barriers / 阅读 / 详情

c语言实现*/遗传算法改进BP神经网络原理和算法实现怎么弄

2023-08-20 19:43:29
共2条回复
慧慧

遗传算法有相当大的引用。遗传算法在游戏中应用的现状在遗传编码时, 一般将瓦片的坐标作为基因进行实数编码, 染色体的第一个基因为起点坐标, 最后一个基因为终点坐标, 中间的基因为路径经过的每一个瓦片的坐标。在生成染色体时, 由起点出发, 随机选择当前结点的邻居节点中的可通过节点, 将其坐标加入染色体, 依此循环, 直到找到目标点为止, 生成了一条染色体。重复上述操作, 直到达到指定的种群规模。遗传算法的优点:1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。遗传算法的缺点:遗传算法在进行编码时容易出现不规范不准确的问题。

西柚不是西游

你提供的代码是一个基本的BP神经网络训练过程。一般都是用GA训练,之后再用改进动量法继续训练,直至最后达到目标。

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。

相关推荐

遗传算法基本原理

遗传算法基本原理:遗传算法本质上是对染色体模式所进行的一系列运算,即通过选择算子将当前种群中的优良模式遗传到下一代种群中,利用交叉算子进行模式重组,利用变异算子进行模式突变。遗传算法的基本步骤如下:(1)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。(2)个体评价:计算群体P(t)中各个个体的适应度。(3)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。(4)交叉运算:将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。(5)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。(6)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。什么是遗传算法遗传算法根据大自然中生物体进化规律而设计提出的。是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。该算法通过数学的方式,利用计算机仿真运算,将问题的求解过程转换成类似生物进化中的染色体基因的交叉、变异等过程。在求解较为复杂的组合优化问题时,相对一些常规的优化算法,通常能够较快地获得较好的优化结果。遗传算法已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。
2023-08-11 22:05:071

遗传算法的基本原理

遗传算法是基于生物学的,理解或编程都不太难。下面是遗传算法的一般算法:  创建一个随机的初始状态  初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。  评估适应度  对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。不要把这些“解”与问题的“答案”混为一谈,可以把它理解成为要得到答案,系统可能需要利用的那些特性。  繁殖(包括子代突变)  带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。  下一代    如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直到达到期望的解为止。  并行计算    非常容易将遗传算法用到并行计算和群集环境中。一种方法是直接把每个节点当成一个并行的种群看待。然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。
2023-08-11 22:05:443

遗传算法路径规划是什么原理

遗传算法有相当大的引用。遗传算法在游戏中应用的现状在遗传编码时, 一般将瓦片的坐标作为基因进行实数编码, 染色体的第一个基因为起点坐标, 最后一个基因为终点坐标, 中间的基因为路径经过的每一个瓦片的坐标。在生成染色体时, 由起点出发, 随机选择当前结点的邻居节点中的可通过节点, 将其坐标加入染色体, 依此循环, 直到找到目标点为止, 生成了一条染色体。重复上述操作, 直到达到指定的种群规模。遗传算法的优点:1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。遗传算法的缺点:遗传算法在进行编码时容易出现不规范不准确的问题。
2023-08-11 22:06:011

遗传算法负荷分解的原理

遗传算法负荷分解的原理是通过模拟生物进化过程中的自然选择、交叉变异等机制,逐步优化任务分配方案,从而达到负载均衡的目的。具体来说,遗传算法负荷分解的步骤如下:1、将任务分解为多个子任务,每个子任务的处理时间不同。2、将处理器分为多个组,每个组包含多个处理器。3、将每子任务随分配给一个处理器。4、计算每个组的负载均衡度,即各组中处理器的平均负载差异。5、对于不平衡的组,采用自然选择、交叉和变异等遗传算法操作,生成新的任务分配方案。6、重复步骤4和5,直到达到预设的负载均衡度要求。在遗传算法负荷分解中,自然选择操作是根据适应度函数来选择优秀的个体,交叉操作是将两个个体的染色体进行交叉,生成新的个体,变异操作是对个体的染色体进行随机变异,引入新的基因。通过这些操作,遗传算法能够不断优化任务分配方案,提高系统的负载均衡度,从而提高系统的性能。
2023-08-11 22:06:081

遗传算法属于数学优化理论吗

算的遗传算法是一种利用自然遗传规律来搜索最优解的数学优化工具。其基本过程及原理简单概括如下: 遗传算法是具有“生成+检测”迭代过程的搜索算法,是一种群体型操作。操作以群体中的所有个体为对象。它有三个基本操作算子:选择、变异和交叉。遗传算法中包含五个基本要素:参数编码;初始群体设定;适应度函数设计;遗传操作设计;控制参数设定(主要指群体大小和使用遗传操作的概率等)。这五个要素构成了遗传算法的核心内容。参数编码就是将优化问题变量通过一定的变换映射到染色体基因上面。初始群体设定应使其具有足够的规模和随机性。遗传算法根据染色体基因值来计算染色体适应度,并根据适应度值决定染色体的交配概率,适应度大的染色体交配概率大。染色体交配之后应对染色体进行变异,这样可以避免算法过早收敛。变异之后的群体就是子代,它将作为下一代群体的父代,进行同样的遗传操作,如此循环。在算法执行过程中,控制参数的设定直接影响算法的精度和效率,因此选定合适的控制参数是提高算法效率的关键之一。一般采用观察法来选定合适的控制参数
2023-08-11 22:06:182

遗传算法对生活的启示

遗传算法使用选择运算来实现对群体中的个体进行优胜劣汰操作:适应度高的个体被遗传到下一代群体中的概率大。遗传算法(Genetic Algorithm,GA)最早是由美国的John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。该算法通过数学的方式,利用计算机仿真运算,将问题的求解过程转换成类似生物进化中的染色体基因的交叉、变异等过程。在求解较为复杂的组合优化问题时,相对一些常规的优化算法,通常能够较快地获得较好的优化结果。遗传算法已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。遗传算法的起源可追溯到20世纪60年代初期。1967年,美国密歇根大学J.Holland教授的学生Bagley在他的博士论文中首次提出了遗传算法这一术语。并讨论了遗传算法在博弈中的应用,但早期研究缺乏带有指导性的理论和计算工具的开拓。1975年,J.Holland等提出了对遗传算法理论研究极为重要的模式理论,出版了专著《自然系统和人工系统的适配》,在书中系统阐述了遗传算法的基本理论和方法,推动了遗传算法的发展。20世纪80年代后,遗传算法进入兴盛发展时期,被广泛应用于自动控制、生产计划、图像处理、机器人等研究领域。由于遗传算法不能直接处理问题空间的参数,因此必须通过编码将要求解的问题表示成遗传空间的染色体或者个体。这一转换操作就叫做编码,也可以称作(问题的)表示。
2023-08-11 22:06:251

遗传算法 什么是染色体的可行性

1.2 遗传算法的原理 遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的
2023-08-11 22:06:561

遗传算法原理与应用实例的介绍

《遗传算法原理与应用实例》主要结合应用实例系统讨论、介绍遗传算法原理及其应用,主要内容包括:遗传算法的基本原理和数学机理、解决连续问题优化的遗传算法和分布式遗传算法、遗传算法的实现技术、遗传算法应用实例,并给出了两个典型的遗传算法源程序。《遗传算法原理与应用实例》在详细介绍遗传算法理论与方法的同时,还给_出了基于遗传算法的费托合成反应动力学模型参数优化的详细设计应用。
2023-08-11 22:07:091

tSp Concorder算法原理

tsp问题遗传算法将多目标按照线性加权的方式转化为单目标,然后应用传统遗传算法求解其中w_i表示第i个目标的权重,f_k表示归一化之后的第i个目标值。我们很容易知道,这类方法的关键是怎么设计权重。比如,Random Weight Genetic Algorithm (RWGA) 采用随机权重的方式,每次计算适应度都对所有个体随机地产生不同目标的权重,然后进行选择操作。Vector-Evaluated Genetic Algorithm (VEGA) 也是基于线性加权的多目标遗传算法。如果有K个目标,VEGA 会随机地将种群分为K个同等大小子种群,在不同的子种群按照不同的目标函数设定目标值,然后再进行选择操作。VEGA 实质上是基于线性加权的多目标遗传算法。VEGA 是第一个多目标遗传算法,开启了十几年的研究潮流。1.TSP问题是指假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。本文使用遗传算法解决att30问题,即30个城市的旅行商问题。旅行商问题是一个经典的组合优化问题。一个经典的旅行商问题可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。应如何选择行进路线,以使总的行程最短。从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton回路。由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是一个NP完全问题。TSP问题可以分为对称和不对称。在对称TSP问题中,两座城市之间来回的距离是相等的,形成一个无向图,而不对称TSP则形成有向图。对称性TSP问题可以将解的数量减少了一半。所以本次实验的TSP问题使用att48数据,可在tsplib中下载数据包。演化算法是一类模拟自然界遗传进化规律的仿生学算法,它不是一个具体的算法,而是一个算法簇。遗传算法是演化算法的一个分支,由于遗传算法的整体搜索策略和优化计算是不依赖梯度信息,所以它的应用比较广泛。我们本次实验同样用到了遗传算法(用MATLAB编写)来解决TSP问题。
2023-08-11 22:07:351

遗传算法原理与应用实例的目录

第1章 绪论1.1 从生物进化到遗传算法1.2 遗传算法的描述1.3 表示方案的实例1.3.1 工程设计的最优化1.3.2 人工蚁问题1.4 遗传算法的特点1.5 遗传算法的发展简史1.6 遗传算法的研究内容及前景1.7 遗传算法的应用第2章 遗传算法的基本原理2.1 复杂系统的适应过程2.1.1 复杂系统的适应性2.1.2 适应过程的数学模型2.2 遗传算法的基本描述2.2.1 整体优化问题2.2.2 遗传算法的基本流程2.2.3 遗传编码2.2.4 适应函数(评价函数)2.2.5 遗传算子2.2.6 群体设定2.2.7 初始化群体2.2.8 终止循环的条件2.2.9 标准遗传算法的流程2.2.10 控制参数和选择2.2.11 遗传算法的性能评估2.3 遗传算法的模式理论2.3.1 模式与模式空间2.3.2 模式生存模型2.3.3 双臂赌机分析2.3.4 基因模块假设2.3.5 模式处理与隐含并行性2.3.6 模式处理与遗传算子的性能2.4 遗传算法与其他搜索技术的比较2.4.1 启发式随机搜索技术的基本功能2.4.2 局域搜索技术2.4.3 模拟退火算法2.4.4 遗传算法搜索2.4.5 启发式搜索技术比较2.5 遗传算法计算实例2.5.1 单调连续函数2.5.2 One-Max函数2.5.3 皇家大道问题2.6 遗传算法杂交率与变异率关系的研究2.6.1 研究方法简述2.6.2 算例2.6.3 应用2.6.4 结论第3章 遗传算法数学机理分析3.1 遗传算法的基本定理3.2 隐含并行性3.3 Walsh模式变换3.3.1 Walsh函数3.3.2 用Walsh函数表示模式平均适应度3.3.3 Walsh系数与异位显性(epistasis)3.4 非均匀Walsh模式变换3.5 最小欺骗问题3.6 遗传算法欺骗问题的分析与设计……第4章 解连续优化问题的遗传算法第5章 分布式遗传算法研究第6章 遗传算法的实现技术第7章 遗传算法应用实例参考文献
2023-08-11 22:07:431

无距离遗传,到底是否存在?

先父遗传源于以色列神话传说,属于伪科学学范畴。主要表述指后代能继承母本的前配偶的特征。这是一种发生在昆虫身上的疑似现象,即澳洲的角绳,其实是发育上的问题,与DNA、遗传无关。后来这个实验被国内宣传先父遗传的网民误用于哺乳动物,大肆造谣蛊惑。他们还举例称:历史上再婚者的子女会有她们前任丈夫妻子的部分特征,比如:1361年英国“黑太子”爱德华婚姻受到质疑的部分理由。爱德华三世的继承人和美丽的肯特郡少女琼结婚了,而琼曾经结过婚。他们的后代被认为不完全具有金雀花王朝的血统。这些所谓事列其实没有任何科学依据,随着遗传学、基因学、以及现代分子学得建立,先父遗传被定性伪科学。外源DNA无法被细胞吸收,这不是公认的定理。假如先父遗传成立,说明精子具有转基因功能,精子里的DNA能进入女性卵巢细胞,这与现代生殖学,分子学,基因学相违背。
2023-08-11 22:07:563

老师要求用python做遗传算法,原理明白,可是不会代码,哪位老哥帮讲讲,价钱可以商量?

还是蛮简单的,而且 python 中有现成的遗传算法工具箱可用。实现的关键则是如何进行编码,这个码就是函数的参数,参数的个数就是染色体中基因的个数, 选择交叉变异,无非就是改变基因的值而不改变染色体的长度,然后产生新的染色体,将新的染色体重的值以参数的形式带入到函数中求得新的函数值
2023-08-11 22:08:271

人类和动物的大脑可以像计算机一样编程吗?

可以的,完全可以的。
2023-08-11 22:08:365

数据挖掘有哪些方法?

1、神经元网络办法神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。2、遗传算法遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。3、决策树算法办法决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。4、遮盖正例抵触典例办法它是使用遮盖悉数正例、抵触悉数典例的观念来找寻规范。最先在正例结合中随意选择一个种子,到典例结合中逐一较为。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。5、数据剖析办法在数据库查询字段名项中心存有二种相关:函数关系和相关剖析,对他们的剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。6、含糊集办法即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。
2023-08-11 22:08:531

用matlab遗传算法解决函数优化问题

Matlab 中的fimincon函数优化
2023-08-11 22:09:032

Visio怎样绘制遗传算法原理图

在文本工具旁有个“绘图工具”----点选里面的铅笔工具(ctrl+4),按住shift,可以画出圆弧。(需要练习一下,因为很容易画出直线。个人经验是按住shift,鼠标快速滑出圆弧后,再调整圆弧大小。)
2023-08-11 22:09:121

有无跟遗传算法和图像处理相关的参考书目推荐,最好有pdf版的?

推荐几本关于遗传算法和图像处理的参考书目:《遗传算法:原理、技术与应用》、《图像处理:原理、算法与应用》、《模式识别:原理、算法与应用》等,这些书籍都有PDF版本可供下载。
2023-08-11 22:09:203

小波变化中信号的相关性是怎么证明的

1、小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征, 通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。小波变换基,既具有频率局域性质,又具有时间局域性质。小波变换的多分辨度的变换,能在多个尺度上分解,便于观察信号在不同尺度(分辨率)上不同时间的特性。小波变换存在快速算法,对于M点序列而言,计算复杂性为:O(M),处理快速。小波变换基函数有多种类型,可以是正交的,也可以是非正交(双正交),比傅里叶变换更加灵活。小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图像处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图像处理方面的图像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。 (1)小波分析用于信号与图像压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中可以抗干扰。基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。 (2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。 (3)在工程技术等方面的应用。包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。2、遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性的提高。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。遗传算法的一些主要应用领域:(1)函数优化函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。(2)组合优化随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题、 背包问题、装箱问题、图形划分问题等方面得到成功的应用。 此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。综上所述,小波分析法和遗传算法主要有一下几方面的不同:(1)算法原理不同;(2)算法的应用侧重领域不同。遗传算法不是求解小波分析函数的一种算法。
2023-08-11 22:09:381

超脱仿生范畴的军事仿生技术

超脱仿生范畴的军事仿生技术在人类文明的早期阶段,人类其实对于“为什么造武器要模仿动物”这件事毫无头绪。即便是已经开始铸造铁质刀剑和防具,猛兽的面部形象也总是能和它们的其它特征一起,出现在武器的装饰部分上,只因为当时的人类坚信,这能带来力量。而时至今日,也有一部分仿生造物如同当年的铜铁刀剑一般,从里到外就透着浓浓的模仿痕迹——然则和刀剑,乃至人类有史以来所有的仿生学、武器都不太一样,它们的本质可以说已经超越了“仿生学”范围,颠覆战争形态不在话下,就连颠覆人类自己也不是没有可能。造物主都为之惊骇:深度学习与神经网络众所周知,虽然计算机很“聪明”,能够几乎瞬间计算出大数相加、相乘的结果,但要它们自主学习,找出某个具体问题的解,此时哪怕是最“聪明”的超级计算机也将束手无策——相比之下,人类的大脑却能够很轻松解答既“抽象”,却又“具体”的问题。那么,模仿人类,或者说动物的思维方式,是否能帮助计算机学会自主解答问题,甚至是自主学习?答案当然是能。横扫全球所有人类棋手,甚至把自己前辈摁在地上吊打的“阿尔法零”人工智能,就可以说是彻头彻尾的仿生造物:在“学棋”的过程中,“阿尔法零”无需棋谱,而是左右手互搏,全靠一手深度学习来弄懂对弈中每一子的价值多寡。而这个深度学习的源头,正是来自上世纪80年代,人类对视觉反馈系统的神经生物学发现。这一成果在世纪初得到应用,并一步一步发展为人工智能的学习手段。除此之外,“阿尔法零”在对弈中还会同时用两套神经网络分析局势和得失,并左右自己的下一步动作,而这个“神经网络”,乃至背后的“遗传算法”,也都是源自对神经元结构、遗传原理的模仿和再发明。至于这些人工智能左右战争的能力,恐怕各种科幻文艺作品早就表达得淋漓尽致。不会出错的人工智能不需要肉体,哪怕它只介入指挥、决策环节,谁能保证它就会一定站在人类这边,对人类怀有同理心?木牛流马终成真:从“大狗”机器人说起随着消费电子产业异军突起,一时间传感器、电动机、可动关节等元件越做越小,每年还有数以亿计的资金被投入到器件小型化领域,哪怕只为了再把电池再减轻十克都值得。在这样的疯狂背景下,用电子元件“等价替代”动物的身体结构,造出能和动物一样行动奔跑的仿生机器人,也不再是无法实现的天方夜谭——短短十几年时间里,波士顿动力就已经从笨重的“大狗”军用四足机器人发展出ATLAS人形机器人、SPOT小型四足机器人、更小的SPOT“迷你”,体积越发缩小,但功能却越发接近智能生物。就现在的表现来看,波士顿动力的机器人已经有能力在有限场景下,凭借着事先设定的标识物(打上二维码、射频标签),进行规划好的计划,这使得它足以胜任战场上的定点巡逻、侦察和补给任务。但只要稍加设想,世人就难免对这样的仿生造物不寒而栗:如果把二维码换成人类面部特征,把射频识别器换成红外镜头,这些“木牛流马”还能人畜无害么?还能始终受控么?这是个大问题。可能终结战争的仿生技术:人类会从战场上消失吗?几千上万年以来,人类始终是“战争”和“军事”这两个词背后的主语。无论是围剿野兽,还是人类内战,军事永远是人类谋划、人类研习,然后战争由人类发动、人类指挥,人类执行,最后又于人类手中终结。然则终极仿生造物,人工智能的介入,则彻彻底底地改变了这一切。就现在而言,人工智能已经进入到了武器的设计环节,日夜不停地计算只为优化某些细节。而在不远的未来,人工智能还可能会“人道地”介入战争,减少技术优势一方的战争伤亡风险;又或是在指挥链里承担起“参谋”角色,毕竟同等条件下,人工智能更不会出错……如果有这么一天,人类战争机器的每一个齿轮都由人工智能担纲,那么结局又将如何?无论结局最终如何,当初模仿鸟嘴造矛、模仿叶齿造锯的人类必定想象不到,而这或许也就是仿生学的终极哲学意义,“模仿自身,学习自身,超越自身”。军事小词典蜂群无人机:从投放到作战,旨在全由人工智能掌控,不需人工过多干涉的新概念武器。其侦察、指挥、控制和毁伤评估等环节自成一体,能够大大减少实战的人力投入。
2023-08-11 22:09:462

