE基本都知道ANSYS,名气大,甚至有些甲方点名只要ANSYS的计算书。ABAQUS感觉主要在科研行业流行,可能是因为清华的庄茁教授最早把ABAQUS引进来的吧,GUI界面ABAQUS要友好的多,前处理非常方便。更多关于有限元分析自学容易吗,进入:https://www.abcgonglue.com/ask/3849881615437781.html?zd查看更多内容

有限元分析的步骤方法

对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、迭代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。

什么是有限元分析?

有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。 有限元分析可被用来分析比较复杂的、用一般地说代数方法无法足够精确地分析的系统,它可以提供使用其它方法无法提供的结果。在实践中一般使用电脑来解决在分析时出现的巨量的数和方程组。 在分析一个物体或系统中的压力和变形时有限元分析是一种常用的手段,此外它还被用来分析许多其它问题如热传导、流体力学和电力学。 有限元分析通常借助计算机软件完成,著名工程软件有 MSC Nastran,ANSYS,2D-sigma等。

如何判定有限元分析结果是否正确或合理?详细说明好吗

楼主,有限元分析结果合理与否的判断是没有固定标准的,很多时候是根据经验和分析结果的合理性(比如一眼就能看出有应力集中的地方,分析结果也应该是这样,否则分析结果就不对)来判断.有限元本身就带有假设(插值函数、...

ug怎么进行有限元分析

UG的高级仿真模块就是了 网上有相关的视频你可以去看看

有限元分析方法 有限元分析方法是什么

1、前处理。根据实际问题定义求解模型,包括以下几个方面: (1) 定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。 (2) 定义单元类型: (3) 定义单元的材料属性: (4) 定义单元的几何属性,如长度、面积等; (5) 定义单元的连通性: (6) 定义单元的基函数; (7) 定义边界条件: (8) 定义载荷。 2、总装求解: 将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。 3、后处理: 对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。

UG的有限元分析到底指什么

在UG中,有限元分析就是CAE也就是高级仿真模组。可以用来分析模型在各种载荷和约束下,强度、变形是否达到标准。http://video.sina.com.cn/v/b/29594882-1574313212.html

请问,有限元分析的步骤是?

前处理,求解,后处理。各自的作用就是:前处理把一个具体的物理问题转化为计算机用有限元方法能处理的问题,包括模型的简化、抽象,有限元网格的建立,材料,边界条件等等。求解就是让电脑算。后处理就是把电脑算的结果转化为人能读懂的各种信息,包括数据、云图、动画等等。就好比你要做个东西,你把尺寸、功能、材料等等告诉工厂,工厂做好了把产品给你。

轴承有限元分析?

问题一:ANSYS的6206轴承的有限元分析过程命令流 尽管轴承只作为各种机械的通用零部件,但由于品种繁多、加工精密、尺寸范围大,所以轴承工业是机械工业中一种特殊的独立产业,并已形成了完整的工业体系。 到目前为止,全世界已生产ansys轴承品种5万种以上,规格多达15万种以上。最小的轴承内径已小到0.15~1.0mm,重量为0.003g,最大的轴承外径达40m,重340t。1997年世界轴承总产量超过100亿套,总销售额约300亿美元,其中北美、日本、西欧占世界轴承产量的78%,美国、日本、德国已形成世界三大轴承市场。一些世界著名的轴承公司,如瑞典的SKF公司、德国的FAG公司、日本的NSK公司、美国的TORRINGTON公司等,在世界500家大公司中均榜上有名。(据美国《幸福》杂志1994年报道,在世界500家大企业中,SKF排387位、NSK排404位、TORRINGTON公司的母公司英格索尔u30fb兰德公司排在369位)。 2、产品及相关技术水平 轴承的整体技术水平,在近30年来取得了令人瞩目的进步。高精度、高转速、高可靠性、长寿命、免维护保养以及标准化、单元化、通用化已成为轴承的基本技术标志。特别在轴承基础技术进步、通用产品的结构改进、专用轴承单元化和陶瓷轴承的开发等方面成效最为显著。 (1)基础理论 轴承基础理论主要指寿命理论、额定静载荷和极限转速等有关的理论。 百余年来轴承寿命理论的研究经历了四个阶段:第一阶段是1945年以前的Stribeek的载荷分布理论,第二阶段是1945~1960年间Lundberg和Palmgren轴承疲劳失效理论,第三阶段是1960~1980年间的寿命修正理论,第四阶段是1980~1998年间以Loannides和Harris为代表的新寿命理论。1962年,国际标准化组织ISO将经典的L-P公式作为轴承额定动载荷与寿命计算方法标准列入ISO/R281中。近年来,由于材料技术、加工技术、润滑技术的进步和使用条件的精确化,使轴承寿命有较大提高,ISO适时地给出了含有可靠性、材料、运转条件和性能等修正系数的寿命计算公式。八十年代以来Harris等学者在大量试验的基础上提出接触疲劳极限的新理论,将寿命理论又向前推进了一步,使轴承寿命计算方法不断完善。 允许轴承发生相当于万分之一滚动体直径的永久变形,一直是ISO额定静载荷标准的基础。最新的额定静载荷理论的贡献是给出了对应于这个永久变形的各类轴承的最大滚动体有限元分析接触应力。 轴承极限转速研究也取得了新进展。当前世界上较有影响的轴承公司如瑞典的SKF、德国INA、FAG、日本NTN等公司对极限转速的定义、限定范围与使用条件都作出了较科学的规定,使极限转速的研究更加深入。 (2)设计理论 传统的轴承设计以其应用的理论和方法而言,多采用静力学和拟静力学设计方法。近五十年来,轴承设计理论有很大发展,先后提出和应用了有限差分法、有限元法、动力学及拟动力学、弹性流体动力润滑理论,有力地促进了轴承产品设计和应用技术的研究与发展。与此相适应,电子计算机辅助设计(CAD)已在各国轴承设计计算中广泛应用,从而把轴承设计计算推向了一个新阶段。 (3)通用轴承的结构改进 量大面广的通用轴承产品的结构一直围绕着提高轴承载荷、延长使用寿命、增加强度与刚性、减少摩擦磨损、降低噪声、减小体积、减轻重量、采用新材料及免除维护保养作为不懈努力的目标。经过近三十年的努力,国外通用轴承已全部实现了更新换代,形成了新一代的加强型产品。通用轴承内部结构的改进,主要通过减小套圈......>> 问题二:对一个轴进行有限元分析 首先画网格,输入输出端需要建假体。有轴承把轴承模型也建出来(具体看你实例,比如轴短 载荷大轴承刚度影响就很大了 类似直驱风力机主轴) 其次给材料属性 然后约束,如果有轴承模型在轴承外圈节点固支,没有则根据轴承特性加约束 例如:轴承止推则约束轴向平移自由度,约束范围为轴承内圈和轴接触部位。最后轴承输出端约束扭转方向自由度。约束可以通过多点约束将约束面节点和中心节点关联,定义中心节点就可以了。 载荷:按照你分析的工况设定每个工况载荷或逐次计算各个工况,加载点就在轴输入端假体上,比如你是分析车轴,要建一部分和轴相连的轮毂模型,通过多点约束加载在轮毂上,加载中心看你载荷定义的位置。大致情况就是这样 问题三:有限元分析减速器时轴承怎么简化 创建参考点,可用绑定约束讲轴承和参考点绑定到一起, 所有边界条件施加到参考点, 或者直接创建为解析刚体 问题四:有限元分析中轴承的四个刚度四个阻尼值怎么确定 这个是轴承本身的属性吧,不同尺寸不同形式的轴承不一样,应该找相应的轴承厂家了解你要分析的轴承的参数,因为普通样本上可能不提供这些参数像NSK、SKF等 问题五:滚动轴承有限元分析约束条件怎么加 加接触,部分未接触滚珠添加弹簧,消除刚 *** 移 问题六:有没有大神对止推轴承或是推力轴承做过有限元分析?求指教 我所知道的“止推轴承”,它是用来限制“曲轴”的轴向窜动量,它既要与曲轴止推面保持一定的间隙,又不能过大而导致泄油。不知是不是你所想知道的意思? 问题七:ansys分析轴承载荷怎么加 解决方法:确定轴承力分布,先把轴承的面分成上下两半,在受力的那一半施加轴承载荷,具体命令在载荷那里面,施加碎坐标位置变化的载荷,在UG中添加完载荷边界,再导入ansys即可。 ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,puter Aided design)软件接口,实现数据的共享和交换,如Creo,NASTRAN, Alogor, I-DEAS, AutoCAD等。是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。目前,中国100多所理工院校采用ANSYS软件进行有限元分析或者作为标准教学软件。 问题八:Solidworks simulation 能做轴承接触应力分析吗? 可以 找几个有限分分析的例子 照着做一下就行 Solidworks simulation 做有限元分析不专业 结果不是很可靠 建议用专业的有限元分析软件 例如Ansys 问题九:轴承怎样ansys分析 按川实际模型,这三个部分应该是存在2个接触,我不知道你的模型是怎么建的,但是你所说的问题我的第一反应是你的模型有问题,就是内环和磙子,磙子和外环之间的单元没有接触或者连接,应力肯定就不会传递过去,所以没有变形。 所以我觉得关键是要检查你的模型是否添加接触,不用接触GLUE也可以。但是接触要精确。 问题十:Proe4.0进行有限元分析,轴承载荷在哪里? 5分

有关有限元分析的问题

ansys 是一种可靠性很高的有限元分析软件。而且以后就业在很多外资企业里都比较多的用到。基于您要做的热力学分析方面的问题,我个人比较推荐用ansys。本人以前做发动机动力学和热力学分析的时候,用过ansys和abaqus这两个软件。仅作参考。 如果还没解决你的问题,可以加我百度HI账号。

什么是有限元分析FEA?

FEA是Failure Mode and Effect analysis失效模式和影响分析的缩写。 有限元分析简单的说是对产品分成网格, 对每个网格的各个点的物理性质进行计算分析 用在很多方面:比如做一个汽车,在汽车做出来之前,是 用Proe软件做了一个真实的三维模型, 然后导入ansys进行一些受力分析,计算出每个点的力, 确定某些地方是否太薄,螺栓是否太小会断裂, 应力是否太集中导致某些地方裂开等等。 再比如用FLUENT和GAMBIT对一间在中间放个火盆的屋每 个地方的温度场,空气流动等进行分析模拟。 像这些都是有限元分析。对于不同的方面,有不同的软件。

有限元分析是什么意思,

有限元分析说得简单点就是“仿真”。它涉及机械,电磁,热力学等。在设计阶段使用仿真,模拟出实际工作状态中可能发生的失效,从而辅助工程师们高效的做出优质的设计方案。

运动仿真与有限元分析有什么区别

运动仿真主要偏向机构的模拟,可以模拟速度、加速度、位移等等的物理量,主要应用于运动学与动力学方面的。有限元主要偏向于结构分析与热力分析方面,主要检验强度问题、散热问题。可能这样子说起来很抽象,但是如果你有学过大学机械原理与设计、工程力学、材料力学、大学物理等等课程,你就自然明白了。详细的学习交流,可以参考百度贴吧帖子:https://tieba.baidu.com/p/5267498605,可以了解更多。

有限元分析和模态分析有无区别,有的话区别在什么

有限元分析里面有一个小的类别,就是模态分析,一般是用于结构计算的,模态分析当然也会有其他的方法,毕竟是求解本征频率,阵型等,比如公式推导,当然主要是用有限元分析来做的

什么是ANSYS有限元分析技术

有限元法是适应使用电子计算机而发展起来的数值方法。起源于上个世纪50年代航空工程中飞机结构的矩阵分析。世界力学名著“有限元法”的作者监凯维奇教授对有限元法曾做过如下定义:(1)把连续体分成有限个部分,其性态由有限个参数所规定。(2)求解离散成有限元的集合体时,其有限单元应满足连续体所遵循的规则,如力平衡规则等。 应用有限元技术可以帮助:1. 产品设计与开发: 缩短产品开发周期; 降低开发成本; 提高产品质量;2. 对现有结构进行评估:分析产品破坏原因; 评估产品在设计中无法考虑因素作用下的安全性能;3. 进行产品的失效分析:发展与建立材料模型等.

