barriers / 阅读 / 详情

AI数学基础11——为什么人工神经网络需要非线性激活函数?

2023-10-05 09:32:03
共1条回复
真可

每一个神经元里面都有一个激活函数,如下图所示:

那么为什么人工神经网络需要激活函数尤其是非线性激活函数呢?

我们用人工神经网络来表述输入X与输出Y之间复杂的关系,用数学语言来说,就是用人工神经网络来实现复杂的函数;使用线性激活函数,神经网络只是把输入线性组合再输出,所以无法实现对复杂函数的逼近。

非线性激活函数可以使神经网络随意逼近复杂函数,类似非线性的Sine函数随意逼近各种复杂函数一样。

没有激活函数带来的非线性,多层神经网络和单层无异。非线性激活函数对深层神经网络的函数逼近能力起着至关重要的作用

另外:激活函数对于将神经网络的输出压缩进特定边界内也非常关键。神经元

的输出值可以非常大。该输出在未经修改的情况下馈送至下一层神经元时,可以被转换成更大的值,这样过程就需要极大算力。激活函数的一个任务就是将神经元的输出映射到有界的区域(如,0 到 1 之间)。

由此,不能在隐藏层用线性激活函数

总结一下人工神经网络需要非线性激活函数的原因:

1,逼近复杂函数;

2,将神经元的输出压缩进特定边界。

参考文献:《 Understanding Activation Functions in Deep Learning 》

对于深度学习来说,深层神经网络使用反向传播法(Back propagation)进行训练,反向传播法使用梯度下降法更新权重,梯度下降法要求激活函数可微分

从另外的一个角度理解:神经网络的功能,就是用一组基函数的组合去逼近一个目标函数,实际上和泰勒级数,傅立叶级数,小波变换的思想是一样的。以一个二维曲线为例,如果没有非线性的激活函数,那么实际上就是一组直线矢量相加,我们知道再多的直线加起来还是一条直线,所以必须要用非线性的基相加。从泰勒级数可以知道,任何函数可以分解为x的幂级数,而一个非线性函数,比如sin,cos,又或者sigmoid,都可以分解为x的无穷次幂级数。根据线性方程理论,取n个基,比如sin(nx)和cos(nx),就可以逼近目标函数的泰勒分解的前n项,那么如果取的项够多,就可以通过一个组合来逼近目标函数的泰勒分解的前任意项。

理论是这样,但实际中各种基的效果是不一样的,如果用泰勒分解的话,我们知道在接近0点的时候效果好,离0点越远误差越大,由于x的n次幂在x越大时,值发散的越快,更主要的是它的定义域是无限的,所以需要用大量的小系数高次项来给低次项擦屁股,所以这种全域作用,且越远影响越大的基效果很不好。

在工程上用的更多的是分段低次拟合的方法,效果比全域高次拟合要好的多,小波变换,样条差值等等都是这种思想,实际上神经网络的激活函数也是这样,sigmoid可以认为就是一个定义域有限的非线性函数,虽然它名义上定义域是无限的,但实际上超过一定范围后值就不变了,可以用一个阶跃函数充分抵消其在不期望的范围外的影响。但是sigmoid的问题在于,第一,其影响的范围还是比较长(衰减缓慢),第二,它的形状是个s形,且对称,很多时候目标函数就是个凸的,你来个大S总有一半对不齐,第三,也是我觉得最重要的,我需要一个干脆的阶跃来截断范围外的影响,但是sigmoid提供不了。

在工程上分段低次拟合用得最多的是几次?实际上是最简单的一次线段!有限元分析里面就是大量的直线,三角形,计算简单,只要分段够多精度也不错。Relu实现的就是分段一次拟合,仔细看就可以发现其实一对Relu就可以确定一条线段。还是以二维曲线逼近为例,可以从最左端开始在每个分段点用一个带系数的relu来完成一系列折线从而逼近目标函数。因此Relu比sigmoid方便的多。

因此从分段逼近的角度来考虑,relu是纯直线线段,其它的一些类relu是带点曲线的,而且不像Sigmoid一样有个画蛇添足的大S,真的需要S形时完全可以用两个凸曲线去拼。

至于其它的0均值,1方差之类的属于锦上添花,减少训练偏置参数的时间。

相关推荐

什么是人工神经网络

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
2023-09-11 19:51:591

深度学习中什么是人工神经网络?

人工神经网络是从信息处理角度对人脑神经元网络进行抽象,并且它是由大量处理单元互联组成的非线性、自适应信息处理系统。
2023-09-11 19:52:102

一个完整的人工神经网络包括

人工神经网络主要架构是由神经元、层和网络三个部分组成。整个人工神经网络包含一系列基本的神经元、通过权重相互连接。神经元是人工神经网络最基本的单元。单元以层的方式组,每一层的每个神经元和前一层、后-层的神经元连接,共分为输入层、输出层和隐藏层,三层连接形成一-个神经网络。输入层只从外部环境接收信息,是由输入单元组成,而这些输入单元可接收样本中各种不同的特征信息。该层的每个神经元相当于自变量,不完成任何计算,只为下一层传递信息;隐藏层介于输入层和输出层之间,这些层完全用于分析,其函数联系输入层变量和输出层变量,使其更配适数据。而最后,输出层生成最终结果,每个输出单元会对应到某一种特定的分类,为网络送给外部系统的结果值,,整个网络由调整链接强度的程序来达成学习的目的。
2023-09-11 19:52:321

人工神经网络

本文讨论的神经网络是从生物学领域引入计算机科学和工程领域的一个仿生学概念,又称人工神经网络(英语:artificial neural network,缩写ANN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。参考 wiki定义 。 如图,一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。 基于此,1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP,神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。如下图: 图中X代表输入信号,W代表权重,∑代表将X和W的矩阵运算,ψ对运算结果应用sgn函数,最终得到输出y。 然而,改模型对权限W是通过指定好的,因此不存在在计算工程中动态调配权限W的能力,也就是不存在学习的能力。 1958年,计算科学家Rosenblatt提出了由两层神经元组成的神经网络:“感知器”(Perceptron)。 可以看到,一个感知器有如下组成部分: 输入权值: 一个感知器可以接收多个输入,每个输入上有一个权值,此外还有一个偏置项,就是上图中的。 激活函数: 感知器的激活函数可以有很多选择,比如我们可以选择Sigmoid函数来作为激活函数。 其中,因为生物学上,外接信号传导到神经元上,神经元不会立刻做出反应,而是会抑制输入,直到输入增强,强大到可以触发输出。也就是说,在产生输出之前,输入必须达到一个阈值。在数学上,这种随着变量值增大,函数值发生跳跃的函数成为激活函数。下图是一个常用的激活函数,Sigmoid函数曲线图: 上节我们看到,感知器其实是单层的神经网络,神经网络可以理解成多个感知器组合而成的一个结构,如下图:神经网络的学习过程就是对权重矩阵的更新过程。所谓的训练过程就是比较当前网络的预测值和我们真正想要的目标值,再根据两者差异来更新每一层的权重矩阵。因此,必须先定义好如何比较预测值和目标值的差异,这便是损失函数(loss function)。损失函数输出值loss越高表示差异性越大,神经网络的训练就变成了尽可能的缩小loss的过程。 所谓梯度下降法,就是通过使loss值向当前点对应梯度点反方向不断移动,来降低loss。一次移动多少通过学习率(learning rate)控制。 通俗来讲,所谓梯度下降法,其实就如同漆黑的夜晚拿着手电筒站在山顶,每次只能看到眼前的一米远距离,想要下到山脚,我们采用每次都选择最陡峭的地方向下挪动,反复这一过程,最终到达山脚。
2023-09-11 19:52:431

人工神经网络概述(更新中)

智能: 从感觉到记忆再到思维的过程称为“智慧”,智慧的结果是语言和行为。行为和语言予以表达称为“能力”。智慧和能力的总称为“智能”。感觉、记忆、思维、行为、语言的过程称为“智能过程”。 人工智能: 人工构建的智能系统。 人工智能是研究和开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用的技术学科,其主要研究内容可以归纳为以下四个方面。 人工神经网络是基于生物神经元网络机制提出的一种计算结构,是生物神经网络的某种模拟、简化和抽象。神经元是这一网络的“节点”,即“处理单元”。 人工神经网络可用于逼近非线性映射、分类识别、优化计算以及知识挖掘。近年来,人工神经网络在模式识别、信号处理、控制工程和优化计算领域得到了广泛的应用。 M-P模型由心理学家McCulloch和数学家W. Pitts在1943年提出。 M-P模型结构是一个多输入、单输出的非线性元件。其I/O关系可推述为 其中, 表示从其他神经元传来的输入信号; 表示从神经元 到神经元 的连接权值; 表示阈值; 表示激励函数或转移函数; 表示神经元 的输出信号。 作为一种最基本的神经元数学模型,M-P模型包括了加权、求和和激励(转移)三部分功能。 神经元的数据模型主要区别于采用了不同的激励函数。 概率型函数的输入和输出之间的关系是不确定的。分布律如下 其中, 被称为温度参数。 感知机(Perceptron)是美国学者Rosenblatt于1957年提出的一种用于模式分类的神经网络模型。 M-P模型通常叫做单输出的感知机。按照M-P模型的要求,该人工神经元的激活函数为阶跃函数。为了方便表示,M-P模型表示为下图所示的结构。 用多个这样的单输入感知机可以构成一个多输出的感知机,其结构如下 对于二维平面,当输入/输出为 线性可分 集合时,一定可以找到一条直线将模式分成两类。此时感知机的结构图3所示,显然通过调整感知机的权值及阈值可以修改两类模式的分界线: 线性可分: 这里的线性可分是指两类样本可以用直线、平面或超平面分开,否则称为线性不可分。 感知机的基本功能是对外部信号进行感知和识别,这就是当外部 个刺激信号或来自其它 个神经元(的信号)处于一定的状态时,感知机就处于兴奋状态,而外部 个信号或 个神经元的输出处于另一个状态时,感知机就呈现抑制状态。 如果 、 是 中两个互不相交的集合,且有如下方程成立 则称集合 为感知机的 学习目标 。根据感知机模型,学习算法实际上是要寻找权重 、 满足下述要求: 感知机的训练过程是感知机权值的逐步调整过程,为此,用 表示每一次调整的序号。 对应于学习开始前的初始状态,此时对应的权值为初始化值。
2023-09-11 19:52:531

硬核科普:什么是人工神经网络

我们先来查看百度百度对于人工神经网络的定义 是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。 搞清楚这个问题,我们先来研究一下 网络 : 是由若干节点和连接这些节点的链路构成,表示诸多对象及其相互联系。 这是一张 蜘蛛网 ,很完美的展现了网络的形态,由若干节点链接组成。 我们假设一个场景,现在有很多小蜘蛛要在这张网上进行比赛,就和我们人一样,每个人的速度是不一样的,蜘蛛网上的每个结点都有一个道具,小蜘蛛拿到道具后,速度就会改变。比如道具是 "x3" ,那么就是将小蜘蛛 目前的速度乘以三倍 ,如果是 "x(-2)" ,那么速度就变成 原来的负二倍 ( 我默认大家都上过小学二年级 )。每个小蜘蛛沿着自己的赛道一路下去,最后到达终点,虽然开始的时候速度大小确定了,可是中间道具是未知的,也就是谁获得胜利都是有可能的。 我们从蜘蛛的比赛当中回来,会发现刚才的比赛其实就是人工神经网络运算的一个过程!!! 没错,这个也是神经网络 这就是小蜘蛛的赛道,起点到终点一共有三可以休息的地方,在圈圈里面可以打开道具箱子 假设我们小蜘蛛的初始速度是3,到达中间的地方开了个道具箱子,获得"x2"的效果加成,此时小蜘蛛的速度变成了"2x3=6",以6这个速度到达终点! 起到到终点中间有两个可以拿道具的地方,那么该走哪边呢?实际情况是,两边都会走,和上面的做法一样: 用自己目前的值乘以权重 一开始是三,然后上面是"x1.5",所以上面的结果是4.5,下面是"x2",所以就是6,接着走下去,就是"4.5x2" + "6x0.5"得到最后的值 中间神经元的值等于与它相连的前面两个神经元的值乘以权重再加和得到。 计算方法同上,最后得到的两个神经元的值就是我们想要的结果,也就是经过神经元预测后得到的结果! 此时你可能有很多疑问: 这些疑问我们下次解答,本文以最通俗的语言讲述了什么是人工神经网络,数据怎么经过神经网络,简单来说就是小学二年级学的公式 "y=kx" 。 有疑问欢迎与我联系讨论。
2023-09-11 19:53:011

人工神经网络(ANN)简述

我们从下面四点认识人工神经网络(ANN: Artificial Neutral Network):神经元结构、神经元的激活函数、神经网络拓扑结构、神经网络选择权值和学习算法。 1. 神经元: 我们先来看一组对比图就能了解是怎样从生物神经元建模为人工神经元。 下面分别讲述: 生物神经元的组成包括细胞体、树突、轴突、突触。树突可以看作输入端,接收从其他细胞传递过来的电信号;轴突可以看作输出端,传递电荷给其他细胞;突触可以看作I/O接口,连接神经元,单个神经元可以和上千个神经元连接。细胞体内有膜电位,从外界传递过来的电流使膜电位发生变化,并且不断累加,当膜电位升高到超过一个阈值时,神经元被激活,产生一个脉冲,传递到下一个神经元。 为了更形象理解神经元传递信号过程,把一个神经元比作一个水桶。水桶下侧连着多根水管(树突),水管既可以把桶里的水排出去(抑制性),又可以将其他水桶的水输进来(兴奋性),水管的粗细不同,对桶中水的影响程度不同(权重),水管对水桶水位(膜电位)的改变就是水桶内水位的改变,当桶中水达到一定高度时,就能通过另一条管道(轴突)排出去。 按照这个原理,科学家提出了M-P模型(取自两个提出者的姓名首字母),M-P模型是对生物神经元的建模,作为人工神经网络中的一个神经元。 由MP模型的示意图,我们可以看到与生物神经元的相似之处,x_i表示多个输入,W_ij表示每个输入的权值,其正负模拟了生物神经元中突出的兴奋和抑制;sigma表示将全部输入信号进行累加整合,f为激活函数,O为输出。下图可以看到生物神经元和MP模型的类比: 往后诞生的各种神经元模型都是由MP模型演变过来。 2. 激活函数 激活函数可以看作滤波器,接收外界各种各样的信号,通过调整函数,输出期望值。ANN通常采用三类激活函数:阈值函数、分段函数、双极性连续函数(sigmoid,tanh): 3. 学习算法 神经网络的学习也称为训练,通过神经网络所在环境的刺激作用调整神经网络的自由参数(如连接权值),使神经网络以一种新的方式对外部环境做出反应的一个过程。每个神经网络都有一个激活函数y=f(x),训练过程就是通过给定的海量x数据和y数据,拟合出激活函数f。学习过程分为有导师学习和无导师学习,有导师学习是给定期望输出,通过对权值的调整使实际输出逼近期望输出;无导师学习给定表示方法质量的测量尺度,根据该尺度来优化参数。常见的有Hebb学习、纠错学习、基于记忆学习、随机学习、竞争学习。 4. 神经网络拓扑结构 常见的拓扑结构有单层前向网络、多层前向网络、反馈网络,随机神经网络、竞争神经网络。 5. 神经网络的发展 (不能贴公式不好解释啊 -_-!)sigma是误差信号,yita是学习率,net是输入之和,V是输入层到隐含层的权重矩阵,W是隐含层到输出层的权重矩阵。 之后还有几种 随着计算机硬件计算能力越来越强,用来训练的数据越来越多,神经网络变得越来越复杂。在人工智能领域常听到DNN(深度神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)。其中,DNN是总称,指层数非常多的网络,通常有二十几层,具体可以是CNN或RNN等网络结构。 参考资料 :
2023-09-11 19:53:251

人工神经网络是什么意思?