采矿工程毕业设计论文

采矿工程毕业设计论文   采矿工程是一个国家的重要产业,采矿工程直接关系到国家资源、能源的正常供应和使用安全。以下是专门为你收集整理的采矿工程毕业设计论文,供参考阅读!    采矿工程方法优化研究   【摘要】采矿工程中的许多方法都是可以优化的,比如采矿工程中的开拓系统和采矿方法。这些方法优化问题,由于决策变量众多,并且不同情况的所起的作用不同,导致多数问题都是复杂的非线性化问题,不仅如此变量之间的联系有时很难用确切的数学模型或者数学表达式表达出来。因此我们考虑到可以利用计算机技术和人工智能的技术来实现采矿工程中方法的优化问题,比如遗传算法,神经网络等,本文从上述几种技术角度,结合实际例子探讨了采矿工程方法的优化问题。    【关键词】采矿工程;优化;采矿方法   采矿工程中的许多问题的决策和方法的优化,都是多决策变量问题。以往对这种问题的处理方式都是采用单一变量法,即采用固定其他变量使其值保持不变,通过变化某一变量来探索这一变量对目标函数或目标问题结果的影响,从而找出最优解。虽然这种方式大大简化了这种多变量问题的求解方式,但是它忽略了各个变量之间的相互关系,以及他们之间的相互作用对最终结果的影响,因此所得的结果并不是真正的最优值。为了求得真正的最优解,需要同时改变各决策变量,探索他们在这种情况下和目标的关系以及的对目标结果的影响,从而找出综合最优值。    1、优化方法   1.1遗传算法的定义   遗传算法是一种自适应优化的方法。这种方法基于生物进化的原理,它模拟了生物进化的步骤,将繁殖、杂交、变异、竞争和选择等概念引入到算法中。[1]通过对一组可行解的维持和重新组合,在多决策变量共同作用的条件下,改进可行解的移动轨迹曲线,最终使它趋向最优解。这种方式是模拟生物适应外界环境的遗传变异机理,克服了传统的单决策变量法容易导致的局部极值的缺点,是一种全局优化算法。   1.2神经网络的定义   人脑思维方式的一大特点就是:通过多个神经元之间的同时的相互作用来动态完成信息的处理。人工神经网络就是模拟人脑思维的这种方式,通过计算机来完成一个非线性的动力学系统,可以实现信息的分布式存储和并行协同处理。   1.3遗传算法与神经网络协同优化   由于采矿工程的问题很难用一个显式来表示,所以我们可以利用人工神经网络强大的非线性映射能力建立决策变量和目标函数的关系,实现对问题的显式化,然后用遗传算法对这个目标函数的决策变量进行搜索和寻优,搜索到后就输入之前已经建模好的神经网络,网络将自动进行学习和匹配,从而我们可以计算出目标函数对该组决策变量的适应性,然后根据适应性进行遗传变异操作,反复多次后即可寻得最优解。    2、优化实例   2.1遗传算法在矿石品位优化中的应用   遗传算法是由原始数据,模拟优胜劣汰的方式通过反复迭代获得最优解,在这里实质上是随机生成一组矿石品位,利用自适应的技术调整品位,经过反复迭代计算,逐步逼近最优解。   (1)编码:用定长字符代表遗传中的基因,在这里表示某种特定品位,编码顺序依次为边界品位、最小工业品位、原矿品位和精矿品位。[2]   (2)初始群体:每次迭代的初始群体由上一次迭代生成,第一次的初始群体随机生成,每个群体包含的个体数确定。   (3)适应度:自然界中的适应度是生物个体对自然界的适应程度,适应度大,那么它存活下来的可能性就大。类似的这里的适应度是衡量个体优劣的指标,可以驱动遗传算法的优化,本例中的适应度取不同品位的矿石所能取得的净现值。   (4)复制和交换:根据达尔文进化论,适应性强的个体容易生存下来,那么他们的有利性征就被保留了,同样的不利性征就被淘汰了,适应性强的个体他们的后代跟他们的相似度会比较高,在遗传算法中可以用复制来代表这一部分;交换就是指上一代多个个体的部分基因相互置换产生新个体。   (5)突变:遗传算法中产生新个体的又一手段,通过求补运算完成。   (6)终止条件:遗传算法是迭代运算,在迭代到符合某一要求时停止,一般都是当群体的平均适应度或最大适应度变化平稳时,迭代终止。   2.2采矿工程优化实例   本处选择山东莱芜铁矿施工时的填充材料刚度与采场结构参数的优化问题来说明一下神经网络和遗传算法的具体应用。   山东莱芜铁矿谷家台矿区矿体赋存于大理岩与闪长岩的.接触带中,上部为第四系和第三系所覆盖,全部为隐伏矿体,矿脉地理结构十分复杂。[3]上部有河流流过,虽然河流和矿带之间有第三系的红板岩,但是由于局部天窗的分布,导致水层和第四系砂砾石层和灰岩层接触,隔水效果不好。由于灰岩层的含水性,导致这部分成为承压含水层。复杂的地质背景给开矿带来了巨大的难度,为了实现不改河、不疏干、不搬迁、不塌陷、不还水的“五不”方针,最终决定的开矿方案是采用矿体近顶板大理岩注浆补漏堵水措施与阶段空场嗣后胶结充填采矿方法相结合的综合治水方案。制约这一方案顺利实施的两个重要因素就是充填材料刚度与采场结构参数的优选问题。   设矿房宽度为Bf,填充体刚度为EC,бt为上盘出现的最大拉应力。推测得出:从安全性角度考虑,矿房宽度Bf越小,填充体刚度EC越大,则上盘出现的拉应力越小,施工越可靠;从经济型角度考虑,矿房宽度越大,填充刚度越小越经济,可以看出两者是相对的,我们要在这之间找一个最佳匹配值。使得上盘出现的拉应力小于但又接近于大理岩的抗拉强度。   先通过神经网络建立决策量Bf、EC和目标бt的映射关系,然后用遗传算法搜索最佳匹配,得到结果Bf=21.256m,EC=396.6MPa,бt=-1.9297MPa,最后进行的结果的合理性验证,表明这个结果是令人满意的。    3、结论   作为现阶段比较先进的计算智能和人工智能技术,遗传算法和神经网络着重于通过迭代算法和非线性映射来求得问题的最优解。由于绝大多数矿场的复杂条件导致采矿工程中的许多问题和方法的决策存在众多的决策变量,并且多数变量和目标量的关系都是非线性的,这些特点使得遗传算法和神经网络等现代先进智能技术能很好的运用到采矿工程的优化中去,通过文章研究和实例证明,对于采矿工程的方法优化,遗传算法和神经网络能起到很好的效果,随着这些技术的进步,他们将会为采矿工程的优化方面提供更有力的帮助。    参考文献   [1]李云,刘霁.神经网络与主元分析在采矿工程中的应用[J].中南林业科技大学学报,2010,30(6):140-146.   [2]张磊,柴海福.浅谈人工神经网络在采矿工程中的应用[J].学术探讨,2008,(6):172.   [3]刘加东,陆文,路洪斌.浅谈采矿方法的优化选择[J].IM&P化工矿物与加工,2009,(1):25:27. ;
2023-08-11 22:12:341

数据分析方法中的dot法

数据挖掘,又译为资料探勘。它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。灵玖软件NLPIR数据挖掘的方法的主要方法有一下几种:⑴神经网络方法神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art模型、koholon模型为代表的,用于聚类的自组织映射方法。神经网络方法的缺点是"黑箱"性,人们难以理解网络的学习和决策过程。⑵遗传算法遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。遗传算法的应用还体现在与神经网络、粗集等技术的结合上。如利用遗传算法优化神经网络结构,在不增加错误率的前提下,删除多余的连接和隐层单元;用遗传算法和bp算法结合训练神经网络,然后从网络提取规则等。但遗传算法的算法较复杂,收敛于局部极小的较早收敛问题尚未解决。⑶决策树方法决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。最有影响和最早的决策树方法是由quinlan提出的著名的基于信息熵的id3算法。它的主要问题是:id3是非递增学习算法;id3决策树是单变量决策树,复杂概念的表达困难;同性间的相互关系强调不够;抗噪性差。针对上述问题,出现了许多较好的改进算法,如 schlimmer和fisher设计了id4递增式学习算法;钟鸣,陈文伟等提出了ible算法等。⑷粗集方法粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。目前成熟的关系数据库管理系统和新发展起来的数据仓库管理系统,为粗集的数据挖掘奠定了坚实的基础。但粗集的数学基础是集合论,难以直接处理连续的属性。而现实信息表中连续属性是普遍存在的。因此连续属性的离散化是制约粗集理论实用化的难点。现在国际上已经研制出来了一些基于粗集的工具应用软件,如加拿大regina大学开发的kdd-r;美国kansas大学开发的lers等。⑸覆盖正例排斥反例方法它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。比较典型的算法有michalski的aq11方法、洪家荣改进的aq15方法以及他的ae5方法。⑹统计分析方法在数据库字段项之间存在两种关系:函数关系(能用函数公式表示的确定性关系)和相关关系(不能用函数公式表示,但仍是相关确定性关系),对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计(求大量数据中的最大值、最小值、总和、平均值等)、回归分析(用回归方程来表示变量间的数量关系)、相关分析(用相关系数来度量变量间的相关程度)、差异分析(从样本统计量的值得出差异来确定总体参数之间是否存在差异)等。⑺模糊集方法即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。李德毅等人在传统模糊理论和概率统计的基础上,提出了定性定量不确定性转换模型--云模型,并形成了云理论。
2023-08-11 22:12:491