请简述有限元分析的基本概念?用有限元法分析工程问题的一般步骤是什么?

百度之 前处理 求解 后处理 ok了

请问有限元分析自学容易吗

有限元分析自学的难度因人而异。首先要了解有限元理论,买本有限元理论方面的书,不过比较晦涩难懂。然后买本ANSYS分析实例看看,照着书上写的做一遍,就对有限元分析有一定的认识了。ANSYS主要是进入中国市场早,使用最广泛,只要做CAE基本都知道ANSYS,名气大,甚至有些甲方点名只要ANSYS的计算书。ABAQUS感觉主要在科研行业流行,可能是因为清华的庄茁教授最早把ABAQUS引进来的吧,GUI界面ABAQUS要友好的多,前处理非常方便。更多关于有限元分析自学容易吗,进入:https://www.abcgonglue.com/ask/3849881615437781.html?zd查看更多内容

有限元分析学习心得

英文:Finite Element  有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。  有限元法分析计算的思路和做法可归纳如下:  1) 物体离散化  将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。  2) 单元特性分析  A、 选择位移模式  在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。  当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如位移,应变和应力等由节点位移来表示。这时可以对单元中位移的分布采用一些能逼近原函数的近似函数予以描述。通常,有限元法我们就将位移表示为坐标变量的简单函数。这种函数称为位移模式或位移函数,如y= 其中 是待定系数, 是与坐标有关的某种函数。  B、 分析单元的力学性质  根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步。此时需要应用弹性力学中的几何方程和物理方程来建立力和位移的方程式,从而导出单元刚度矩阵,这是有限元法的基本步骤之一。  C、 计算等效节点力  物体离散化后,假定力是通过节点从一个单元传递到另一个单元。但是,对于实际的连续体,力是从单元的公共边传递到另一个单元中去的。因而,这种作用在单元边界上的表面力、体积力和集中力都需要等效的移到节点上去,也就是用等效的节点力来代替所有作用在单元上得力。  3) 单元组集  利用结构力的平衡条件和边界条件把各个单元按原来的结构重新连接起来,形成整体的有限元方程  (1-1)  式中,K是整体结构的刚度矩阵;q是节点位移列阵;f是载荷列阵。  4) 求解未知节点位移  解有限元方程式(1-1)得出位移。这里,可以根据方程组的具体特点来选择合适的计算方法。  通过上述分析,可以看出,有限单元法的基本思想是"一分一合",分是为了就进行单元分析,合则为了对整体结构进行综合分析。   有限元的发展概况  1943年 courant在论文中取定义在三角形域上分片连续函数,利用最小势能原理研究St.Venant的扭转问题。  1960年 clough的平面弹性论文中用“有限元法”这个名称。  1970年 随着计算机和软件的发展,有限元发展起来。  涉及的内容:有限元所依据的理论,单元的划分原则,形状函数的选取及协调性。  有限元法涉及:数值计算方法及其误差、收敛性和稳定性。  应用范围:固体力学、流体力学、热传导、电磁学、声学、生物力学  求解的情况:杆、梁、板、壳、块体等各类单元构成的弹性(线性和非线性)、弹塑性或塑性问题(包括静力和动力问题)。能求解各类场分布问题(流体场、温度场、电磁场等的稳态和瞬态问题),水流管路、电路、润滑、噪声以及固体、流体、温度相互作用的问题。

有限元分析是什么东西

有限单元法,是一种有效解决数学问题的解题方法。其基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式 ,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

有限元分析

分类: 电脑/网络 >> 软件 解析: 有限元分析是上海港机厂计算机应用的先驱,70年代就开始了有限元分析的应用。80年代初,企业引进了8位微机后开发了"起重机杆系结构有限元分析程序",开始了港机结构设计的计算机化。 80年代中后期又先后使用了中国农业机械化科学研究院的MAS微机有限元分析程序和美国MSC公司的PAL2微机有限元分析程,活跃和推动了港机厂的计算机的应用。 90年代初又在VAX系列小型机上开发出了"箱型梁门机臂架系统强度疲劳分析系统"。有效地解决了多年来困绕在起重机行业的门机臂架系统疲劳计算困难的老大难问题。 93年开始使用I-DEAS的有限元分析和前后处理系统,为900T浮吊、印尼桥吊、三峡高架门机等重大工程项目提供出了一份份直观重要的设计分析资料。也使港机厂的有限元应用提到了一个新的高度。 机器安装起来。 96年后又陆续在MAS环境下增加开发了"有限元分析的数值后处理"、"桥吊整体计算的参数化建模"等功能,更是大大地提高了使用有限元分析解决问题的应用效率。98年底投入80多万元,引进了美国ANSYS大型专用有限元分析系统,调集了4、5个结构力学专业毕业的研究生、本科生组成了一个专门从事有限元分析的CAE课题组,一年多来先后为外高桥桥吊、美国BIW海军300t、150t、15t直臂架门机、泰国轮胎吊等20多个项目50多个课题进行了详细的有限元分析。为港机股份有限公司的大型起重装卸设备的设计护驾保航。

什么是有限元分析?

分类: 资源共享 >> 文档/报告共享 问题描述: 通俗一点。 解析: 有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些 *** 在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为: 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。 第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。 为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。 第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。 第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。 简言之,有限元分析可分成三个阶段,前处理、处理和后处理。前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。

有限元分析是什么?

有限元分析是对生活中的各种现象的一个模拟仿真,以前在没有有限元分析的时候,工程师们对于几何形状比较复杂和奇异的结构进行相应的力学会很困难,甚至基本上无法求解。这是因为对于奇异结构来说,建立描述全域的控制方程很多时候是不可能的。有限元是将奇异结构进行有限的离散成一个个小块(单元),再对这种标准的小块建立控制方程,单元上有相应的节点,例如六面体单元的8个顶点就是相应的8个节点(不同单元节点数不同)。节点是用来传递各种力学信息的点,节点之间的力学信息是通过插值函数来实现的(有多种插值函数)。完成以上离散过程后,也就是对每一个单元的控制方程(矩阵形式),进行组装,把相应的边界条件和外载荷带入组装的的总方程中,通过相应的算法,计算出变形,应力,应变,等。当然,这是最简单的结构静力分析过程,有限元的思想可以应用到很多领域,电磁,流体,结构,振动,冲击,复合材料,声学,优化等等…

有限元分析是本科还是研究生课程

本科。《有限元分析》是高等学校机械类专业的一门技术基础必修课程,也可作为近机械类相关专业本科生的必修课、选修课。有限元分析利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。

有限元分析软件哪个好?

问题一:ansys到底好不好用,相比其它有限元分析软件,哪个做有限元分析最好。初学者最好用什么 先定位自己属于哪一种初学者: 1.软件初学者,熟悉有限元:解决线性问题可以选择ANSYS或NASTRAN,解决非线性问题选择ABAQUS或MARC; 2.完全初学者,不熟悉有限元:可以使用ANSYS作为学习软件,该软件的方便习惯有限元处理问题的憨程。 注意:有限元方法解析问题的最关键是模型简化、网格处理、参数及边界条件合理正确的定义,后面的工作可以交给软件处理,最后就是如何分析结果的有效性。 问题二:有限元分析用什么软件最好? 简单的分析,UG,Pro-E,Catia都是可以的。要是复杂分析的话看你应用的场合了。固体分析的话就是ansys和abaqus,如果是强非线性过程的话那就首选abaqus。流固耦合问题是adina和abaqus,不过推荐adina。流体分析的话是flunt。电场分析推荐ansys。这些软件都不太好学,如果你要用abaqus的话建议去买石益平的书,都很不错的。 问题三:的有限元分析的,用什么软件比较好 Abaqus,hyperworks 问题四:有限元分析软件哪个好 推荐:ANSYS Workbench,我现在也在用。首先比较全,网格划分工具,静力学、模态、屈曲、热、电磁、热固耦合、流固耦合、流体等模块,应有尽有。另外,软件的集成做的比较好,简单讲,就是将我们分析时常见的步骤集成默认化了,大大减少了用户的工作量,尤其是网格划分。另一个特别显著的优点就是数据的交互!无敌了都! 问题五:有限元分析软件 有限元分析软件编辑词条   有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1. 在世界范围内的知名度: 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2. 应用领域: ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3. 性价比 ANSYS软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。购买ABAQUS软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。因此,从综合效益和长远效益而言,ABAQUS软件的经济性也是非常突出的。 4. 求解器功能 对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。 ABAQUS软件在求解非线性问题时具有非常明显的优势。其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。 另外,由于ABAQUS/......>> 问题六:有限元分析哪个软件好? 都好,看你分析什么了。大部分分析,主流的有限元软件都能胜任。 问题七:当前的有限元分析软件有哪些及特点是什么? 有限元分析软件推荐元计算公司的FELAC. 产品概述 有限元语言及编译器(Finite Element Language And it"s piler),以下简称FELAC)是中国科学院数学与系统科学研究院梁国平研究院于1983年开始研发的通用有限元软件平台,是具有国际独创性的有限元计算软件,是PFEPG系列软件三十年成果(1983年―2013年)的总结与提升,有限元语言语法比PFEPG更加简练,更加灵活,功能更加强大。目前已发展到2.0版本。其核心采用元件化思想来实现有限元计算的基本工序,采用有限元语言来书写程序的代码,为各领域,各类型的有限元问题求解提供了一个极其有力的工具。FELAC可以在数天甚至数小时内完成通常需要一个月甚至数月才能完成的编程劳动。 FELAC2.2采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的有限元计算C程序。 FELAC2.2面向高校、研究院设计院等科研单位,旨在将科研人员从繁重的代码编写工作中解放出来,快速将理念转化成现实成果,降低开发成本。 问题八:有限元分析的常用软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有多物理场耦合计算方面的SOL Multiphysics与三维结构设计方面的Creo(ProE),UG,CATIA等都是比较强大的。 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS,FELAC等 问题九:请问有限元分析用哪个软件最好? 最好的软件就是你最会用的软件,功能上各个软件都差不多;都能算出同样的结果。 问题十:有限元计算模拟哪个软件最好 ABAQUS和ANSYS都是用的很多的,能够模拟分析很多问题。静态、动态,线性、非线性,接触等问题都可以解决。具体看计算哪种模型再选择。

有限元分析软件(有限元分析软件ansys)