从专业的角度讲:全称为“Generative Pre-trained Transformer”,是一种基于转换器(Transformer)架构的预训练(Pre-trained)语言模型,由OpenAI公司开发。其通过在大规模语料库上进行自监督学习训练,可以生成高质量的自然语言文本,已经被广泛应用于自然语言处理领域,例如机器翻译、文本摘要、情感分析、对话生成等任务。简单理解的话:好比一台巨大的语言生成机器,它获得了海量的自然语言文本数据,通过大量的自学习,能够实现在输入一个触发词的情况下,自己生成相应的语言表达。就像和其对话,可以输入“翻译一句中文为英文”,接下来它就会根据自己之前学习到的语言知识,自动生成对应的英文翻译。同时还可以用于写文章、写诗等等。总之,是一种高端的人工智能技术,对人类的日常生活和人工智能领域都有很重要的作用。
2023-09-11 19:53:331

请说明什么是人工神经网络,结合人工神经网络阐述在你的专业领域的应用,具体举

人工神经网络,结合人工神经网络阐述如下:许多人工智能计算机系统的核心技术是人工神经网络(ANN),而这种网络的灵感来源于人类大脑中的生物结构。通过使用连接的“神经元”结构,这些网络可以通过“学习”并在没有人类参与的情况下处理和评估某些数据。这样的实际实例之一是使用人工神经网络(ANN)识别图像中的对象。在构建一个识别“猫“图像的一个系统中,将在包含标记为“猫”的图像的数据集上训练人工神经网络,该数据集可用作任何进行分析的参考点。正如人们可能学会根据尾巴或皮毛等独特特征来识别狗一样,人工神经网络(ANN)也可以通过将每个图像分解成不同的组成部分(如颜色和形状)进行识别。实际上,神经网络提供了位于托管数据之上的排序和分类级别,可基于相似度来辅助数据的聚类和分组。可以使用人工神经网络(ANN)生成复杂的垃圾邮件过滤器,查找欺诈行为的算法以及可以精确了解情绪的客户关系工具。想象一下你被邀请参加一个聚会,而你正在决定是否参加,这可能需要权衡利弊,并将各种因素纳入决策过程。在此示例中,只选择三个因素——“我的朋友会去吗?”、“聚会地点远吗?”、“天气会好吗?”通过将这些考虑因素转换为二进制数值,可以使用人工神经网络对该过程进行建模。例如,我们可以为“天气”指定一个二进制数值,即‘1"代表晴天,‘0"代表恶劣天气。每个决定因素将重复相同的格式。
2023-09-11 19:53:481

人工神经网络可以解决什么行业问题,怎么解决,有什么效果?

人工神经网络可以应用在许多行业,解决各种问题,主要包括:1. 图像识别:人工神经网络可以用于图像分类、目标检测、语义分割等,广泛应用于自动驾驶、医疗图像分析、人脸识别等领域。利用深度学习算法可以实现高精度的图像识别。2. 自然语言处理:人工神经网络可用于机器翻译、文本分类、情感分析、语义理解等,应用于聊天机器人、搜索引擎等。采用深度学习方法可以实现上下文理解和词义消歧。3.预测与决策:人工神经网络可以用于股票预测、商品销量预测、疾病预测、推荐系统等,帮助企业进行数据分析与决策。4.异常检测:人工神经网络可用于欺诈检测、网络入侵检测、工业质量检测等,通过模型学习大量样本,可以高效识别异常数据。5.控制与优化:人工神经网络可用于无人车控制、工厂自动化控制、能源供需预测与优化等,实现复杂问题的控制与优化。人工神经网络主要通过深度学习算法来训练神经网络模型,可以自动学习特征和模式,对样本进行分类或预测。相比传统算法,人工神经网络可以实现更高精度的识别与决策,广泛应用于各行业,获取很好的效果。许多企业已经在关键业务流程中集成人工神经网络,提高生产力与产品体验。总的来说,人工神经网络是一个强大的机器学习工具,可以帮助企业利用海量数据进行自动化分类、预测与决策,从而优化运营效率,提高产品智能,取得竞争优势。人工神经网络正在改变许多行业的未来,带来巨大的技术和商业影响。希望以上解释可以概括人工神经网络在各行业的应用与效果。
2023-09-11 19:55:251

人工神经网络的发展

人工神经网络( Artificial Neural Networks, 简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model) ,是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础 的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。国际著名的神经网络研究专家,第一家神经计算机公司的创立者 与领导人Hecht—Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连 续或断续的输入作状态相应而进行信息处理。” 这一定义是恰当的。 人工神经网络的研究,可以追溯到 1957年Rosenblatt提出的感知器(Perceptron)模型 。它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。直到80年代,获得了关于 人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对 人工神经网络发生了兴趣,导致神经网络的复兴。 目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络 BP算法,Hopfield网络模型,自适应共振理 论,自组织特征映射理论等。人工神经网络是在现代神经科学的基础上提出来的。它虽然反映了人脑功能的基本特征,但远不是自然 神经网络的逼真描写,而只是它的某种简化抽象和模拟。 1. 人工神经网络的特点 人工神经网络的以下几个突出的优点使它近年来引起人们的极大关注: (1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。 人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就 会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提 供经济预测、市场预测、效益预测,其应用前途是很远大的。 第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。 第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型 人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。 2.人工神经网络的主要方向 神经网络的研究可以分为理论研究和应用研究两大方面。 理论研究可分为以下两类: 1).利用神经生理与认知科学研究人类思维以及智能机理。 2).利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能, 如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。 应用研究可分为以下两类: 1).神经网络的软件模拟和硬件实现的研究。 2).神经网络在各个领域中应用的研究。这些领域主要包括: 模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。 随着神经网络理论本身以及相关理论、相关技术的不断 发展,神经网络的应用定将更加深入。
2023-09-11 19:55:382

人工神经网络特点和优越性主要表现在()

人工神经网络特点和优越性主要表现在() A.自学习功能(正确答案) B.自动识别功能 C.高速寻找优化解的能力(正确答案) D.联想存储功能(正确答案)
2023-09-11 19:56:031

人工神经网络的特点有哪些

人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。人工神经网络突出的优点:(1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。
2023-09-11 19:56:111

人工神经网络属于人工智能研究的哪个党派

人工神经网络属于人工智能连接主义学派。目前人工智能的主要学派有下列三家:(1)符号主义(symbolicism),又称为逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。(2)连接主义(connectionism),又称为仿生学派或生理学派,其主要原理为神经网络及神经网络间的连接机制与学习算法。(3)行为主义(actionism),又称为进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
2023-09-11 19:56:331

神经网络的发展趋势如何?