其他定量分析方法

7.5.1 多因子工程地质分析法7.5.1.1 原理多因子工程地质分析法是由许惠德于1989年提出的。该法主要考虑井田建造、层组、岩组特征,以及岩性变异特征、岩体质量优劣分段、构造变异特征、河谷卸压影响及水文地质条件等工程地质因素。以岩组划分为基础,融合其他工程地质因素,采用对比分类法,将煤层顶板划分成4种稳定区域。7.5.1.2 方法(1)地质因素分析1)建造:为一定的大地构造单元内,成岩作用在时间上的分异特征的术语。2)层组:指不同岩性的岩层作有规律的组合,其划分是在建造基础上进行的。据煤系地层沉积特征,可划分出单层结构和多层结构两大类(表7.19)。3)岩组:为岩体与岩石在一般特征上类似工程地质特征上相近的组合,其划分是在层组基础上进行的(表7.19)。4)岩性变异特征:对煤层顶底板岩体可进行室内物理力学性质指标测定、室内微观分析(包括薄片鉴定、差热分析、X-射线衍射分析和电子显微镜分析)等。如对山西谱庄矿3号煤层顶板分析后得出如下结论:①泥岩、粉砂岩不具膨胀性,粉砂岩中石英有被粘土矿物交代现象,具泥质结构和显微定向构造,基底式胶结,胶结物为泥质,与泥岩有相似的物理力学性质,强度较低;②在同一岩组中,岩石的强度有由井田北部向中偏南降低的趋势;③井田中部岩体破碎程度较高;④随深度增加,各类岩石的完整程度增高。5)岩体质量优劣分级:以岩石质量指标(RQD)作为岩体质量优劣的半定性评价。如潘庄矿(图7.11)首采区的中上部岩体质量极坏,据此可提出整个块段岩体质量评价。6)构造变异特征:根据地层倾角、构造发育、顶板岩性组成等,评价一个地区的构造应力状况。如山西某井田内地层倾角平缓(5°~15°),褶皱呈舒缓波状,无较大的断层存在,地震烈度不高(6度),3号煤层的顶板大多为松软岩石。因此,井田内不易积聚大量应变能,构造应力较低。表7.19 潘庄一号井田工程地质岩组划分7) 河谷卸压: 河谷卸压会影响采场和巷道顶、帮内的应力分布; 而应力的增加、岩体的膨胀、松弛、裂隙的产生均会加剧顶板和围岩的不稳定性。如潘庄矿 3 号煤层首采区上方为一构造剥蚀的低山区,河谷两侧为侵蚀堆积地形。河谷切割较深,卸压现象较为严重。因此,根据 3 号煤层上覆岩层的厚度 ( 图7.11) 和性质、顶板岩层的强度,预测了相对严重卸压区段。8) 水文地质条件: 主要根据地质、水文地质观测、试验资料,利用一定计算方法评价地质条件。如山西某矿通过分析计算煤层顶板岩体冒落带和破裂带的最大高度值,认为虽然冒落带与上覆含水层连接,采场充水似乎不可避免,但由于含水层水量较小易于疏干,因此不会造成突水威胁。( 2) 工程地质稳定性分区通过对各种地质因素的分析和对比,利用一定的计算和统计方法,应用综合编图手段,最终作出工程地质稳定性分区图,可划分出稳定区、中等稳定区、不稳定区和极不稳定区等 4 类,如果采用数学地质、数理统计、定量评价等手段,可以给上述 4 类区段赋予评价指数 ( 参数) 。图7.12 为潘庄矿首采区工程地质稳定性分区。图7.11 层理岩组图图7.12 山西潘庄采区工程地质分区7.5.2 顶板稳定性沉积模式研究法7.5.2.1 原理该方法属成因顶板稳定性研究范畴,从沉积环境分析入手,分析顶板沉积模式,最终探明顶板稳定类型。7.5.2.2 方法步骤( 1) 顶板岩性分类首先要对某煤层顶板 ( 研究对象) 进行岩性分类,分类的资料基础主要是勘探钻孔资料。如 J.Truman 等利用钻孔资料,将 1 号煤层以上 10 英尺 ( 1 英尺 =0.3048m) 的岩性划分成 16 种类型,并用 3 位数码表示各种岩石 ( 图7.13) 。( 2) 编制岩性分布图编制煤层之上不同高程的岩性分布图。从图中可以清楚地了解煤层之上岩性在横向和纵向上的分布及其变化。图7.14 为美国怀俄明州某矿 l 号煤层之上 10 英尺岩性分布图。( 3) 工程应用J.Truman 等通过研究美国怀俄明州某矿 1 号煤层顶板类型,认为在地下开采过程中,河道沉积物 ( 图7.13 中的层序类型 l,4,9,10,11,12,13) 顶板一般坚固稳定,如果河道砂岩没有切入煤层顶部 ( 图7.13 中层序类型⑨,⑩,ue583瑏瑡,瑏瑢ue583,瑏Aue583) ,则插入的页岩可能有擦痕面。这些擦痕面是由于砂岩与页岩之问的致密程度不同而造成的,它们可能是引起顶板稳定性差异的重要因素,层序类型瑏ue583A ( 流状沉积) 发生在河曲的切割侧。当发生滑动时,它们可使层理扭曲,大大降低了岩石强度,并常造成严重冒顶。一般来说,河道与河道之间的过渡带是不稳定的。另外还要注意煤层顶面到河道砂岩底面之间的距离,以确保使用合适的顶板锚杆,从而使锚点放在砂岩的底部。天然堤沉积 ( 图7.13 中层序类型⑥常含有植物根,这些植物根破坏了层理,降低了岩石的强度,必须加以锚固或强制冒落。决口扇 ( 图7.13 中层序类型②,③) 往往是煤层发育的台坪,从而产生一个软弱带。决口扇与煤层之间的间距以及决口扇的厚度应予以注意,以确保锚杆有足够的长度,使锚点在砂岩中或是薄煤层之上。图7.13 1 号煤层以上 10 英尺内的典型岩石层序( 据 J.Truman 等,1985)①均质砂岩 10 英尺; ②1 号煤层直接顶板的决口扇砂岩厚度; ③1 号煤层以上 2~ 3 英尺的决口扇砂岩厚度; ④324 至 124 为向上变细层序 ( 1 号煤层以上的距离) ; ⑤均质砂质页岩 ( 324) ; ⑥均质砂岩与页岩互层 ( 124) ; ⑦向上变粗层序; ⑧均质页岩 ( 124) ; ⑨河道砂岩,厚度 < 10 英尺; ⑩河道砂岩底部,大于10 英尺,1 号煤层以上 0~ 4 英尺; 瑏ue583瑡河道砂岩底部, > 10 英尺,1 号煤层以上 4~ 6 英尺; ue583瑏瑢河道砂岩 >10 英尺,1 号煤层以上 6~ 10 英尺; ue583瑏A1 号煤层以上 10 英尺间隔内的流动构造; 瑏ue583A1 号煤层以上 0~ 4 英尺的薄煤层; ue583瑏瑥1 号煤层以上 4~6 英尺的薄煤层; 瑏瑦ue5831 号煤层以上 6~10 英尺的薄煤层015—炭质砂岩; 020—煤层; 124—粘土; 324—砂质泥岩; 544—砂岩图7.14 1号煤层以上10英尺内的岩石类型层序$ (据J.Truman等,1985)$海湾沉积物 ( 图7.13 中层序类型⑤,⑦,⑧) 一般是坚固稳定的。稳定性最差的是 ( 图7.13 中层序类型(16)) 1 号煤层之上的薄煤层及其下伏层是被植物根穿透的页岩,为顶板弱带,最易发生离层,造成顶板不稳定。7.5.3 单项分析、综合评判法7.5.3.1 原理和方法如前所述,影响煤层硬板稳定性的地质因素很多,多则十几项,少则四、五项。对某一煤田或井田来说,所有因素中总是有主有次,因此需要逐一甄别,即单项分析,以筛选出几个主要因素,经过综合评判,然后与已采区实际揭露和顶板冒落情况进行对比,给予恰当的科学评分。最后在综合图上据评分结果划出各种不同的区域。7.5.3.2 步骤以山东新汶某矿第 2 煤层硬板为例,简述工作步骤。( 1) 单项地质因素分析1) 岩性: 第 2 煤层顶板岩性主要有砂岩、粉砂岩、页岩。评判给分如表7.20 所示。表7.20 各单向因素评分注: 括号中数字为评分。2) 岩层厚度: 岩层厚度是评判的主要参数,因此需据不同岩性、不同厚度分别评分。对砂岩、粉砂岩、页岩等岩层厚度评判的评分结果见表7.20。3) 倾角变异系数: 在煤层构造图上采用 “滑动窗口法” 计算出倾角变异系数,然后分指标段给予评分 ( 表7.20) 。4) 小断层发育密度: 同样采用 “滑动窗口法” 计算出小断层发育密度,未采区应先进行小断层发育规律及密度的预测,然后给予评分 ( 表7.21) 。表7.21 综合评判评分结果5) 第 2 煤距上部第 1 煤的距离: 第 2 煤层上部有的地方发育了一薄煤层 ( 即第 1 煤层) 。由于薄煤层是个软弱层,所以开采后最易发生离层而冒落。而且,这种冒落的影响因素中最关键的是第 2 煤层距第 1 煤层的距离。据该矿历次实际冒落情况分析,给予表7.20 所示评判记分。( 2) 综合评判—稳定性区划据各次评判记分结果编图,经综合分析进行顶板稳定性区划,经与已采区的实际冒落情况对比基本吻合,最后成果见表7.21 和图7.15。图7.15 第 2 煤层顶板稳定性分区7.5.4 人工神经网络法7.5.4.1 人工神经网络简介随着计算机技术的普及和发展,利用计算机进行顶板预测的研究大量出现,如利用模糊数学法 ( 丁述礼,1994; 王生全,1997; 刘衡秋,2002) 、层次分析法 ( 刘海燕,2004) 、模糊聚类法 ( 涂敏,1995) 、分形几何法 ( 徐林生,1996; 张玉三,1995) 等方法来预测和评价顶板稳定性,并在相应方面和区域取得了明显的成效。本节将用人工神经网络法建立顶板稳定性预测模型,预测龙固井田顶板稳定性,进一步做出顶板稳定性综合分区图。( 1) 人工神经网络的起源人工神经网络 ( Artificial Neural Network,简称 ANN) 研究的先锋,美国心理学家Warren S.McCulloch 和数学 家 Walter H.Pitts 曾于 1943 年提 出 一种叫做 “似脑 机 器”( mindlike machine) 的思想,这种机器可由基于生物神经元特性的互联模型来制造,这就是神经学网络的概念。他们构造了一个表示大脑基本组成部分的神经元模型,对逻辑操作系统表现出通用性。随着大脑和计算机研究的进展,研究目标已从 “似脑机器”变为“学习机器”,为此一直关心神经系统适应律的心理学家 D.O.Hebb 于 1949 年提出了学习模型。1957 年 Rosenblatt 首次提出感知器,并设计了一个引人注目的结构。到 60 年代初期,关于学习系统的专用设计指南有 Widrow 等提出的 Adaline ( adaptive linear element,即自适应线性元) 以及 Steinbuch 等提出的学习矩阵。由于感知器的概念简单,因而在开始介绍时对它寄予很大希望。然而,不久之后 Minsky 和 Papert 从数学上证明了感知器不能实现复杂的逻辑功能。到了 70 年代,Grossberg 和 Kohonen 对神经网络研究做出了重要贡献。以生物学和心理学证据为基础,Grossberg 提出了几种具有新颖特性的非线性动态系统结构。该系统的网络动力学由一阶微分方程建模,而网络结构为模式聚集算法的自组织神经实现。基于神经元组织自己来调整各种各样的模式的思想,Kohonen 发展了他在自组织映像方面的研究工作。Werbos 在 70 年代开发了一种反向传播算法。Hopfield 在神经元交互作用的基础上引入一种递归型神经网络,这种网络就是有名的 Hopfield 网络。在 80年代中叶,作为一种前馈神经网络的学习算法,Parker 和 Rumelhart 等重新发现了反回传播算法。如今,神经网络的应用越来越广泛了。( 2) 人工神经网络的特点及应用人工神经网络是由许多神经元互连在一起组成的复杂网络系统。它是在现代神经学研究成果基础上提出的,能模拟人的若干基本功能,具有并行分布的信息处理结构,通过 “学习”或 “训练”的方式完成某一特定的工作。其最显著的特点是具有自学习能力,并在数据含有噪音、缺项或缺乏认知时能获得令人满意的结论,特别是它可以从积累的工作实例中学习知识,尽可能多地把各种定性、定量的影响因素作为变量加以输入,建立各影响因素与结论之间的高非线性映像,采用自适应模式识别方法完成此工作。它对处理内部规律不甚了解、不能用一组规则或方程进行描述的较复杂问题或开放的系统显得较为优势。按照神经元的连接方式,人工神经网络可分为两种: 没有反馈的前向网络和相互结合型网络。前向网络是多层映像网络,每一层中神经元只接受来自前一层神经元的信号,因此信息的传播是单方向的。BP 网络是这类网络最典型的例子。在相互结合型的网络中,任意神经元之间都可能有连接,因此,输入信号要在网络中往返传播,从某一初态开始,经过若干变化,渐渐趋于某一稳定状态或进入周期震荡等其他状态,这方面的网络有Hopfield 网络、SOM 网络等。网络的学习能力体现在网络参数的调整上。参数调整方法为有教师学习和无教师学习两种基本方式。有教师学习方式是网络根据教师给出的正确输入模式,校正网络的参数,使其输出接近于正确模式。这类方式常采用梯度下降的学习方法,如 BP 算法。而无教师学习是网络在没有教师直接指点下通过竞争等方式自动调整网络参数的学习方法,如自适应共振网络。神经网络就是由许多神经元互连在一起组成的神经结构。把神经元之间相互作用的关系进行数学模型化就可以得到神经网络模型。目前已有几十种不同的神经网络模型。代表的网络模型有感知器、反向传播 BP 网络、GMDH 网络、RBF 网络、双向联想记忆 ( BAM) 、Hopfield 网络、Boltsmann 机、自适应共振网络( ART) 、自组织特征映像 ( SOM) 网络等。运用这些网络模型可实现函数近似 ( 数字逼近映像) 、数据聚类、模式识别、优化计算等功能,因此,人工神经网络广泛用于人工智能、自动控制、机器人、统计学、工程学等领域的信息处理中。( 3) 人工神经网络的结构A.神经元及其特性图7.16 神经元模型人工神经网络的基本处理单元在神经网络中的作用与神经生理学中神经元的作用相似,因此,人工神经网络的基本处理单元往往被称为神经元。人工神经网络结构中的神经元模型模拟一个生物神经元,如图7.16所示。该神经元单元由多个输入xi(i=1,2,…,n)和一个输出yj组成。中间状态由输入信号的加权和与修正值表示,而输出为:煤层顶板稳定性评价、预测理论与方法式中:θj为神经元单元的偏置(阈值);wji为连接权系数(对于激发状态,wji取正值,对于抑制状态,wji取负值);n为输入信号数目;yj为神经元输出;t为时间;f()为输出变换函数,有时叫做激发或激励函数,往往采用0和1二值函数或S形函数,见图7.17,这3种函数都是连续和非线性的。一种二值函数如图7.17(a)所示,可由下式表示:煤层顶板稳定性评价、预测理论与方法一种常规的S形函数如图7.17(b)所示,可由下式表示:煤层顶板稳定性评价、预测理论与方法常用双曲正切函数(如图7.17(c))来取代常规S形函数,因为S形函数的输出均为正值,而双曲正切函数的输出值可为正或负。双曲正切函数如下式所示:图7.17 神经元中的某些变换(激发)函数B.神经网络的基本类型1)人工神经网络的基本特性:人工神经网络由神经元模型构成,这种由许多神经元组成的信息处理网络具有并行分布结构。每个神经元具有单一输出,并且能够与其他神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数。严格地说,人工神经网络是一种具有下列特性的有向图:①对于每个节点存在一个状态变量xi;②从节点i至节点j,存在一个连接权系数wji;③对于每个节点,存在一个阈值j;④对于每个节点,定义一个变换函数fj(xi,wji,j),ij;对于最一般的情况,此函数取煤层顶板稳定性评价、预测理论与方法形式。2)人工神经网络的主要学习算法:神经网络主要通过两种学习算法进行训练,即指导式(有师)学习算法和非指导式(无师)学习算法。此外,还存在第三种学习算法,即强化学习算法,可把它看做是有师学习的一种特例。ue5f9·有师学习:有师学习算法能够根据期望和实际的网络输出(对应于给定输入)间的差来调整神经元间连接的强度或权。因此,有师学习需要有个老师或导师来提供期望或目标输出信号。ue5f9·无师学习:无师学习算法不需要知道期望输出。在训练过程中,只要向神经网络提供输入模式,神经网络就能够自动地适应连接权,以便按相似特征把输入模式分组聚集。无师学习算法的例子包括Kohonen算法和Carpenter-Grossberg自适应共振理论(ART)等。ue5f9·强化学习:如前所述,强化学习是有师学习的特例。它不需要老师给出目标输出。强化学习算法采用一个“评论员”来评价与给定输入相对应的神经网络输出的优度(质量因数)。强化学习算法的一个例子是遗传算法(GAs)。7.5.4.2 多层前馈神经网络(BP)模型BP模型是目前研究最多、应用最广泛的ANN模型。它是由Rumelhart等组成的PDP小组于1985年提出的一种神经元模型,其结构如图7.18所示。理论已经证明一个3层的BP网络模型能够实现任意的连续映像。图7.18 反向传播(BP)神经网络结构( 1) BP 网络模型特点BP ( Back Propagation) 网络模型是把一组样本的输入输出变成一个非线性优化问题,使用了最优化中最普遍的梯度下降算法,用迭代运算求解权,加入隐节点使得优化问题的可调参数增加,从而可以逼近精确解。BP 网络由输入层、输出层及隐含层组成,隐含层可有一个或多个,每层由多个神经元组成。其特点是: 各层神经元仅与相邻层神经元之间有连接; 各层内神经元之间无任何连接; 各层神经元之间无反馈连接。输入信号先向前传播到隐结点,经过变换函数之后,把隐结点的输出信息传播到输出结点,经过处理后再给出输出结果。结点的变换函数通常选取 Sigmoid 型函数。一般情况下,隐含层采用 S 型对数或正切激活函数,而输出层采用线性激活函数。如果输入层有 n 个神经元,输出层有 m 个神经元,则网络是从 n 维欧氏空间到 m 维欧氏空间的映像。在确定了 BP 网络的结构后,利用输入输出样本集对其进行训练,也即通过调整 BP 网络中的连接权值、网络的规模 ( 包括 n、m 和隐层节点数) ,就可以使网络实现给定的输入输出映像关系,并且可以以任意精度逼近任何非线性函数。BP 网络通过对简单的非线性函数的复合来完成映像,用这种方法经过少数的几次复合就可以得到极为复杂的函数关系,进而可以表达复杂的物理世界现象,使得许多实际问题都可以转为利用神经网络来解决。经过训练的 BP 网络,对于不是样本集中的输入也能给出合适的输出,这种性质称为泛化 ( Generalization) 功能。从函数拟合的角度看,这说明 BP 网络具有插值功能。( 2) BP 网络学习算法BP 神经网络采用误差反传学习算法,使用梯度搜索技术,实现网络的实际输出与期望输出的均方差最小化。网络学习的过程是一种边向后边传播边修正权的过程。在这种网络中,学习过程由正向传播和反向传播组成。在正向过程中,输入信号从输入层经隐层单元逐层处理,并传向输出层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转向反向传播,将输出的误差按原来的连接通路返回。通过修改各层神经元的权值,使得误差信号最小。得到合适的网络连接值后,便可对新样本进行非线性映像。A.信息的正向传递假设 BP 网络共 L 层,对于给定的 P 个样本,网络的期望输出为:煤层顶板稳定性评价、预测理论与方法当输入第 P 个样本时,对于网络中的第 l ( l =1,2,…,L -1) 层中第 j 个神经元的操作特性为:煤层顶板稳定性评价、预测理论与方法式中:Wji———神经元i到神经元j的连接权值;nl-1———第l-1层的结点数;O(l-1)jp———神经元j的当前输入;O(l)jp———神经元j的输出;fl———非线性可微非递减函数,一般取为S型函数,即煤层顶板稳定性评价、预测理论与方法而对于输出层则有煤层顶板稳定性评价、预测理论与方法神经网络学习的目的是实现对每一样本煤层顶板稳定性评价、预测理论与方法,其中m为输出结点个数,达到最小,从而保证网络总误差 极小化。其中Tjdp, 分别为输出层第j个节点的期望输出和实际输出。B.利用梯度下降法求权值变化及误差的反向传播采用梯度算法对网络权值、阈值进行修正。第1层的权系数迭代方程为:煤层顶板稳定性评价、预测理论与方法式中:k———迭代次数。令煤层顶板稳定性评价、预测理论与方法令煤层顶板稳定性评价、预测理论与方法,则有煤层顶板稳定性评价、预测理论与方法,其中,η为学习步长。C.网络的训练过程1)网络初始化,用一组随机数对网络赋初始权值,设置学习步长η、允许误差ε、网络结构(即网络层数L和每层节点数nl);2)为网络提供一组学习样本;3)对每个学习样本p循环:a.逐层正向计算网络各节点的输入和输出;b.计算第p个样本的输出的误差Ep和网络的总误差E;c.当E小于允许误差ε或者达到指定的迭代次数时,学习过程结束,否则,进行误差反向传播,d.反向逐层计算网络各节点误差 ,如果fl取为S型函数,即 ,则对于输出层 对于隐含层 e.修正网络连接权值:煤层顶板稳定性评价、预测理论与方法式中:k———学习次数;η———学习因子。η取值越大,每次权值的改变越剧烈,可能导致学习过程振荡,因此,为了使学习因子的取值足够大,又不致产生振荡,通常在权值修正公式中加入一个附加动量法。表7.22 指标定量化原则7.5.4.3 基于多层前馈神经网络(BP)模型的煤层顶板评价思路由以上研究来看,BP人工神经网络模型是建立于已知因素的基础上,提取有关的权值等相关参数,然后去评价煤层顶板的稳定性。因此,要想利用该方法对煤层顶板进行评价,应该通过以下几个思路:1)找出比较典型的能够反映某一井田的钻孔及能够反映顶板稳定性的资料,通过专家打分法或其他方法对其顶板稳定性进行评价;2)利用评价结果对不同等级的顶板稳定性进行分级定量的定义,并建立评价指标的定量化表,表7.22是对巨野煤田龙固井田进行分级的指标;3)通过已知并评价好的钻孔,代入到人工神经网络神经元公式进行大量的回算权值,并通过最终的分析确定出权值(Wkj)的值;4)将权值代入神经元模型,确定某一井田顶板稳定性模式,然后将井田内其他相关钻孔的地质资料带入,并得出其结果,代入表7.22进行分析得出井田钻孔周围顶板稳定性。
2023-08-11 22:12:571

模拟退火算法和粒子群算法的优缺点有那些?具体点,谢啦

他们有类似之处,但差别也不小。蒙特卡洛算法是数值计算方法,原理是利用随机数来解决计算问题。与它对应的是确定性算法。也就是说该种算法属于随机算法,得到的解是近似解。而遗传算法、粒子群、模拟退火虽然也是随机近似算法,但这三种都是仿生智能算法,且比蒙特卡洛算法要复杂,应用的领域也不太相同。显然,蒙特卡洛算法很轻巧,求解问题更快速。
2023-08-11 22:13:141

计算机专业分类?