有限元分析软件编辑词条有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSCABAQUS软件与ANSYS软件的对比分析1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。2.应用领域:ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。3.性价比ANSYS软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。购买ABAQUS软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。因此,从综合效益和长远效益而言,ABAQUS软件的经济性也是非常突出的。4.求解器功能对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。ABAQUS软件在求解非线性问题时具有非常明显的优势。其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。另外,由于ABAQUS/Standard(通用程序)和ABAQUS/Explicit(显式积分)同为ABAQUS公司的产品,它们之间的数据传递非常方便,可以很容易地考虑预紧力等静力和动力相结合的计算情况。ABAQUS软件的求解器是智能化的求解器,可以解决其它软件不收敛的非线性问题,其它软件也收敛的非线性问题,ABAQUS软件的计算收敛速度较快,并更加容易操作和使用。5.人机交互界面ABAQUS/CAE是ABAQUS公司新近开发的软件运行平台,他汲取了同类软件和CAD软件的优点,同时与ABAQUS求解器软件紧密结合。与其他有限元软件的界面程序比,ABAQUS/CAE具有以下的特点:l采用CAD方式建模和可视化视窗系统,具有良好的人机交互特性。l强大的模型管理和载荷管理手段,为多任务、多工况实际工程问题的建模和仿真提供了方便。l鉴于接触问题在实际工程中的普遍性,单独设置了连接(interaction)模块,可以精确地模拟实际工程中存在的多种接触问题。l采用了参数化建模方法,为实际工程结构的参数设计与优化,结构修改提供了有力工具。6.综合性能对比综合起来,ABAQUS软件具有:l更多的单元种类,单元种类达433种,提供了更多的选择余地,并更能深入反映细微的结构现象和现象间的差别。除常规结构外,可以方便地模拟管道、接头以及纤维加强结构等实际结构的力学行为l更多的材料模型,包括材料的本构关系和失效准则等,仅橡胶材料模型就达16种。除常规的金属材料外,还可以有效地模拟复合材料、土壤、塑性材料和高温蠕变材料等特殊材料ANSYS软件与ABAQUS软件、ADINA软件的对比分析1.在世界范围内的知名度:三种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉;ABAQUS软件则致力于复杂和深入的非线性工程问题;而ADINA软件除了求解非线性问外,其多物理场的流固耦合求解功能也是全球唯一的专利技术。2.应用领域:三种软件同为大型通用分析软件,都具有各自广泛的应用领域。ANSYS注重应用领域的拓展和合并,目前已覆盖结构、温度、流体、电磁场和多物理场耦合等十分广泛的研究领域;ABAQUS则只具备结构分析功能,功能仅局限于结构力学领域;而ADINA软件和ANSYS软件一样都包括结构、温度、流体及流固耦合的功能,因此其应用领域也是相当广泛。3.性价比三种软件同为美国的有限元分析软件,在价格方面相差不是特别大,不过由于ABAQUS软件仅具有结构分析的功能,因此从整体来看ABAQUS软件是最为便宜的;不过如果需要进行流体计算或者多物理场耦合求解功能的话,则相信ANSYS软件和ADINA软件都会是更好的选择。4.求解器功能对于常规的结构线性问题,三种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。ABAQUS软件和ADINA软件在求解非线性问题时具有非常明显的优势;而ANSYS软件和ADINA软件则在流体和多物理场耦合功能方面具有无可比拟的优势。5.人机交互界面ANSYS/Workbench、ABAQUS/CAE、ADINA/AUI都是采用CAD方式建模和可视化视窗系统,都具有良好的人机交互特性。三种软件都除了提供窗口操作外都还提供命令流输入,但是ABAQUS/CAE并不对所有的命令流都支持CAE界面操作。6.建模方式ANSYS软件和ADINA软件都采用Parasolid为核心的实体建模技术,因此可以和其它Parasolid为核心的CAD软件实行真正无缝的双向数据交换,且该两种软件自身的建模功能很强大。而ABAQUS软件的CAE模块和输入文件两种建模方式是由两家不同的公司研制的,CAE模块功能还不是很完全,一些功能只能通过编辑INP输入文件来实。7.网格划分三种软件都提供多种网格划分器,可以进行复杂模型的自由网格划分。除常见网格划分外,ANSYS软件和ADINA软件还可以对复杂模型进行自动六面体网格划分,从而在节省技术人员工作时间的情况下又保证了网格的精度。8.综合性能对比ANSYS软件的命令流操作非常方便,对于结构循环优化方面比较有优势,但目前还只是局限于线性方面,非线性方面功能很差而且基本没有;ABAQUS软件则在显式非线性方面有些特色,但隐式非线性方面比不上ADINA,且不具备流体的功能;ADINA软件则在结构非线性及多物理场耦合方面非常出色,是全球非线性功能最强大的有限元软件之一,而且具有全球最好的流固耦合分析功能。

什么叫有限元分析技术

有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的 (较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。简言之,有限元分析可分成三个阶段,前处理、处理和后处理。前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。

有限元分析有什么用

问题一:有限元分析是什么 在机械设计上有什么用 有限元分析总的来说就是将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的近似解,然后推导求解这个域总的满足条件,从而得到问题的解。 它涉及的范围很广,比如说水利工程、结构工程、汽车、土木、机电、焊接、材料、隧道、模具、振动、流体方面都有很广的应用、机械设计方面主要用的多的就是对机械产品做受力分析、看看你的产品的承受载荷之后的变形情况、从而验证你的设计是否合理,这方面软件用的多是ANSYS和Abqus,当然你还可以结合其他软件、比如说建模什么的在CAD软件里面会方便些,还有一些专门的网格划分软件,有时候结合着用会省时一些,可以大大减少工作量,望采纳,谢谢了 问题二:有限元分析是什么? 这个问题好!有限元就是一个工具,可以利用其进行场的分析,如磁场、电场、应力场、流场等等。因为往往我们只知道一个宏观的作用,但微观(相对的)的情况到底是啥样的不得而知,有限元通过把宏观的大的东西进行划分为一个个小的单元,把这些小的单元当做微观的东西,进而进行分析,得到微观的一个情况。如一个篮球框架,当有人扣篮拉着球框的时候,篮球架肯定会弯,但是弯多少呢?这个就可以利用有限元进行分析。先建立把篮筐架的物理模型,再将模型划分为一个个很小的单元,再添加载荷、约束后进行分析,就能得到结果。 这个概念太大,我是新手,解释不好。详情百度,或者找本有限元的书看看,也许会有些直接的感受 问题三:有限元分析主要是分析啥 ,有什么具体用处哦? 有限元主要是一种算法,基本思想是数学上的微分思想,例如ANSYS就是一大型通用有限元分析软件,我们可以利用有限元分析结构、流体、电厂、磁场、声场等等。。。 问题四:有限元分析有用吗 有用啊 问题五:学习有限元分析有用吗 如果对结构有限元分析感兴趣,应该从材料力学、弹性力学开始。对应力、应变、平衡方程、本构关系、位移-应变关系等知识有了了解以后,可以学习变分法的知识,看钱伟长先生的《变分法及有限元》。有了力学和变分学基础,就可以看一些比较基础的有限元书籍了,比如Zienkiewicz先生的《有限元方法》(有中文版),里面用到的数学知识不多。如果想对有限元的收敛性分析、稳定性分析有比较深入的了解,需要看有限元数学理论方面的专著,这时需要对泛函分析、Sobolev空间比较熟悉。当然只想解决工程问题,不必往这个方向发展。 问题六:有限元分析到底有没有用 多少都有点用处吧 问题七:常用的有限元分析软件有什么? 它们拥有丰富完善的单元库、 材料模型库和求解器,并且具有相对独立的前、后处理模块,可以独立完成多学科、多领域的工程分析问题。其缺点是前处理模块中的几何建模功能不强,无法完成复杂模型的建模,因此降低了结构分析结果的可信度。一些流行的三维设计软件却具有极强的几何模型的建模功能,如Pro/ENGINEER、UG和CATIA等。这些三维设计软件可以完成一些复杂的几何模型的建模工作。为了克服通用有限元分析软件建模功能较弱的缺点,当前普遍采用软件间的数据转换,即采用三维设计软件进行精确的三维建模,通过标准数据接口将模型以IGES、DXF或 STEP格式读入到通用有限元分析软件中,然后通过该软件进行精确的计算。 问题八:有限元分析用什么软件最好? 简单的分析,UG,Pro-E,Catia都是可以的。要是复杂分析的话看你应用的场合了。固体分析的话就是ansys和abaqus,如果是强非线性过程的话那就首选abaqus。流固耦合问题是adina和abaqus,不过推荐adina。流体分析的话是flunt。电场分析推荐ansys。这些软件都不太好学,如果你要用abaqus的话建议去买石益平的书,都很不错的。 问题九:ANSYS有限元分析软件具体是做什么用的啊 是在建模基础上 对应力进行有限元分析 然后得出各个部分的应变安装软件以后 多看看教程慢慢学 复杂的有限元分析掌握确实有点难 毕竟万事开头难嘛简单的Ansys功能不难掌握 问题十:有限元分析是什么东西 有限元是一门技术,一个新手经过一定的技术训练可以很好的掌握有限元分析的技术。但是,做有限元分析要想得到可靠的、合理的结果则必须做到以下几点: 1)掌握相关的理论知识,比如力学知识、电磁学等,这要看你具体分析哪一类型的问题 2)积累必要的经验,比如有限元网格质量的控制、接触参数的定义、时间步控制、收敛控制等等 反复考察与模型或程序相关的东西

有限元分析结果怎么看

将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。扩展资料:有限元方法/理论已经发展得相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。参考资料来源:百度百科-有限元分析

有限元分析方法

1、前处理。根据实际问题定义求解模型,包括以下几个方面:(1)定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。(2)定义单元类型:(3)定义单元的材料属性:(4)定义单元的几何属性,如长度、面积等;(5)定义单元的连通性:(6)定义单元的基函数;(7)定义边界条件:(8)定义载荷。2、总装求解:将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。3、后处理:对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。

什么是有限元分析?

有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。 有限元分析可被用来分析比较复杂的、用一般地说代数方法无法足够精确地分析的系统,它可以提供使用其它方法无法提供的结果。在实践中一般使用电脑来解决在分析时出现的巨量的数和方程组。 在分析一个物体或系统中的压力和变形时有限元分析是一种常用的手段,此外它还被用来分析许多其它问题如热传导、流体力学和电力学。

有限元分析的基本流程

有限元分析的基本流程如下:第一步 前处理。根据实际问题定义求解模型,包括以下几个方面:定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。定义单元类型。定义单元的材料属性。定义单元的几何属性,如长度、面积等;定义单元的连通性:定义单元的基函数;定义边界条件:定义载荷。第二步 总装求解: 将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。第三步 后处理: 对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

有限元分析是什么 在机械设计上有什么用

说白了,就是设计的产品仿真它的运行情况,看他的受力变形,震动等实际相比符不符合,或者对新设计的产品进行改进后进行分析仿真

有限元分析有什么作用?

很多作用了应力分析 找出薄弱处模态分析 还有热分析 流场之类的

有限元分析中单位如何确定

这张图片可以很好解释mm制与m制单位下的各个物理量的单位。

有限元分析的意义和作用

有限元分析的意义和作用是解偏微分方程。有限元分析是指利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是不久的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算。并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。

有限元分析?