神经网络的云集成模式还不是很成熟,应该有发展潜力,但神经网络有自己的硬伤,不知道能够达到怎样的效果,所以决策支持系统中并不是很热门,但是神经网络无视过程的优点也是无可替代的,云网络如果能够对神经网络提供一个互补的辅助决策以控制误差的话,也许就能使神经网络成熟起来 1 人工神经网络产生的背景自古以来,关于人类智能本源的奥秘,一直吸引着无数哲学家和自然科学家的研究热情。生物学家、神经学家经过长期不懈的努力,通过对人脑的观察和认识,认为人脑的智能活动离不开脑的物质基础,包括它的实体结构和其中所发生的各种生物、化学、电学作用,并因此建立了神经元网络理论和神经系统结构理论,而神经元理论又是此后神经传导理论和大脑功能学说的基础。在这些理论基础之上,科学家们认为,可以从仿制人脑神经系统的结构和功能出发,研究人类智能活动和认识现象。另一方面,19世纪之前,无论是以欧氏几何和微积分为代表的经典数学,还是以牛顿力学为代表的经典物理学,从总体上说,这些经典科学都是线性科学。然而,客观世界是如此的纷繁复杂,非线性情况随处可见,人脑神经系统更是如此。复杂性和非线性是连接在一起的,因此,对非线性科学的研究也是我们认识复杂系统的关键。为了更好地认识客观世界,我们必须对非线性科学进行研究。人工神经网络作为一种非线性的、与大脑智能相似的网络模型,就这样应运而生了。所以,人工神经网络的创立不是偶然的,而是20世纪初科学技术充分发展的产物。2 人工神经网络的发展人工神经网络的研究始于40年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的远为曲折的道路。1943年,心理学家W.S.Mcculloch和数理逻辑学家W.Pitts 提出了M—P模型,这是第一个用数理语言描述脑的信息处理过程的模型, 虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949年,心理学家D.O.Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。 1957 年, 计算机科学家Rosenblatt提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络,第一次把神经网络研究付诸工程实现。由于可应用于模式识别,联想记忆等方面,当时有上百家实验室投入此项研究,美国军方甚至认为神经网络工程应当比“原子弹工程”更重要而给予巨额资助,并在声纳信号识别等领域取得一定成绩。1960年,B.Windrow和E.Hoff提出了自适应线性单元, 它可用于自适应滤波、预测和模式识别。至此,人工神经网络的研究工作进入了第一个高潮。1969年,美国著名人工智能学者M.Minsky和S.Papert编写了影响很大的Perceptron一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知机能力也不过如此,他们的分析恰似一瓢冷水,很多学者感到前途渺茫而纷纷改行,原先参与研究的实验室纷纷退出,在这之后近10年,神经网络研究进入了一个缓慢发展的萧条期。这期间,芬兰学者T.Kohonen 提出了自组织映射理论,反映了大脑神经细胞的自组织特性、记忆方式以及神经细胞兴奋刺激的规律;美国学者S.A.Grossberg的自适应共振理论(ART );日本学者K.Fukushima提出了认知机模型;ShunIchimari则致力于神经网络有关数学理论的研究等,这些研究成果对以后的神经网络的发展产生了重要影响。美国生物物理学家J.J.Hopfield于1982年、1984年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的又一次热潮。 1982 年, 他提出了一个新的神经网络模型——hopfield网络模型。他在这种网络模型的研究中,首次引入了网络能量函数的概念,并给出了网络稳定性的判定依据。1984年,他又提出了网络模型实现的电子电路,为神经网络的工程实现指明了方向,他的研究成果开拓了神经网络用于联想记忆的优化计算的新途径,并为神经计算机研究奠定了基础。1984年Hinton等人将模拟退火算法引入到神经网络中,提出了Boltzmann机网络模型,BM 网络算法为神经网络优化计算提供了一个有效的方法。1986年,D.E.Rumelhart和J.LMcclelland提出了误差反向传播算法,成为至今为止影响很大的一种网络学习方法。1987年美国神经计算机专家R.Hecht—Nielsen提出了对向传播神经网络,该网络具有分类灵活,算法简练的优点,可用于模式分类、函数逼近、统计分析和数据压缩等领域。1988年L.Ochua 等人提出了细胞神经网络模型,它在视觉初级加工上得到了广泛应用。为适应人工神经网络的发展,1987年成立了国际神经网络学会,并决定定期召开国际神经网络学术会议。1988年1月Neural Network 创刊。1990年3月IEEE Transaction on Neural Network问世。 我国于1990年12月在北京召开了首届神经网络学术大会,并决定以后每年召开一次。1991 年在南京成立了中国神经网络学会。 IEEE 与INNS 联合召开的IJCNN92已在北京召开。 这些为神经网络的研究和发展起了推波助澜的作用,人工神经网络步入了稳步发展的时期。90年代初,诺贝尔奖获得者Edelman提出了Darwinism模型,建立了神经网络系统理论。同年,Aihara等在前人推导和实验的基础上,给出了一个混沌神经元模型,该模型已成为一种经典的混沌神经网络模型,该模型可用于联想记忆。 Wunsch 在90OSA 年会上提出了一种AnnualMeeting,用光电执行ART,学习过程有自适应滤波和推理功能,具有快速和稳定的学习特点。1991年,Hertz探讨了神经计算理论, 对神经网络的计算复杂性分析具有重要意义;Inoue 等提出用耦合的混沌振荡子作为某个神经元,构造混沌神经网络模型,为它的广泛应用前景指明了道路。1992年,Holland用模拟生物进化的方式提出了遗传算法, 用来求解复杂优化问题。1993年方建安等采用遗传算法学习,研究神经网络控制器获得了一些结果。1994年Angeline等在前人进化策略理论的基础上,提出一种进化算法来建立反馈神经网络,成功地应用到模式识别,自动控制等方面;廖晓昕对细胞神经网络建立了新的数学理论和方法,得到了一系列结果。HayashlY根据动物大脑中出现的振荡现象,提出了振荡神经网络。1995年Mitra把人工神经网络与模糊逻辑理论、 生物细胞学说以及概率论相结合提出了模糊神经网络,使得神经网络的研究取得了突破性进展。Jenkins等人研究光学神经网络, 建立了光学二维并行互连与电子学混合的光学神经网络,它能避免网络陷入局部最小值,并最后可达到或接近最理想的解;SoleRV等提出流体神经网络,用来研究昆虫社会,机器人集体免疫系统,启发人们用混沌理论分析社会大系统。1996年,ShuaiJW"等模拟人脑的自发展行为, 在讨论混沌神经网络的基础上提出了自发展神经网络。1997、1998年董聪等创立和完善了广义遗传算法,解决了多层前向网络的最简拓朴构造问题和全局最优逼近问题。随着理论工作的发展,神经网络的应用研究也取得了突破性进展,涉及面非常广泛,就应用的技术领域而言有计算机视觉,语言的识别、理解与合成,优化计算,智能控制及复杂系统分析,模式识别,神经计算机研制,知识推理专家系统与人工智能。涉及的学科有神经生理学、认识科学、数理科学、心理学、信息科学、计算机科学、微电子学、光学、动力学、生物电子学等。美国、日本等国在神经网络计算机软硬件实现的开发方面也取得了显著的成绩,并逐步形成产品。在美国,神经计算机产业已获得军方的强有力支持,国防部高级研究计划局认为“神经网络是解决机器智能的唯一希望”,仅一项8 年神经计算机计划就投资4亿美元。在欧洲共同体的ESPRIT计划中, 就有一项特别项目:“神经网络在欧洲工业中的应用”,单是生产神经网络专用芯片这一项就投资2200万美元。据美国资料声称,日本在神经网络研究上的投资大约是美国的4倍。我国也不甘落后,自从1990 年批准了南开大学的光学神经计算机等3项课题以来, 国家自然科学基金与国防预研基金也都为神经网络的研究提供资助。另外,许多国际著名公司也纷纷卷入对神经网络的研究,如Intel、IBM、Siemens、HNC。神经计算机产品开始走向商用阶段,被国防、企业和科研部门选用。在举世瞩目的海湾战争中,美国空军采用了神经网络来进行决策与控制。在这种刺激和需求下,人工神经网络定会取得新的突破,迎来又一个高潮。自1958年第一个神经网络诞生以来,其理论与应用成果不胜枚举。人工神经网络是一个快速发展着的一门新兴学科,新的模型、新的理论、新的应用成果正在层出不穷地涌现出来。3 人工神经网络的发展前景针对神经网络存在的问题和社会需求,今后发展的主要方向可分为理论研究和应用研究两个方面。(1)利用神经生理与认识科学研究大脑思维及智能的机理、 计算理论,带着问题研究理论。人工神经网络提供了一种揭示智能和了解人脑工作方式的合理途径,但是由于人类起初对神经系统了解非常有限,对于自身脑结构及其活动机理的认识还十分肤浅,并且带有某种“先验”。例如, Boltzmann机引入随机扰动来避免局部极小,有其卓越之处,然而缺乏必要的脑生理学基础,毫无疑问,人工神经网络的完善与发展要结合神经科学的研究。而且,神经科学,心理学和认识科学等方面提出的一些重大问题,是向神经网络理论研究提出的新挑战,这些问题的解决有助于完善和发展神经网络理论。因此利用神经生理和认识科学研究大脑思维及智能的机理,如有新的突破,将会改变智能和机器关系的认识。利用神经科学基础理论的研究成果,用数理方法探索智能水平更高的人工神经网络模型,深入研究网络的算法和性能,如神经计算、进化计算、稳定性、收敛性、计算复杂性、容错性、鲁棒性等,开发新的网络数理理论。由于神经网络的非线性,因此非线性问题的研究是神经网络理论发展的一个最大动力。特别是人们发现,脑中存在着混沌现象以来,用混沌动力学启发神经网络的研究或用神经网络产生混沌成为摆在人们面前的一个新课题,因为从生理本质角度出发是研究神经网络的根本手段。(2)神经网络软件模拟, 硬件实现的研究以及神经网络在各个科学技术领域应用的研究。由于人工神经网络可以用传统计算机模拟,也可以用集成电路芯片组成神经计算机,甚至还可以用光学的、生物芯片的方式实现,因此研制纯软件模拟,虚拟模拟和全硬件实现的电子神经网络计算机潜力巨大。如何使神经网络计算机与传统的计算机和人工智能技术相结合也是前沿课题;如何使神经网络计算机的功能向智能化发展,研制与人脑功能相似的智能计算机,如光学神经计算机,分子神经计算机,将具有十分诱人的前景。4 哲理(1)人工神经网络打开了认识论的新领域认识与脑的问题,长期以来一直受到人们的关注,因为它不仅是有关人的心理、意识的心理学问题,也是有关人的思维活动机制的脑科学与思维科学问题,而且直接关系到对物质与意识的哲学基本问题的回答。人工神经网络的发展使我们能够更进一步地既唯物又辩证地理解认识与脑的关系,打开认识论的新领域。人脑是一个复杂的并行系统,它具有“认知、意识、情感”等高级脑功能,用人工进行模拟,有利于加深对思维及智能的认识,已对认知和智力的本质的研究产生了极大的推动作用。在研究大脑的整体功能和复杂性方面,人工神经网络给人们带来了新的启迪。由于人脑中存在混沌现象,混沌可用来理解脑中某些不规则的活动,从而混沌动力学模型能用作人对外部世界建模的工具,可用来描述人脑的信息处理过程。混沌和智能是有关的,神经网络中引入混沌学思想有助于提示人类形象思维等方面的奥秘。人工神经网络之所以再度兴起,关键在于它反映了事物的非线性,抓住了客观世界的本质,而且它在一定程度上正面回答了智能系统如何从环境中自主学习这一最关键的问题,从认知的角度讲,所谓学习,就是对未知现象或规律的发现和归纳。由于神经网络具有高度的并行性,高度的非线性全局作用,良好的容错性与联想记忆功能以及十分强的自适应、自学习功能,而使得它成为揭示智能和了解人脑工作方式的合理途径。但是,由于认知问题的复杂性,目前,我们对于脑神经网的运行和神经细胞的内部处理机制,如信息在人脑是如何传输、存贮、加工的?记忆、联想、判断是如何形成的?大脑是否存在一个操作系统?还没有太多的认识,因此要制造人工神经网络来模仿人脑各方面的功能,还有待于人们对大脑信息处理机理认识的深化。(2)人工神经网络发展的推动力来源于实践、 理论和问题的相互作用随着人们社会实践范围的不断扩大,社会实践层次的不断深入,人们所接触到的自然现象也越来越丰富多彩、纷繁复杂,这就促使人们用不同的原因加以解释不同种类的自然现象,当不同种类的自然现象可以用同样的原因加以解释,这样就出现了不同学科的相互交叉、综合,人工神经网络就这样产生了。在开始阶段,由于这些理论化的网络模型比较简单,还存在许多问题,而且这些模型几乎没有得到实践的检验,因而神经网络的发展比较缓慢。随着理论研究的深入,问题逐渐地解决特别是工程上得到实现以后,如声纳识别成功,才迎来了神经网络的第一个发展高潮。可Minisky认为感知器不能解决异或问题, 多层感知器也不过如此,神经网络的研究进入了低谷,这主要是因为非线性问题没得到解决。随着理论的不断丰富,实践的不断深入, 现在已证明Minisky的悲观论调是错误的。今天,高度发达的科学技术逐渐揭示了非线性问题是客观世界的本质。问题、理论、实践的相互作用又迎来了人工神经网络的第二次高潮。目前人工神经网络的问题是智能水平不高,还有其它理论和实现方面的问题,这就迫使人们不断地进行理论研究,不断实践,促使神经网络不断向前发展。总之,先前的原因遇到了解释不同的新现象,促使人们提出更加普遍和精确的原因来解释。理论是基础,实践是动力,但单纯的理论和实践的作用还不能推动人工神经网络的发展,还必须有问题提出,才能吸引科学家进入研究的特定范围,引导科学家从事相关研究,从而逼近科学发现,而后实践又提出新问题,新问题又引发新的思考,促使科学家不断思考,不断完善理论。人工神经网络的发展无不体现着问题、理论和实践的辩证统一关系。(3 )人工神经网络发展的另一推动力来源于相关学科的贡献及不同学科专家的竞争与协同人工神经网络本身就是一门边缘学科,它的发展有更广阔的科学背景,亦即是众多科研成果的综合产物,控制论创始人Wiener在其巨著《控制论》中就进行了人脑神经元的研究;计算机科学家Turing就提出过B网络的设想;Prigogine提出非平衡系统的自组织理论,获得诺贝尔奖;Haken研究大量元件联合行动而产生宏观效果, 非线性系统“混沌”态的提出及其研究等,都是研究如何通过元件间的相互作用建立复杂系统,类似于生物系统的自组织行为。脑科学与神经科学的进展迅速反映到人工神经网络的研究中,例如生物神经网络理论,视觉中发现的侧抑制原理,感受野概念等,为神经网络的发展起了重要的推动作用。从已提出的上百种人工神经网络模型中,涉及学科之多,令人目不暇接,其应用领域之广,令人叹为观止。不同学科专家为了在这一领域取得领先水平,存在着不同程度的竞争,所有这些有力地推动了人工神经网络的发展。人脑是一个功能十分强大、结构异常复杂的信息系统,随着信息论、控制论、生命科学,计算机科学的发展,人们越来越惊异于大脑的奇妙,至少到目前为止,人类大脑信号处理机制对人类自身来说,仍是一个黑盒子,要揭示人脑的奥秘需要神经学家、心理学家、计算机科学家、微电子学家、数学家等专家的共同努力,对人类智能行为不断深入研究,为人工神经网络发展提供丰富的理论源泉。另外,还要有哲学家的参与,通过哲学思想和自然科学多种学科的深层结合,逐步孕育出探索人类思维本质和规律的新方法,使思维科学从朦胧走向理性。而且,不同领域专家的竞争与协调同有利于问题清晰化和寻求最好的解决途径。纵观神经网络的发展历史,没有相关学科的贡献,不同学科专家的竞争与协同,神经网络就不会有今天。当然,人工神经网络在各个学科领域应用的研究反过来又推动其它学科的发展,推动自身的完善和发展。
2023-09-11 19:56:441

传统的人工智能与人工神经网络在认知模型上有哪些不同之处?

传统的人工智能和人工神经网络都是模拟人类智能的算法和技术,但它们在认知模型上有以下不同之处:1、指代不同:人工智能通常指研究、开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学。人工神经网络则是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。2、方法不同:人工智能主要通过模拟人类大脑的方式,让计算机能够自主地进行知识学习、推理、决策等复杂的智能行为。人工神经网络则是通过一系列的神经元和突触的连接,模拟人类神经系统的结构和功能,从而实现信息的处理和传递。3、目的不同:人工智能的主要目标是让机器能够胜任一些通常需要人类智能才能完成的复杂工作。例如,语音识别、图像识别、自然语言处理等。人工神经网络则具有初步的自适应与自组织能力,能够在学习或训练过程中改变突触权重值,以适应不同的环境和任务。4、神经元结构不同:人工智能使用的神经元通常是多输入多输出的,即每个神经元都有多个输入和多个输出。而人工神经网络使用的神经元则是单输入单输出的,即每个神经元只有一个输入和一个输出。
2023-09-11 19:57:041