根据教育部公布的高校全日制普通本科专业目录,与计算机直接相关的专业包括计算机科学与技术、计算机软件、软件工程、网络工程、数字媒体艺术、数字媒体技术。而应用技术、 网络技术属于职业技术教育类专业,也就是那些职业学院或高职高专院校开设的专业。
2023-08-11 22:13:2612

智能传感器非线性自校正的条件

什么是智能传感器?传感器是现代信息技术的重要组成部分,是人类收集信息的工具。传统意义上的传感器的输出大多是模拟信号,它们不具备信号处理和网络功能,但需要连接到特定的测量设备来完成信号处理和传输功能。智能传感器可以通过标准接口对原始数据进行内部处理,与外界交换数据,并根据实际需要通过软件控制改变传感器的工作,实现智能化和网络化。智能传感器采用标准总线接口,具有良好的开放性和可扩展性,为系统的扩展提供了很大的发展空间。有关智能传感器的深度解读分享智能传感器的概念最早由NASA在航天器开发过程中提出,并于1979年形成产品。航天器上的大量传感器需要不断向地面或航天器上的处理器发送温度、位置、速度和姿态等数据信息。即使是一台大型计算机也很难同时处理如此大量的数据。此外,航天器限制了计算机的尺寸和重量,因此希望传感器本身具有信息处理功能,因此传感器将与微处理器结合,出现智能传感器。智能传感器是一种新型传感器,能够获取和识别被测对象的特定信息,学习、推断、判断和处理信号,并具有通信和管理功能。智能传感器具有自动调零、校准、补偿和收集数据的能力。它的能力决定了智能传感器与传统传感器相比还具有更高的精度和分辨率、更高的稳定性和可靠性、更好的适应性,以及非常高的性价比。在早期的智能传感器中,传感器的输出信号经过处理和转换,然后通过接口发送到微处理器进行计算处理。20世纪80年代,智能传感器主要以微处理器为核心,将传感器信号处理电路、微电子计算机存储器和接口电路集成到一个芯片中,使传感器具有一定的人工智能。20世纪90年代,智能测量技术进一步完善,使传感器实现了小型化、结构集成化、阵列式、数字化、操作简单、易于操作和自诊断功能、存储和信息处理功能。数据存储功能、多参数测量功能、网络通信功能、逻辑思维和判断功能。有关智能传感器的深度解读分享智能传感器大致可分为三类:判断传感器、学习传感器和创意传感器。智能传感器的结构有关智能传感器的深度解读分享智能传感器系统主要由传感器、微处理器及相关电路组成,如图所示,传感器将测得的理化量转换成相应的电信号,送入信号调制电路,经滤波、放大、A/D转换后送入微处理器。微处理器对接收到的信号进行计算、存储和分析后,一方面通过反馈回路对传感器和信号调理电路进行调节,实现对测量过程的调节和控制,另一方面将处理结果经接口电路处理后传输到输出接口,根据输出格式和接口适配输出数字化测量结果。微处理器是智能传感器的核心,因为微处理器充分利用了各种软件的功能,使传感器智能化,大大提高了传感器的性能。有关智能传感器的深度解读分享智能传感器的特点高精度智能传感器可以通过自动零点校准消除零点,自动进行全系统校准,非线性校正系统误差,如与标准参考基准进行实时比较,实时采集大量数据进行分析和处理,消除偶然误差的影响,调整智能传感器的高精度。高可靠性和高稳定性智能传感器能自动补偿因工况、环境参数等变化引起的系统特性漂移,判断采集数据的合理性,并自动对异常情况进行应急处理。高信噪比和高分辨率由于智能传感器具有数据存储、存储和信息处理的功能,可以去除输入数据中的噪声,通过数字滤波等相关分析处理,自动提取有用数据;通过数据融合和神经网络技术,可以消除多参数状态碰撞中的交叉敏感性。适应性强智能传感器具有判断、分析和处理功能,可根据系统的工作条件确定各部件的供电情况和上位机的数据传输速率,使系统处于低功耗的最佳状态,优化传输效率。更高的性价比智能传感器的高性能不是通过追求传感器本身的完美,仔细设计和调试传感器的各个方面,以及像传统传感器技术一样制作“工艺品”来实现的。利用微处理器和集成电路的结合,不仅价格低廉,而且具有强大的软件价值。智能传感器的关键功能智能传感器的功能是通过模拟人类感官和大脑的协调动作,结合多年的测试技术研究和实践经验提出的。它代表一个相对独立的智能单元。它的出现降低了对原始硬件性能的苛刻要求,并依靠软件的帮助大大提高了传感器的性能。智能传感器通常可以执行以下功能:1.复合敏感功能我们观察周围的自然现象。常见的信号包括声音、光、电、热、电和化学物质。传感器组件通常以两种方式测量:直接测量和间接测量。智能传感器具有复合功能,可以同时测量各种物理量和化学量,并提供能够全面反映物质运动规律的信息。例如,美国加利福尼亚大学开发的复合液体传感器可以同时测量介质的温度、流速、压力和密度。美国EG&GIC传感器公司开发的复合机械传感器可以同时测量物体特定点的三维振动加速度、速度、位移等。2.适应功能当条件发生变化时,智能传感器可以在一定程度上自动调整其特性以适应这种变化。通过使用自适应技术,自适应技术可以延长一个或多个设备的寿命,因为它们可以补偿由老化组件引起的参数漂移。此外,它还可以自动适应不同的环境条件,从而扩大了工作范围。自适应技术提高了传感器的重复性和准确性。因为其校正和补偿值不再是平均值,而是测量点的实际校正值。3.自检、自校准和自诊断功能普通传感器必须定期检查和校准,以确保在正常使用期间具有足够的精度。这些任务通常要求从现场拆卸传感器,并将其送往实验室或检验部门。无法诊断在线测量传感器异常时间。有了智能传感器,情况发生了巨大变化。首先,自诊断功能执行通电自检,即确定部件是否有故障的诊断测试。其次,它可以根据使用时间进行在线校正,微处理器使用存储在E2PROM中的测量特性进行比较和验证。4.信息存储功能信息往往是成功的关键:智能传感器可以存储大量信息,用户可以随时查询。此类信息可包括设备的历史信息。例如,传感器工作了多少小时,更换了多少次电源等。它还包括所有传感器数据和图表,以及配置选择指南等。此外,还包括序列号、生产日期、目录表和最终工厂测试结果。内容可以是无限的,只受智能传感器本身存储容量的限制。除了扩展过程数据处理、自诊断、配置和信息存储功能外,智能传感器还提供数字通信能力和适应性。5.数据处理功能过程数据处理是一项非常重要的任务,智能传感器本身提供了这一功能。智能传感器不仅可以放大信号,还可以将其数字化,然后使用软件实现信号调节。通常,简单的传感器不能提供线性信号,过程控制的一个重要目标是线性。智能传感器可以通过查表将非线性信号线性化。当然,必须为每个传感器单独创建此数据表。智能传感器过程数据处理的另一个例子是通过数字滤波器对数字信号进行滤波,这可以减少噪声或其他相关影响的干扰。用软件设计复杂的滤波器比用分立的电子电路设计复杂得多。补偿环境影响也是数据处理中的一项重要任务。微控制器可以帮助提高信号检测的准确性。例如,可以通过测量基本传感元件的温度来获得正确的温度补偿系数,从而实现信号的温度补偿。非线性补偿和其他更复杂的补偿也可以在软件中实现。这是因为查找表可以生成几乎任何形状的曲线。有时,为了报告各自的数据,需要测量和处理几个不同的物理量。智能传感器徽章控制器使用户可以轻松地对多个信号进行加法、减法、乘法和除法。智能传感器可以在过程数据处理中发挥作用。有关智能传感器的深度解读分享将这些操作从中央控制室移开,靠近信号产生点也将是有益的。首先,向控制室发送额外信号的成本很高,而智能传感器消除了额外传感器和接线的成本。第二种是在信息应用点捕获附加信息,大大减少了远程传输带来的负面影响(如噪声、电位差等),使信号更加准确。三是简化主控制器软件,提高控制回路速度。6.配置功能智能传感器的另一个重要功能是配置选项。信号应该多久放大一次?温度传感器是否以摄氏度或华氏度为单位报告温度?有了智能传感器,用户可以选择他们想要的配置。例如,检测范围、可编程开/关延迟、组选择计数器、常开/常闭、8/12位分辨率选择等。这些只是当今众多智能传感器配置中的一小部分。灵活的配置功能大大减少了用户设计和更换所需不同传感器类型和数量的需要。使用智能传感器配置功能可以使同一类型的传感器在最佳状态下工作,并在不同的场合执行不同的任务。7、数字通信功能如上所述,由于智能传感器可以生成大量信息和数据,普通传感器的单一连接无法为设备的数据提供必要的输入和输出。然而,lead不能用于所有信息,因为这会使系统非常复杂。因此,需要一个灵活的串行通信系统。在流程工业中,点对点串联和串联网络很常见,今天的总趋势是串联网络。由于智能传感器本身有一个微控制器,因此它本身是数字的,因此有必要配置带有外部连接的数字串行通信。这是因为串行网络比传统模拟信号更能抵抗环境影响(如电磁干扰)。通过与设备进行串行通信,可以有效地管理信息传输,从而只在需要时输出数据。智能传感器的实现方法智能传感器的实现目前在传感器发展的三条道路上进行:a)通过计算机合成,即智能合成;b)通过特殊功能材料,即智能材料;c)通过功能化几何结构,即智能结构。智能综合是传感器设备和微处理器的结合,是目前的主要方式。根据传感器和计算机的综合方法,当前的传感器技术采用以下三种具体方式来实现智能传感器。1.非综合模块化方法非集成式智能传感器是一种智能传感器系统,由传统的基本传感器、信号调理电路和带有数字总线接口的微处理器组成。在现场总线控制系统发展的推动下,这种非集成的智能传感器正在迅速发展。自动售货机厂家生产过程中的原有设备基本不变,由一块带数字总线接口的微处理器板组成,并配有通讯、控制、自校准、自补偿等智能功能。自诊断软件实现智能传感器功能。这是构建智能传感器最经济、最快速的方法。有关智能传感器的深度解读分享2.综合实现这种智能传感器系统采用微加工技术和大规模集成电路技术,以硅为基本材料制造敏感元件、信号调理电路和微处理器单元,并将它们集成在一个芯片上。该集成实现了智能传感器的小型化和结构集成,提高了精度和稳定性。在敏感元件形成阵列后,通过适当的图像处理软件,可以实现图形映射,形成多维图像传感器。此时,智能传感器已达到其最先进的形式。有关智能传感器的深度解读分享3.混合实现智能传感器系统在单芯片上的实现带来了许多无法解决的挑战。根据需要和可能性,系统的每个集成连接(例如敏感单元、信号调节电路、微处理器单元、数字总线接口)可以以不同的组合集成在两个或三个芯片上,并安装在一个外壳中。有关智能传感器的深度解读分享智能传感器的发展与趋势发展趋势1.向高精度发展随着自动化生产水平的提高,对传感器的要求也越来越高:必须开发高灵敏度、高精度、快速响应和良好互换性的新型传感器,以确保生产自动化的可靠性。2.向高可靠性和宽温度范围发展传感器的可靠性直接影响到电子设备的抗干扰等性能。开发高可靠性、宽温度范围的传感器将是一个永恒的方向。利用陶瓷等新材料开发传感器将大有可为。3.向小型化发展各种控制仪表和装置的功能越来越强大,每个部件的体积越小,传感器本身就越小。这就需要开发新材料和加工技术。硅材料制成的传感器体积已经很小。例如,传统的加速度计是由重力块和弹簧制成的,它们体积大、脆弱、寿命短,而采用激光等各种微处理技术制成的硅加速度计体积小,可互换性好。性更好。4.向微功耗和被动发展传感器一般是将非电转换为电,工作时电源是不可分割的。在野外或远离电网的地方,它们通常由电池或太阳能供电。因此,开发具有微功耗的传感器和无源传感器的发展方向势在必行,这样可以节约能源,提高系统的使用寿命。目前,低功耗芯片发展迅速,如B.T12702运放,静态功耗仅为1.5A,工作电压仅为2~5V。5.迈向智能化数字发展随着现代化的发展,传感器的功能已经突破了传统的功能,其输出不再是单一的模拟信号(如0~10mV),而是由微机处理的数字信号。,有些甚至具有被称为数字传感器的控制功能。6.网络发展网络化是传感器发展的一个重要方向,网络的作用和好处开始显现。网络传感器必将推动电子技术的发展。发展重点1.通过机器智能进行错误检测和预测。任何系统都必须在潜在问题出错并产生严重后果之前检测或预测它们。目前,还没有定义良好的异常状态模型,异常状态检测技术仍然缺乏。迫切需要将传感器信息和知识结合起来,以提高机器的智能性。2.在正常情况下,可以高精度、高灵敏度地检测目标的物理参数,但在检测异常情况和故障方面进展甚微。因此,迫切需要对故障进行检测和预测,并应大力开发和应用。3.当前的传感器技术可以在单个点上精确检测物理或化学量,但难以检测多维状态。例如,特征参数分布广泛、具有时空相关性的环境测量也是一个亟待解决的难题。因此,有必要加强多维状态检测的研究与开发。4.用于目标成分分析的遥感。化学成分分析主要基于样品物质,有时目标物质的取样很困难。与测量平流层臭氧水平一样,遥感是必不可少的,光谱法与雷达或激光探测技术相结合是一种可能的方法。无样品部件的分析容易受到传感器系统和目标部件之间各种噪声或介质的干扰,传感器系统的机器智能有望解决这一问题。5.传感器智能,实现资源的高效回收。现代制造系统已经实现了从原材料到产品的高效自动化生产过程,当产品不再使用或废弃时,循环过程既没有效率,也没有自动化。如果可再生资源的回收能够有效地、自动地进行,就可以有效地防止环境污染和能源短缺,实现生命周期资源管理。对于自动化和高效的循环过程,使用机器智能来区分目标组件或特定组件是智能传感器系统的一项非常重要的任务。研究热点1.探索物理转化的机制数字输出是智能传感器的典型特征之一。它不仅仅是通过模数转换进行的简单数字化,而是一个机构的数字输出。其中,谐振式传感器具有直接数字输出、高稳定性、高重复性、强抗干扰能力、高分辨率和测量精度等优点。传统光电传感器的频率信号检测需要更复杂的设计,这限制了其在工业领域的广泛应用和发展。目前,它只需在同一片硅芯片上集成一个智能检测电路,就能快速提取频率信号,因此谐振式微机械传感器已成为国际上的研究热点。有关智能传感器的深度解读分享2.多数据融合研究数据融合是一种数据合成和处理技术,代表了许多传统学科和新技术的集成和应用,如B.通信、模式识别、决策理论、不确定性理论、信号处理、估计理论、优化处理、计算机科学、人工智能和神经网络等,数据融合已成为集成智能传感器理论的一个重要领域和研究热点。也就是说,对来自多个来源的多个传感器或信息进行广泛的处理和评估,以提供更准确可靠的结论。因此,对于多传感器阵列而言,数据融合技术可以充分展示每个传感器的特性,充分利用它们的互补性和冗余性,提高测量信息的准确性和可靠性,延长系统的使用寿命。近年来,数据融合引入了遗传算法、小波分析技术和虚拟技术。有关智能传感器的深度解读分享智能传感器是传感器发展的总趋势,已经引起了世界各国的关注和认可,可以说智能传感器是一种很有前途的新型传感器。未来,随着硅微加工技术的发展,新一代智能传感器的功能将会增加。它将利用人工神经网络、人工智能、信息处理技术等为传感器带来更先进的智能功能,同时也将向微传感器、微执行器、微处理器和微系统发展。说出智能传感器应用领域的黑色技术分子传感器虽然历史上有在“隐形墨水”中使用化学品的技术需要加密,但改进的检测方法使得难以确保未经授权的人无法读取隐藏的信息。为了应对这种情况,以色列魏茨曼科学研究所的戴维·马古利斯和他的研究团队开发了一种荧光分子传感器,可以通过产生特定的荧光发射光谱来区分不同的化学物质。鉴于最近对全球电子监控的担忧,该传感器提供了绕过电子通信系统的安全手段。有关智能传感器的深度解读分享无线传感器近年来,健身跟踪器已成为一种越来越流行的可穿戴技术。但是加利福尼亚大学的工程师伯克利将这一概念进一步发展,开发了微型无线传感器来检测人体的健康状况。据报道,这些设备已经缩小到了一立方毫米,大约一粒尘埃大小,被称为“神经尘埃”。这些传感器可以植入人体,实时检测组织、肌肉和神经。无线传感器越来越多地应用于工业、农业、军事、航空、建筑、医疗、环保等领域。深圳新力科技长期致力于各类无线传感器的设计和开发,为基于无线传感器网络的无线数据采集、传输和监控系统提供解决方案。例如,无线温湿度传感器、无线压力传感器、无线温度传感器、无线气体传感器、无线液位传感器等。在智能农业、智能温室环境监测系统、智能养殖环境监测系统、仓储环境监测系统、,智能管网监测系统、重大危险源环境监测系统、能源管理系统、大气环境质量监测系统、智能制造监测系统等。生物发光传感器生物发光传感器实际上是范德比尔特大学的一群科学家通过基因改造生物酶荧光素酶发明的一种新型研究方法。研究人员称,这种新型传感器可以用来跟踪大脑中大型神经网络的内部相互作用。人工毛发传感器对人类来说,皮肤不仅是保护我们免受灰尘和细菌侵害的屏障,也是我们感知外部环境变化的媒介。随着研究人员对机器人技术的进步,他们也在努力创造出功能类似于真实皮肤的机器人。中国哈尔滨工业大学材料科学教授何晓东和他的同事在这一领域进行了创新,他们开发了一种新技术,模拟人体表面的细毛,并将感官信息传输给机器人。研究人员用30微米的金属丝替换头发,并在硅橡胶中嵌入一系列微小的金属丝,这一系列金属丝的功能是为人造皮肤带来外部信息。研究结果可用于感觉假肢或相应的健康设备。复合式触摸传感器目前,大多数机器人触摸传感器只有力传感器,因此只能检测物体的硬度和纹理,使得机器人的异物检测精度非常低。但与传统的力传感器相结合,复合触摸传感器可以帮助机器人识别物体的组成。利用这一原理,美国佐治亚理工学院(Georgia Institute of Technology)的专家展示了一种由导电和非导电材料以及热敏电阻制成的“皮肤”,他们为发热机器人设计了这种皮肤。有关智能传感器的深度解读分享空气传感器TZOA推出了一种新的空气传感器。不用说,这是一个传感器,可以收集有关空气质量的信息,包括颗粒的类型和数量,以及它们是否含有有害化学物质。该设备还可以保护胎儿和儿童免受损害大脑发育的污染物的影响。未来,该公司计划在中国和印度销售户外污染设备,在美国销售室内污染设备。TZOA还开发了哮喘设备,可以帮助识别哮喘发作的诱因。促进睡眠的“感觉”传感器据报道,詹姆斯在英国伦敦发明了一种名为“感知”的睡眠传感器。据了解,“感知”传感器可以自动调节光线,控制加热,甚至播放舒缓的音乐,以促进人类按照主人的规定睡眠,并在睡眠期间将环境调整到最舒适的状态。它还监测噪音、光线、温度、湿度和空气质量,并对用户的夜间睡眠进行排名。肌电传感器传感器一直在医疗保健领域发挥着重要作用,因为它们处于数据收集的前沿。EMG传感器是上海成电自主研发的一种电荷传感器,具有采样率高、抗干扰能力强、滤波效果好等特点。该传感器已成功应用于康复医学和仿生修复,并将扩展到未来的行业,如VR/AR、健身和人体外骨骼。温度传感器SirenCare是一家致力于监测糖尿病患者健康状况的初创公司,它开发了一款智能袜子,使用温度传感器检测患者是否有炎症,从而实时监测糖尿病患者的健康状况。与其他公司之前开发的靴子和鞋垫相比,Siren的袜子更贴近皮肤。传感器被编织到袜子中,可以随时检测脚部炎症,所有检测到的信息都将上传到智能手机上的应用程序中,以便患者随时了解自己的脚部状况。皮肤传感器据报道,日本研究人员最近发明了一种低成本、类似创可贴的集成传感器。这种集成到带式传感器中的传感器是一种柔性装置,可以随意安装在身体上。它可以监测人类活动量、心跳次数和紫外线强度。它可以用于医疗管理和物联网等领域。粘贴式皮肤传感器通过最新开发的打印技术打印在薄塑料膜上。与以前的半导体传感器制造技术相比,成本非常低,并且考虑了方便性和低成本。
2023-08-11 22:14:581

我想转行做数据分析师,怎么入门?