问题一:如何学习有限元分析 飞行器一般用Nastran,可以问下你们老师推荐什么软件,其实所有的大型有限元分析软件都是耿同小异的,学会一个其他也会很容易上手。你要学习有限元分析的话,有限元基础教材看看,然后找本相关软件的书做些练习,即使不懂的也不要紧,多做练习熟练后可以试着解决实际问题,要慢慢积累。 问题二:有限元分析是什么? 这个问题好!有限元就是一个工具,可以利用其进行场的分析,如磁场、电场、应力场、流场等等。因为往往我们只知道一个宏观的作用,但微观(相对的)的情况到底是啥样的不得而知,有限元通过把宏观的大的东西进行划分为一个个小的单元,把这些小的单元当做微观的东西,进而进行分析,得到微观的一个情况。如一个篮球框架,当有人扣篮拉着球框的时候,篮球架肯定会弯,但是弯多少呢?这个就可以利用有限元进行分析。先建立把篮筐架的物理模型,再将模型划分为一个个很小的单元,再添加载荷、约束后进行分析,就能得到结果。 这个概念太大,我是新手,解释不好。详情百度,或者找本有限元的书看看,也许会有些直接的感受 问题三:有限元分析是哪个学科的?大学怎么没学过呀? 有限元是一种分析方法,可以用在力学,流体,场等物理量的分析。 在半导体,加速度计等方面都有应用。 原理就是把连续的物理量分成若干个有限点,利用计算机强大的计算能力,在给定的边界条件下进行时域,场量等分析。 作为一种分析方法,在各种场合都有应用。 有限元分析的书籍各处都有下载,原理明白就可以了。 大学中没有专门的课程。是在力学等课程中作为课外知识了解的。 我在《MEMS器件》课程,半导体物理,半导体器件中应用过。 问题四:有限元分析软件 有限元分析软件编辑词条   有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1. 在世界范围内的知名度: 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2. 应用领域: ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3. 性价比 ANSYS软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。购买ABAQUS软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。因此,从综合效益和长远效益而言,ABAQUS软件的经济性也是非常突出的。 4. 求解器功能 对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。 ABAQUS软件在求解非线性问题时具有非常明显的优势。其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。 另外,由于ABAQUS/......>> 问题五:有限元分析的基本步骤是什么? 元计算FELAC有限元分析的基本步骤如下。1)建立研究对象的近似模型。 2)将研究对象分割成有限数量的单元 研究者很难从整体上分析对象系统,需要把对象系统分解成有限数量的、形式相同、相对简单的分区或组成部分,这个过程也被称为离散化。3)用标准方法对每个单元提出一个近似解 研究者能够比较容易地分析基本单元的行为,提出求解基本单元的方法。4)将所有单元按标准方法组合成一个与原有系统近似的系统 将基本单元组装成一个近似系统,在几何形状和性能特征方面可以近似地代表研究对象。5)用数值方法求解这个近似系统。 采用离散化之后,就不需要再求解复杂的偏微分方程组,而转换为求解线性方程组。数学家提出了许多求解大规模线性方程组的数值算法。6)计算结果处理与结果验证 由数值计算可以得到大量的数据,如何显示、分析数据并找到有用的结论是人们一直关系的问题。 内容拷贝元计算官网 问题六:有限元分析有什么作用? 很作用了 应力分析 找出薄弱处 模态分析 还有热分析 流场之类的 问题七:什么是有限元分析? 有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。有限元分析可被用来分析比较复杂的、用一般地说代数方法无法足够精确地分析的系统,它可以提供使用其它方法无法提供的结果。在实践中一般使用电脑来解决在分析时出现的巨量的数和方程组。在分析一个物体或系统中的压力和变形时有限元分析是一种常用的手段,此外它还被用来分析许多其它问题如热传导、流体力学和电力学。 问题八:有限元分析的发展趋势 纵观当今国际上CAE软件的发展情况,可以看出有限元分析方法的一些发展趋势:1、与CAD软件的无缝集成当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。为了满足工程师快捷地解 决复杂工程问题的要求,许多商业化有限元分析软件都开发了和著名的CAD软件(例如Pro/ENGINEER、Unigraphics、 SolidEdge、SolidWorks、IDEAS、Bentley和AutoCAD等)的接口。有些CAE软件为了实现和CAD软件的无缝集成而采 用了CAD的建模技术,如ADINA软件由于采用了基于Parasolid内核的实体建模技术,能和以Parasolid为核心的CAD软件(如 Unigraphics、SolidEdge、SolidWorks)实现真正无缝的双向数据交换。2、更为强大的网格处理能力有限元法求解问题的基本过程主要包括:分析对象的离散化、有限元求解、计算结果的后处理三部分。由于结构离散后的网格质量直接影响到求解时间及求解结果的 正确性与否,各软件开发商都加大了其在网格处理方面的投入,使网格生成的质量和效率都有了很大的提高,但在有些方面却一直没有得到改进,如对三维实 体模型进行自动六面体网格划分和根据求解结果对模型进行自适应网格划分,除了个别商业软件做得较好外,大多数分析软件仍然没有此功能。自动六面体网格划分 是指对三维实体模型程序能自动的划分出六面体网格单元,大多数软件都能采用映射、拖拉、扫略等功能生成六面体单元,但这些功能都只能对简单规则模型适 用,对于复杂的三维模型则只能采用自动四面体网格划分技术生成四面体单元。对于四面体单元,如果不使用中间节点,在很多问题中将会产生不正确的结果,如果 使用中间节点将会引起求解时间、收敛速度等方面的一系列问题,因此人们迫切的希望自动六面体网格功能的出现。自适应性网格划分是指在现有网格基础上,根据 有限元计算结果估计计算误差、重新划分网格和再计算的一个循环过程。对于许多工程实际问题,在整个求解过程中,模型的某些区域将会产生很大的应变,引起单 元畸变,从而导致求解不能进行下去或求解结果不正确,因此必须进行网格自动重划分。自适应网格往往是许多工程问题如裂纹扩展、薄板成形等大应变分析的必要 条件。3、由求解线性问题发展到求解非线性问题随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求 解,例如薄板成形就要求同时考虑结构的大位移、大应变(几何非线性)和塑性(材料非线性);而对塑料、橡胶、陶瓷、混凝土及岩土等材料进行分析或需考虑材 料的塑性、蠕变效应时则必须考虑材料非线性。众所周知,非线性问题的求解是很复杂的,它不仅涉及到很多专门的数学问题,还必须掌握一定的理论知识和求解技 巧,学习起来也较为困难。为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件,如ADINA、ABAQUS等。它们的共同特点是具有高效的非 线性求解器、丰富而实用的非线性材料库,ADINA还同时具有隐式和显式两种时间积分方法。4、由单一结构场求解发展到耦合场问题的求解有限元分析方法最早应用于航空航天领域,主要用来求解线性结构问题,实践证明这是一种非常有效的数值分析方法。而且从理论上也已经证明,只要用......>>

非线性有限元分析?

问题一:有限元里的线性和非线性是什么意思 线性:最简单讲,理论力学,材料力学,结构力学里教你手算的绝大多数公式都是线性的,坐标轴里的直线就是最简单的线性,成比例增长。非线性:圆,椭圆,抛物线这种力-位移曲线或材料曲线都属于非线性,不成比例增长,来源有3个,1是材料非线性,弹性是线性,塑形是非线性,2是几何非线性,如钓鱼竿受力后变成抛物线了,3是状态非线性,如螺栓松动,又如碰撞或者单边接触,其接触刚度随压力会发生变化,拉力下变成0,这3种情况下,不能按照书里的简单公式求解。用有限元元软件时,我们一般都用非线性求解的,除非你能肯定你的问题就是非常简单的线弹性问题,比如验证材料力学教科书的公式时,这时候用弹性小变形也无所谓。gb里也会把实际问题由非线性简化成线性的,比如用2阶弹性计算代替非线性,而软件里可以用n阶迭代求解,所以比手算强,比线性计算更耗时,因为要迭代嘛。 手机码字不容易,请采纳! 问题二:有限元分析什么时候应该考虑非线性 知乎 看看边界条件是否非线性; 看看是否存在接触,接触就是典型的非线性问题; 看看材料是不是非线性; 就从这三个方面考虑有限元的非线性。 问题三:ansys非线性有限元分析方法及范例应用 课本下载 此为非线性PDF+随书光盘文件 问题四:我的windows xp开机后要停滞将近一分钟才运行IE进程。开机速度很慢,怎么办? 从装遍网卡驱动就好,我电脑就这样 问题五:求非线性有限元分析的MATLAB程序!!!!!!!!! 20分 百度云的地址 pan.baidu/...755398 你注册下就可以下载 问题六:综述各有限元通用软件有哪些,优缺点,适用领域 目前流行的CAE分析软件主要有NASTRAN、ADINA 、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。以下为对这些常用的软件进行的比较和评价: LSTC公司的LS-DYNA系列软件。 LSDYNA长于冲击、接触等非线性动力分析。LS-DYNA是一个通用显式非线性动力分析有限元程序,最初是1976年在美国劳伦斯利弗莫尔国家实验室由J.O.Hallquist主持开发完成的,主要目的是为核武器的弹头设计提供分析工具,后经多次扩充和改进,计算功能更为强大。虽然该软件声称可以求解各种三维非线性结构的高速碰撞、爆炸和金属成型等接触非线性、冲击载荷非线性和材料非线性问题,但实际上它在爆炸冲击方面,功能相对较弱,其欧拉混合单元中目前最多只能容许三种物质,边界处理很粗糙,在拉格朗日――欧拉结合方面不如DYTRAN灵活。 MSC.software公司的DYTRAN软件 在同类软件中,DYTRAN在高度非线性、流固耦合方面有独特之处。MSC.DYTRAN程序是在LS-DYNA3D的框架下,在程序中增加荷兰PISCES;INTERNATIONAL公司开发的PICSES的高级流体动力学和流体结构相互作用功能,还在PISCES的欧拉模式算法基础上,开发了物质流动算法和流固耦合算法发展而来的。但是,由于MSC.DYTRAN是一个混合物,在继承了LS-DYNA3D与PISCES优点的同时,也继承了其不足。首先,材料模型不丰富,对于岩土类处理尤其差,虽然提供了用户材料模型接口,但由于程序本身的缺陷,难于将反映材料特性的模型加上去;其次,没有二维计算功能,轴对称问题也只能按三维问题处理,使计算量大幅度增加;在处理冲击问题的接触算法上远不如当前版的LS-DYNA3D全面。 HKS公司的ABAQUS软件 ABAQUS是一套先进的通用有限元系统,属于高端CAE软件。它长于非线性有限元分析,可以分析复杂的固体力学和结构力学系统,特别是能够驾驭非常庞大的复杂问题和模拟高度非线性问题。ABAQUS不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究,其系统级分析的特点相对于其他分析软件来说是独一无二的。需要指出的是,ABAQUS对爆炸与冲击过程的模拟相对不如DYTRAN和LS-DYNA3D。 ADINA ADINA是近年来发展最快的有限元软件,它独创有许多特殊解法, 如劲度稳定法(Stiffness Stabilization),自动步进法(Automatic Time Stepping),外力-变位同步控制法(Load-Displacement Control)以及BFGS梯度矩阵更新法,使得复杂的非线性问题(如接触,塑性及破坏等), 具有快速且几乎绝对收敛的特性, 且程式具有稳定的自动参数计算,用户无需头痛于调整各项参数。另外值得一提的就是它有源代码,我们可以对程序进行改造,满足特殊的需求。 NASTRAN NASTRAN是大型通用结构有限元分析软件,也是全球CAE工业标准的原代码程序。NASTRAN系统长于线性有限元分析和动力计算,因为和NASA(美国国家宇航局)的特殊关系,它在航空航天领域有着崇高的地位。NASTRAN的求解器效率比ANSYS高一些。 ANSYS ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,发展了很多版本,但是它们核心的计算部分变化不大,只是模块越来越多,这些模块并不是ANSYS公司自己搞的,而是把别人的东西买来集成到......>> 问题七:跪求几何非线性有限元程序???谢谢。。。 ansys,abaqus,nastran,adina……随便哪个都能进行非线性分析,这是很基本的功能,也不是什么高深问题,你不用单独把几何非线性拿出来。