人工神经网络的发展趋势

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。下面主要就神经网络与小波分析、混沌、粗集理论、分形理论的融合进行分析。与小波分析的结合1981年,法国地质学家Morlet在寻求地质数据时,通过对Fourier变换与加窗Fourier变换的异同、特点及函数构造进行创造性的研究,首次提出了小波分析的概念,建立了以他的名字命名的Morlet小波。1986年以来由于YMeyer、S.Mallat及IDaubechies等的奠基工作,小波分析迅速发展成为一门新兴学科。Meyer所著的小波与算子,Daubechies所著的小波十讲是小波研究领域最权威的著作。小波变换是对Fourier分析方法的突破。它不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和对高频信号在时域里都有很好的分辨率,从而可以聚集到对象的任意细节。小波分析相当于一个数学显微镜,具有放大、缩小和平移功能,通过检查不同放大倍数下的变化来研究信号的动态特性。因此,小波分析已成为地球物理、信号处理、图像处理、理论物理等诸多领域的强有力工具。小波神经网络将小波变换良好的时频局域化特性和神经网络的自学习功能相结合,因而具有较强的逼近能力和容错能力。在结合方法上,可以将小波函数作为基函数构造神经网络形成小波网络,或者小波变换作为前馈神经网络的输入前置处理工具,即以小波变换的多分辨率特性对过程状态信号进行处理,实现信噪分离,并提取出对加工误差影响最大的状态特性,作为神经网络的输入。小波神经网络在电机故障诊断、高压电网故障信号处理与保护研究、轴承等机械故障诊断以及许多方面都有应用,将小波神经网络用于感应伺服电机的智能控制,使该系统具有良好的跟踪控制性能,以及好的鲁棒性,利用小波包神经网络进行心血管疾病的智能诊断,小波层进行时频域的自适应特征提取,前向神经网络用来进行分类,正确分类率达到94%。小波神经网络虽然应用于很多方面,但仍存在一些不足。从提取精度和小波变换实时性的要求出发,有必要根据实际情况构造一些适应应用需求的特殊小波基,以便在应用中取得更好的效果。另外,在应用中的实时性要求,也需要结合DSP的发展,开发专门的处理芯片,从而满足这方面的要求。混沌神经网络混沌第一个定义是上世纪70年代才被Li-Yorke第一次提出的。由于它具有广泛的应用价值,自它出现以来就受到各方面的普遍关注。混沌是一种确定的系统中出现的无规则的运动,混沌是存在于非线性系统中的一种较为普遍的现象,混沌运动具有遍历性、随机性等特点,能在一定的范围内按其自身规律不重复地遍历所有状态。混沌理论所决定的是非线性动力学混沌,目的是揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。1990年Kaihara、T.Takabe和M.Toyoda等人根据生物神经元的混沌特性首次提出混沌神经网络模型,将混沌学引入神经网络中,使得人工神经网络具有混沌行为,更加接近实际的人脑神经网络,因而混沌神经网络被认为是可实现其真实世界计算的智能信息处理系统之一,成为神经网络的主要研究方向之一。与常规的离散型Hopfield神经网络相比较,混沌神经网络具有更丰富的非线性动力学特性,主要表现如下:在神经网络中引入混沌动力学行为;混沌神经网络的同步特性;混沌神经网络的吸引子。当神经网络实际应用中,网络输入发生较大变异时,应用网络的固有容错能力往往感到不足,经常会发生失忆现象。混沌神经网络动态记忆属于确定性动力学运动,记忆发生在混沌吸引子的轨迹上,通过不断地运动(回忆过程)一一联想到记忆模式,特别对于那些状态空间分布的较接近或者发生部分重叠的记忆模式,混沌神经网络总能通过动态联想记忆加以重现和辨识,而不发生混淆,这是混沌神经网络所特有的性能,它将大大改善Hopfield神经网络的记忆能力。混沌吸引子的吸引域存在,形成了混沌神经网络固有容错功能。这将对复杂的模式识别、图像处理等工程应用发挥重要作用。混沌神经网络受到关注的另一个原因是混沌存在于生物体真实神经元及神经网络中,并且起到一定的作用,动物学的电生理实验已证实了这一点。混沌神经网络由于其复杂的动力学特性,在动态联想记忆、系统优化、信息处理、人工智能等领域受到人们极大的关注。针对混沌神经网络具有联想记忆功能,但其搜索过程不稳定,提出了一种控制方法可以对混沌神经网络中的混沌现象进行控制。研究了混沌神经网络在组合优化问题中的应用。为了更好的应用混沌神经网络的动力学特性,并对其存在的混沌现象进行有效的控制,仍需要对混沌神经网络的结构进行进一步的改进和调整,以及混沌神经网络算法的进一步研究。基于粗集理论粗糙集(Rough Sets)理论是1982年由波兰华沙理工大学教授Z.Pawlak首先提出,它是一个分析数据的数学理论,研究不完整数据、不精确知识的表达、学习、归纳等方法。粗糙集理论是一种新的处理模糊和不确定性知识的数学工具,其主要思想就是在保持分类能力不变的前提下,通过知识约简,导出问题的决策或分类规则。目前,粗糙集理论已被成功应用于机器学习、决策分析、过程控制、模式识别与数据挖掘等领域。粗集和神经网络的共同点是都能在自然环境下很好的工作,但是,粗集理论方法模拟人类的抽象逻辑思维,而神经网络方法模拟形象直觉思维,因而二者又具有不同特点。粗集理论方法以各种更接近人们对事物的描述方式的定性、定量或者混合性信息为输入,输入空间与输出空间的映射关系是通过简单的决策表简化得到的,它考虑知识表达中不同属性的重要性确定哪些知识是冗余的,哪些知识是有用的,神经网络则是利用非线性映射的思想和并行处理的方法,用神经网络本身结构表达输入与输出关联知识的隐函数编码。在粗集理论方法和神经网络方法处理信息中,两者存在很大的两个区别:其一是神经网络处理信息一般不能将输入信息空间维数简化,当输入信息空间维数较大时,网络不仅结构复杂,而且训练时间也很长;而粗集方法却能通过发现数据间的关系,不仅可以去掉冗余输入信息,而且可以简化输入信息的表达空间维数。其二是粗集方法在实际问题的处理中对噪声较敏感,因而用无噪声的训练样本学习推理的结果在有噪声的环境中应用效果不佳。而神经网络方法有较好的抑制噪声干扰的能力。因此将两者结合起来,用粗集方法先对信息进行预处理,即把粗集网络作为前置系统,再根据粗集方法预处理后的信息结构,构成神经网络信息处理系统。通过二者的结合,不但可减少信息表达的属性数量,减小神经网络构成系统的复杂性,而且具有较强的容错及抗干扰能力,为处理不确定、不完整信息提供了一条强有力的途径。目前粗集与神经网络的结合已应用于语音识别、专家系统、数据挖掘、故障诊断等领域,将神经网络和粗集用于声源位置的自动识别,将神经网络和粗集用于专家系统的知识获取中,取得比传统专家系统更好的效果,其中粗集进行不确定和不精确数据的处理,神经网络进行分类工作。虽然粗集与神经网络的结合已应用于许多领域的研究,为使这一方法发挥更大的作用还需考虑如下问题:模拟人类抽象逻辑思维的粗集理论方法和模拟形象直觉思维的神经网络方法更加有效的结合;二者集成的软件和硬件平台的开发,提高其实用性。与分形理论的结合自从美国哈佛大学数学系教授Benoit B. Mandelbrot于20世纪70年代中期引入分形这一概念,分形几何学(Fractal geometry)已经发展成为科学的方法论--分形理论,且被誉为开创了20世纪数学重要阶段。现已被广泛应用于自然科学和社会科学的几乎所有领域,成为现今国际上许多学科的前沿研究课题之一。由于在许多学科中的迅速发展,分形已成为一门描述自然界中许多不规则事物的规律性的学科。它已被广泛应用在生物学、地球地理学、天文学、计算机图形学等各个领域。用分形理论来解释自然界中那些不规则、不稳定和具有高度复杂结构的现象,可以收到显著的效果,而将神经网络与分形理论相结合,充分利用神经网络非线性映射、计算能力、自适应等优点,可以取得更好的效果。分形神经网络的应用领域有图像识别、图像编码、图像压缩,以及机械设备系统的故障诊断等。分形图像压缩/解压缩方法有着高压缩率和低遗失率的优点,但运算能力不强,由于神经网络具有并行运算的特点,将神经网络用于分形图像压缩/解压缩中,提高了原有方法的运算能力。将神经网络与分形相结合用于果实形状的识别,首先利用分形得到几种水果轮廓数据的不规则性,然后利用3层神经网络对这些数据进行辨识,继而对其不规则性进行评价。分形神经网络已取得了许多应用,但仍有些问题值得进一步研究:分形维数的物理意义;分形的计算机仿真和实际应用研究。随着研究的不断深入,分形神经网络必将得到不断的完善,并取得更好的应用效果。?
2023-09-11 19:57:181

人工神经网络的知识表示形式

人工神经网络的知识表示形式:1、每个神经元都是一个多输入单输出的信息处理单元 ;2、神经元输入分兴奋性输入和抑制性输入两种类型 ;3、神经元具有空间整合特性和阈值特性 ;4、神经元输入与输出间有固定的时滞 ,主要取决于突触延搁 ;5、忽略时间整合作用和不应期 ;6、神经元本身是非时变的 , 即其突触时延和突触强度均为常数 。概念分析人工神经网络是在现代神经生物学研究基础上提出的模拟生物过程 ,反映人脑某些特性的一种计算结构。它不是人脑神经系统的真实描写,而只是它的某种抽象、简化和模拟。根据前面对生物神经网络的介绍可知,神经元及其突触是神经网络的基本器件 。 因此,模拟生物神经网络应首先模拟生物神经元。在人工神经网络中,神经元常被称为“处理单元” 。有时从网络的观点出发常把它称为“节点” 。
2023-09-11 19:57:331

简述人工神经网络的结构形式

神经网络有多种分类方式,例如,按网络性能可分为连续型与离散型网络,确定型与随机型网络:按网络拓扑结构可分为前向神经网络与反馈神经网络。本章土要简介前向神经网络、反馈神经网络和自组织特征映射神经网络。 前向神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是很多神经网络模型的基础。径向基函数神经网络就是一种前向型神经网络。 Hopfield神经网络是反馈网络的代表。Hvpfi}ld网络的原型是一个非线性动力学系统,目前,已经在联想记忆和优化计算中得到成功应用。 模拟退火算法是为解决优化计算中局部极小问题提出的。Baltzmann机是具有随机输出值单元的随机神经网络,串行的Baltzmann机可以看作是对二次组合优化问题的模拟退火算法的具体实现,同时它还可以模拟外界的概率分布,实现概率意义上的联想记忆。 自组织竞争型神经网络的特点是能识别环境的特征并自动聚类。自组织竟争型神经网络已成功应用于特征抽取和大规模数据处理。
2023-09-11 19:57:521

什么是人工神经网络的学习?它可以通过哪些途径来实现?

早在1943 年,神经科学家和控制论专家Warren McCulloch 与逻辑学家Walter Pitts就基于数学和阈值逻辑算法创造了一种神经网络计算模型。其中最基本的组成成分是神经元(Neuron)模型,即上述定义中的“简单单元”(Neuron 也可以被称为Unit)。在生物学所定义的神经网络中(如图1所示),每个神经元与其他神经元相连,并且当某个神经元处于兴奋状态时,它就会向其他相连的神经元传输化学物质,这些化学物质会改变与之相连的神经元的电位,当某个神经元的电位超过一个阈值后,此神经元即被激活并开始向其他神经元发送化学物质。Warren McCulloch 和Walter Pitts 将上述生物学中所描述的神经网络抽象为一个简单的线性模型(如图2所示),这就是一直沿用至今的“McCulloch-Pitts 神经元模型”,或简称为“MP 模型”。在MP 模型中,某个神经元接收到来自n 个其他神经元传递过来的输入信号(好比生物学中定义的神经元传输的化学物质),这些输入信号通过带权重的连接进行传递,某个神经元接收到的总输入值将与它的阈值进行比较,然后通过“激活函数”(亦称响应函数)处理以产生此神经元的输出。如果把许多个这样的神经元按照一定的层次结构连接起来,就可以得到相对复杂的多层人工神经网络。
2023-09-11 19:58:021

人工神经网络的基本思想

你好,人工神经网络的基本思想就是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。把这种网络看作一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激活函数。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。
2023-09-11 19:58:281

人工神经网络分层结构包括

品牌型号:华为MateBook D15 系统:Windows 11 人工神经网络分层结构包括神经元、层和网络三个部分。 1、神经元是人工神经网络最基本的单元。单元以层的方式组,每一层的每个神经元和前一层、后一层的神经元连接,共分为输入层、输出层和隐藏层,三层连接形成一个神经网络。 2、输入层只从外部环境接收信息,是由输入单元组成,而这些输入单元可接收样本中各种不同的特征信息。该层的每个神经元相当于自变量,不完成任何计算,只为下一层传递信息;隐藏层介于输入层和输出层之间,这些层完全用于分析,其函数联系输入层变量和输出层变量,使其更配适数据。而最后,输出层生成最终结果,每个输出单元会对应到某一种特定的分类,为网络送给外部系统的结果值,,整个网络由调整链接强度的程序来达成学习的目的。 3、神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。
2023-09-11 19:58:541

什么是人工神经网络?

工神经网络是一种应用类似於大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为「神经网络」或类神经网路。神经网络是一种运算模型[1],由大量的节点(或称「神经元」,或「单元」)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对於通过该连接信号的加权值,称之为权重(weight),这相当於人工神经网路的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。它的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基於数学统计学类型的学习方法(Learning Method)得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。
2023-09-11 19:59:181

人工神经网络现在还有人在做吗

1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络得到了进一步发展,更完善的神经网络模型被提出人工神经网络,其中包括感知器和自适应线性元件等。M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。1986年,Rumelhart, Hinton, Williams发展了BP算法。Rumelhart和McClelland出版了《Parallel distribution processing: explorations in the microstructures of cognition》。迄今,BP算法已被用于解决大量实际问题。1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。1988年,Broomhead和Lowe用径向基函数(Radial basis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。90年代初,Vapnik等提出了支持向量机(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。来自百度百科
2023-09-11 19:59:432

人工神经网络训练的目的就是

人工神经网络训练的目的就是使得损失函数最小化人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
2023-09-11 19:59:551

人工神经网络的基本特征

人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:(1)非线性 非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。(2)非局限性 一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。(3)非常定性 人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。(4)非凸性 一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理 ,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。
2023-09-11 20:00:341

人工神经网络训练的目的就是使得损失函数最小化。()

人工神经网络训练的目的就是使得损失函数最小化。(正确)人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
2023-09-11 20:00:511

人工神经网络属于什么仿生

本文讨论的神经网络是从生物学领域引入计算机科学和工程领域的一个仿生学概念,又称人工神经网络(英语:artificial neural network,缩写ANN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。参考 wiki定义 。一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。基于此,1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP,神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。代表输入信号,W代表权重,∑代表将X和W的矩阵运算,ψ对运算结果应用sgn函数,最终得到输出y。然而,改模型对权限W是通过指定好的,因此不存在在计算工程中动态调配权限W的能力,也就是不存在学习的能力。1958年,计算科学家Rosenblatt提出了由两层神经元组成的神经网络:(Perceptron)。
2023-09-11 20:01:141

人工神经网络的应用分析

经过几十年的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。下面介绍神经网络在一些领域中的应用现状。 在处理许多问题中,信息来源既不完整,又包含假象,决策规则有时相互矛盾,有时无章可循,这给传统的信息处理方式带来了很大的困难,而神经网络却能很好的处理这些问题,并给出合理的识别与判断。1.信息处理现代信息处理要解决的问题是很复杂的,人工神经网络具有模仿或代替与人的思维有关的功能, 可以实现自动诊断、问题求解,解决传统方法所不能或难以解决的问题。人工神经网络系统具有很高的容错性、鲁棒性及自组织性,即使连接线遭到很高程度的破坏, 它仍能处在优化工作状态,这点在军事系统电子设备中得到广泛的应用。现有的智能信息系统有智能仪器、自动跟踪监测仪器系统、自动控制制导系统、自动故障诊断和报警系统等。2. 模式识别模式识别是对表征事物或现象的各种形式的信息进行处理和分析,来对事物或现象进行描述、辨认、分类和解释的过程。该技术以贝叶斯概率论和申农的信息论为理论基础,对信息的处理过程更接近人类大脑的逻辑思维过程。现在有两种基本的模式识别方法,即统计模式识别方法和结构模式识别方法。人工神经网络是模式识别中的常用方法,近年来发展起来的人工神经网络模式的识别方法逐渐取代传统的模式识别方法。经过多年的研究和发展,模式识别已成为当前比较先进的技术,被广泛应用到文字识别、语音识别、指纹识别、遥感图像识别、人脸识别、手写体字符的识别、工业故障检测、精确制导等方面。 由于人体和疾病的复杂性、不可预测性,在生物信号与信息的表现形式上、变化规律(自身变化与医学干预后变化)上,对其进行检测与信号表达,获取的数据及信息的分析、决策等诸多方面都存在非常复杂的非线性联系,适合人工神经网络的应用。目前的研究几乎涉及从基础医学到临床医学的各个方面,主要应用在生物信号的检测与自动分析,医学专家系统等。1. 生物信号的检测与分析大部分医学检测设备都是以连续波形的方式输出数据的,这些波形是诊断的依据。人工神经网络是由大量的简单处理单元连接而成的自适应动力学系统, 具有巨量并行性,分布式存贮,自适应学习的自组织等功能,可以用它来解决生物医学信号分析处理中常规法难以解决或无法解决的问题。神经网络在生物医学信号检测与处理中的应用主要集中在对脑电信号的分析,听觉诱发电位信号的提取、肌电和胃肠电等信号的识别,心电信号的压缩,医学图像的识别和处理等。2. 医学专家系统传统的专家系统,是把专家的经验和知识以规则的形式存储在计算机中,建立知识库,用逻辑推理的方式进行医疗诊断。但是在实际应用中,随着数据库规模的增大,将导致知识“爆炸”,在知识获取途径中也存在“瓶颈”问题,致使工作效率很低。以非线性并行处理为基础的神经网络为专家系统的研究指明了新的发展方向, 解决了专家系统的以上问题,并提高了知识的推理、自组织、自学习能力,从而神经网络在医学专家系统中得到广泛的应用和发展。在麻醉与危重医学等相关领域的研究中,涉及到多生理变量的分析与预测,在临床数据中存在着一些尚未发现或无确切证据的关系与现象,信号的处理,干扰信号的自动区分检测,各种临床状况的预测等,都可以应用到人工神经网络技术。 1. 市场价格预测对商品价格变动的分析,可归结为对影响市场供求关系的诸多因素的综合分析。传统的统计经济学方法因其固有的局限性,难以对价格变动做出科学的预测,而人工神经网络容易处理不完整的、模糊不确定或规律性不明显的数据,所以用人工神经网络进行价格预测是有着传统方法无法相比的优势。从市场价格的确定机制出发,依据影响商品价格的家庭户数、人均可支配收入、贷款利率、城市化水平等复杂、多变的因素,建立较为准确可靠的模型。该模型可以对商品价格的变动趋势进行科学预测,并得到准确客观的评价结果。2. 风险评估风险是指在从事某项特定活动的过程中,因其存在的不确定性而产生的经济或财务的损失、自然破坏或损伤的可能性。防范风险的最佳办法就是事先对风险做出科学的预测和评估。应用人工神经网络的预测思想是根据具体现实的风险来源, 构造出适合实际情况的信用风险模型的结构和算法,得到风险评价系数,然后确定实际问题的解决方案。利用该模型进行实证分析能够弥补主观评估的不足,可以取得满意效果。 从神经网络模型的形成开始,它就与心理学就有着密不可分的联系。神经网络抽象于神经元的信息处理功能,神经网络的训练则反映了感觉、记忆、学习等认知过程。人们通过不断地研究, 变化着人工神经网络的结构模型和学习规则,从不同角度探讨着神经网络的认知功能,为其在心理学的研究中奠定了坚实的基础。近年来,人工神经网络模型已经成为探讨社会认知、记忆、学习等高级心理过程机制的不可或缺的工具。人工神经网络模型还可以对脑损伤病人的认知缺陷进行研究,对传统的认知定位机制提出了挑战。虽然人工神经网络已经取得了一定的进步,但是还存在许多缺陷,例如:应用的面不够宽阔、结果不够精确;现有模型算法的训练速度不够高;算法的集成度不够高;同时我们希望在理论上寻找新的突破点, 建立新的通用模型和算法。需进一步对生物神经元系统进行研究,不断丰富人们对人脑神经的认识。
2023-09-11 20:01:361