第一职场网“教练式”职业规划有专门针对数据分析师的职业规划,包括入门、职业成长路径设计及行业选择,你可以关注一下。
2023-08-11 22:15:1010

什么是进化论

我只知道是爱因斯坦的!去百度上搜!
2023-08-11 22:15:577

SMT贴片机程序原理是怎么样的,知道通知我哦

SMT工艺入门 表面安装技术,简称SMT,作为新一代电子装联技术已经渗透到各个领域,SMT产品具有结构紧凑、体积小、耐振动、抗冲击,高频特性好、生产效率高等优点。SMT在电路板装联工艺中已占据了领先地位。 典型的表面贴装工艺分为三步:施加焊锡膏----贴装元器件-----回流焊接 第一步:施加焊锡膏 其目的是将适量的焊膏均匀的施加在PCB的焊盘上,以保证贴片元器件与PCB相对应的焊盘在回流焊接时,达到良好的电器连接,并具有足够的机械强度。 焊膏是由合金粉末、糊状焊剂和一些添加剂混合而成的具有一定黏性和良好触便特性的膏状体。常温下,由于焊膏具有一定的黏性,可将电子元器件粘贴在PCB的焊盘上,在倾斜角度不是太大,也没有外力碰撞的情况下,一般元件是不会移动的,当焊膏加热到一定温度时,焊膏中的合金粉末熔融再流动,液体焊料浸润元器件的焊端与PCB焊盘,冷却后元器件的焊端与焊盘被焊料互联在一起,形成电气与机械相连接的焊点。 焊膏是由专用设备施加在焊盘上,其设备有: 全自动印刷机、半自动印刷机、手动印刷台、半自动焊膏分配器等。 施加方法 适用情况 优 点 缺 点 机器印刷 批量较大,供货周期较紧,经费足够 大批量生产、生产效率高 使用工序复杂、投资较大 手动印刷 中小批量生产,产品研发 操作简便、成本较低 需人工手动定位、无法进行大批量生产 手动滴涂 普通线路板的研发,修补焊盘焊膏 无须辅助设备,即可研发生产 只适用于焊盘间距在0.6mm以上元件滴涂 第二步:贴装元器件 本工序是用贴装机或手工将片式元器件准确的贴装到印好焊膏或贴片胶的PCB表面相应的位置。 贴装方法有二种,其对比如下: 施加方法 适用情况 优 点 缺 点 机器贴装 批量较大,供货周期紧 适合大批量生产 使用工序复杂,投资较大 手动贴装 中小批量生产,产品研发 操作简便,成本较低 生产效率须依操作的人员的熟练程度 人工手动贴装主要工具:真空吸笔、镊子、IC吸放对准器、低倍体视显微镜或放大镜等。 第三步:回流焊接 回流焊是英文Reflow Soldring的直译,是通过重新熔化预先分配到印制板焊盘上的膏装软钎焊料,实现表面组装元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。 从SMT温度特性曲线(见图)分析回流焊的原理。首先PCB进入140℃~160℃的预热温区时,焊膏中的溶剂、气体蒸发掉,同时,焊膏中的助焊剂润湿焊盘、元器件焊端和引脚,焊膏软化、塌落,覆盖了焊盘,将焊盘、元器件引脚与氧气隔离;并使表贴元件得到充分的预热,接着进入焊接区时,温度以每秒2-3℃国际标准升温速率迅速上升使焊膏达到熔化状态,液态焊锡在PCB的焊盘、元器件焊端和引脚润湿、扩散、漫流和回流混合在焊接界面上生成金属化合物,形成焊锡接点;最后PCB进入冷却区使焊点凝固。 回流焊方法介绍: 机器种类 加热方式 优点 缺点 红外回流焊 辐射传导 热效率高,温度陡度大,易控制温度曲线,双面焊时PCB上下温度易控制。 有阴影效应,温度不均匀、容易造成元件或PCB局部烧坏 热风回流焊 对流传导 温度均匀、焊接质量好。 温度梯度不易控制 强制热风回流焊 红外热风混合加热 结合红外和热风炉的优点,在产品焊接时,可得到优良的焊接效果 强制热风回流焊,根据其生产能力又分为两种: 机器种类 适用情况 优点 缺点 温区式设备 大批量生产 适合大批量生产 PCB板放置在走带上,要顺序经过若干固定温区,温区过少会存在温度跳变现象,不适合高密度组装板的焊接。而且体积庞大,耗电高。 无温区小型台式设备 中小批量生产快速研发 在一个固定空间内,温度按设定条件随时间变化,操作简便,特别适合BGA QFP PLCC。可对有缺陷表贴元件(特别是大元件)进行返修 不适合大批量生产 由于回流焊工艺有"再流动"及"自定位效应"的特点,使回流焊工艺对贴装精度要求比较宽松,比较容易实现焊接的高度自动化与高速度。同时也正因为再流动及自定位效应的特点,回流焊工艺对焊盘设计、元器件标准化、元器件端头与印制板质量、焊料质量以及工艺参数的设置有更严格的要求。 清洗是利用物理作用、化学反应去除被清洗物表面的污染物、杂质的过程。无论是采用溶剂清洗或水清洗,都要经过表面润湿、溶解、乳化作用、皂化作用等,并通过施加不同方式的机械力将污物从表面组装板表面剥离下来,然后漂洗或冲洗干净,最后吹干、烘干或自然干燥。 回流焊作为SMT生产中的关键工序,合理的温度曲线设置是保证回流焊质量的关键。不恰当的温度曲线会使PCB板出现焊接不全、虚焊、元件翘立、焊锡球过多等焊接缺陷,影响产品质量。 SMT是一项综合的系统工程技术,其涉及范围包括基板、设计、设备、元器件、组装工艺、生产辅料和管理等。SMT设备和SMT工艺对操作现场要求电压要稳定,要防止电磁干扰,要防静电,要有良好的照明和废气排放设施,对操作环境的温度、湿度、空气清洁度等都有专门要求,操作人员也应经过专业技术培训。 更多的资料可以到我51看:scwnb.51.com
2023-08-11 22:16:312

人工智能领域涉及的专业

很多同学在选择专业的时候,就希望能找一些设计人工智能领域的专业,那你知道人工智能领域都涉及的那些专业吗?下面是我为大家收集的关于人工智能领域涉及的专业,希望可以帮助大家。 更多专业相关内容推荐↓↓↓ 就业前景好的10大专业排名 2022工资高的专业推荐 高考专业怎么选择最好 选专业要不要服从调剂 人工智能领域涉及的专业 1.计算机科学与技术 人工智能离不开计算机的支持,人工智能本身也算是计算机学科的一个分支。计算机是一个比较传统的专业,发展方向可以有硬件类、软件类、网络管理类等,可以说计算机科学与技术是工科之母,涉及面非常广。 2.软件工程 软件工程专业也是计算机大类专业之一,该专业开设时间比较久,与人工智能的课程体系设置比较接近,而且软件工程也有专门的人工智能方向。这个专业侧重软件技术的开发和应用,课程上更重视编程语言和技术平台的学习,专业性比较强,知识结构较为集中,就业会比较理想。 3.数据科学与大数据技术 大数据算是计算机科学与技术与数学、统计学的交叉学科,会涉及到人工智能的相关课程,该专业要求对数据库、程序设计、计算机网络都有足够了解,通过一些列操作从而获取、储存、分析数据。在信息化时代,大数据有着非常重要的应用,适用于各行业。 4.机器人工程 机器人是一种用最快速和最大精度自动执行一个或多个复杂任务的工具,需要软件、硬件协同发展。机器人工程与人工智能都是用信息技术去模拟人类,只不过机器人工程更侧重硬件方向。 5.智能科学与技术 智能科学与技术本身也属于计算机类,开设时间较早,很多学校都有了较为成熟的 教育 体系,研究方向也是人工智能方向。这个专业应用于控制机器人,将计算机、自动化、智能系统融为一体,工程性和实践性很强。这个专业本身对成绩要求也比较高,当然未来的发展也是无可限量。 6.机械设计及其自动化 机械设计及其自动化的目的就是让机器、设备、仪器等按照预定程序进行生产活动,这与人工智能不谋而合。本身这个专业就是“万金油”专业,可以应用在各个领域,就业无压力。 这六个专业与人工智能有着密切联系,都是当下的热门专业,就业面广,薪酬待遇普遍不错,很值得报考。 人工智能专业学什么 主要课程:公共必修课、通识教育课、数学与自然科学基础课、数据结构与算法、计算机组成原理、计算机 操作系统 、程序设计基础、最优化算法、计算机视觉与模式识别、自然语言处理、计算机网络、数据库原理及应用、机器学习、分布式并行计算、数字逻辑、脑与认知科学。 需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。 其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累; 然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。 人工智能专业就业方向 有哪些 1、搜索方向,例如百度识图、作业帮搜题等。视频搜索也是搜索领域进一步研究的方向; 2、计算机视觉和模式识别方向,其应用领域包括智能办公、智能交通、智慧城市等等; 3、医学图像处理,医疗设备和医疗器械很多都会涉及到图像处理和成像技术。 4、无人驾驶领域,是人工智能重点应用领域之一; 5、智慧生活和智慧城市等,包括交通、商业、生活的诸多领域将会出现人工智能的影子。 人工智能专业掌握的知识能力 1.掌握数学、物理、计算机等方面的基本理论和基本知识; 2.掌握计算机科学与技术等方面的基本理论、基本知识和基本技能与 方法 ; 3.了解相近专业的一般原理和知识; 4.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法; 5.具有一定的技术设计,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 人工智能领域涉及的专业相关 文章 : ★ 自动化专业最好的20所大学 ★ 关于人工智能领域的大学论文 ★ 关于人工智能领域的论文 ★ 人工智能在军事上的应用论文(2) ★ vr虚拟现实技术期末论文 ★ 计算机论文文献综述 ★ 人工智能在军事上的应用论文 ★ 电气工程自动化专科论文 ★ 计算机软件工程浅析相关的论文(2) ★ 有关计算机视觉的课程论文 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?6732713c8049618d4dd9c9b08bf57682"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
2023-08-11 22:16:401

人工智能都要学习什么课程?

假设有计算机基础还要学Python,机器学习然后是人工智能应用领域。比如自然语言处理,计算机视觉
2023-08-11 22:16:515

学习人工智能都需要学什么?

想要学习人工智能之前我们还是要先来了解下人工智能到底是什么。人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,而且人工智能将涉及到很多的学科,可以说几乎是自然科学和社会科学的所有学科都有关联。
2023-08-11 22:17:119

遗传算法初始种群的产生原理是什么?随机产生?为什么?

遗传算法有相当大的引用。遗传算法在游戏中应用的现状在遗传编码时, 一般将瓦片的坐标作为基因进行实数编码, 染色体的第一个基因为起点坐标, 最后一个基因为终点坐标, 中间的基因为路径经过的每一个瓦片的坐标。在生成染色体时, 由起点出发, 随机选择当前结点的邻居节点中的可通过节点, 将其坐标加入染色体, 依此循环, 直到找到目标点为止, 生成了一条染色体。重复上述操作, 直到达到指定的种群规模。遗传算法的优点:1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。遗传算法的缺点:遗传算法在进行编码时容易出现不规范不准确的问题。
2023-08-11 22:18:171

遗传算法和强化学习最大的的区别是什么

有监督的学习、无监督的学习和强化学习。 强化学习采用的是边获得样例边学习的方式,在获得样例之后更新自己的模型,利用当前的模型来指导下一步的行动,下一步的行动获得回报之后再更新模型遗传算法的原理 遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则
2023-08-11 22:18:271

结构化开发过程分哪些阶段?系统设计的主要内容是什么? 哪位哥哥姐姐知道?