有限元分析软件的常见软件

Femap+ NX NastranSiemens PLM Software家族的Femap以Parasolid为内核,具有 20年专注于有限元建模领域的工程经验,有助于用户将复杂的模型建模简单化,其基于 Windows 的特性为用户提供了强大的功能,且易学易用!Femap 产品被广泛地应用于多种工程产品系统及过程之中,例如:卫星、航空器、重型起重机、高真空密封器等。Femap 提供了从高级梁建模、中面提取、六面体网格划分,到功能卓越的CAD输入和简化的工具。NX Nastran是CAE解算器技术事实上的标准,是全球航空、航天、汽车、造船等行业绝大部分客户认可的解算器。NX Nastran与Femap的结合为用户提供了一个强大且可承受的解决方案。它是一个许可证灵活、融合了 Siemens PLM Software公司的“公平的市场价值”的价格哲学理念的软件包,为用户提供了强有力的有限元分析工具,用户只需支付较低的整体价格就能得到最高级的Nastran功能。Femap + NX Nastran已经在全球各行业超过10000家企业应用。  COMSOL MultiphysicsCOMSOL Multiphysics是一款大型的高级数值仿真软件。广泛应用于各个领域的科学研究以及工程计算,被当今世界科学家称为“最专业的多物理场全耦合分析软件”。模拟科学和工程领域的各种物理过程,COMSOL Multiphysics以高效的计算性能和杰出的多场双向直接耦合分析能力实现了高度精确的数值仿真。pFEPG元计算科技发展有限公司首席科学家、中国科学院数学与系统科学研究所梁国平研究员团队历经八年的潜心研究,独创了具有国际领先水平的有限元程序自动生成系统(pFEPG)。pFEPG采用元件化思想和有限元语言这一先进的软件设计,为各种领域、各方面问题的有限元求解提供了一个极其有力的工具,采用FEPG可以在数天甚至数小时内完成通常需要数月甚至数年才能完成的编程劳动。pFEPG是目前“幸存”下来的为数不多的CAE技术中发展最好的有限元软件,目前有三百多家科研院、企业应用。也已成为国内做的最大的有限元软件平台。pFEPG作为通用型的有限元软件,能够解决固体力学、结构力学、流体力学、热传导、电磁场以及数学方面的有限元计算,在耦合具有特有的优势,能够实现多物理场任意耦合;在有限元并行计算方面处于领先地位。SciFEASciFEA软件开发的计算功能包括梁、板、壳结构计算;弹性、弹塑性、粘弹性、粘弹塑性、非线性弹性计算;热分析、流体分析、流固耦合、热固耦合、热流固耦合计算等功能。计算的类型包括静力、动力、模态分析等。SciFEA软件已形成了单机版、网络版、集群并行版、GPU并行版,GPU并行版是基于新的GPU/CPU混合架构的并行有限元计算系统。SciFEA可用于机械、土木、电气、电子、热能、航空航天、地质、能源等专业的有限元计算分析。也可用于高校研究所等单位的有限元教学与科研。结构特点SciFEA抛弃了传统CAE软件复杂结构体系设计模式,采用直接面向用户需求的独立模块开发方式。SciFEA软件中的功能模块保持了计算的独立性,对CAE软件功能扩展的复杂度降低。同时,进一步和行业需求集成的灵活度增加。SciFEA软件包括软件操作界面、前后处理和计算功能模块三大部分。前后处理采用欧洲工程数值模拟中心开发的GiD软件包,SciFEA3.0版提供计算功能模块包括:弹性计算、塑性计算、流体计算、粘弹性计算、材料计算、结构计算、损伤破裂计算、水热力耦合计算、传热计算、渗流计算、电磁计算、电热力耦合计算、岩土计算、热固耦合计算、化学反应计算等;计算类型包括稳态、瞬态、动力、非线性等。SciFEA发布的计算功能模块均提供算例,用户可以结合算例学习SciFEA。SciFEA的用户模块挂载功能实现了计算模块的快速整合以及耦合问题的快速求解。软件系列SciFEA提供单机版、网络版、机群并行版、显卡(GPU)并行版,发行的版本为3.0版本。单机版、网络版均提供免费试用的版本。使用版本的使用方式和正式版本一致,只是在计算的单元规模上有少于3000个单元的限制。网络版iSciFEA提供了试用的通用帐号(用户名:guest;密码SciFEA)。iSciFEA,SciFEA在北京超算官网上均有下载。前后处理SciFEA的前后处理器采用欧洲工程数值模拟国际中心开发的GiD软件。GiD软件具有几何建模、网格划分、CAD数据导入、后处理结果显示等功能。GiD采用类似于CAD的操作模式。几何建模可以通过拉伸、旋转、镜象、缩放、偏置等操作得到面、体,可以直接构造矩形、多边形、圆、球、圆柱、圆锥、棱柱、圆环等;通过体面的布尔加、减、交等操作得到模型。网格自动生成GiD可将几何模型自动离散成线单元、三角形单元、四边形单元、四面体单元、六面体单元等,并且可以根据用户的需要对网格进行局部的加密以及网格阶次的选择。CAD和CAE接口GiD提供:IGES、DXF、Parasolid、VDA、STL、Nastran等接口,并且可以将GiD的数据文件写成上述的格式。后处理GiD可将结果写成各种常用的图形文件如:BMP、GIF、TPEG、PNG、TGA、TIFF、VRML等格式,以及AVI、MEPG的动画格式。后处理支持的结果显示方式有:带状云图显示、等直线显示、切片显示、矢量显示、变形显示等等。并且可以根据用户的需要定制显示菜单。SciFEA软件GPU版本超算显卡并行系统(简称SciFEA-GPU)是北京超算自主开发的一款基于GPU/CPU混合架构的有限元分析系统。基于GPU和CPU两种不同架构处理器的结合,组成硬件上的协同模式;通过实现GPU和CPU的混合编程,由CPU负责执行顺序型的代码,由GPU来负责密集的并行计算实现高效有限元分析。同时SciFEA-GPU软件按照全新的可装配的思路进行开发,利用软件的可重用性,降低了软件开发的难度,增加了软件的可靠度。SciFEA-GPU软件的设计架构体现了数值模拟软件个性化发展方向,为用户提供了一种按需选择的高性能计算新模式。SciFEA-GPU在材料固化、岩石破裂、瓦斯运移、孔隙介质渗流均有成功应用,隐式算法的计算效率是单CPU的6-8倍,显式算法在30倍左右。北京超算提供计算GPU加速引擎和GPU并行计算软件开发定制服务。ABAQUSABAQUS是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。达索并购ABAQUS后,将SIMULIA作为其分析产品的新品牌。它是一个协同、开放、集成的多物理场仿真平台。LMS-SamtechSAMTECH公司是世界著名的有限元软件SAMCEF的开发商和供应服务商,公司总部设在比利时列日市,其前身是比利时列日大学的宇航实验室,其软件开发的历史可以追溯到1965年。SAMCEF软件的第一个静力分析程序ASEF与1965年完成。随后在1972和1975年分别增加了模态分析程序DYNAM和热分析程序Thermal ASEF。1977年动力响应程序REPDYN诞生。1978年SAMCEF优化模块OPTI推出。1980年非线性静态和动力学软件SAMCEF Mecano的推出标志着SAMCEF在多柔体动力学领域地位的确立。 2011年8月24日,LMS国际公司正式对外宣布收购SAMTECH公司,成为其最大的控股股东。从此Samtech成为LMS国际公司的有限元专业解决方案。介绍及技术特点SAMCEF Mecano是以解决非线性结构和机构运动学问题的有限元分析软件。可用于各种线性与非线性的结构强度计算,传热学计算机运动鞋问题分析。其有以下求解器构成,能够解决下列专业领域的具体分析 :Mecano Sturcture:专注于解决结构非线性静态和动态分析问题(大位移和大转角)Mecano Motion: 专注于解决柔性静力学,运动学和动力学分析问题Mecano Thermal: 专注于非线性稳态和瞬态分析求解器由这些求解器构成的samcef mecano非线性隐式有限元求解器能够求解一下问题:隐式非线性静力学分析,隐式非线性动力学分析,多体动力学分析,线缆非线性动力学分析和非线性热学分析。目前,在机械系统的动力学和运动学的强度和刚度仿真分析方面主要有两类分析软件,一类是以结构为主要分析对象的有限元分析软件,另一类是以机构运动为主要研究对象的运动鞋仿真分析软件。这些软件的局限性是在处理刚柔耦合问题时不易使用且无法处理非线性的效应。Samcef Mecano 则在这一领域提供了领先的解决方案。其独特的Motion in FEA方法将机构的运动仿真与结构的有限元分析无缝集成,可以很有效地处理刚柔耦合问题并考虑可能的非线性效应。这一领先技术已经在航空,航天,汽车,通用机械,电子设备等多个领域发挥了重要作用。SAMCEFFieldSAMCEF Field是通用的有限元分析前后处理平台。它以图形化界面的形式,完成几何建模,特性定义,载荷和约束处理,网格划分,作业提交和监控以及后处理仿真等操作。它支持各种CAD到CAE模型的导入,以及各种格式结果文件和图表的输出。作为一个开放式的环境,SAMCEF Field通过非常直观的导航功能,为用户进行机构与结构的设计和仿真分析提供了一个必要的工具 。

有限元分析软件

有限元分析软件编辑词条   有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。  有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。  ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。  结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS  流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS  耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS  性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC  ABAQUS软件与ANSYS软件的对比分析  1. 在世界范围内的知名度:  两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。  由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。  2. 应用领域:  ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。  3. 性价比  ANSYS软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。购买ABAQUS软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。因此,从综合效益和长远效益而言,ABAQUS软件的经济性也是非常突出的。  4. 求解器功能  对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。  ABAQUS软件在求解非线性问题时具有非常明显的优势。其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。  另外,由于ABAQUS/Standard(通用程序)和ABAQUS/Explicit(显式积分)同为ABAQUS公司的产品,它们之间的数据传递非常方便,可以很容易地考虑预紧力等静力和动力相结合的计算情况。  ABAQUS软件的求解器是智能化的求解器,可以解决其它软件不收敛的非线性问题,其它软件也收敛的非线性问题,ABAQUS软件的计算收敛速度较快,并更加容易操作和使用。  5. 人机交互界面  ABAQUS/CAE是ABAQUS公司新近开发的软件运行平台,他汲取了同类软件和CAD软件的优点,同时与ABAQUS求解器软件紧密结合。  与其他有限元软件的界面程序比,ABAQUS/CAE具有以下的特点:  l 采用CAD方式建模和可视化视窗系统,具有良好的人机交互特性。  l 强大的模型管理和载荷管理手段,为多任务、多工况实际工程问题的建模和仿真提供了方便。  l 鉴于接触问题在实际工程中的普遍性,单独设置了连接(interaction)模块,可以精确地模拟实际工程中存在的多种接触问题。  l 采用了参数化建模方法,为实际工程结构的参数设计与优化,结构修改提供了有力工具。  6. 综合性能对比  综合起来,ABAQUS软件具有:  l 更多的单元种类,单元种类达433种,提供了更多的选择余地,并更能深入反映细微的结构现象和现象间的差别。除常规结构外,可以方便地模拟管道、接头以及纤维加强结构等实际结构的力学行为  l 更多的材料模型,包括材料的本构关系和失效准则等,仅橡胶材料模型就达16种。除常规的金属材料外,还可以有效地模拟复合材料、土壤、塑性材料和高温蠕变材料等特殊材料  ANSYS软件与ABAQUS软件、ADINA软件的对比分析  1. 在世界范围内的知名度:  三种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。  ANSYS软件在致力于线性分析的用户中具有很好的声誉;ABAQUS软件则致力于复杂和深入的非线性工程问题;而ADINA软件除了求解非线性问外,其多物理场的流固耦合求解功能也是全球唯一的专利技术。  2. 应用领域:  三种软件同为大型通用分析软件,都具有各自广泛的应用领域。  ANSYS注重应用领域的拓展和合并,目前已覆盖结构、温度、流体、电磁场和多物理场耦合等十分广泛的研究领域;ABAQUS则只具备结构分析功能,功能仅局限于结构力学领域;而ADINA软件和ANSYS软件一样都包括结构、温度、流体及流固耦合的功能,因此其应用领域也是相当广泛。  3. 性价比  三种软件同为美国的有限元分析软件,在价格方面相差不是特别大,不过由于ABAQUS软件仅具有结构分析的功能,因此从整体来看ABAQUS软件是最为便宜的;不过如果需要进行流体计算或者多物理场耦合求解功能的话,则相信ANSYS软件和ADINA软件都会是更好的选择。  4. 求解器功能  对于常规的结构线性问题,三种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。  ABAQUS软件和ADINA软件在求解非线性问题时具有非常明显的优势;而ANSYS软件和ADINA软件则在流体和多物理场耦合功能方面具有无可比拟的优势。  5. 人机交互界面  ANSYS/Workbench、ABAQUS/CAE、ADINA/AUI都是采用CAD方式建模和可视化视窗系统,都具有良好的人机交互特性。三种软件都除了提供窗口操作外都还提供命令流输入,但是ABAQUS/CAE并不对所有的命令流都支持CAE界面操作。  6.建模方式  ANSYS软件和ADINA软件都采用Parasolid为核心的实体建模技术,因此可以和其它Parasolid为核心的CAD软件实行真正无缝的双向数据交换,且该两种软件自身的建模功能很强大。而ABAQUS软件的CAE模块和输入文件两种建模方式是由两家不同的公司研制的,CAE模块功能还不是很完全,一些功能只能通过编辑INP输入文件来实。  7.网格划分  三种软件都提供多种网格划分器,可以进行复杂模型的自由网格划分。  除常见网格划分外,ANSYS软件和ADINA软件还可以对复杂模型进行自动六面体网格划分,从而在节省技术人员工作时间的情况下又保证了网格的精度。  8. 综合性能对比  ANSYS软件的命令流操作非常方便,对于结构循环优化方面比较有优势,但目前还只是局限于线性方面,非线性方面功能很差而且基本没有;  ABAQUS软件则在显式非线性方面有些特色,但隐式非线性方面比不上ADINA,且不具备流体的功能;  ADINA软件则在结构非线性及多物理场耦合方面非常出色,是全球非线性功能最强大的有限元软件之一,而且具有全球最好的流固耦合分析功能。

有限元分析结果怎么看

将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。扩展资料:有限元方法/理论已经发展得相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。参考资料来源:百度百科-有限元分析

什么是有限元分析?