人工神经网络是怎么学习的呢

1、神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等)。 2、这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 3、然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。 4、而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。 5、学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度, 6、而在matlab神经网络工具箱里的lr,代表的是初始学习率。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
2023-09-11 20:02:131

人工神经网络训练的目的就是使得损失函数最小化。()

人工神经网络训练的目的就是使得损失函数最小化。是正确的。我们从下面四点认识人工神经网络(ANN: Artificial Neutral Network):神经元结构、神经元的激活函数、神经网络拓扑结构、神经网络选择权值和学习算法。神经元:我们先来看一组对比图就能了解是怎样从生物神经元建模为人工神经元。下面分别讲述:生物神经元的组成包括细胞体、树突、轴突、突触。树突可以看作输入端,接收从其他细胞传递过来的电信号;轴突可以看作输出端,传递电荷给其他细胞;突触可以看作I/O接口,连接神经元,单个神经元可以和上千个神经元连接。细胞体内有膜电位,从外界传递过来的电流使膜电位发生变化,并且不断累加,当膜电位升高到超过一个阈值时,神经元被激活,产生一个脉冲,传递到下一个神经元。为了更形象理解神经元传递信号过程,把一个神经元比作一个水桶。水桶下侧连着多根水管(树突),水管既可以把桶里的水排出去(抑制性),又可以将其他水桶的水输进来(兴奋性),水管的粗细不同,对桶中水的影响程度不同(权重)。水管对水桶水位(膜电位)的改变就是水桶内水位的改变,当桶中水达到一定高度时,就能通过另一条管道(轴突)排出去。按照这个原理,科学家提出了M-P模型(取自两个提出者的姓名首字母),M-P模型是对生物神经元的建模,作为人工神经网络中的一个神经元。由MP模型的示意图,我们可以看到与生物神经元的相似之处,x_i表示多个输入,W_ij表示每个输入的权值,其正负模拟了生物神经元中突出的兴奋和抑制;sigma表示将全部输入信号进行累加整合,f为激活函数,O为输出。下图可以看到生物神经元和MP模型的类比:往后诞生的各种神经元模型都是由MP模型演变过来。2. 激活函数激活函数可以看作滤波器,接收外界各种各样的信号,通过调整函数,输出期望值。ANN通常采用三类激活函数:阈值函数、分段函数、双极性连续函数(sigmoid,tanh)。3. 学习算法神经网络的学习也称为训练,通过神经网络所在环境的刺激作用调整神经网络的自由参数(如连接权值),使神经网络以一种新的方式对外部环境做出反应的一个过程。每个神经网络都有一个激活函数y=f(x),训练过程就是通过给定的海量x数据和y数据,拟合出激活函数f。学习过程分为有导师学习和无导师学习,有导师学习是给定期望输出,通过对权值的调整使实际输出逼近期望输出;无导师学习给定表示方法质量的测量尺度,根据该尺度来优化参数。常见的有Hebb学习、纠错学习、基于记忆学习、随机学习、竞争学习。4. 神经网络拓扑结构常见的拓扑结构有单层前向网络、多层前向网络、反馈网络,随机神经网络、竞争神经网络。5. 神经网络的发展sigma是误差信号,yita是学习率,net是输入之和,V是输入层到隐含层的权重矩阵,W是隐含层到输出层的权重矩阵。
2023-09-11 20:02:351

人工神经网络的网络模型

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为: 网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。
2023-09-11 20:02:521

人工神经网络的应用

人工神经网络(Artificial Neural Network,简称ANN ),以数学模型模拟神经元活动,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。人工神经网络具有自学习、自组织、自适应以及很强的非线性函数逼近能力,拥有强大的容错性。它可以实现仿真、预测以及模糊控制等功能。是处理非线性系统的有力工具。   它是物流合作伙伴选择方法中合作伙伴选择的神经网络算法的另一种名称。它是20世界80年代后迅速发展的一门新兴学科,ANN可以模拟人脑的某些智能行为,如知觉,灵感和形象思维等,具有自学性,自适应和非线性动态处理等特征。   将ANN应用于供应链管理(SCM)环境下合作合办的综合评价选择,意在建立更加接近于人类思维模式的定性与定量相结合的综合评价选择模型。通过对给定样本模式的学习,获取评价专家的知识,经验,主管判断及对目标重要性的倾向,当对合作伙伴作出综合评价时,该方法可再现评价专家的经验,知识和直觉思维,从而实现了定性分析与定量分析的有效结合,也可以较好的保证合作伙伴综合评价结果的客观性。   在选定评价指标组合的基础上,对评价指标作出评价,得到评价值后,因各指标间没有统一的度量标准,难以进行直接的分析和比较,也不利于输入神经网络计算。因此,在用神经网络进行综合评价之前,应首先将输入的评价值通过隶属函数的作用转换为(0,1]之间的值,即对评价值进行标准无纲量化,并作为神经网络的输入,以使ANN可以处理定量和定性指标。请采纳答案,支持我一下。
2023-09-11 20:03:091

人工神经网络与回归模型的联系和区别

* 回复内容中包含的链接未经审核,可能存在风险,暂不予完整展示! 拟合他们都是拟合,先说下拟合的定义:形象的说,拟合就是把平面上一系列的点,用一条光滑的曲线连接起来。因为这条曲线有无数种可能,从而有各种拟合方法。拟合的曲线一般可以用函数表示,根据这个函数的不同有不同的拟合名字。1. 线性回归回归分析常用于分析两个变量X和Y 之间的关系。 比如 X=房子大小 和 Y=房价 之间的关系, X=(公园人流量,公园门票票价) 与 Y=(公园收入) 之间的关系等等。那么你的数据点在图上可以这么看现在你想找到 房子大小和房价的关系, 也就是一个函数f(x) = y. 能够很好的表示 这两个变量之间的关系。于是你需要大概评估一下这个 房子大小和房价大概是一个什么关系.是线性的关系吗? 还是非线性的关系?当然在这个问题里面, 线性的关系更符合这两者的关系。于是我们 选择一个合适的 线性模型, 最常用的是 f(x) = ax+b. 然后用这个线性的模型 去 匹配这些数据点。1.1 怎么匹配? 有了数据点 和 你臆想出来的线性模型,怎么进行匹配,也就是怎么用这根线最好地描述些数据点的关系?需要最好地描述点, 我们又需要一个关于“好”的定义。你也可以想出很多关于“好”的定义。下面有两个,这两个定义都是 将模型与数据点之间的距离差 之和做为 衡量匹配好坏的标准。 误差越小, 匹配程度越大。但是 总的来说, 我们想要找到的模型, 最后是想要使 f(x) 最大程度地 与y相似, 所以我们想要尽量地减少 f(x)与y之间的差值。 所以在这里 用第二个图的“好的定义” 来评估这根线的匹配程度是很合理的。于是我们有了误差公式!!!!!这个公式,说的是,可以通过调整不同的a 和 b的值,就能使 误差不断变化,而当你找到这个公式的最小值时,你就能得到最好的a,b. 而这对(a,b)就是能最好描述你数据关系的模型参数。1.1.1 沿导数下降法(Gradient Descent)怎么找 cost(a,b)的最小? cost(a,b) 的图像其实像一个碗 一样,有一个最低点。 找这个最低点的办法就是,先随便找一个点(e.g. a=3, b = 2), 然后 沿着这个碗下降的方向找,最后就能找到碗的最低点。cost(a,b) 的形状怎么找(某一点)碗下降的方向?? 答案是,找那一点导数的反方向。拿参数a 举个例子, a与cost 关系如下图,只要将任意一个a, 沿着使cost 导数的反方向 慢慢移动,那么 最终有一天a值就会到达使 cost 最小的那一点. 于是你可以不断地移动a,b, 向着最低点前进。当然在进行移动的时候也需要考虑,每次移动的速度,也就是Alpha的值,这个值也叫做(学习率). 学习率的增大可以加速参数逼近最优的情况, 但是如果在快要到达函数的底端的时候,需要减小学习率,以免出现cost 不断增大或者不停摆动的情况(如下图, J(a,b)就是cost(a,b) )。 所以说,当出现以上两种情况时候,我们应该果断选取一个较小的学习率, 以保证cost能减少到一个稳定的值(我们称为 收敛converge). 1.1.2 直接求解最小点方法这时候,有的人会问,为什么要让a不停地往下跑呢? 而且还需要设定学习率, 多麻烦, 直接让找 导数为0点(最小极值), 不就可以了吗? 嗯。。。也可以...但是各有优缺,具体方法和优劣分析可见Rachel-Zhang 的博客: http://blog.c**.net/abcjennifer/article/details/7700772总结一下: 回归问题的解决方法是: 1. 假定一个模型 2. 定义什么叫做最好的匹配(构造误差函数) 3. 用这个模型去匹配已有的数据点(训练集)需要进一步讨论的问题:如果参数(a,b)更多了该怎么办?如果最合适的匹配模型并不是线性的怎么办? --- 选用一个 非线性模型 比如 y = ax^2 + bx + c.如果误差(cost)与a,b(模型参数)的关系不是像碗一样的, 而是凹凸不平的该怎么办? ------ 这时候你就得注意你得到的cost的最低点(局部的最低)可能因初始点的不同而不同。 而这些最低点你需要进行比较,以确定是不是全局的最低2.分类(Logistic regression)分类问题也是一类很常见的问题。 比如说,怎么判定一个人是高富帅还是吊丝? 假如我是中央电视台的记者,采访了N个人, 拿到了第一手资料。资料如下我们想要根据一个人的口袋钱数量,来预测一个人是(富帅) 还是 (吊丝). 我们能不能用回归的方法做呢? 显然是可以的, 我们只要找到一个模型,然后再进行匹配就可以了。但是因为分类问题的y值常常是一些离散的数字,(比如, 富帅为1, 吊丝为0), 所以我们已经不能用一个 简单的线性函数来拟合这些数据了。我们需要一个更逼真的模型。 于是我们引入了一个更适合处理分类问题的函数--- 一个 非线性函数, 阶跃函数。这个函数的形状更像我们分类问题的数据分布,所以,用他来拟合分类问题的数据将 更适合!所以我们有了一个新的模型, 通过调整a,b 的值,可以让模型不断改变以匹配数据点。 为了匹配数据点,我们又需要一个衡量匹配程度的函数,就像 回归问题一样的cost 函数. 于是同理我们可以得到cost于是我们急切地想要把它用我们之前的gradient descent 的方法求解出使cost 最小的两个a,b值。 但是很遗憾的是, 这个cost函数关于a,b,是非凸(non-convex)的。 就像下面那张图那样坑坑洼洼。。。所以你 没有办法通过以上两种方法(1.1.1和1.1.2)求出这个cost函数的 全局最小值。所以你需要构造一个更好的cost函数, 在可以 衡量拟合程度的同时 又是 一个关于a,b 的凸函数(像回归问题的cost一样,和一个碗一样,只有一个极小值). 这怎么构造啊....幸好我们还有各种伟大的数学家,他们夜以继日,终于赶制出了一个形状和碗一样(convex)的cost函数. (Maximum Likelihoods Estimation 更具体的介绍请看 http://www.holehouse.org/mlclass/06_Logistic_Regression.html )现在我们又可以用我们熟悉的 导数方向下降法(gradient descent) 移动a, b的值,使cost 降低到最小。最后,分类的问题就这样被解决了。当然,更复杂的问题可能有:现在是分成两类,如果数据需要分成三类或者更多该怎么办? ---- 假如有A,B,C三类, 把其中A类做为1,BC做为0,然后做Logistic regression, 得到模型a, 同理将B类做为1,AC作为0,得到模型b, 再同理得到模型c. 最后测试的时候, 对任意一个数据点x, 我们能够得到x分别属于A,B,C三类的概率值 最后比较大小,哪个大,这个x就属于哪一类 具体可看, http://blog.c**.net/abcjennifer/article/details/7716281 (七)3.总结(两个问题的区别)这篇文章大概的意图是能想让大家了解, 机器学习中最基本的两类问题,线性回归和分类。 能让大家有个清晰的思想,对于这两类问题都有以下几个步骤,如何选取一个 合理的模型(线性的,or 非线性的(e.g. 阶跃函数, 高斯函数)).制造一个"美好"的 误差函数 (可以评估拟合程度,而且还是convex函数)采取一切可能的技术(e.g. 导数下降法,解极值方程法) 求出最好的模型参数谈谈回归和分类的区别:其实 回归问题和分类问题的本质一样,都是针对一个输入做出一个输出预测,其区别在于 输出变量的类型。分类问题是指,给定一个新的模式,根据训练集推断它所对应的类别(如:+1,-1),是一种定性输出,也叫离散变量预测;回归问题是指,给定一个新的模式,根据训练集推断它所对应的输出值(实数)是多少,是一种定量输出,也叫连续变量预测。举个例子:预测明天的气温是多少度,这是一个回归任务;预测明天是阴、晴还是雨,就是一个分类任务。文章知识点与官方知识档案匹配算法技能树首页概览31211 人正在系统学习中点击阅读全文 打开CSDN,阅读体验更佳PyTorch-RNN循环神经网络实现分类-回归_Coding路人王的博客循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network) 对循环神经网络的研究始于二十世纪80-90年代,...分类与回归及网络搭建+神经网络简介(学习记录与分享)1.神经网络是函数 有人可能会认为神经网络是池化层,全连接层,激活函数等等元素构成。但学长告诉我们,神经网络本质就是函数。 所以下次可以在不懂的朋友面前装一手,问他什么是神经网络啊,你可以告诉他,神经网络就是函数(doge) 2.介绍一...BP神经网络用于分类和回归matlab 编写的BP神经网络,用于分类和回归【机器学习基础】分类任务 和 回归任务 的 区别与联系分类任务 和 回归任务 的区别在于 需要预测的值的类型: 回归任务,是对 连续值 进行预测(比如 多少); 分类任务,是对 离散值 进行预测(比如 是不是,属不属于,或者 属于哪一类)。 打个比方, 预测 明天的气温是多少度,这是一个回归任务; 预测 明天会不会下雨,就是一个分类任务。继续访问多分类神经网络:Softmax回归_L_bloomer的博客_神经网络...1.逻辑回归是一个单层神经网络,计算非常快速,在使用OvR和MvM这样需要同时建立多个模型的方 法时,运算速度不会成为太大的问题。但真实使用的神经网络往往是一个庞大的算法,建立一个模 型就会耗费很多时间,因此必须建立很多个模型来求解的...神经网络-回归(Python)_li_rshan的博客回归与神经网络简介 回归分析 回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 回归分析的作用是: ①从一组数据出发确定某些变量之间的定量关系式 ②对变量间这些关系式进行统计检验。并从...最新发布 深度学习——分类和回归问题联系与区别深度学习——分类和回归问题联系与区别继续访问人工神经网络的分类包括,人工神经网络的分类有从20世纪80年代末期,人工神经网络方法开始应用于遥感图像的自动分类。目前,在遥感图像的自动分类方面,应用和研究比较多的人工神经网络方法主要有以下几种:人脑计算机对接技术项目名称:小发猫 (1)BP(Back Propagation)神经网络,这是一种应用较广泛的前馈式网络,属于有监督分类算法,它将先验知识融于网络学习之中,加以最大限度地利用,适应性好,在类别数少的情况下能够得到相当高的精度,但是其网络的学习主要采用误差修正算法,识别对象种类多时,随着网络规模的扩大,需要的计算过程较长,收敛缓慢而不稳定,且继续访问(二)神经网络入门之Logistic回归(分类问题)_coderpai的博客这篇教程是翻译Peter Roelants写的神经网络教程,作者已经授权翻译,这是原文。 该教程将介绍如何入门神经网络,一共包含五部分。你可以在以下链接找到完整内容。 Logistic回归(分类问题) 这部分教程将介绍一部分: ...组合分类和回归的神经网络模型_Together_CZ的博客_回归网络...我们可以将数据用作开发单独的回归和分类多层感知器(MLP)神经网络模型的基础。 注意:我们并未尝试为此数据集开发最佳模型; 相反,我们正在展示一种特定的技术:开发可以进行回归和分类预测的模型。Tensorflow学习二:神经网络用于分类和回归的损失函数引言: 对于二分类问题,一般会将预测结果经过一个非线性变换缩小到0到1之间,并设置一个阀值,比如0.5,小于0.5便是0,大于0.5便是1。但是这种做法对于多分类是不适用的。交叉熵: 通过神经网络解决多分类的方法是设置n个输出节点,n代表类别数。对于每一个样例,神经网络会得到一个n维数组做为输出结果。数组中的每一个维度代表对应的类别。理想情况下,如果一个样本属于k,那么这个类...继续访问人工神经网络模型与分类1. 人工神经网络的分类 按性能分:连续型和离散型网络,或确定型和随机型网络。 按拓扑结构分:前向网络和反馈网络。 前向网络有自适应线性神经网络(AdaptiveLinear,简称Adaline)、单层感知器、多层感知器、BP等。 前向网络,网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间继续访问深度学习---卷积神经网络解决分类与回归问题_wowMJX的博客(1)分类:经过一系列的卷积层和池化层之后,再经过全连接层得到样本属于每个类的得分(概率值),用softmax对其进行分类。 (2)回归:定位,用一个矩形框来框住要识别的物体。 ①回归:输入数据通过神经网络不断的拟合数据得到x,y,w,h,通...机器学习 --- 1. 线性回归与分类, 解决与区别机器学习可以解决很多问题,其中最为重要的两个是 回归与分类。 这两个问题怎么解决, 它们之间又有什么区别呢? 以下举几个简单的例子,以给大家一个概念 1. 线性回归 回归分析常用于分析两个变量X和Y 之间的关系。 比如 X=房子大小 和 Y=房价 之间的关系, X=(公园人流量,公园门票票价) 与 Y=(公园收入) 之间的关系等等。 那么你的数据点在图上可以这么看 现在你想找到 房继续访问线性模型小结:还分不清线性回归和线性分类模型?线性模型0. 写在前面1. 线性模型2. 用于回归和分类回归问题分类问题3. 分类任务的几个问题3.1 如何解决非线性的分类问题3.2 如何解决多分类问题:三种解决 0. 写在前面 今天对线性模型做一个总结,围绕以下两个点理一理思路: 判别函数 - 决策函数; 线性模型 - 线性模型各类拓展 具体沿着以下几个问题展开: 1. 生成方法与判别方法 2. 判别函数与决策函数 3. 线性模型 4. 广义...
2023-09-11 20:03:181