我找到了,哈哈。个人信息就不上传了,只传关键的。 嵌入式汽车身份自动识别系统一、项目介绍(研究目标、研究背景及现状、工作原理和方案设想、计划进度安排等)见附录。二、项目自我评价1、先进性:在数字信息技术和网络技术高速发展的后PC时代,随着嵌入式处理器性能的不断提高,高性能的处理器已经能满足复杂算法应用和其他复杂功能应用,嵌入式将不可避免得走进各个领域。另一方面,伴随着我国经济的快速发展和北京奥运会的举行,“交通智能化”将毋庸质疑的成为热门话题。由于交通行业的特殊性,其对ITS设备的技术参数、使用条件都有苛刻的要求,而嵌入式恰好能够满足此要求,因此嵌入式智能交通设备的大范围应用是必然趋势。嵌入式汽车身份自动识别系统是智能化交通管理系统的重要组成部分,是嵌入式技术与汽车身份识别技术的完美结合,他涵盖了嵌入式车牌识别、嵌入式车标识别以及汽车颜色识别三大主体功能,力求将汽车目标一次性锁定。它拥有以下优点:1、高度独立:使用嵌入式技术,仅通过通信接口与应用系统连接,独立性高。2、功能齐全:同时识别汽车车牌、车标及颜色,一次性锁定目标,具有现有系统所没有的强大功能。3、可塑性强:前端可与信号触发装置等上游产品结合,末端内置无线网络及多种串口接口以便与下游产品结合。系统功能与使用范围得到极大拓展。4、易于维护:修理、维护仅涉及本系统而不影响其他模块,维护成本远低于同类产品。5、便携灵活:设备高度集成,小巧灵活,使用方便。2、可操作性和可实现性:目前,车牌识别、车标识别等技术日趋成熟与完善,相关资料较易获取。现有的嵌入式技术也比较成熟。故,从技术难度上讲该选题较于其他的前沿科学容易实现。选题所涉及的设备和材料也较易获得,且成本适中。3、创新点:现有的车牌识别装置一般使用电脑处理数据,有些甚至需要若干台电脑合作完成,占用大量空间与资源。即使偶有由嵌入式完成的系统其功能也仅限于车牌识别或车标识别。本系统创造性地将嵌入式与车牌识别、车标识别以及汽车颜色识别相结合,一次性解决了目前设备体系臃肿、集成难度大、稳定性差,维护难,功能单一等问题。4、可能存在的问题:目前,主要问题是嵌入式集成度及无线传输的距离。我们所设想的理想情况是:针对现在大多使用电脑整机处理数据,设备灵活性差的缺点,开发出便携式、数据可无线传输的汽车身份识别系统。但是由于我们时间、精力和资金的限制,“便携的程度”是目前最大的难题。另外车速与景深对图像识别的影响问题也是我们可能会面对的难题。三、预期成果(成果的具体形式,如:申请专利、公开发表论文、制作科技实物(含软件程序)等,可以同时有多种成果形式)我们预计我们的实验成果有以下几个方面。首先,我们计划制作出科技实物,即确实地完成该嵌入式系统,拿出实实在在的成果。第二,从我们对市场现状的分析来看,该嵌入式汽车身份识别系统的市场前景非常乐观,故可以将我们的产品申请专利并投入市场进行生产。第三方面,由于汽车颜色、车牌、车标的组合识别还没有合适的算法,所以在完成本系统的过程中我们不可避免的要完成算法设计,而这部分成果可以通过公开发表论文的形式进行展示。因为我们计划完成一个系统,所以我们需要同时完成该系统的硬件和软件两个部分。从大的角度来看,软件及算法部分的成果可以通过论文发表,而硬件方面的成果则可以通过投入生产和申请专利来体现。无疑,我们的成果形式会比只做软件部分或者只做硬件部分的选题多。这也是我们的一大优势。实验环境要求 经费预算 内容 用途 预算金额 预计执行时间 CCD摄像部分 前端图像的获取,购买摄像头或摄像机 3000 07.12~ 08.2月 辅助光源 针对特殊环境进行光线补充 1500 07.12~ 08.2月 图像采集卡 模拟信号数字化 2500 07.12~ 08.2月 嵌入式系统硬件设施 图像的处理 4000 08.3~ 08.10月 硬盘录像机 视频信息的存储 2500 08.10~ 08.12月 显示装置 输出图像识别结果 1500 08.12~ 09.2月 无线收发或有线传输装置 信息的传输 2500 09. 2~ 09.3月 机械加工 机械零件组装成样机 2000 最后阶段 合计:19500元 学院审批意见 专家委员会评审意见 学校审批意见 附录一:选题的现状、背景及意义自1885年,世界上第一台汽车诞生至今,汽车为我们日常工作与生活的带来了翻天覆地的影响。一百多年来,汽车以其价格低廉,操作方便等优势逐渐被大众所接受,走入了千家万户。在我国,每年都有许多人加入有车一族。随之而来的自然是越来越快捷方便的生活方式以及由此引发的一系列问题:汽车盗窃案每年逾万,交通事故时有发生……无疑,汽车需要规范管理。现在,我国的大部分汽车管理工作都是由人来操作完成的。不难想象,面对越来越庞大的汽车队伍,人工操作明显的力不从心。所以“交通智能化”将成为未来交通管理的必然趋势。要实现交通智能化怎么可以没有“汽车身份”的识别呢。早在上个世纪九十年代初,汽车身份识别已经引起了全世界的广泛重视,人们开始研究有关汽车身份证——汽车牌照自动识别的相关问题。几年后,汽车的另一个重要的身份象征——汽车标志识别也成为了热门话题。车牌识别的一般途径为:采用计算机图象处理技术对车牌进行分析后自动提取车牌信息以确定车牌号。车标识别则基于边缘直方图和模板匹配相关系数混合的算法。目前车牌与车标识别的理论已经成熟,离线算法识别率已经达到较高的水平,同时正向着集成化、智能化方向发展。在智能化交通管理系统中,汽车身份识别相当于vc++中的“基类”地位,即智能化交通管理系统中的其他子模块需要在汽车身份识别的基础上进行继承和发展。所以我们认为,汽车身份识别要求较高的集成度,最好能由可以嵌入到其他系统中的、集成度高的模块来完成,如单片机、CPLD。而现阶段的汽车身份识别大部分却是依靠计算机来完成的。另外,由于汽车身份识别的“基类”定位,使用时对“能否唯一的锁定汽车”以及“能否很快地判定是哪辆车”就有了一定的要求。而现阶段的汽车身份识别却仅依靠单纯的识别车牌来完成。市场上存在的也多是车牌或是车标的单独识别系统,将二者结合的系统则非常罕见。而这些单一的系统显然很难达到真正的识别锁定汽车身份的目的。结合智能化交通管理系统的要求,现今汽车身份识别的现状以及二者的发展趋势,我们小组选择了嵌入式汽车身份自动识别系统作为我们本次创新实验计划的选题。我们计划以嵌入式完成汽车身份识别后,将处理完的数字信息传递到智能化交通管理系统的其他模块中。用嵌入式代替电脑处理汽车身份识别将大大提高智能化交通管理系统的集成度,降低成本。区别于单一的识别系统,我们设计完成的汽车身份识别系统将车牌识别与车标识别相结合,并辅以汽车颜色识别。同时识别,同时输出,从而从多方面判断并锁定汽车,力求达到万无一失。从而极大地方便了该系统在各个领域的使用。公安交管领域,该嵌入式汽车身份自动识别系统可被应用在交管系统中。将本产品嵌入到用来测速、测超载的其他交通设施中,就可以完成一系列的管理工作;与终端电脑处理系统相连,传输的是已经经过处理的数字信息而非图片信息,大大节省了终端电脑的处理时间和内存空间,提高反应速度与处理效率,有效解决交管领域人手不足的现状。在园区车辆管理方面,本嵌入式汽车身份自动识别系统将留有端口,使其可以与园区的业主入住时所登记的汽车信息库相连。在园区大门处,安装我们的车牌自动识别系统,以对进出车辆自动识别,然后将数据传到数据库并根据数据库中的车牌数据判断是否是园区内的车辆,然后分情况处理。这将大大增加园区汽车的安全系数,而使用该系统的成本远低于使用电脑处理的系统的成本。关于停车场管理,我们的嵌入式车牌自动识别系统可以完成智能化管理过程。将系统安装在停车场的出、入口处,用来对进出停车场的车辆进行自动识别,而处理后的数据将传入终端电脑,由终端电脑结合传入的信息与数据库判断是否属已买(或租)车位的车辆做出相应处理。综上,我们有理由相信我们计划完成的嵌入式车牌自动识别系统可以在未来的交通智能化管理系统中发挥举足轻重的作用,是值得去研究和探索的。附录二:工作原理及方案设想本汽车身份识别系统包含车牌识别、车色以及车标的识别,本系统将使用嵌入式系统完成此三部分的识别。由于我们刚接触这部分内容,所以想法不是很成熟。下面将分车牌识别与车色、车标识别以及嵌入式三个部分介绍我们的工作原理和方案。第一部分:车牌识别1、总体结构 车牌自动识别系统主要分为三大模块:(1)触发:即前端设备的数据入口处,如测速系统等。(2)图像处理部分:分为图像采集、车牌定位、字符分割和字符识别四部分。(3)无线传输系统将所处理得的数据传送至后端应用系统,如交通违规管理系统,只能停车场系统,安检系统等。2、算法部分①前端CCD摄像机: 原始图像获取由CCD摄像机及辅助照明装置组成。获取图像质量的好坏直接影响到后端处理和识别的效果. 要获得比较清晰的图像, 需要考虑许多影响图像质量的因素, 主要包括: 摄像头和图像卡的选取, 摄像机的位置标定, 汽车的车速, 出入单位的汽车车队之间的距离, 天气、光线等情况对摄像机所摄图像曝光量的影响。 判断是否有车辆进入观测区采用图像差值法来判断监测区是否有目标进入,即首先将视频图像灰度化,然后比较两幅图像对应像素点的灰度值,看是否有变化以及变化有多少。图像差分只能测定监测区中是否有物体经过,但它是否交通车辆,尚未可知。鉴于图像差分所产生的噪声、行人、自行车比汽车所占区域小得多,设计尺度滤波器将尺度较小的物体及噪声滤掉。②车牌定位及预处理左图为车牌定位的主要算法。完成基本的车牌定位后,还需要对车牌进行一些基本的预处理。包括倾斜矫正与铆钉和边框的去除。 I、车牌字符的倾斜矫正车牌字符分割的难点在有些车牌是倾的,直接分割效果不好,需要做校正。首先求出车牌的倾斜率,根据此斜率对车牌做旋转校正。 II、车牌边框和铆钉的去除先验知识:对于标准车牌,字符间间距为12mm,第2、3个字符间间距为34mm,其中,中间小圆点l0mm宽,小圆点与第2、3个字符间间距分别为12mm。在车牌边框线的内侧,通常有四个铆钉,他们不同程度地与第2个字符或第6个字符粘连,如果不去除铆钉,将给第2和第6在字符的识别造成困难。将车牌图像进行二值化后,图像仅黑、白二值。白色像素点(灰度值255)取1,黑色像素点(灰度值0)取0,这里采用的是白底黑字模式。对车牌图像逐行进行从内向外式扫描,当扫描到车牌图像某一行中,白色像素点的宽度大于某一阀值时(第一个符合条件的行),则认为是车牌字符的边沿处,切除这一行以上或以下的所有行。③车牌字符分割右图为车牌字符分割的主要算法。在此,由于我们的知识有限就不对这些算法做具体介绍了。④字符识别方法字符识别是车牌识别的核心部分。常见的车牌字符识别算法包括六种。我们将他们罗列在右图中。其中,我们比较感兴趣的是基于神经网络的字符识别算法。下面,我们具体介绍两种比较简单且普遍的算法以及基于神经网络的字符识别算法。I、模板匹配车牌字符识别 中国车牌的字符模板分为汉字、英文字母和数字模板,由统计方法构造并保存到数据库中。模板匹配是将字符模板和标准化了的车牌字符进行匹配来识别字符。II、特征匹配车牌字符识别 车牌识别的方法中,可利用的字符特征很多,大致可以分为结构特征、象素分布特征及其他特征。在这里,我们拟重点突破神经网络法,因为人工神经网络技术具有非线性描述、大规模并行分布处理能力、高度鲁棒性和自学习与联想等特点,适用于非线性时变大系统的模拟与在线控制。具体步骤如下图所示: 此外,我们还会尝试将各种算法结合起来,以扬长避短,如:将遗传算法与人工神经网络结合起来,既能利用遗传算法能并行计算且能快速、全局搜索的优点又能克服神经网络固有的搜索速度慢且易陷入局部旱热的缺点等。 由于我们还在大学二年级学习专业基础课程,对图像处理的最新算法还不够了解,我们会在实际操作过程中,选择一种最优的方案并且结合我们的系统特征提出改进意见。第二部分:车色以及车标识别①、车身颜色识别颜色特征具有对图像本身的尺寸、方向、视角等依赖小、鲁棒性高等优点,因此在基于内容的图像索引技术和智能交通系统以及众多的I业(如造纸、纺织、印刷等)系统中有着极其重要的应用。长期以来,由于各种原因,人们提出了数量众多的彩色空间模型,主要可分为三类:第一类是基于人类视觉系统(HumanV isionS ystem,H VS)的彩色空间,它包括RGB,H SI,M unsell彩色空间等;第二类是基于特定应用的彩色空间,它包括电视系统中所采纳的YUV和YIQ、摄影行业如柯达的YCC、打印系统的CMY (K)彩色空间;第三类是CIE彩色空间(包括CIE XYZ, CIE Lab和CIE Luv等)。这些彩色空间各有优缺点,它们在各自的领域里发挥了重要的作用。我们拟采用RGB彩色空间完成我们的系统。RGB彩色空间在计算机相关领域里应用广泛,例如用于常见的CRT显示器等。在RGB彩色空间中,各彩色值用R、G、B三通道值的组合来共同表示,而其相应的通道值是通过图形采集卡或者CCD传感器等类似器件中的光感受器来获得的。其中,各通道值用入射光及其相应光感受器的光敏函数值之和来表示:R= G= B= 其中,S (A)是光谱,R(A)、G(A)和B(A)分别是R,G,B传感器的灵敏度函数。从上式可以看出,该彩色空间是设备相关的,它与具体捕获设备的光敏函数相关。然而,由于RGB值易于获得和在计算机中计算和表示,因此通常可以用来表示其他各彩色空间,即把RGB值转换为其他彩色空间值。RGB彩色空间的标准色差定义为: )由于不同的彩色对人主观感受的影响不同,为了更好的表示色差,在本颜色识别子系统中使用经验色差公式:对于我们拟设计的车身颜色识别系统主要分以下四大步骤完成车身颜色识别1.识别区域的选取为了准确识别出车身颜色,识别区域的选取至关重要。本实验选取车脸前部靠近排气扇的部分2.颜色直方图计算对所选区域,计算出现次数最多的颜色。在实际应用中,由于其他彩色空间模型的分量值均可用RGB值来表示,为了计算简便,在计算颜色直方图时可仅针对RGB彩色空间模型进行。3.色差计算根据相应彩色空间模型的色差计算公式,计算其与 颜色模板间的色差。4、颜色识别在得到样本色与标准色在各个彩色空间模型中的对应色差后,就可以根据其结果进行颜色识别。即选取前一步计算得到的色差中的最小值,作为识别结果。②、车标识别部分毋庸质疑,车牌和车标的自动、实时识别是运动车辆类型精确识别系统中至关重要的两个部分。目前人们已经提出了众多的车牌定位算法,主要可以分为两大类:基于黑白图像的车牌定位算法和基于彩色图像的车牌定位算法。基于黑白图像的车牌定位算法又可以分为多类,如基于特征的车牌定位算法基于自适应能量滤波的车牌定位算法,基于小波变换和形态学处理相结合的车牌定位算法,基于二值投影的车牌定位算法,以及基于遗传算法的车牌定位算法等。这些车牌定位算法各有优缺点,但他们都可以在一定程度上作为车标定位的参考。车标定位与识别无论在国内还是国外都是一个较为崭新的领域。由于车标本身固有的特殊性:目标小、相似性大、受尺寸和光照影响大、背景不统一,以及不同汽车公司的车标形状大小不一致等,使得其精确定位识别成为一个难点。我们将车标识别分为以下几个主要步骤:(l)车牌定位:根据车牌的纹理特征,基于多分辨率分析快速获取车牌区域 ;(2)车头定位:根据车头区域能量较高且较为集中的特点,通过OTSU二值化算法 进 行 图像二值化,然后利用二值投影,并结合车牌位置信息进行车头快速定位 ;(3)中轴定位:在车头区域内,根据轴对称性定位车头中轴;(4)车标粗定位:在定位出车头的基础上,根据车标与车牌的先验知识,得到车标经验搜矩形;(5)车标精确定位:在第(4)步的基础上,利用车标纹理特征进行车标的精确定位。主要包括两步:一是根据车标区域在垂直方向上具有能量高且相对集中的特点,利用能量增强和自适应形态学滤波进行车标的一次定位;二是利用改进的模板匹配算法进行车标的精确定位。车标识别系统是运动车辆识别系统中的重要组成部分,与车牌识别一样,它也包括了定位和识别两项关键技术。上图为车标识别系统结构示意图,与典型的目标识别系统一样,它包括了离线的训练过程和在线的识别过程。在训练过程中,首先将手工采集得到的车标样本进行图像归一化、尺度归一化等预处理,然后分别进行模板提取以得到车标标准模板库。车标标准模板库中的模板不仅用于车标定位,还用于进行特征提取以得到车标特征模型库用于车标识别。在定位过程中,除了输入汽车图像外,还需输入车牌的位置信息。这是因为各类车标不具有稳定的纹理特征,且大小、形状各不相同,所以在复杂的背景下直接利用特征匹配或模板匹配进行车标定位是非常困难的。因此必须利用车牌位置、车辆对称性等先验信息进行粗定位,在此基础上再利用相关图像处理技术和模板匹配进行精确定位。车标定位以后,车标识别问题就转化为一个2D形状的识别问题,这可以通过模板匹配的方法实现。但是在实际采集的图像中,往往存在光照、噪声、部分遮挡和形状相似等问题的影响,常规的模板匹配方法难以达到满意的识别效果。因此通常还需要一种合适的特征提取和识别方法来辅助进行车标识别,以提高系统的识别率。第三部分:嵌入式按照历史性、本质性、普遍性要求,嵌入式系统应定义为:“嵌入到对象体系中的专用计算机系统”。“嵌入性”、“专用性”与“计算机系统”是嵌入式系统的三个基本要素。对象系统则是指嵌入式系统所嵌入的宿主系统。 嵌入式系统的核心是嵌入式微处理器,它有4个优点: (1) 对实时和多任务有很强的支持能力,能完成多任务并且有较短的中断响应时间,从而使内部的代码和实时操作系统的执行时间减少到最低限度; (2) 具有功能很强的存储区保护功能。 (3) 可扩展的处理器结构,可以迅速地扩展出满足应用的高性能的嵌入式微处理器; (4) 嵌入式微处理器的功耗很低,尤其是用于便携式的无线及移动的计算和通信设备中靠电池供电的嵌入式系统更是如此,功耗只能为 mW甚至μ W级,这对于能源越来越稀缺昂贵的时代,无疑是十分诱人的。另外,嵌入式实时操作系统提高了系统的可靠性。这些都值得我们去做一个嵌入式车牌识别系统。 考虑到通常车牌以及车标识别算法的运算量大,同时又要满足实时性要求。因此,我们准备采用32位ARM嵌入式微处理器作为核心单元,以CPLD作为时序控制单元,采用基于ARM 9 S3C 241 C的嵌入式图像采集处理系统,在内嵌Linux操作系统的草础上,充分利用了ARM器件体积小、能力强以及功耗低的特点,实现并行数据总线/USB日接口图像接入、图像快速处理、图像信息的本地压缩存储和IP化数数据传输。该系统可使整个系统简化电路并且减少占用资源。系统设计构成 整个系统由USB图像采集子系统,ARM处理子系统和网络数据传输子系统成摄像头采集现场视频数据通过U SB传输至ARM处理板;ARM处理板内嵌Linux操作系统,采用快速图像算法对图像序列进行处理,并根据处理结果采取相应的措施;网络传输子系统可以处理数据上传监控中心做进一步后续处理,系统结构下图所示。 ARM图像处理子系统拟采用S3C 2410处理器,能满足图像处理速度的要求;USB图像接入,可以保证图像传输速度;扩展64M SD RAM与64M Flash,大容量的RAM能够保存多幅图像,便于图像的分析与处理;无线网络接口实现了数据信息的网络化管理。 当然,以上只是我们的初步设想这些设想都将在我们以后的大量实验过程中得到论证和优化!附录三:计划进度与安排计划进度安排:1.用约15天时间买一些实验所需的基本用品。2.利用课余时间学习所需知识。3.用约七个月时间完成编程,解决软件方面问题。4.用约一年完成硬件方面,并制作样机。5.初步检查,花费约一个月。6.以六个月时间调试样机,发现缺陷并修正。反复试验,直至达到一个令人满意的水平。综上,我们是计划用两年左右的时间拿下这个项目。当然,以上只是大体计划,以后会随实验的实际进度进行适当调整。
2023-08-11 22:18:451