有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。 有限元分析可被用来分析比较复杂的、用一般地说代数方法无法足够精确地分析的系统,它可以提供使用其它方法无法提供的结果。在实践中一般使用电脑来解决在分析时出现的巨量的数和方程组。 在分析一个物体或系统中的压力和变形时有限元分析是一种常用的手段,此外它还被用来分析许多其它问题如热传导、流体力学和电力学。

有限元分析软件?

问题一:常用的有限元分析软件有什么? 它们拥有丰富完善的单元库、 材料模型库和求解器,并且具有相对独立的前、后处理模块,可以独立完成多学科、多领域的工程分析问题。其缺点是前处理模块中的几何建模功能不强,无法完成复杂模型的建模,因此降低了结构分析结果的可信度。一些流行的三维设计软件却具有极强的几何模型的建模功能,如Pro/ENGINEER、UG和CATIA等。这些三维设计软件可以完成一些复杂的几何模型的建模工作。为了克服通用有限元分析软件建模功能较弱的缺点,当前普遍采用软件间的数据转换,即采用三维设计软件进行精确的三维建模,通过标准数据接口将模型以IGES、DXF或 STEP格式读入到通用有限元分析软件中,然后通过该软件进行精确的计算。 问题二:有限元分析用什么软件最好? 简单的分析,UG,Pro-E,Catia都是可以的。要是复杂分析的话看你应用的场合了。固体分析的话就是ansys和abaqus,如果是强非线性过程的话那就首选abaqus。流固耦合问题是adina和abaqus,不过推荐adina。流体分析的话是flunt。电场分析推荐ansys。这些软件都不太好学,如果你要用abaqus的话建议去买石益平的书,都很不错的。 问题三:的有限元分析的,用什么软件比较好 Abaqus,hyperworks 问题四:有限元分析软件 有限元分析软件编辑词条   有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1. 在世界范围内的知名度: 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2. 应用领域: ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3. 性价比 ANSYS软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。购买ABAQUS软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。因此,从综合效益和长远效益而言,ABAQUS软件的经济性也是非常突出的。 4. 求解器功能 对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。 ABAQUS软件在求解非线性问题时具有非常明显的优势。其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。 另外,由于ABAQUS/......>> 问题五:有限元分析软件哪个好 推荐:ANSYS Workbench,我现在也在用。首先比较全,网格划分工具,静力学、模态、屈曲、热、电磁、热固耦合、流固耦合、流体等模块,应有尽有。另外,软件的集成做的比较好,简单讲,就是将我们分析时常见的步骤集成默认化了,大大减少了用户的工作量,尤其是网格划分。另一个特别显著的优点就是数据的交互!无敌了都! 问题六:有限元分析的常用软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有多物理场耦合计算方面的SOL Multiphysics与三维结构设计方面的Creo(ProE),UG,CATIA等都是比较强大的。 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS,FELAC等 问题七:有限元分析哪个软件好? 都好,看你分析什么了。大部分分析,主流的有限元软件都能胜任。 问题八:哪些软件可以进行有限元分析? 美国ansys公司的ansys软件,中国元计算公司的FELAC软件,个人比较推荐FELAC,他的应用领域比较广,而且比较零活每个人都可以参与开发属于自己领域独一无二的软件,并且可以计算万核以上的并行计算,而ansys对于领域和计算核心数量的限制都比较多。个人比较支持国产,希望能帮到你! 问题九:有限元分析软件的介绍 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司。 问题十:当前的有限元分析软件有哪些及特点是什么? 有限元分析软件推荐元计算公司的FELAC. 产品概述 有限元语言及编译器(Finite Element Language And it"s piler),以下简称FELAC)是中国科学院数学与系统科学研究院梁国平研究院于1983年开始研发的通用有限元软件平台,是具有国际独创性的有限元计算软件,是PFEPG系列软件三十年成果(1983年―2013年)的总结与提升,有限元语言语法比PFEPG更加简练,更加灵活,功能更加强大。目前已发展到2.0版本。其核心采用元件化思想来实现有限元计算的基本工序,采用有限元语言来书写程序的代码,为各领域,各类型的有限元问题求解提供了一个极其有力的工具。FELAC可以在数天甚至数小时内完成通常需要一个月甚至数月才能完成的编程劳动。 FELAC2.2采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的有限元计算C程序。 FELAC2.2面向高校、研究院设计院等科研单位,旨在将科研人员从繁重的代码编写工作中解放出来,快速将理念转化成现实成果,降低开发成本。

有限元分析有什么作用?

解偏微分方程。随着市场竞争的加剧,产品更新周期愈来愈短,企业对新技术的需求更加迫切,而有限元数值模拟技术是提升产品质量、缩短设计周期、提高产品竞争力的一项有效手段,所以,随着计算机技术和计算方法的发展,有限元法在工程设计和科研领域得到了越来越广泛的重视和应用。已经成为解决复杂工程分析计算问题的有效途径,从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源和科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。扩展资料:基本特点:有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。参考资料来源:百度百科——有限元分析

有限元分析方法

  1、前处理。根据实际问题定义求解模型,包括以下几个方面:   (1) 定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。   (2) 定义单元类型:   (3) 定义单元的材料属性:   (4) 定义单元的几何属性,如长度、面积等;   (5) 定义单元的连通性:   (6) 定义单元的基函数;   (7) 定义边界条件:   (8) 定义载荷。   2、总装求解: 将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。   3、后处理: 对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。

有限元分析是什么

有限元分析的意思如下:有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。知识拓展有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。简介有限元法最初应用于航空器的结构强度计算,随有计算机技术的快速发展和普及,现在有限元方法因其高效已广泛应用于几乎所有的科学技术领域。

有限元分析是什么

有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。有限元法最初应用于航空器的结构强度计算,随有计算机技术的快速发展和普及,现在有限元方法因其高效已广泛应用于几乎所有的科学技术领城。扩展资料应用:有限元分析计算,即操作ANSYS WORKBENCH软件进行分析和计算的环节,是使用软件的主要部分,主要包括分析模块选择、网格划分、载荷和约束加载、求解计算。依照分析方案,本文选择Static Structural静态结构模块。网格划分是有限元分析计算的核心环节,占有至关重要的作用,网格划分质量的好坏,直接决定了计算结果的误差精度,同时也决定了计算过程所耗费的时间,有些情况下甚至决定了计算能否成功进行。很多计算过程中报错,都是因为网格划分不合格造成的。对于静力结构分析来说,网格划分有很多种不同的方式,相互差异很大。本次课题分析中,使用ANSYS WORKBENCH的自动网格划分,软件对于能扫略的部件会使用六面体进行分网,对于不可扫略的部件用四面体或四棱柱分网。分网完毕后,软件中Mesh的属性列表中有Mesh Metric网格质量评分,其中Average值表示平均网格质量,一般情况下,如果Average数值大于0.7,即表示网格质量较好。结合软件评分,需要不断对网格划分进行重新划分调整,直至满足要求。参考资料来源:百度百科-有限元分析

有限元分析步骤?

有限元分析步骤介绍如下:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、迭代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。