什么是人工神经网络计算机?

我们知道,人脑神经系统是由数以十亿计的神经元相互连接而成的、极其复杂的信息处理网络,科学家认为它是处理复杂信息的最好结构。人工神经网络计算机就是模仿人脑神经系统的计算机,它同样是目前世界各国专家正在大力研究开发的下一代计算机。人工神经网络计算机不仅能够高速处理信息,还能够像人一样具有学习功能和联想功能。现有的计算机的所有工作都是依靠人们预先给出的指令。从这一意义上说,它的能力还不如一个两三岁的幼儿。人工神经网络计算机不一样,你只要反复把例题和答案输入,它便能自己学会解题的方法,这就是学习功能。世界各国目前的研究主要集中在两个方面:一是通过在软件上下功夫,使通常的电子计算机也具有学习功能,可以用于生产控制;二是开发专门的神经芯片,通过硬件实现神经网络计算机的功能。
2023-09-11 20:03:281

人工神经网络可以解决哪些问题

信息领域中的应用:信息处理、模式识别、数据压缩等。自动化领域:系统辨识、神经控制器、智能检测等。工程领域:汽车工程、军事工程、化学工程、水利工程等。在医学中的应用:生物信号的检测与分析、生物活性研究、医学专家系统等。经济领域的应用:市场价格预测、风险评估等。此外还有很多应用,比如交通领域的应用,心理学领域的应用等等。神经网络的应用领域是非常广的。
2023-09-11 20:03:411