为什么环境的复杂性会导致组织的复杂性?请给予解释。

随着科学的发展和技术的进步,系统科学从20世纪年代开始兴起,人们逐渐认识到系统大于其组成部分之和,系统具有层次结构和功能结构,系统处于不断的发展变化之中,系统经常与其环境(外界)有物质、能量和信息的交换,系统在远离平衡的状态下也可以稳定(自组织),确定性的系统有其内在的随机性(混沌),而随机性的系统却又有其内在的确定性(突现)。这些新的发现不断地冲击着经典科学的传统观念。系统论、信息论、控制论、相变论(主要研究平衡结构的形成与演化)、耗散结构论(主要研究非平衡相变与自组织)、突变论(主要研究连续过程引起的不连续结果)、协同论(主要研究系统演化与自组织)、混沌论(主要研究确定性系统的内在随机性)、超循环论(主要研究在生命系统演化行为基础上的自组织理论)等新科学理论也相继诞生。这种趋势使许多科学家感到困惑,也促使一些有远见的科学家开始思考并探索新的道路。复杂系统和系统的复杂性这两个科学概念就是在这样的背景下提出的。复杂科学(complexity science)是国外在80年代提出的范畴,主要是研究复杂性和复杂系统的科学。它目前虽还处于萌芽状态,但已被有些科学家誉为“21世纪的科学”。 1984年,一批从事物理、经济、理论生物、计算机等学科的研究人员,在诺贝尔奖获得者盖尔曼(M. Gell-Mann)、安德森(P. Anderson)、阿罗(K. Arrow)等人的支持下,聚集在一起组织了圣菲研究所(Santa Fe Institute, SFI,又译圣达菲),专门从事复杂科学的研究,试图由此找到一条通过学科间的融合来解决复杂性问题的道路。与此同时,乔治·梅森大学(George Mason University)的沃菲尔德(J. Warfield),麻省理工学院的森格(P. Senge),以及普里戈金(I. Prigogine)、哈肯(H. Haken)等人也在探索复杂性问题,我国学者钱学森也于1990年提出了开放的复杂巨系统的概念。 笔者多年来从事软科学和管理科学的研究,也一直在思考科学的未来。近年来开始致力于复杂科学的探索,并从国家自然科学基金委员会管理科学部的角度尽力推进复杂科学的研究。本文拟就复杂科学的内涵、基本方法与主要工具,以及其在组织管理方面的应用前景作一些初步的探讨。 复杂性与复杂系统 根据笔者的理解,可以认为系统的复杂性主要表现在以下几个方面。 1.系统各单元之间的联系广泛而紧密,构成一个网络。因此每一单元的变化都会受到其他单元变化的影响,并会引起其他单元的变化。 2.系统具有多层次、多功能的结构,每一层次均成为构筑其上一层次的单元,同时也有助于系统的某一功能的实现。 3.系统在发展过程中能够不断地学习并对其层次结构与功能结构进行重组及完善。 4.系统是开放的,它与环境有密切的联系,能与环境相互作用,并能不断向更好地适应环境的方向发展变化。 5.系统是动态的,它处于不断的发展变化之中,而且系统本身对未来的发展变化有一定的预测能力。 笔者认为,系统的复杂性可以分为三个层次。 1.机械(物理)复杂性:即在无生命系统中存在的复杂性,例如在物质形态、结构、语言、计算、气象、天文等方面表现的复杂性。 2.生物复杂性:即在有生命系统中存在的复杂性,例如在生命起源、胚胎发育、疾病与免疫、生物进化等方面表现的复杂性。 3.社会复杂性:即在有人参与的系统中存在的复杂性,例如在群体决策、股票市场、企业运行、经济发展、社会进步、战争等方面表现的复杂性。 关于复杂系统,许多科学家提出了种种不同的定义,有人认为是组分众多、具有层次结构的系统,有人认为是具有多样性的系统,也有人认为是耦合度高的系统,还有人认为是有人参与的系统,等等。笔者认为,复杂系统最本质的特征是其组分具有某种程度的智能,即具有了解其所处的环境,预测其变化并按预定目标采取行动的能力。这也就是生物进化、技术革新、经济发展、社会进步的内在原因。 根据上述理解,笔者认为复杂科学有以下三个主要特点。 1.其研究对象是复杂系统,例如植物、动物、人体、生命、生态、企业、市场、经济、社会、政治等等方面的系统。还可以包括物理、化学、天文、气象等方面具有复杂性的系统。 2.其研究方法是定性判断与定量计算相结合、微观分析与宏观综合相结合、还原论与整体论相结合、科学推理与哲学思辨相结合的方法。其所用的工具包括数学、计算机模拟、形式逻辑、后现代主义分析、语义学、符号学,等等。 3.其研究深度不限于对客观事物的描述,而是更着重于揭示客观事物构成的原因及其演化的历程,并力图尽可能准确地预测其未来的发展。例如,为什么一个受精卵能演化成具有脑、眼、口、鼻、心、肺、肝、肾等器官的人体?为什么处于大体相同的客观环境中的企业有成有败?为什么世界各国之间贫富相差悬殊?这种差距将来会有所缩小,还是会继续扩大?等等。 笔者认为,人类文明从工业—机械文明向信息—生态文明的大转变必然伴随着科学的大转折。而以还原论、经验论及“纯科学”为基础的经典科学正在吸收系统论、理性论和人文精神而发展成为新的科学——复杂科学。 复杂科学的基本方法与主要工具 笔者认为,研究复杂系统的基本方法应当是在唯物辩证法指导下的系统科学方法。它包括以下四个方面的结合。 定性判断与定量计算相结合 通过定性判断建立系统总体及各子系统的概念模型,并尽可能将它们转化为数学模型,经求解或模拟后得出定量的结论,再对这些结论进行定性归纳,以取得认识上的飞跃,形成解决问题的建议。 微观分析与宏观综合相结合 微观分析的目的是了解系统的组元及其层次结构,而宏观综合的目的则是了解系统的功能结构及其形成过程。 还原论与整体论相结合 还原论强调从局部机制和微观结构中寻求对宏观现象的说明,例如用物理—化学规律来说明生物学现象,这显然是片面的。而整体论则强调系统内部各部分之间的相互联系和作用决定着系统的宏观性质,但如果没有对局部机制和微观结构的深刻了解,对系统整体的把握也难以具体化。复杂科学正是在深入了解系统个体的性质和行为的基础上,从个体之间的相互联系和作用中发现系统的整体性质和行为。 科学推理与哲学思辨相结合 科学理论是具有某种逻辑结构并经过一定实验检验的概念系统,科学家在表述科学理论时总是力求达到符号化和形式化,使之成为严密的公理化体系。但是科学的发展往往证明任何理论都不是天衣无缝的,总有一些“反常”的现象和事件出现。这时就必须运用哲学思辨的力量,从个别和一般、必然性和偶然性等范畴,以及对立统一、否定之否定等规律来加以解释。 目前复杂科学研究中所用的理论工具主要是微分方程和形式逻辑,今后似应努力掌握以下一些工具。 在不确定条件下的决策技术 包括定性变量的量化(多维尺度、广义量化等)、经验概率的确定(数据挖掘、数据库中的知识发现、智能挖掘等)、主观概率的改进、案例研究与先验信息的集成等。 综合集成技术 包括系统的结构化、系统与环境的集成(全局和局部)、人的经验与数据的集成、通过模型的集成、从定性到定量的综合集成等。 整体优化技术 包括目标群及其优先顺序的确定、巨系统的优化策略(分隔断裂法、面向方程法、多层迭代法、并行搜索法等)、优化算法(线性规划、目标规划等)、离线优化与在线优化、最优解与满意解的取得等。 计算智能 包括演化计算(例如遗传算法、演化策略、演化规划、遗传程序设计等)、人工神经网络(例如EBP型、竞争型、自适应共振型、联想记忆型等)、模糊系统等。 非线性科学 目前非线性科学已由传统的动力系统理论(稳定性和分叉理论、混沌、孤子)和统计力学(分形、标度)延伸到多尺度、多体,以及非平衡系统中的复杂和随机现象的研究。而对非线性科学的压倒一切的挑战就是:对远离平衡的多体系统中的自组织结构的形成和功能确认其关键的范式。 数理逻辑 即数学化的形式逻辑,包括经典谓词逻辑、广义数理逻辑(例如模型论、公理集合论、证明论、递归论等)、多值逻辑、模态逻辑、归纳逻辑等。 计算机模拟 它是十分重要的手段,目前已广泛用于复杂科学的研究。其中比较著名的有人工生命(artificial life)、元胞自动机(cellular automata)、竞争与合作(co-opetition)、大群模拟工具(swarm simulation toolkit)等。 复杂科学在组织管理中的应用前景 复杂系统的范围很广,涉及工程、生物、经济、管理、军事、政治、社会等各个方面。对复杂系统的研究将有助于人们了解其发展规律及动因,以便更好地进行适应与调控。例如运用复杂科学的原理研究组织管理问题,将组织的形成与进化看成是系统内部各组元相互作用及系统与环境相互作用的结果,就可以得出一些颇有新意的观点,现举例概述如下。 1.群体决策 在社会、经济、科技迅速发展的今天,决策者面临着错综复杂、瞬息万变的环境,有些决策的后果还影响深远,要想尽可能作出正确的决策,除了改进决策技术之外,还必须依靠群体的智慧。这方面需要依靠具有不同知识和经验的人们所组成的群体来辅助决策,另一方面则需要与决策后果有关的各方参与决策。但是由于决策群体中各人的知识、经验、胆略、利益、价值观等方面都有所不同,以及局部利益与全局中利益的矛盾,还需要用适当的方法进行协调与妥协,同时应注意使群体中的各成员充分了解该决策的价值体系及有关的各种信息。 通常可以将群体决策分为两种类型。一类是协同决策,这时参加决策者的目标一致,彼此之间并没有利益冲突,但因各人的知识和经验不同而有不同的意见,需要通过相互交流和启发来逐步求得最优的决策。为此需要研究如何将分散的意见逐步集中起来,形成集体的最优决策。这就是群体决策的效果优于任一成员个人决策,也往往优于各成员个人决策的简单线性叠加。 另一类是协调决策,这时参加者的目标并不一致,彼此之间存在着利益冲突,但又希望能作出一个能为各方所接受的决策,即求出合作对策的妥协值。但妥协值的形成是群体中各成员之间反复斗争与妥协的结果,为此需要研究如何运用合作对策理论来求出妥协点,例如沙普利值、纳什议价解等。 在群体决策中还应考虑到各个参与者之间信息不对称的影响,以及他们在决策群体中的行为,防止因权威效应或从众效应而造成最优决策点的漂移。此外,在通过群体决策实现综合集成时,应当进一步探索研究如何具体贯彻“在民主基础上的集中,在集中指导下的民主”这一民主集中制的原则,使其成为有中国特色的决策体制。 2.管理创新 在从工业社会向信息社会转变的过程中,企业没有创新就难以生存。复杂科学将创新看作是已有的知识和组元重新组合而造成的突现现象。复杂科学反映着在科学和商务上做事方法的根本转变,企业必须把开发知识和智能放在首位。复杂科学家研究了如何通过企业职工(组元)之间的相互作用而产生知识、创新、创造性和智能,发现创新的产生主要取决于组织与激励,创造让全体职工通过联系与交流使其关心企业全局的条件,而不取决于个别职工突出的聪明才智。正如中国谚语所说的“三个臭皮匠,赛过诸葛亮”,创新并不是个别天才人物的灵机一动,而是系统为适应环境变化所作出的调整。 3.企业组织 根据现代组织管理理论,组织结构并不仅仅是按照企业领导的权威“设计”而形成的,其背后有组织文化的因素,而更重要的因素是,企业内部各个成员或小团体之间,就有关权力的分配、相互作用及影响,最终达到妥协的结果。这和复杂科学中的观点是不谋而合的。 随着技术进步及经济发展,更加强调组织的进化性和应变能力。一个组织要想在错综复杂、瞬息万变的环境下生存和发展,就必须能够从外部准确而及时地获取信息,迅速调整自己的内部结构以适应环境的变化。特别是在高技术企业中,拥有所需的专门知识及相应的技能、目标明确、自主管理、能不断学习和创新、注重工作质量、强调自愿择业的知识工人将发挥越来越重要的作用。因此在组织方式上提出了无固定边界的非正规组织、层次很少的扁平型组织、成员之间能有效沟通的网络状组织、有利于鼓励内部创新的半自治式组织,等等。 中国国家自然科学基金委员会管理科学部已经在北京大学建立了“复杂科学虚拟研究中心”,拨出专款支持对复杂科学进行自由的学术探索。同时还拟针对中国改革与发展中的重大问题,逐步建设定性与定量相结合的综合集成政策研讨厅。同时,我国还在推进复杂科学研究方面的国际合作,希望能通过各国多学科的科学家们的共同努力,使复杂科学在解决人类面临的重大问题方面发挥应有的作用。*/
2023-08-11 22:18:551

如何培养自己的核心专业能力

1、多输入:针对自己的长处,多做阅读和使用,在使用中培养经验。在不断地阅读中构建知识体系。2、多输出:输入后,要不断地系统性地输出,如写文章,办沙龙,做讲座,帮助别人完成工作,多做分享。这些都可以让你巩固长板,同时也帮你树立专业形象,竞争力也会在这些分享输出中慢慢建立。
2023-08-11 22:19:062

工业机器人怎样按控制方式来分类

1)点位式许多工业机器人要求能准确地控制末端执行器的工作位置,而路径却无关紧要.例如,在印刷电路板上安插元件、点焊、装配等工作,都属于点位式控制方式。一般来说,点位式控制比较简单,但精度不是很理想。2)轨迹式在弧焊、喷漆、切割等工作中,要求工业机器人末端执行器按照示教的轨迹和速度进行运动。如果偏离预定的轨迹和速度,就会使产品报废。轨迹式控制方式类似于控制原理中的跟踪系统,可称之为轨迹伺服控制。3)力(力矩)控制方式在完成装配、抓放物体等工作时,除要准确定位之外,还要求使用适度的力或力矩进行工作,这时就要利用力(力矩)伺服方式。这种方式的控制原理与位置伺服控制原理基本相同,只不过输人量和反馈量不是位置信号,而是力(力矩)信号,因此系统中必须有力(力矩)传感器。有时也利用接近、滑动等传感功能进行自适应式控制。4)智能控制方式工业机器人的智能控制是通过传感器获得周围环境的知识,并根据自身内部的知识库做出相应的决策。采用智能控制技术,使工业机器人具有了较强的环境适应性及自学习能力。智能控制技术的发展有赖于近年来人工神经网络,基因算法、遗传算法、专家系统等人工智能的迅速发展。更多资料http://robot.big-bit.com/
2023-08-11 22:19:161