基于物元分析法的小秦岭金矿区地质环境评价

邢永强1 郑钊2 吴梅1 潘元庆1 方士军1(1.河南省国土资源科学研究院,郑州 450016;2.天津大学建筑工程学院,天津 300072)《河南科学》,文章编号:1004-3918-(2008)-03-0353-04摘要 近年来,随着人类对小秦岭金矿区开发活动的不断增强,当地地质环境已受到严重破坏,评价小秦岭矿区的地质环境状况对于今后的矿山恢复治理工作有重要的指导意义。本文选取物元分析法来开展评价工作,首先根据实地调查结果并按照区域差异性原则,将小秦岭金矿区划分为87个评价单元,接着选取了评价指标和评价标准,确定出各指标的权重系数,在此基础上开展小秦岭金矿区地质环境质量综合评价工作。研究结果表明:小秦岭矿区整体地质环境状况不容乐观,特别是西南部强烈的采矿活动对地质环境造成极大破坏,是今后矿山地质环境恢复治理的重点。关键词 小秦岭 物元分析法 地质环境评价小秦岭金矿区是我国四大黄金产地之一,自20世纪60年代中期以来,这里发现了1 200条含金矿脉,已探明黄金储量约400 余t。当地矿业经济发展很快,特别是20世纪80年代矿山采选企业迅速发展,矿区内有国家和地方黄金企业数十家,矿山坑口数千个,矿业已成为灵宝市的支柱产业。然而,由于我国矿业资源的管理、开发体制很不健全,小秦岭金矿区在淘金者的乱采滥挖下,不可再生的矿业资源和矿区地质环境遭到了严重的破坏。此外,人为的破坏还给该地区带来了滑坡、泥石流、地面坍塌等地质灾害。因此,运用适当的方法对小秦岭金矿区地质环境进行综合评价,对以后开展矿山恢复治理工作有重要的指导意义。1 研究区地质环境概况1.1 自然概况小秦岭金矿区位于河南省西部灵宝市境内的豫、陕、晋三省交界处,地理坐标为北纬34°24′~34°30′,东经110°21′~110°34′,矿区属暖温带半干旱大陆性季风气候,四季分明,年平均气温26.1℃,年平均降水量645.8mm,7~9月份降水量占全年降水量的50.8%,且多暴雨,具年内降水量分布不均匀的特点。矿区以西峪为界,峪东属灵宝市豫灵镇,峪西归陕西省潼关县。北部以小秦岭北缘断裂为界,为中新生代灵宝断陷盆地-黄土丘陵区;南以松树地—周家山断裂为界,为朱阳镇断陷带。矿区山脊高程多在1 000m以上,总体地形具有南北低、中间高,西高东低的地形变化特征。区内山岭起伏,沟壑纵横,具有谷窄、坡陡地形险要之特点。矿区地层具有典型华北型的前寒武结晶基底和中元古代以来的盖层结构。基底主要由新太古界太华群(Ar2)和古元古界(Pt1)组成,盖层以区域性构造不整合上覆于结晶基底之上,主要由中新元古界熊耳群(Pt2-1)、震旦系(Pt3),寒武系及新生界组成,基本上不发育晚古生代和中生代地层。矿区为中山地貌类型、沟谷深切、地形起伏变化大,断裂构造发育,地层及岩石相对破碎,局部山体不稳定,易形成崩塌、滑坡和泥石流灾害,工程地质条件不良。1.2 矿山开采现状调查2006年9月,由河南省国土资源研究院组织相关人员对小秦岭金矿区内的27座主要矿山开采现状进行调查统计,其中21座金矿的采矿规模为4 165t/日,占总的采矿规模的74.7%;年产值3.67亿元,占年总产值的89.3%。可见,虽然小秦岭金矿区除金矿开采外尚有其他矿产资源的采集,但金矿开采的年产值收入远大于其他矿业开采。因此,金矿矿坑所在地区应作为地质环境评价的主要对象。1.3 矿山地质问题1.3.1 矿渣废水排放严重调查显示这27座矿山的产出固体废弃物量为119.34万t/年,尾矿量122.17万t/年,合计产生矿渣241.51万t/年;固体废弃物现积存量为1 653.32万t,尾矿现积存量为1 644.75万t,合计矿渣积存量3 298.07万t。总的年废水外排量为379万m3,其中以Ⅲ类水为主,其中部分矿山排放的选矿废水,造成水质污染较严重,为Ⅳ和Ⅴ类。在各类矿山中,矿渣和废水的生产和积存主要来自于金矿开采。21座金矿生产的矿渣量占矿渣生产总量的96.5%,矿渣积存量占矿渣积存总量的99.5%。1.3.2 矿山开采引发地质灾害小秦岭金矿区大多数矿山都属于地下开采,而深部的采矿活动必然对山体的稳定性造成威胁,虽然地质灾害的发生有其特定地质条件,但也与工程活动密切相关。过去的20多年内,由于开采矿山引发的诸如滑坡、泥石流、崩塌、地面坍塌等地质灾害达30多起,其中最为严重的两次是:①1996年8月,大西峪、文峪发生泥石流,冲毁矿区公路13km、通讯线路3km,房屋、设备多有损坏,直接经济损失690万元,间接经济损失663万元;②1987年11月1日,大湖峪口东山发生滑坡,滑体长192m,宽80~120m,总体积约40万m3,造成空压机房、职工宿舍被摧毁,矿山停产达一年之久,直接经济损失在700万元以上。由此可见,由于开采矿山所引发的地质灾害给当地人民生命财产安全和社会经济稳定发展造成极大威胁。2 评价模型的选取人类对地质灾害危险性综合评价的研究经历了很长时间,20世纪70年代初,Hewitt等提出“一地多灾”的研究构想;基于Hewitt的研究思路,Puget Sound的研究人员针对本区洪水、地震、风暴、火山等灾害分别制作潜在损失图;80年代后,Van Westen等在GIS系统支持下进行了山地地质灾害风险分析研究。我国从20世纪90年代相继开展区域地质灾害危险性的评价工作,例如,张业成等(2003年)针对我国崩塌、滑坡、泥石流、岩溶塌陷等灾害,建立了地质灾害危险性指数评价模型和危险性评价分析模型;王家鼎(1996年)利用模糊信息优化处理技术建立了城市综合地质灾害的评价模型等,我国已建立多种地质灾害危险性评价模型。目前,矿山地质环境评价多采用多指标综合评价方法,常用方法有模糊综合评价法(万金宝等,2006)、灰色关联综合法(王国富等,2001)、物元分析法(高军省,2007)等,但很难断定哪种方法评价的结果最准确、最客观。模糊综合评价和灰色关联综合法已被广泛运用于地质环境评价,但是由于它们本身在评价地质环境中所具有的模糊性和不确定性,往往会造成评价结果失真。经过筛选本文选用物元分析法,它具有以下特点:①可以将复杂问题抽象为形象化的模型,并应用这些模型研究基本理论,提出相应的应用方法;②可以建立事物多指标性能参数的质量评定模型,并能以定量的数值表示评定结果,从而能够较完整地反映事物质量的综合水平;③方法简单可操作,易计算机进行编程处理;④物元分析法还未被运用于矿山地质环境评价。物元分析法原理为:对评价对象建立物元矩阵,经典域、节域矩阵,用关联函数计算综合关联度,根据综合关联度的不同取值范围作为矿山地质环境的评价标准,确定评价结果所属等级。物元分析法的具体计算步骤见高军省(2007)《基于物元理论的水环境质量综合评价方法及其应用》。3 小秦岭矿区地质环境综合评价3.1 评价单元划分结合对小秦岭金矿区的实地调研结果,并遵照客观、公正、科学地反映矿区地质环境区域差异的原则,将评价区划分了87个评价单元。采用先定性分析矿区的主要地质环境问题,并综合考虑地形地貌特征、水系发育特征、人类活动强度等因素,对矿区内问题比较突出的地区划定评价单元网格;对于其余地区,则按照3km×3km的正方形网格来划分评价单元,在单元划分的同时还注意与行政界域、水系界域的相互包容以及对边缘单元、小单元的适当合并。此外,在遵循地质环境客观特征的基础上,还考虑到兼顾局部特殊要求的情况,如在豫陕两省交界的地区则按照行政分区边界来划定。划分结果如下:单元dx1、dx2为大西峪区间;w1~w4为文峪区间;单元z1~z3为枣香峪区间;单元dh1~dh3为大湖峪区间;单元zy为藏马峪和阎家峪区间;单元f为夫夫峪区间;单元g为观音峪区间;单元j为荆山峪区间;单元i1~i10 为苍珠峪、白花峪、枪马峪、杨砦峪、朱家峪相应的区间;单元1~单元61是按照正方形网格与各类界域边界交汇并进行适当合并或裁减的评价单元。3.2 评价指标选择及其评价标准在综合比较成玉祥等(2007)、徐友宁等(2003)、蔡斌等(2006)关于选取评价指标研究成果的基础上,从小秦岭金矿区地质环境现状条件出发,综合考虑研究区自然条件、人类活动影响、资料收集情况等因素,选择了地表坡度、岩土体抗侵蚀性、植被覆盖率、年降水量、地质灾害、水土流失、地表水污染、人类工程活动强度、矿渣堆积量9个评价指标。对于选取的评价指标,按照地质环境质量“优”、“良”、“中”、“差”、“极差”划分为5个级别,各级别相应指标的标准值如表1所示。表1 小秦岭金矿区地质环境评价指标分级标准 Table1 Index classification standard of geology environmental in Xiaoqin hill goldfield3.3 确定权重系数目前系数确定的方法很多,大致可分为德尔菲、层次分析等主观赋权法和主成分分析、因子分析等客观赋权法,运用主观赋权法掺杂了决策者的主观随意性,而运用客观赋权法却缺乏决策者的意愿,故本次研究采用主观赋权与客观赋权相结合的方法,先由主成分-因子分析赋权法计算出一组初始权重,再带入评价模型进行计算,如果计算结果合理则直接采用该指标权重,如果计算结果差别较大,则在初始权重的基础上再进行适当微调,最终求出一组合理的权重系数,如表2。表2 评价指标的权重系数 Table2 Weighing coefficient of evaluation index3.4 小秦岭矿区地质环境评价结果及分析运用物元分析法,用VB语言编制相应的计算程序,结合各单元评价指标的量值和小秦岭金矿区实地调研情况,给定地质环境质量评价的最终结果,见表3和图1。表3 小秦岭金矿区地质环境质量评价结果 Table3 Evaluative result of geologic environmental quality in Xiaoqin hill goldfield图1 小秦岭金矿区地质环境质量评价效果图Fig.1 Evaluative result map of geologic environmental quality in Xiaoqin hill goldfield从表3可以看出,“优”等级别评价单元12个、“良”等级别评价单元23个、“中”等级别评价单元36个、“差”等级别评价单元10个、“极差”等级别评价单元6个。“极差”等级别单元序号为w1,w3,z1,dh1,i5,i8;“差”等级别单元序号为38,46,dx1,dx2,w2,z2,i1,i3,i4,i6,这些单元主要分布在矿区的西南部,由于这些单元所在地区矿坑密集、采矿活动剧烈,对地质环境造成了极坏的影响,该地区地质灾害的发生几率大大高于矿区的其他地区,今后应作为矿山环境恢复治理工作的重点。“中”、“良”等级的单元分布在泥石流沟的四周,起到过渡和缓冲的作用;在远离人类活动的东南部区域,有“优”等级的区域存在。总体来看,小秦岭矿区东南部地区环境质量最好,中部其次,西南部最差。4 结论(1)小秦岭金矿区地质环境具有问题种类多、危害程度大等特点,选取能全面反映矿山地质环境和矿山开采活动状况的9个要素因子作为评价对象,较为合理。(2)物元分析法计算方便,对属于相同级别的检测单元间的差别亦可分区,对小秦岭矿区地质环境评价可行,可靠。(3)小秦岭西南部采矿活动对地质环境的影响较为严重,今后应作为矿山环境恢复治理的重点。参考文献蔡斌,胡卸文.2006.模糊综合评判在绵阳市环境地质风险性分区评价中的应用.水文地质工程地质,(2):67~74.成天翔,张骏,杜东菊.2007.天水地区断裂活动性与地质灾害的相关性研究.工程地质学报,15(1):33~37.高军省.2007.基于物元理论的水环境质量综合评价方法及其应用.水科学研究,1(1):20~26.万金宝,侯得印,万兴,涂盛辉.2006.模糊综合评价法在乐安河水质评价中的应用.环境工程,24(6):77~80.王国富,刘明,刘石年,孙振家.2001.灰色关联度在白银矿田矿床预测中的应用.桂林工学院学报,21(1):73~77.王家鼎,惠泱河.1996.西安市综合地质灾害研究及灾害程度图的编制.中国地质灾害与防治学报,7(2):94~100.徐友宁,袁汉春,何芳,陈社斌,张江华.2003.矿山环境地质问题综合评价指标体系.地质通报,22(10):829~832.张春山,张业成,张立海.2004.中国崩塌、滑坡、泥石流灾害危险性评价.地质力学学报,10(1):27~32.Geological Environment Evaluation of Xiaoqinling Hill Goldfield Based on Matter Element Analysis MethodXing Yong-qiang1Zheng Zhao2Wu Mei1Pan Yuan-qing1Fang Shi-jun1(1.Henan Land and Resources Research Institute,Zhengzhou 450016;2.College of Civil Engineering,Tianjin University,Tianjin 300072)Abstract:In recent years,the geological environment of Xiaoqin hill mining area was damaged seriously with the increasing of mining in this area.It is needed to evaluate the situation of local geological environment for the sake of further recover and maintenance of the mine.Matter element analysis method was employed.The mining area was divided into 87 evaluation units according to field investigation which follows the principles of difference.Then the standard and evaluation index were set to fix the weighting coefficients of different indexes,based on which the integral evaluation of the geological environment of Xiaoqin hill gold mining area was made.The results show that the geological situation is aggravating because of the intense mining,especially that in the southwest of the area which should be focused on in future works.Key words:Xiaoqin hill;matter element analysis method;geological environment evaluation

结构有限元分析的目录

第二版序言第一版前言主要符号引言第一章 杆件结构1.1 直梁1.2 平面刚架1.3 空间杆结构练习题第二章 平面问题——直接离散化2.1 平面问题的应变与应力2.2 单元与节点——连续体的离散化2.3 三角形三节点单元刚度分析2.4 解题过程2.5 矩形四节点单元练习题第三章 势能极小原理的有限元解法3.1 求解域的剖分和分片插值3.2 刚度矩阵及其迭加3.3 节点载荷与位移方程3.4 收敛条件练习题第四章 三维问题4.1 三维应力状态4.2 三维分析的简单四面体单元4.3 轴对称变形4.4 轴对称问题的简单三角形单元练习题第五章 薄板弯曲5.1 薄板的弯曲变形5.2 四节点的矩形薄板单元5.3 薄板弯曲的相容性问题5.4 九参数三角形薄板单元5.5 其他板单元练习题第六章 薄壳6.1 概壳6.2 矩形板单元用于柱壳分析6.3 用三角形平板单元分析任意形状壳体6.4 轴对称薄壳练习题第七章 参数单元7.1 平面四节点等参元7.2 20节点三维等参元7.3 一般的等参元练习题第八章 温度场及热应力的有限元计算8.1 平面稳定温度场8.2 平面热应力练习题第九章 结构有限元动力分析9.1 结构的动力方程9.2 动力方程的简化练习题第十章 复杂结构分析的几个问题10.1 不同单元的组合10.2 位移约束处理练习题附录 结构有限元分析练习程序参考文献汉英名词对照索引作者简介

p型、h型以及hp型有限元分析是哪些类型的分析???