人工神经网络的主要研究成果

1 人工神经网络产生的背景自古以来,关于人类智能本源的奥秘,一直吸引着无数哲学家和自然科学家的研究热情。生物学家、神经学家经过长期不懈的努力,通过对人脑的观察和认识,认为人脑的智能活动离不开脑的物质基础,包括它的实体结构和其中所发生的各种生物、化学、电学作用,并因此建立了神经元网络理论和神经系统结构理论,而神经元理论又是此后神经传导理论和大脑功能学说的基础。在这些理论基础之上,科学家们认为,可以从仿制人脑神经系统的结构和功能出发,研究人类智能活动和认识现象。另一方面,19世纪之前,无论是以欧氏几何和微积分为代表的经典数学,还是以牛顿力学为代表的经典物理学,从总体上说,这些经典科学都是线性科学。然而,客观世界是如此的纷繁复杂,非线性情况随处可见,人脑神经系统更是如此。复杂性和非线性是连接在一起的,因此,对非线性科学的研究也是我们认识复杂系统的关键。为了更好地认识客观世界,我们必须对非线性科学进行研究。人工神经网络作为一种非线性的、与大脑智能相似的网络模型,就这样应运而生了。所以,人工神经网络的创立不是偶然的,而是20世纪初科学技术充分发展的产物。2 人工神经网络的发展人工神经网络的研究始于40年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的远为曲折的道路。1943年,心理学家W.S.Mcculloch和数理逻辑学家W.Pitts 提出了M—P模型,这是第一个用数理语言描述脑的信息处理过程的模型, 虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949年,心理学家D.O.Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。 1957 年, 计算机科学家Rosenblatt提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络,第一次把神经网络研究付诸工程实现。由于可应用于模式识别,联想记忆等方面,当时有上百家实验室投入此项研究,美国军方甚至认为神经网络工程应当比“原子弹工程”更重要而给予巨额资助,并在声纳信号识别等领域取得一定成绩。1960年,B.Windrow和E.Hoff提出了自适应线性单元, 它可用于自适应滤波、预测和模式识别。至此,人工神经网络的研究工作进入了第一个高潮。1969年,美国著名人工智能学者M.Minsky和S.Papert编写了影响很大的Perceptron一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知机能力也不过如此,他们的分析恰似一瓢冷水,很多学者感到前途渺茫而纷纷改行,原先参与研究的实验室纷纷退出,在这之后近10年,神经网络研究进入了一个缓慢发展的萧条期。这期间,芬兰学者T.Kohonen 提出了自组织映射理论,反映了大脑神经细胞的自组织特性、记忆方式以及神经细胞兴奋刺激的规律;美国学者S.A.Grossberg的自适应共振理论(ART );日本学者K.Fukushima提出了认知机模型;ShunIchimari则致力于神经网络有关数学理论的研究等,这些研究成果对以后的神经网络的发展产生了重要影响。美国生物物理学家J.J.Hopfield于1982年、1984年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的又一次热潮。 1982 年, 他提出了一个新的神经网络模型——hopfield网络模型。他在这种网络模型的研究中,首次引入了网络能量函数的概念,并给出了网络稳定性的判定依据。1984年,他又提出了网络模型实现的电子电路,为神经网络的工程实现指明了方向,他的研究成果开拓了神经网络用于联想记忆的优化计算的新途径,并为神经计算机研究奠定了基础。1984年Hinton等人将模拟退火算法引入到神经网络中,提出了Boltzmann机网络模型,BM 网络算法为神经网络优化计算提供了一个有效的方法。1986年,D.E.Rumelhart和J.LMcclelland提出了误差反向传播算法,成为至今为止影响很大的一种网络学习方法。1987年美国神经计算机专家R.Hecht—Nielsen提出了对向传播神经网络,该网络具有分类灵活,算法简练的优点,可用于模式分类、函数逼近、统计分析和数据压缩等领域。1988年L.Ochua 等人提出了细胞神经网络模型,它在视觉初级加工上得到了广泛应用。为适应人工神经网络的发展,1987年成立了国际神经网络学会,并决定定期召开国际神经网络学术会议。1988年1月Neural Network 创刊。1990年3月IEEE Transaction on Neural Network问世。 我国于1990年12月在北京召开了首届神经网络学术大会,并决定以后每年召开一次。1991 年在南京成立了中国神经网络学会。 IEEE 与INNS 联合召开的IJCNN92已在北京召开。 这些为神经网络的研究和发展起了推波助澜的作用,人工神经网络步入了稳步发展的时期。90年代初,诺贝尔奖获得者Edelman提出了Darwinism模型,建立了神经网络系统理论。同年,Aihara等在前人推导和实验的基础上,给出了一个混沌神经元模型,该模型已成为一种经典的混沌神经网络模型,该模型可用于联想记忆。 Wunsch 在90OSA 年会上提出了一种AnnualMeeting,用光电执行ART,学习过程有自适应滤波和推理功能,具有快速和稳定的学习特点。1991年,Hertz探讨了神经计算理论, 对神经网络的计算复杂性分析具有重要意义;Inoue 等提出用耦合的混沌振荡子作为某个神经元,构造混沌神经网络模型,为它的广泛应用前景指明了道路。1992年,Holland用模拟生物进化的方式提出了遗传算法, 用来求解复杂优化问题。1993年方建安等采用遗传算法学习,研究神经网络控制器获得了一些结果。1994年Angeline等在前人进化策略理论的基础上,提出一种进化算法来建立反馈神经网络,成功地应用到模式识别,自动控制等方面;廖晓昕对细胞神经网络建立了新的数学理论和方法,得到了一系列结果。HayashlY根据动物大脑中出现的振荡现象,提出了振荡神经网络。1995年Mitra把人工神经网络与模糊逻辑理论、 生物细胞学说以及概率论相结合提出了模糊神经网络,使得神经网络的研究取得了突破性进展。Jenkins等人研究光学神经网络, 建立了光学二维并行互连与电子学混合的光学神经网络,它能避免网络陷入局部最小值,并最后可达到或接近最理想的解;SoleRV等提出流体神经网络,用来研究昆虫社会,机器人集体免疫系统,启发人们用混沌理论分析社会大系统。1996年,ShuaiJW"等模拟人脑的自发展行为, 在讨论混沌神经网络的基础上提出了自发展神经网络。1997、1998年董聪等创立和完善了广义遗传算法,解决了多层前向网络的最简拓朴构造问题和全局最优逼近问题。随着理论工作的发展,神经网络的应用研究也取得了突破性进展,涉及面非常广泛,就应用的技术领域而言有计算机视觉,语言的识别、理解与合成,优化计算,智能控制及复杂系统分析,模式识别,神经计算机研制,知识推理专家系统与人工智能。涉及的学科有神经生理学、认识科学、数理科学、心理学、信息科学、计算机科学、微电子学、光学、动力学、生物电子学等。美国、日本等国在神经网络计算机软硬件实现的开发方面也取得了显著的成绩,并逐步形成产品。在美国,神经计算机产业已获得军方的强有力支持,国防部高级研究计划局认为“神经网络是解决机器智能的唯一希望”,仅一项8 年神经计算机计划就投资4亿美元。在欧洲共同体的ESPRIT计划中, 就有一项特别项目:“神经网络在欧洲工业中的应用”,单是生产神经网络专用芯片这一项就投资2200万美元。据美国资料声称,日本在神经网络研究上的投资大约是美国的4倍。我国也不甘落后,自从1990 年批准了南开大学的光学神经计算机等3项课题以来, 国家自然科学基金与国防预研基金也都为神经网络的研究提供资助。另外,许多国际著名公司也纷纷卷入对神经网络的研究,如Intel、IBM、Siemens、HNC。神经计算机产品开始走向商用阶段,被国防、企业和科研部门选用。在举世瞩目的海湾战争中,美国空军采用了神经网络来进行决策与控制。在这种刺激和需求下,人工神经网络定会取得新的突破,迎来又一个高潮。自1958年第一个神经网络诞生以来,其理论与应用成果不胜枚举。人工神经网络是一个快速发展着的一门新兴学科,新的模型、新的理论、新的应用成果正在层出不穷地涌现出来。3 人工神经网络的发展前景针对神经网络存在的问题和社会需求,今后发展的主要方向可分为理论研究和应用研究两个方面。(1)利用神经生理与认识科学研究大脑思维及智能的机理、 计算理论,带着问题研究理论。人工神经网络提供了一种揭示智能和了解人脑工作方式的合理途径,但是由于人类起初对神经系统了解非常有限,对于自身脑结构及其活动机理的认识还十分肤浅,并且带有某种“先验”。例如, Boltzmann机引入随机扰动来避免局部极小,有其卓越之处,然而缺乏必要的脑生理学基础,毫无疑问,人工神经网络的完善与发展要结合神经科学的研究。而且,神经科学,心理学和认识科学等方面提出的一些重大问题,是向神经网络理论研究提出的新挑战,这些问题的解决有助于完善和发展神经网络理论。因此利用神经生理和认识科学研究大脑思维及智能的机理,如有新的突破,将会改变智能和机器关系的认识。利用神经科学基础理论的研究成果,用数理方法探索智能水平更高的人工神经网络模型,深入研究网络的算法和性能,如神经计算、进化计算、稳定性、收敛性、计算复杂性、容错性、鲁棒性等,开发新的网络数理理论。由于神经网络的非线性,因此非线性问题的研究是神经网络理论发展的一个最大动力。特别是人们发现,脑中存在着混沌现象以来,用混沌动力学启发神经网络的研究或用神经网络产生混沌成为摆在人们面前的一个新课题,因为从生理本质角度出发是研究神经网络的根本手段。(2)神经网络软件模拟, 硬件实现的研究以及神经网络在各个科学技术领域应用的研究。由于人工神经网络可以用传统计算机模拟,也可以用集成电路芯片组成神经计算机,甚至还可以用光学的、生物芯片的方式实现,因此研制纯软件模拟,虚拟模拟和全硬件实现的电子神经网络计算机潜力巨大。如何使神经网络计算机与传统的计算机和人工智能技术相结合也是前沿课题;如何使神经网络计算机的功能向智能化发展,研制与人脑功能相似的智能计算机,如光学神经计算机,分子神经计算机,将具有十分诱人的前景。4 哲理(1)人工神经网络打开了认识论的新领域认识与脑的问题,长期以来一直受到人们的关注,因为它不仅是有关人的心理、意识的心理学问题,也是有关人的思维活动机制的脑科学与思维科学问题,而且直接关系到对物质与意识的哲学基本问题的回答。人工神经网络的发展使我们能够更进一步地既唯物又辩证地理解认识与脑的关系,打开认识论的新领域。人脑是一个复杂的并行系统,它具有“认知、意识、情感”等高级脑功能,用人工进行模拟,有利于加深对思维及智能的认识,已对认知和智力的本质的研究产生了极大的推动作用。在研究大脑的整体功能和复杂性方面,人工神经网络给人们带来了新的启迪。由于人脑中存在混沌现象,混沌可用来理解脑中某些不规则的活动,从而混沌动力学模型能用作人对外部世界建模的工具,可用来描述人脑的信息处理过程。混沌和智能是有关的,神经网络中引入混沌学思想有助于提示人类形象思维等方面的奥秘。人工神经网络之所以再度兴起,关键在于它反映了事物的非线性,抓住了客观世界的本质,而且它在一定程度上正面回答了智能系统如何从环境中自主学习这一最关键的问题,从认知的角度讲,所谓学习,就是对未知现象或规律的发现和归纳。由于神经网络具有高度的并行性,高度的非线性全局作用,良好的容错性与联想记忆功能以及十分强的自适应、自学习功能,而使得它成为揭示智能和了解人脑工作方式的合理途径。但是,由于认知问题的复杂性,目前,我们对于脑神经网的运行和神经细胞的内部处理机制,如信息在人脑是如何传输、存贮、加工的?记忆、联想、判断是如何形成的?大脑是否存在一个操作系统?还没有太多的认识,因此要制造人工神经网络来模仿人脑各方面的功能,还有待于人们对大脑信息处理机理认识的深化。(2)人工神经网络发展的推动力来源于实践、 理论和问题的相互作用随着人们社会实践范围的不断扩大,社会实践层次的不断深入,人们所接触到的自然现象也越来越丰富多彩、纷繁复杂,这就促使人们用不同的原因加以解释不同种类的自然现象,当不同种类的自然现象可以用同样的原因加以解释,这样就出现了不同学科的相互交叉、综合,人工神经网络就这样产生了。在开始阶段,由于这些理论化的网络模型比较简单,还存在许多问题,而且这些模型几乎没有得到实践的检验,因而神经网络的发展比较缓慢。随着理论研究的深入,问题逐渐地解决特别是工程上得到实现以后,如声纳识别成功,才迎来了神经网络的第一个发展高潮。可Minisky认为感知器不能解决异或问题, 多层感知器也不过如此,神经网络的研究进入了低谷,这主要是因为非线性问题没得到解决。随着理论的不断丰富,实践的不断深入, 现在已证明Minisky的悲观论调是错误的。今天,高度发达的科学技术逐渐揭示了非线性问题是客观世界的本质。问题、理论、实践的相互作用又迎来了人工神经网络的第二次高潮。目前人工神经网络的问题是智能水平不高,还有其它理论和实现方面的问题,这就迫使人们不断地进行理论研究,不断实践,促使神经网络不断向前发展。总之,先前的原因遇到了解释不同的新现象,促使人们提出更加普遍和精确的原因来解释。理论是基础,实践是动力,但单纯的理论和实践的作用还不能推动人工神经网络的发展,还必须有问题提出,才能吸引科学家进入研究的特定范围,引导科学家从事相关研究,从而逼近科学发现,而后实践又提出新问题,新问题又引发新的思考,促使科学家不断思考,不断完善理论。人工神经网络的发展无不体现着问题、理论和实践的辩证统一关系。(3 )人工神经网络发展的另一推动力来源于相关学科的贡献及不同学科专家的竞争与协同人工神经网络本身就是一门边缘学科,它的发展有更广阔的科学背景,亦即是众多科研成果的综合产物,控制论创始人Wiener在其巨著《控制论》中就进行了人脑神经元的研究;计算机科学家Turing就提出过B网络的设想;Prigogine提出非平衡系统的自组织理论,获得诺贝尔奖;Haken研究大量元件联合行动而产生宏观效果, 非线性系统“混沌”态的提出及其研究等,都是研究如何通过元件间的相互作用建立复杂系统,类似于生物系统的自组织行为。脑科学与神经科学的进展迅速反映到人工神经网络的研究中,例如生物神经网络理论,视觉中发现的侧抑制原理,感受野概念等,为神经网络的发展起了重要的推动作用。从已提出的上百种人工神经网络模型中,涉及学科之多,令人目不暇接,其应用领域之广,令人叹为观止。不同学科专家为了在这一领域取得领先水平,存在着不同程度的竞争,所有这些有力地推动了人工神经网络的发展。人脑是一个功能十分强大、结构异常复杂的信息系统,随着信息论、控制论、生命科学,计算机科学的发展,人们越来越惊异于大脑的奇妙,至少到目前为止,人类大脑信号处理机制对人类自身来说,仍是一个黑盒子,要揭示人脑的奥秘需要神经学家、心理学家、计算机科学家、微电子学家、数学家等专家的共同努力,对人类智能行为不断深入研究,为人工神经网络发展提供丰富的理论源泉。另外,还要有哲学家的参与,通过哲学思想和自然科学多种学科的深层结合,逐步孕育出探索人类思维本质和规律的新方法,使思维科学从朦胧走向理性。而且,不同领域专家的竞争与协调同有利于问题清晰化和寻求最好的解决途径。纵观神经网络的发展历史,没有相关学科的贡献,不同学科专家的竞争与协同,神经网络就不会有今天。当然,人工神经网络在各个学科领域应用的研究反过来又推动其它学科的发展,推动自身的完善和发展。
2023-09-11 20:04:051

想要学习人工神经网络,需要什么样的基础知识?

不需要什么基础,你懂英语就行。
2023-09-11 20:04:177

人工智能和神经网络有什么联系与区别?

lxkw1980虽然是经过头脑考虑,但还是犯了“浮躁”之忌。神经网络是人工智能的分支,也就是说,如果人工智能没有“自我”意识,那么神经网络必然也没有。
2023-09-11 20:05:175

人工神经网络由哪几部分构成?

"人工神经网络"共有13个神经元构成,4个为输入神经元,1个为输 出神经元。也就是说,这个程序最多能处理一个四元关系(包含了二元, 三元)。
2023-09-11 20:05:591

人工神经网络预测信贷的意义

人工神经网络算法的信用风险预测信用风险或信用违约表明未偿还已提供给客户的银行金融服务的可能性。信贷风险一直是银行贷款决策中广泛研究的领域。信用风险对银行和金融机构,特别是对商业银行而言,起着至关重要的作用,并且始终难以解释和管理。由于技术的进步,银行已经设法降低成本,以便开发强大而复杂的系统和模型来预测和管理信贷风险。为了预测信用违约,已经创建并提出了几种方法。方法的使用取决于银行和金融机构的复杂程度,贷款的规模和类型。常用的方法是判别分析。这种方法使用了有助于决策的得分函数,而一些研究人员由于其限制性假设而对区分分析的有效性表示怀疑。变量之间的正态性和独立性[4]。人工神经网络模型的创建是为了克服其他效率低下的信用违约模型的缺点。本文的目的是研究神经网络算法解决预测信用违约问题的能力,该能力衡量一段时间内贷款申请的信用度。前馈神经网络算法被应用于银行的住宅抵押贷款应用的小型数据集,以预测信用违约。模型的输出将生成一个二进制值,该值可用作分类器,以帮助银行识别借款人是否违约。本文将采用一种经验方法,该方法将讨论两个基于神经网络的模型,并且将通过训练和验证有关住宅抵押贷款申请的模型来报告实验结果。作为该方向的最后一步,还对数据集执行了线性回归方法。2方法论2.1数据数据是从kaggle.com(贷款俱乐部贷款数据)收集的,其中包含850万条记录。从数据集中抽取了60因变量: loan_status(0和1);如果借款人将违约,那么投资将是不良的;如果借款人不违约,则他或她将能够偿还全部贷款额。因此,要区分神经网络,0表示借方将违约,而1表示借方将不违约。自变量:以下变量被视为自变量,loan_amnt,funded_amnt,emp_length,等级,funded_amnt_inv,期限,int_rate,分期付款,year_inc,issue_d和application_type2.2模型在这项研究中,使用了经典的前馈神经网络。前馈网络由一个具有10个输入变量的输入层,7个隐藏层和一个具有代表分类器的神经元的输出层组成。使用监督学习算法(反向传播算法)对网络进行训练。该算法通过最小化实际和期望输出之间的误差来优化神经元权重。对于神经元i,权重将通过公式进行更新,其中f为学习系数是隐藏层的输出,算法将一直运行到找到停止标准为止。对于图3所示的神经网络算法,必须仔细选择参数,例如f的值以及神经元数和隐藏层数。在图3中,连接由每层之间的黑线表示和权重,蓝线显示每个步骤中的偏差(模型的截距)。网络是一个黑匣子,训练算法可以在融合时随时使用。同样,已经从提取的数据集中为网络算法创建了一个随机样本。然后创建一个训练和测试数据集,分别用于训练模型和验证模型的性能。图3:信用违约模型的神经网络图3实验与结果已将10个归一化变量作为按顺序排列的输入作为网络输入。网络的输出是一个分类器,结果为0和1。首先,已检查数据是否缺少数据点值,没有数据丢失;无需修复数据集。输入的相关矩阵如图4所示。图4:输入数据集的相关图训练完数据集后,将在测试数据集上对其进行测试。为了基于其他输入来计算输出,已使用了计算功能。将7个隐藏层添加到网络并创建了模型。网络已生成以下结果矩阵:表1:经典前馈神经网络的结果矩阵属性值错误322.833达到阈值0.0998脚步6765总共需要6765个步骤,直到误差函数的所有导数都小于默认阈值(0.01)。在实现经典的前馈算法之后,通过使用学习速率为0.01的反向传播算法实现了另一个模型。经典过程和反向传播过程具有几乎相同的错误率。因此,经典模型拟合不如反向传播算法令人满意。图5:输入的广义权重表2:预测输出与期望输出的比较实际预测火柴00.0032真正00.00017真正00.0114真正1个0.985真正00.0060真正00.0132真正00.9704假00.0101真正1个0.00128真正最后,将线性回归应用于数据集以比较两种算法的准确性。glm()函数已用于拟合线性回归模型。对于回归,已分配了大于0.5的概率,如果回归中的预测值大于0.5,则该值为1,否则为0。已经通过合并错误分类误差来计算准确性,并且混淆矩阵的计算也如图6所示。 。图6:混淆矩阵和线性回归统计为了强调比较,已计算了线性回归和神经网络的均方误差,如表3所示。从表中可以看出,两个过程的均方误差大致相同,因此两个过程都相同工作。有必要知道,MSE中的偏差取决于训练和测试划分。表3:两个过程的均方误差MSE神经网络MSE线性回归0.02204490.02273344。结论本文研究了人工神经网络和线性回归模型来预测信用违约。两种系统都已经过kaggle.com提供的贷款数据培训。两种系统的结果对数据集均显示出相同的效果,因此非常有效,通过人工神经网络的准确率为97.67575%,准确率为97.69609%。系统对输出变量的分类正确,误差很小。因此,这两个过程都可以用来识别信用违约率。而且,神经网络代表黑匣子方法,因此与线性回归模型相比,难以解释结果。因此,使用哪种模型取决于必须使用的应用程序。此外,在使用神经网络过程拟合模型时,用户需要格外注意属性和数据规范化以提高性能。总之,神经网络提供了强有力的证据来有效预测贷款申请的信用违约。神经网络算法具有广泛的应用范围,不仅对住宅抵押至关重要。其他应用可以是由公司发行的债券评级,通常称为债券评级,对可以持续使用长达一年的短期投资进行评级,对本地和外币的长期和短期评级,主权或国家评级。通过使用适当的算法和技术,可以进一步增强预测系统,以为应用程序分配信用等级。题库
2023-09-11 20:06:081