李俊杰的出版著作和论文

部分代表性论文如下: [1] Fei Kang, Junjie Li. Artificial bee colony algorithm optimized support vector regression for system reliability analysis of slopes. Journal of Computing in Civil Engineering, ASCE, 2015, Accepted. (SCI&EI)[2] Fei Kang, Shaoxuan Han, Rodrigo Salgado, Junjie Li. System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling. Computers and Geotechnics[3] Haojin Li, Junjie Li, Fei Kang. Application of the artificial bee colony algorithm-based projection pursuit method in statistical rock mass stability estimation. Environmental Earth Sciences[4] Fei Kang, Junjie Li, Haojin Li, Artificial bee colony algorithm and pattern search hybridized for global optimization, Applied Soft Computing Top 25 Hottest Articles[5] Fei Kang, Junjie Li, Zhenyue Ma. An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis. Engineering Optimization[6] Fei Kang, Junjie Li, Qing Xu. Damage detection based on improved particle swarm optimization using vibration data. Applied Soft Computing[7] Fei Kang, Junjie Li, Zhenyue Ma. Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Information Sciences,(SCI&EI) Most Cited Articles since 2010; Top 25 Hottest Articles[8] Haojin Li, Junjie Li, Fei Kang. Risk analysis of dam based on artificial bee colony algorithm with fuzzy c-means clustering. Canadian Journal of Civil Engineering[9] Zhou Hui, Li Jun-jie, Kang Fei. Distribution of acceleration and empirical formula for calculating maximum acceleration of rockfill dams. Journal of Central South University of Technology[10] Fei Kang, Junjie Li, Qing Xu. Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Computers & Structures, (SCI&EI) Most Cited Articles since[11] Fei Kang, Junjie Li, Qing Xu. Virus coevolution partheno-genetic algorithms for optimal sensor placement. Advanced Engineering Informatics[12] Wei Zeng, Junjie Li, and Fei Kang, Numerical Manifold Method with Endochronic Theory for Elastoplasticity Analysis, Mathematical Problems in Engineering[13] Fei Kang, Junjie Li, Sheng Liu. Combined data with particle swarm optimization for structural damage detection. Mathematical Problems in Engineering, Volume[14] Xu Wang, Fei Kang, Junjie Li, Xin Wang. Inverse parametric analysis of seismic permanent deformation for earth-rockfill dams using artificial neural networks. Mathematical Problems in Engineering, Volume [15] 仝宗良, 曾伟, 李俊杰. 基于数值流形法的土质边坡动力稳定性分析. 岩土工程学报[16] 汪旭, 康飞, 李俊杰. 土石坝地震永久变形参数反演方法研究. 岩土力学[17] 李浩瑾, 李俊杰, 康飞. 基于 LSSVM 的重力坝地震稳定易损性分析. 振动与冲击[18] 李浩瑾, 李俊杰, 康飞, 张勇. 重力坝纵缝非连续接触的地震反应分析. 大连理工大学学报[19] 周晖, 李俊杰, 康飞.面板堆石坝坝顶加速度沿坝轴线分布规律.岩土力学[20] 康飞, 李俊杰, 许青. 混合蜂群算法及其在混凝土坝动力参数反演中的应用. 水利学报[21] 康飞, 李俊杰, 许青. 堆石坝材料参数反演的蚁群聚类RBF网络模型. 岩石力学与工程学报[22] 宋志宇,李俊杰,汪宏宇. 混沌人工鱼群算法在重力坝材料参数反演中的应用. 岩土力学[23] 宋志宇,李俊杰. 基于微粒群算法的大坝材料参数反分析研究. 岩土力学[24] 胡军, 李俊杰, 刘德志. 考虑剪切抗力的修正土钉单元及其应用. 岩土力学[25] 刘德志, 李俊杰. 大坝安全监测资料的非线性检验, 应用基础与工程科学学报[26] 刘德志, 李俊杰. 土石坝安全监测软件系统设计与实现,大连理工大学学报[27] 杨清平, 李俊杰. 重力坝坝踵主拉应力区分布规律的探讨,水利学报[28] 李俊杰,邵龙潭,邵宇. 面板堆石坝永久变形研究,大连理工大学学报[29] 李俊杰, 马恒春. 蓄水期面板堆石坝动力特性研究. 岩土工程学报[30] 李俊杰, 韩国城, 林皋. 混凝土面板堆石坝自振周期简化公式. 振动工程学报[31] 李俊杰, 韩国城, 孔宪京. 关门山面板堆石坝三维地震反应分析. 水利学报[32] 李俊杰, 孔宪京, 韩国城. 面板堆石坝动力破坏计算方法研究. 大连理工大学学报[33] 李俊杰, 韩国城, 林皋. 混凝土面板堆石坝地震加速度反应规律的几点研究. 水利学报[34] 孔宪京, 韩国城, 李俊杰. 关门山面板堆石坝二维地震反应分析. 大连理工大学学报[35] 韩国城, 孔宪京, 李俊杰. 面板堆石坝动力破坏性态及抗震措施试验研究. 水利学报[36] 孔宪京,韩国城,李俊杰,林皋. 防渗面板对堆石坝体自振特性的影响,大连理工大学学报 [37] 杨春雨, 李俊杰. 改进的 SSOR-PCG 快速求解法在高面板堆石坝求解效率和节约内存中的实践. 水电能源科学,[38] 曾伟, 李俊杰. 基于 NMM-DDA 的直剪试验数值模拟. 水电能源科学[39] 刘景, 李俊杰. 不同开度时溢流坝弧形闸门水流三维数值模拟. 水电能源科学[40] 曾伟, 李俊杰. 基于数值流形法的土石坝静力计算数值模拟. 水利水电技术[41] 宋宜祥, 李俊杰, 康飞. 虹吸井对尾矿坝地震液化的影响分析. 水电能源科学[42] 康飞, 李俊杰, 马震岳. 基于人工蜂群算法的边坡最危险滑动面搜索. 防灾减灾工程学报[43] 杨秀萍, 李俊杰, 康飞. 基于 ACC-RBF 的水布垭面板堆石坝参数反演分析. 水电自动化与大坝监测[44] 李浩瑾, 李俊杰, 康飞. 基于 ABCA-LSSVM 的复杂工程结构可靠度计算. 水电能源科学[45] 康飞, 李俊杰, 马震岳. 边坡稳定分析的差分进化全局求解. 水电能源科学[46] 杜文才, 李俊杰. 贮灰坝安全预警模型研究. 水电能源科学[47] 李浩瑾, 李俊杰, 康飞. 基于 PSO-AHP 的大坝致灾因子权重计算. 防灾减灾工程学报[48] 胡峥嵘, 李俊杰. 面板堆石坝三维非线性有限元并行计算. 力学与实践[49] 康飞,李俊杰,许青,张运花. 改进人工蜂群算法及其在反演分析中的应用. 水电能源科学[50] 张运花,李俊杰,康飞. 西龙池面板堆石坝应力变形三维有限元分析. 水电能源科学,第[51] 宋志宇,李俊杰. 基于模拟退火神经网络模型的岩质边坡稳定性评价方法. 长江科学院院报[52] 李俊杰,胡军,康飞,王谊. 大顶子山溢流坝长闸墩温度应力仿真计算分析. 水电能源科学[53] 康飞,马妹英,李俊杰. 支持向量回归在贮灰坝渗流监测中的应用. 水电自动化与大坝监测[54] 宋志宇,李俊杰. 最小二乘支持向量机在大坝变形预测中的应用. 水电能源科学[55] 张振国,李俊杰,杨晓明. 基于变分原理的三维土坡稳定分析方法研究及应用. 水电能源科学[56] 刘德志,李俊杰,许青. 基于Internet-Intranet的火电厂贮灰坝自动化安全监测系统. 水电能源科学[57] 李俊杰,马妹英,许青. RBF网络在贮灰坝浸润线预测中的应用. 水电能源科学[58] 谭志军, 李俊杰. 混合遗传算法在贮灰坝监测系统上的应用. 水电能源科学[59] 谭志军,李俊杰. BP 算法在贮灰坝监测系统中的应用. 水电自动化与大坝监测[60] 费璟昊,李俊杰,李辉,杨建林. 利用图像处理实现隧洞测量. 测绘通报[61] 李俊杰, 李黎, 许劲松等. 中远船坞抽水工程监测成果分析. 港口工程
2023-08-11 22:19:241

人工智能原理为什么动物群体规模越大越好

人工智能原理动物群体规模越大越好是群体规模越大就越高级的原因。根据查询相关资料得知,群体智能不是简单的多个体的集合,是超越个体行为的一种更高级表现,动物群体规模越大,人工智能原理越高级。人工智能中的一些算法模仿自然,是动物种群既有竞争性,又有合作性。
2023-08-11 22:19:371

什么是基因优化技术

基因优化技术包括基因改良和基因保鲜,基因改良就是改变基因序列中劣质基因,目的...用药抑制身体症状来和身体即和大自然作对,因为和大自然作对最后不会有什么好...
2023-08-11 22:19:592

什么是遗传算法实值变量

1.2 遗传算法的原理遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。一、遗传算法的目的典型的遗传算法CGA(Canonical Genetic Algorithm)通常用于解决下面这一类的静态最优化问题:考虑对于一群长度为L的二进制编码bi,i=1,2,…,n;有bi∈{0,1}L (3-84)给定目标函数f,有f(bi),并且0<f(bi)<∞同时f(bi)≠f(bi+1)求满足下式max{f(bi)|bi∈{0,1}L} (3-85)的bi。很明显,遗传算法是一种最优化方法,它通过进化和遗传机理,从给出的原始解群中,不断进化产生新的解,最后收敛到一个特定的串bi处,即求出最优解。二、遗传算法的基本原理长度为L的n个二进制串bi(i=1,2,…,n)组成了遗传算法的初解群,也称为初始群体。在每个串中,每个二进制位就是个体染色体的基因。根据进化术语,对群体执行的操作有三种:1.选择(Selection)这是从群体中选择出较适应环境的个体。这些选中的个体用于繁殖下一代。故有时也称这一操作为再生(Reproduction)。由于在选择用于繁殖下一代的个体时,是根据个体对环境的适应度而决定其繁殖量的,故而有时也称为非均匀再生(differential reproduction)。2.交叉(Crossover)这是在选中用于繁殖下一代的个体中,对两个不同的个体的相同位置的基因进行交换,从而产生新的个体。3.变异(Mutation)这是在选中的个体中,对个体中的某些基因执行异向转化。在串bi中,如果某位基因为1,产生变异时就是把它变成0;反亦反之。遗传算法的原理可以简要给出如下:choose an intial populationdetermine the fitness of each individualperform selectionrepeatperform crossoverperform mutationdetermine the fitness of each individualperform selectionuntil some stopping criterion applies这里所指的某种结束准则一般是指个体的适应度达到给定的阀值;或者个体的适应度的变化率为零。三、遗传算法的步骤和意义1.初始化选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。2.选择根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。给出目标函数f,则f(bi)称为个体bi的适应度。以(3-86)为选中bi为下一代个体的次数。显然.从式(3—86)可知:(1)适应度较高的个体,繁殖下一代的数目较多。(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。3.交叉对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。例如有个体S1=100101S2=010111选择它们的左边3位进行交叉操作,则有S1=010101S2=100111一般而言,交叉幌宰P。取值为0.25—0.75。4.变异根据生物遗传中基因变异的原理,以变异概率Pm对某些个体的某些位执行变异。在变异时,对执行变异的串的对应位求反,即把1变为0,把0变为1。变异概率Pm与生物变异极小的情况一致,所以,Pm的取值较小,一般取0.01-0.2。例如有个体S=101011。对其的第1,4位置的基因进行变异,则有S"=001111单靠变异不能在求解中得到好处。但是,它能保证算法过程不会产生无法进化的单一群体。因为在所有的个体一样时,交叉是无法产生新的个体的,这时只能靠变异产生新的个体。也就是说,变异增加了全局优化的特质。5.全局最优收敛(Convergence to the global optimum)当最优个体的适应度达到给定的阀值,或者最优个体的适应度和群体适应度不再上升时,则算法的迭代过程收敛、算法结束。否则,用经过选择、交叉、变异所得到的新一代群体取代上一代群体,并返回到第2步即选择操作处继续循环执行。图3—7中表示了遗传算法的执行过程。图3-7 遗传算法原理1.3 遗传算法的应用遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。一、遗传算法的特点1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。3.遗传算法有极强的容错能力遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。4.遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。5.遗传算法具有隐含的并行性遗传算法的基础理论是图式定理。它的有关内容如下:(1)图式(Schema)概念一个基因串用符号集{0,1,*}表示,则称为一个因式;其中*可以是0或1。例如:H=1x x 0 x x是一个图式。(2)图式的阶和长度图式中0和1的个数称为图式的阶,并用0(H)表示。图式中第1位数字和最后位数字间的距离称为图式的长度,并用δ(H)表示。对于图式H=1x x0x x,有0(H)=2,δ(H)=4。(3)Holland图式定理低阶,短长度的图式在群体遗传过程中将会按指数规律增加。当群体的大小为n时,每代处理的图式数目为0(n3)。遗传算法这种处理能力称为隐含并行性(Implicit Parallelism)。它说明遗传算法其内在具有并行处理的特质。二、遗传算法的应用关键遗传算法在应用中最关键的问题有如下3个1.串的编码方式这本质是问题编码。一般把问题的各种参数用二进制编码,构成子串;然后把子串拼接构成“染色体”串。串长度及编码形式对算法收敛影响极大。2.适应函数的确定适应函数(fitness function)也称对象函数(object function),这是问题求解品质的测量函数;往往也称为问题的“环境”。一般可以把问题的模型函数作为对象函数;但有时需要另行构造。3.遗传算法自身参数设定遗传算法自身参数有3个,即群体大小n、交叉概率Pc和变异概率Pm。群体大小n太小时难以求出最优解,太大则增长收敛时间。一般n=30-160。交叉概率Pc太小时难以向前搜索,太大则容易破坏高适应值的结构。一般取Pc=0.25-0.75。变异概率Pm太小时难以产生新的基因结构,太大使遗传算法成了单纯的随机搜索。一般取Pm=0.01—0.2。三、遗传算法在神经网络中的应用遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。1.遗传算法在网络学习中的应用在神经网络中,遗传算法可用于网络的学习。这时,它在两个方面起作用(1)学习规则的优化用遗传算法对神经网络学习规则实现自动优化,从而提高学习速率。(2)网络权系数的优化用遗传算法的全局优化及隐含并行性的特点提高权系数优化速度。2.遗传算法在网络设计中的应用用遗传算法设计一个优秀的神经网络结构,首先是要解决网络结构的编码问题;然后才能以选择、交叉、变异操作得出最优结构。编码方法主要有下列3种:(1)直接编码法这是把神经网络结构直接用二进制串表示,在遗传算法中,“染色体”实质上和神经网络是一种映射关系。通过对“染色体”的优化就实现了对网络的优化。(2)参数化编码法参数化编码采用的编码较为抽象,编码包括网络层数、每层神经元数、各层互连方式等信息。一般对进化后的优化“染色体”进行分析,然后产生网络的结构。(3)繁衍生长法这种方法不是在“染色体”中直接编码神经网络的结构,而是把一些简单的生长语法规则编码入“染色体”中;然后,由遗传算法对这些生长语法规则不断进行改变,最后生成适合所解的问题的神经网络。这种方法与自然界生物地生长进化相一致。3.遗传算法在网络分析中的应用遗传算法可用于分析神经网络。神经网络由于有分布存储等特点,一般难以从其拓扑结构直接理解其功能。遗传算法可对神经网络进行功能分析,性质分析,状态分析。遗传算法虽然可以在多种领域都有实际应用,并且也展示了它潜力和宽广前景;但是,遗传算法还有大量的问题需要研究,目前也还有各种不足。首先,在变量多,取值范围大或无给定范围时,收敛速度下降;其次,可找到最优解附近,但无法精确确定最扰解位置;最后,遗传算法的参数选择尚未有定量方法。对遗传算法,还需要进一步研究其数学基础理论;还需要在理论上证明它与其它优化技术的优劣及原因;还需研究硬件化的遗传算法;以及遗传算法的通用编程和形式等
2023-08-11 22:20:081

遗传算法属于数学优化理论吗

遗传算法是一种元启发式算法,也叫智能优化算法,可以用来解决整数规划问题、组合优化问题,但它不属于数学优化理论。
2023-08-11 22:20:182

基因遗传算法的两个常用的结束条件

基因遗传算法是一种优化算法,它模拟了生物进化的过程,通过不断地迭代和优化,寻找最优解。在使用基因遗传算法时,我们需要设置一些结束条件,以便算法能够在合理的时间内停止运行。下面介绍两个常用的结束条件:达到最大迭代次数这个结束条件是指在算法运行过程中,设定一个最大迭代次数,当算法迭代次数达到这个值时,算法停止运行。这个条件适用于需要在有限时间内得到最优解的情况,可以避免算法无限循环,浪费时间和计算资源。收敛到最优解这个结束条件是指当算法的适应度函数值达到一个预设的最优值时,算法停止运行。这个条件适用于需要得到最优解的情况,可以避免算法继续运行,浪费时间和计算资源。需要注意的是,结束条件的设置需要根据具体问题和算法的特点来确定,以便更好地达到优化的目的。同时,我们也需要掌握基因遗传算法的相关概念和原理,才能更好地理解和应用算法。请点击输入图片描述
2023-08-11 22:20:381

遗传算法、粒子群、模拟退火相比于普通的蒙特卡洛算法有什么优势?他们相互的优缺点都是什么?

不知道呢~(≧▽≦)/~啦啦啦
2023-08-11 22:21:082

数据挖掘有哪几种方法?

1、神经元网络办法神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。2、遗传算法遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。3、决策树算法办法决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。粗集基础理论是一种科学研究不精准、不确定性专业知识的数学工具。粗集办法几个优势:不必得出附加信息;简单化键入信息的表述室内空间;优化算法简易,便于实际操作。粗集处理的方针是附近二维关系表的信息表。4、遮盖正例抵触典例办法它是使用遮盖悉数正例、抵触悉数典例的观念来找寻规范。最先在正例结合中随意选择一个种子,到典例结合中逐一较为。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。5、数据剖析办法在数据库查询字段名项中心存有二种相关:函数关系和相关剖析,对他们的剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。6、含糊集办法即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。关于大数据在市场营销方面的优势有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
2023-08-11 22:21:151

遗传算法1——ga与fmincon求解非线性规划模型的对比

题目:一、ga求解模型 [x,fval]=ga(@fitnessfun,nvars,A,b,Aeq,beq,lb,ub,@nonlcon,options)二、fmincon求解模型 x = fmincon(@fitnessfun,x0,A,b,Aeq,beq,lb,ub,@nonlcon,options) ga函数中包含nvars(适应度函数的独立变量个数),而 fmincon 函数 中需要变量初值x0,这是二者的不同之处。三、结果对比总之,遗传算法适用于求解非标准算法无法求解的问题,即目标函数不连续、不可微、随机或高度非线性的问题。 当然, 用 遗传 算法去求解相 对简单的问题 有助于 理解 其具体原理,相对于研究复杂问题,较简单的问题同样可以用于学习遗传算法。
2023-08-11 22:21:361

遗传算法的现状

进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。D.H.Ackley等提出了随机迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。1992年,英国格拉斯哥大学的李耘(Yun Li)指导博士生将基于二进制基因的遗传算法扩展到七进制、十进制、整数、浮点等的基因,以便将遗传算法更有效地应用于模糊参量,系统结构等的直接优化,于1997年开发了可能是世界上最受欢迎的、也是最早之一的遗传/进化算法的网上程序 EA_demo,以帮助新手在线交互式了解进化计算的编码和工作原理 ,并在格拉斯哥召开第二届IEE/IEEE遗传算法应用国际会议,于2000年组织了由遗传编程(Genetic Programming)发明人斯坦福的 John Koza 等参加的 EvoNet 研讨会,探索融合GA与GP结构寻优,超越固定结构和数值优化的局限性。国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。
2023-08-11 22:21:471

遗传算法精英保留策略

效果都是一样,每代的最优保留,不就相当于历史最优了
2023-08-11 22:22:055

MATLAB建模方法有哪些

建模覆盖的内容很广,可以分为两大块:优化和统计,因此建模方法也可以由这两大块划分。一.优化:智能算法: 遗传算法,粒子群算法,模拟退火算法,蚁群算法...基础优化算法: 目标规划,整数规划...排队论二.统计:分类/聚类算法: k-means...预测: 时间序列算法,灰色预测算法,指数平滑算法,评价: 模糊综合评价,信息熵评价,粗糙集,数据包络分析,层次分析,智能算法:神经网络,svm...回归/拟合:多元线性拟合,最小二乘法数据处理:小波变换
2023-08-11 22:22:252

遗传算法优化概率神经网络的matlab代码

有了优化目标,写出目标函数,直接优化。
2023-08-11 22:22:362