笛卡尔坐标系:分别代表X位移、Y位移、Z位移、X旋转、Y旋转、Z旋转。柱坐标系:分别代表R位移、T位移、Z位移、R旋转、T旋转、Z旋转。

有限元分析方法是指什么

在现代机械设计中,有限元分析方法(The Finite Element Analysis Method)是不可缺少的重要手段。1956年,M. J. Turner,R. W. Clough,H. C. Martin,L. J. Topp在纽约举行的航空学会年会上介绍了一种新的计算方法,将矩阵位移法推广到求解平面应力问题。他们把连续几何模型划分成一个个三角形和矩形的“单元”,并为所使用的单元指定近似位移函数,进而求得单元节点力与节点位移关系的单元刚度矩阵。1954—1955年,J. H. Argyris在航空工程杂志上发表了一组能量原理和结构分析论文。1960年,Clough在著名的题为《The Finite Element in plane stress analysis》的论文中首次提出了有限元(Finite Element)这一术语,并在后来被广泛地引用,成为这种数值方法的标准称谓。与此同时,数学家们则发展了微分方程的近似解法,包括有限差分方法、变分原理和加权余量法,这为有限元方法在以后的发展奠定了数学和理论基础。在1963年前后,经过J. F. Besseling,R. J. Melosh,R. E. Jones,R. H. Gallaher,T. H. H. Pian等许多人的工作,人们认识到有限元法就是变分原理中Ritz近似法的一种变形,从而发展了使用各种不同变分原理导出的有限元计算公式。1965年O. C. Zienkiewicz和Y. K. Cheung发现,对于所有的场问题,只要能将其转换为相应的变分形式,就可以用与固体力学有限元法相同的步骤求解。1969年B. A. Szabo和G. C. Lee指出可以用加权余量法特别是迦辽金(Galerkin)法,导出标准的有限元过程来求解非结构问题。我国的力学工作者为有限元方法的初期发展作出了许多贡献,其中比较著名的有:陈伯屏(结构矩阵方法)、钱令希(余能原理)、钱伟长(广义变分原理)、胡海昌(广义变分原理)、冯康(有限单元法理论)。有限元法的基本思想:通过离散化将研究对象变换成一个与原结构近似的数学模型,再经过一系列规范化的步骤以求解应力位移、应变等参数的数值计算方法,如图4-19所示。假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论(如变分原理或虚动原理等)或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。随着计算机技术的飞速发展,有限元已成为机构分析的有效方法和手段,有限元法的应用领域已涉及机械工程、土木工程、航空结构、热传导、电磁场、地质力学等众多领域。它几乎适用于所有连续介质和场的问题,成为科学研究和工程设计必不可少的数值分析工具。图4-19 建立有限元模型的一般步骤有限元法的计算步骤可以归纳为网格划分、单元分析和整体分析3个基本步骤。(1)网格划分。有限元法的基本做法是用有限个单元体的集合来代替原有的连续体。因此首先要对弹性体进行必要的简化,再将弹性体划分为有限个单元组成的离散体。单元之间通过节点相连接。由单元、节点、节点连线构成的集合称为网格,如图4-20所示。图4-20 有限元网格(2)单元分析。对于弹性力学问题,单元分析就是建立各个单元的节点位移和节点力之间的关系式。由于将单元的节点位移作为基本变量,进行单元分析首先要为单元内部的位移确定一个近似表达式,然后计算单元的应变、应力,再建立单元中节点力与节点位移的关系式。(3)整体分析。图4-21 整体分析着电子计算机容量的迅速提高,现在商品化有限元程序越来越广泛地被人们所接受,人们不必在编写程序上花费大量精力,不仅如此,商品化的有限元程序的发展还使用户能够摆脱手工网格的划分,简化了前期处理过程,省去了逐点输入结点坐标和单元联结信息程序,而且通过屏幕菜单方法可以得到良好的人机对话环境,并能在计算机结构分析上获得鲜明的视觉效果。著名的商品化有限程序有NASTRAN,ADFNA/ADINAT,ANSTS,COSMOS/MSAP等。这些程序的分析范围和功能存在差异,在使用时应根据分析范围的不同选择合理的程序。

名词解释:有限元分析:有限元、节点自由度?

有限元方法的基本原理:将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表示。从而使一个连续的无限自由度问题变成离散的有限自由度问题。将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。

有限元分析的学习,是学Ansys好呢还是Ansys Workbench?

Ansys Workbench易学,对于工程应用已足够,ansys操作界面较差,难以掌握。

我是本科生毕业两年了,学的机械设计制造,现在想学有限元分析,想请教下本科生研究起来会不会比较困难,

有限元主流的软件是ANSYS 里面可以做力学、流体、电磁等各领域的有限元仿真,ANSYS 13以上都有Workbench了 也就是都是界面化操作 学起来很直观很容易 要想学好还是要深入的 除了软件使用 可以看看有限元原理的书籍 比如《有限单元法》

有限元分析及应用的目录

第1篇 有限元分析的基本原理第1章 绪论1.1 概况1.2 有限元方法的历史1.3 有限元分析的内容和作用第2章 有限元分析的力学基础2.1 变形体的描述、变量定义、分量表达与指标记法2.2 弹性体的基本假设2.3 平面问题的基本力学方程(分量形式,指标形式)2.4 空间问题的基本力学方程(分量形式,指标形式)2.5 弹性问题中的能量表示2.6 特殊问题的讨论2.7 典型例题及详解2.8 本章要点及参考内容2.9 习题第3章 有限元分析的数学求解原理3.1 简单问题的解析求解3.2 弹性力学问题近似求解的加权残值法3.3 弹性问题近似求解的虚功原理、最小势能原理及其变分基础3.4 各种求解方法的特点及比较3.5 典型例题及详解3.6 本章要点及参考内容3.7 习题第4章 杆梁结构有限元分析原理4.1 有限元分析求解的完整过程4.2 有限元分析的基本步骤及表达式4.3 杆单元及其坐标变换4.4 梁单元及其坐标变换4.5 典型例题及详解4.6 本章要点及参考内容4.7 习题第5章 连续体的有限元分析原理5.1 连续体的离散过程及特征5.2 平面问题的单元构造5.3 轴对称问题及其单元结构5.4 空间问题的单元的一般原理和数值积分5.5 典型例题及详解5.6 本章要点及参考内容5.7 习题第2篇 有限元分析的误差、复杂单元及应用领域第6章 有限元分析 中的单元性质特征与误差处理6.1 单元节点编号与存储带宽6.2 形状函数矩阵与刚度矩阵的性质6.3 边界条件的处理与支反力的计算6.4 单元刚度阵的缩聚6.5 位移函数构造与收敛性要求6.6 C0型单元与C1型单元6.7 单元的拼片试验6.8 有限元分析数值解的精度与性质6.9 单元应力计算结果的误差与平均处理6.10 控制误差和提高精度的h方法和p方法6.11 典型例题及详题6.12 本章要点及参考内容6.13 习题第7章 有限元分析中的复杂单元及实现第8章 有限元分析的应用领域第3篇 有限元分析的建模、软件平台及实例第9章 有限元分析的实现与建模第10章 有限元分析的自主程序开发以及与ANSYS平台的衔接第11章 基于ANSYS平台的有限元建模与分析第12章 基于MARC平台的有限元建模与分析参考文献中文索引英文索引

有限元分析中是不是就是采用虚功原理

有限元法中,要解一个很大的方程组,有限元法中的收敛是不是指对该方程组迭代求解的收敛?

有限元分析中网格的原理是什么,它的目的是什么?

没有

有限元分析的理论基础

入门的理论其实很简单,只要有一些力学基础绝对没问题,最好先了解一下弹性力学的有关内容,对于你们机械专业的人来说,有限元的力学原理只要了解即可,重要的是会使用有限元软件

土木工程有限元分析是什么软件?

ANSYS最大的应用之一就是土木工程,有很多书可以参考的!

有限元分析方法是指什么?

在现代机械设计中,有限元分析方法(The Finite Element Analysis Method)是不可缺少的重要手段。1956年,M. J. Turner,R. W. Clough,H. C. Martin,L. J. Topp在纽约举行的航空学会年会上介绍了一种新的计算方法,将矩阵位移法推广到求解平面应力问题。他们把连续几何模型划分成一个个三角形和矩形的“单元”,并为所使用的单元指定近似位移函数,进而求得单元节点力与节点位移关系的单元刚度矩阵。1954—1955年,J. H. Argyris在航空工程杂志上发表了一组能量原理和结构分析论文。1960年,Clough在著名的题为《The Finite Element in plane stress analysis》的论文中首次提出了有限元(Finite Element)这一术语,并在后来被广泛地引用,成为这种数值方法的标准称谓。与此同时,数学家们则发展了微分方程的近似解法,包括有限差分方法、变分原理和加权余量法,这为有限元方法在以后的发展奠定了数学和理论基础。在1963年前后,经过J. F. Besseling,R. J. Melosh,R. E. Jones,R. H. Gallaher,T. H. H. Pian等许多人的工作,人们认识到有限元法就是变分原理中Ritz近似法的一种变形,从而发展了使用各种不同变分原理导出的有限元计算公式。1965年O. C. Zienkiewicz和Y. K. Cheung发现,对于所有的场问题,只要能将其转换为相应的变分形式,就可以用与固体力学有限元法相同的步骤求解。1969年B. A. Szabo和G. C. Lee指出可以用加权余量法特别是迦辽金(Galerkin)法,导出标准的有限元过程来求解非结构问题。我国的力学工作者为有限元方法的初期发展作出了许多贡献,其中比较著名的有:陈伯屏(结构矩阵方法)、钱令希(余能原理)、钱伟长(广义变分原理)、胡海昌(广义变分原理)、冯康(有限单元法理论)。有限元法的基本思想:通过离散化将研究对象变换成一个与原结构近似的数学模型,再经过一系列规范化的步骤以求解应力位移、应变等参数的数值计算方法,如图4-19所示。假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论(如变分原理或虚动原理等)或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。随着计算机技术的飞速发展,有限元已成为机构分析的有效方法和手段,有限元法的应用领域已涉及机械工程、土木工程、航空结构、热传导、电磁场、地质力学等众多领域。它几乎适用于所有连续介质和场的问题,成为科学研究和工程设计必不可少的数值分析工具。图4-19 建立有限元模型的一般步骤有限元法的计算步骤可以归纳为网格划分、单元分析和整体分析3个基本步骤。(1)网格划分。有限元法的基本做法是用有限个单元体的集合来代替原有的连续体。因此首先要对弹性体进行必要的简化,再将弹性体划分为有限个单元组成的离散体。单元之间通过节点相连接。由单元、节点、节点连线构成的集合称为网格,如图4-20所示。图4-20 有限元网格(2)单元分析。对于弹性力学问题,单元分析就是建立各个单元的节点位移和节点力之间的关系式。由于将单元的节点位移作为基本变量,进行单元分析首先要为单元内部的位移确定一个近似表达式,然后计算单元的应变、应力,再建立单元中节点力与节点位移的关系式。(3)整体分析。图4-21 整体分析着电子计算机容量的迅速提高,现在商品化有限元程序越来越广泛地被人们所接受,人们不必在编写程序上花费大量精力,不仅如此,商品化的有限元程序的发展还使用户能够摆脱手工网格的划分,简化了前期处理过程,省去了逐点输入结点坐标和单元联结信息程序,而且通过屏幕菜单方法可以得到良好的人机对话环境,并能在计算机结构分析上获得鲜明的视觉效果。著名的商品化有限程序有NASTRAN,ADFNA/ADINAT,ANSTS,COSMOS/MSAP等。这些程序的分析范围和功能存在差异,在使用时应根据分析范围的不同选择合理的程序。

什么是有限元分析

什么是有限元分析如下:有限元的意思是:有限元在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。在20世纪60年代,有限元法(Finite Element Method)被美国、苏联与中国的数学家分别独立地提出来。我国有限元法先驱冯康于1965年发表《基于变分原理的差分格式》一文,在极其广泛的条件下证明了方法的收敛性与稳定性。目前,国际公认的有限元法思想先驱包括: Richard Courant(美国),Loannis Argyris(希腊),Leonard Oganesyan(苏联),冯康(中国)(from wikipedia)。著名力学家、美国工程院院士奥登(J. T. Oden, 1936—)在其《有限元的历史评论》一文中指出:“冯康1965年用中文写作的文章,西方十多年后才予以了解,被很多人认为是有限元方法收敛性的第一个证明。”扩展资料:有限元方法/理论已经发展得相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。
 1 2  下一页  尾页