人工智能神经网络论文

  随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。以下是我整理分享的人工智能神经网络论文的相关资料,欢迎阅读!   人工智能神经网络论文篇一   人工神经网络的发展及应用   摘要随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。人工神经网络的发展经历了不同的阶段,是人工智能的重要组成部分,并且在发展过程中形成了自身独特的特点。文章对人工神经网络的发展历程进行回顾,并对其在各个领域的应用情况进行探讨。   关键词人工神经网络;发展;应用   随着科学技术的发展,各个行业和领域都在进行人工智能化的研究工作,已经成为专家学者研究的热点。人工神经网络就是在人工智能基础上发展而来的重要分支,对人工智能的发展具有重要的促进作用。人工神经网络从形成之初发展至今,经历了不同的发展阶段,并且在经济、生物、医学等领域得到了广泛的应用,解决了许多技术上的难题。   1人工神经网络概述   关于人工神经网络,到目前为止还没有一个得到广泛认可的统一定义,综合各专家学者的观点可以将人工神经网络简单的概括为是模仿人脑的结构和功能的计算机信息处理系统[1]。人工神经网络具有自身的发展特性,其具有很强的并行结构以及并行处理的能力,在实时和动态控制时能够起到很好的作用;人工神经网络具有非线性映射的特性,对处理非线性控制的问题时能给予一定的帮助;人工神经网络可以通过训练掌握数据归纳和处理的能力,因此在数学模型等难以处理时对问题进行解决;人工神经网络的适应性和集成性很强,能够适应不同规模的信息处理和大规模集成数据的处理与控制;人工神经网络不但在软件技术上比较成熟,而且近年来在硬件方面也得到了较大发展,提高了人工神经网络系统的信息处理能力。   2人工神经网络的发展历程   2.1 萌芽时期   在20世纪40年代,生物学家McCulloch与数学家Pitts共同发表文章,第一次提出了关于神经元的模型M-P模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。1951年,心理学家Hebb提出了关于连接权数值强化的法则,为神经网络的学习功能开发进行了铺垫。之后生物学家Eccles通过实验证实了突触的真实分流,为神经网络研究突触的模拟功能提供了真实的模型基础以及生物学的依据[2]。随后,出现了能够模拟行为以及条件反射的处理机和自适应线性网络模型,提高了人工神经网络的速度和精准度。这一系列研究成果的出现为人工神经网络的形成和发展提供了可能。   2.2 低谷时期   在人工神经网络形成的初期,人们只是热衷于对它的研究,却对其自身的局限进行了忽视。Minskyh和Papert通过多年对神经网络的研究,在1969年对之前所取得的研究成果提出了质疑,认为当前研究出的神经网络只合适处理比较简单的线性问题,对于非线性问题以及多层网络问题却无法解决。由于他们的质疑,使神经网络的发展进入了低谷时期,但是在这一时期,专家和学者也并没有停止对神经网络的研究,针对他们的质疑也得出一些相应的研究成果。   2.3 复兴时期   美国的物理学家Hopfield在1982年提出了新的神经网络模型,并通过实验证明在满足一定的条件时,神经网络是能够达到稳定的状态的。通过他的研究和带动,众多专家学者又重新开始了对人工神经网络方面的研究,推动了神经网络的再一次发展[3]。经过专家学者的不断努力,提出了各种不同的人工神经网络的模型,神经网络理论研究不断深化,新的理论和方法层出不穷,使神经网络的研究和应用进入了一个崭新的时期。   2.4 稳步发展时期   随着人工神经网络研究在世界范围内的再次兴起,我国也迎来了相关理论研究的热潮,在人工神经网络和计算机技术方面取得了突破性的进展。到20世纪90年代时,国内对于神经网络领域的研究得到了进一步的完善和发展,而且能够利用神经网络对非线性的系统控制问题进行解决,研究成果显著。随着各类人工神经网络的相关刊物的创建和相关学术会议的召开,我国人工神经网络的研究和应用条件逐步改善,得到了国际的关注。   随着人工神经网络的稳步发展,逐渐建立了光学神经网络系统,利用光学的强大功能,提高了人工神经网络的学习能力和自适应能力。对非线性动态系统的控制问题,采取有效措施,提高超平面的光滑性,对其精度进行改进。之后有专家提出了关于人工神经网络的抽取算法,虽然保证了精度,但也加大了消耗,在一定程度上降低了神经网络的效率,因此在此基础上又提出了改进算法FERNN。混沌神经网络的发展也得到了相应的进步,提高了神经网络的泛化能力。   3人工神经网络的应用   3.1 在信息领域中的应用   人工神经网络在信息领域中的应用主要体现在信息处理和模式识别两个方面。由于科技的发展,当代信息处理工作越来越复杂,利用人工神经网络系统可以对人的思维进行模仿甚至是替代,面对问题自动诊断和解决,能够轻松解决许多传统方法无法解决的问题,在军事信息处理中的应用极为广泛[4]。模式识别是对事物表象的各种信息进行整理和分析,对事物进行辨别和解释的一个过程,这样对信息进行处理的过程与人类大脑的思维方式很相像。模式识别的方法可以分为两种,一种是统计模式识别,还有一种是结构模式识别,在语音识别和指纹识别等方面得到了广泛的应用。   3.2 在医学领域的应用   人工神经网络对于非线性问题处理十分有效,而人体的构成和疾病形成的原因十分复杂,具有不可预测性,在生物信号的表现形式和变化规律上也很难掌握,信息检测和分析等诸多方面都存在着复杂的非线性联系,所以应用人工神经网络决解这些非线性问题具有特殊意义[5]。目前,在医学领域中的应用涉及到理论和临床的各个方面,最主要的是生物信号的检测和自动分析以及专家系统等方面的应用。   3.3 在经济领域中的应用   经济领域中的商品价格、供需关系、风险系数等方面的信息构成也十分复杂且变幻莫测,人工神经网络可以对不完整的信息以及模糊不确定的信息进行简单明了的处理,与传统的经济统计方法相比具有其无法比拟的优势,数据分析的稳定性和可靠性更强。   3.4 在其他领域的应用   人工神经网络在控制领域、交通领域、心理学领域等方面都有很广泛的应用,能够对高难度的非线性问题进行处理,对交通运输方面进行集成式的管理,以其高适应性和优秀的模拟性能解决了许多传统方法无法解决的问题,促进了各个领域的快速发展。   4总结   随着科技的发展,人工智能系统将进入更加高级的发展阶段,人工神经网络也将得到更快的发展和更加广泛的应用。人工神经网络也许无法完全对人脑进行取代,但是其特有的非线性信息处理能力解决了许多人工无法解决的问题,在智能系统的各个领域中得到成功应用,今后的发展趋势将向着更加智能和集成的方向发展。   参考文献   [1]徐用懋,冯恩波.人工神经网络的发展及其在控制中的应用[J].化工进展,1993(5):8-12,20.   [2]汤素丽,罗宇锋.人工神经网络技术的发展与应用[J].电脑开发与应用,2009(10):59-61.   [3]李会玲,柴秋燕.人工神经网络与神经网络控制的发展及展望[J].邢台职业技术学院学报,2009(5):44-46.   [4]过效杰,祝彦知.人工神经网络的发展及其在岩土工程领域研究现状[J].河南水利,2004(1):22-23.   [5]崔永华.基于人工神经网络的河流汇流预报模型及应用研究[D].郑州大学,2006. 下一页分享更优秀的<<<人工智能神经网络论文
2023-09-11 20:06:211

人工智能神经网络

我本科是学自动化的,研究生读的是控制工程与控制理论,也就是本科自动化专业的对口研究生专业,课题研究的就是神经网络,对这个东西是又爱又恨!人工智能是我们主修的一门课程,神经网络只是人工智能的多种方法中的一种,人工智能是很博大精深的一个领域。但同样是学自动化专业,课题不同,你也可以选择不学人工只能。如果要学人工智能,那肯定是首选自动化了。不过本科是不开设这门课程的,最多是选修课大致讲一讲那种,要想伸入学只能读研究生了,要不就自学,如果你脑瓜非常灵光的话!呵呵课题研究的就是神经网络,对这个东西是又爱又恨!以上回答你满意么?
2023-09-11 20:06:322

未来的人工神经网络将会怎样改变我们的生活?

首先,什么是神经网络,题主的意思应该是指机器学习中的人工神经网络。什么是神经网络?历史发展演进上看人工神经网络是计算机诞生以来,计算机编程架构,算法进化的一个新的阶段。很多人说,人工神经网络所属的“人工智能”技术会引发第四次工业革命。计算机为西方人发明,人工神经网络根源还在于西方文明。我们知道西方文明是“向外”的,分析自然,量化自然。但,我们知道早些年构建经典物理学大厦的牛顿,晚年反而信仰了宗教;以相对论而著称的爱因斯坦后期,也对量子力学背后的疑惑“上帝会掷筛子吗?“差异万分,量子力学需要把人观察者这一因素引入,才可顺利成章。可见,西方文明在"向外"求索过程中,必然会“向内”探寻,反求诸己,来获取新的思路。而,人工神经网络就是西方文明向内探寻的一个成果。(中华文明根本是“向内”的,修身养性,寻佛问道;但,向内也必然需要外界的加持,因此,王阳明心学的知行合一,致知须得格物中可有所体现)什么是神经网络?从和生物神经行为的对比看所谓“向内”,即人工神经网络的的一个基本构件“神经元”来源于对生物体神经细胞的归宗。我们仔细思考下人类去和外界交互的一个场景,比如:我识别 在我面前的是一个电脑。我如何识别的呢?首先,我眼前这个物体,形状,屏幕,键盘,颜色,位置,等等一起输入给我后,我判断是一个电脑。形状如何识别呢?眼前的这个物体的边界随着空间的位移,方向发生变化,构成形状;颜色的明暗形成对立体空间的感知。总之,是一层一层信息特征判断后,最总我识别成为一台电脑。因此,人感知和判断外界的的一个基本的流程是输入各种特征,判断,然后输入成标识或动作。但我们再思考一个事情,一个从未见过电脑,也不知道电脑的人;也可以感受到摆放在我眼前的物体,但他判断不出这是电脑。但,我这次会告诉他;因此,下次,他见到类似特征的一个物体的时候,他就知道这是一个电脑。我们知道这就是学习。因此,我们知道人就是通过学习而生存的。学习就是先给出一系列的特征(电脑的特征),并给出这些特征的标识(告诉它这是电脑)。然后,下一次,他自己就可以判断是电脑了,这就是智能。但,实际情况可能复杂太多,但抽象后基本的模型是这样的。什么是神经网络?从感知机到人工神经网络图片,点击识别内容人工神经网络是由感知机进化而来。我们看如上给定如上“圈”和“叉”表示标识(即电脑),圈和叉的坐标就是电脑的形状,颜色,屏幕等信息。因此,如果再给过一个坐标点,如果能够判断出其是“圈”还是“叉”那么,就相当于,在看到类似的具有电脑特征的物体的时,就能判断出是电脑了。如何判断呢?就是找到位于中间的一条线,坐标位于线上面就是圈,坐标位于线下面就叉。因此,神经网络本质上是找到中间那条线的过程,也就是学习的过程。而,我们知道,人在生活中,识别一个物体时,信息是很多的,因此,我们试想,通过上百万个上面的这个找到一条“线”的过程有机的堆积在一起,这也就是神经网络,是对人脑的一个仿真。有可能取代人工大脑吗?我想,在不可预知的未来,可能超越大脑现在的电子工艺水平,距离神经网络能够接近人脑的水平还很遥远。功耗,规模,算法都还有十分遥远的距离。但将来随着量子计算机,量子霍尔效应的研究,材料学的发展,人工智能应该会超越人脑。
2023-09-11 20:06:401

影响人工神经网络性能的三要素

1、网络结构:神经网络的结构是指神经元之间的连接方式和网络层次数等因素。神经网络的结构越合理,其模型表达能力也就越强,性能也就越好。2、经元参数:神经元参数是指神经元内部的参数,如初始权重阈值、激活函数等。3、数据质量和规模:神经网络的训练数据质量和规模直接影响着网络的性能。
2023-09-11 20:07:471

人工神经网络的学习类型

学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。分类根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。
2023-09-11 20:08:311

人工神经网络好学吗

不好学吧!选修了下,什么BP算法啊!神经网络都不好学
2023-09-11 20:09:133

人工神经网络的神经元

如图所示a1~an为输入向量的各个分量w1~wn为神经元各个突触的权值b为偏置f为传递函数,通常为非线性函数。以下默认为hardlim()t为神经元输出数学表示 t=f(WA"+b)W为权向量A为输入向量,A"为A向量的转置b为偏置f为传递函数可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。单个神经元的作用:把一个n维向量空间用一个超平面分割成两部分(称之为判断边界),给定一个输入向量,神经元可以判断出这个向量位于超平面的哪一边。该超平面的方程: Wp+b=0W权向量b偏置p超平面上的向量
2023-09-11 20:09:271

人工神经网络可以用来优化一堆离散数据吗?详细询问见内

人工神经网络也是可以处理离散问题的,就是输出端对于每个值属于哪个类别进行对应,输入值也是如此,先进行数值化。至于能否得到输出值在50附近,跟你采集的数据样本有关,这关系到网络的复杂性,层数,数据点之间的相关性,一般来说通过计算智能的方法就是让其自己学习然后具备处理能力,而不是人为让其朝某个数据偏移。
2023-09-11 20:09:521

人工神经网络具有自学习、自组织、自适应以及很强的非线性函数逼近能力,拥有强大容错功能,怎么理解?

看了一点书,不大懂,没有相关控制基础,不大好学吧
2023-09-11 20:10:503