barriers / 阅读 / 详情

所有高中物理学史的总结

2023-09-16 01:40:56
共1条回复
北境漫步

问题:所有高中物理学史的总结

解答:

物理学的发展分为三个阶段,即亚里士多德物理学、牛顿物理学和后牛顿物理学(近代物理学)

亚里士多德物理学的特点是目的性以及等级观(天界与地球的截然不同)。中世纪基督教哲学发现“古希腊物理学和天文学与它非常意气相投。地心宇宙、由可腐坏的元素构成的地球、由可腐坏的和易朽的元素构成的人类、万物的自然安息位置、由处于永恒的天体运动中的不朽的以太构成的完美天国——所有这一切都与教会神学配合得很好”。由中世纪基督教、古希腊人的地心天文学和亚里士多德物理学结合形成的前牛顿世界观的核心是目的概念和等级观。人类整体、地球、行星和每一种自然现象都有目的。“每样东西在地位和目的的层级中都有它的自然位置。这种宇宙论与这个时代的等级社会结构非常协调。”

到了16世纪,随着文艺复兴的大潮,哥白尼把太阳而不是地球放在宇宙的中心;开普勒用椭圆轨道取代了行星的“自然的”圆轨道;笛卡儿宣称只有一种自然运动,即惯性运动,在天上和地上都是如此;伽利略提出加速度概念,建立了落体运动定律,并且倡导理论和实验结合的科学方法。站在这些巨人的肩膀上,牛顿提出了运动定律及万有引力定律,并发明了微积分,建立了牛顿力学,得到了极大的成功。根据惯性定律,物体运动并不是因为它们有什么目的,而仅仅是由于没有什么东西使它们停止。目的性让位于因果性。自然位置的上下层级、地球地位特殊的观念、人类的中心地位,这一切都被一扫而光。在结合古希腊的朴素原子唯物论的基础上,形成了牛顿世界观。它把宇宙看成一只巨大的钟表,其工作原理是自然法则,其零件是原子。虽然牛顿的贡献主要在于力学,但上述这种世界观在牛顿去世后整个18世纪乃至19世纪中叶一直影响到物理学的各个部门,形成了牛顿物理学,其世界观的四个特点是原子论(但自然的属性则是连续的)、自然的客观性、可预言性和可分析性。对宇宙的了解决定了宗教、社会秩序和政治,它确立了人类平等和天赋人权的概念,只有普遍的自然法则(而不是某个特定的人或宗教信仰)才是人类行为的终极限制。

麦克斯韦的电磁场理论开始突破了由粒子和力构成的牛顿物理学。20世纪里,在高速、微观和宇观领域里发展起来的相对论和量子论,更形成了后牛顿物理学,揭示了一个由场和能量构成的宇宙。后牛顿物理学完全违背牛顿世界观,它的特点是观察者的参与和量子论中自然界行为的不连续性和不可预测性,互补性代替了严格的因果描述。作者指出,“从科学观点看,从牛顿物理学过渡到后牛顿物理学并没有从亚里士多德物理学过渡到牛顿物理学那么激进。牛顿物理学完全否定了亚里士多德物理学,而后牛顿物理学仅仅限制了牛顿物理学适用的范围。”但是“从哲学观点看,从牛顿物理学到后牛顿物理学的过渡是革命性的,而且这个革命今天仍在继续。”(这和强调机遇的市场经济观念、后现代主义以及系统性、复杂性等概念或思潮也相当合拍。)当然,后牛顿的世界观仍在建立之中,现在还看不出从所有这些将涌现出一种什么样的世界观。“在哥白尼于1543年去世后,毕竟过了一个多世纪欧洲才开始吸取后中世纪科学的文化冲击。

牛顿发现万有引力

  

伊萨克·牛顿,是17世纪人类最伟大的科学家,他是人类历史上屈指可数的几个科学巨人之一。他在物理学、数学和天文学方面的贡献,都是划时代的。

  1642年12月25日,牛顿出生在英国一个叫乌尔斯索普的小村子里,刚出生时极度衰弱,几乎夭折。牛顿自幼丧父,与母相依为命。1661年,他进入剑桥大学的三一学院学习。

  1665至1667年间,牛顿已在思考引力的问题。一天傍晚,他坐在苹果树下乘凉,一个苹果从树上掉了下来。他忽然想到:为什么苹果只向地面落,而不向天上飞呢?他分析了哥白尼的日心说和开普勒的三定律,进而思考:行星为何绕着太阳而不脱离?行星速度为何距太阳近就快,远就慢?离太阳越远的行星,为何运行周期就越长?牛顿认为它们的根本原因是太阳具有巨大无比的吸引力。

  经过一系列的实验、观测和演算,牛顿发现太阳的引力与它巨大的质量密切相关。牛顿进而揭示了宇宙的普遍规律:凡物体都有吸引力;质量越大,吸引力也越大;间距越大,吸引力就越小。这就是经典力学中著名的“万有引力定律”。

  根据牛顿的发现,可测定太阳和行星的质量,确定计算慧星轨道的法则,说明月亮和太阳的引力造成地球上的海洋潮汐现象,并推导出克服地球引力、飞向太阳系和飞出太阳系所需的最低速度,它们分别为每秒7.9千米、11.2千米和16.6千米,并依次命名为第一、第二和第三宇宙速度。牛顿不但验证了前辈们的成果,而且为未来空间运载工具的最低推力或速度下限值,提供了精确而权威的科学依据。

  牛顿将其一生的成就写在《自然哲学与数学原理》一书中。他发现了物体运动的三大定律,创立了微积分数学。他后来在谈到自己所取得的成就时说:“如果我比其他人看得远些,那是因为我站在巨人的肩膀上。”

1727年3月20日凌晨,牛顿于久病不医中去世。据说在生命即将停止的时候,他的心情是坦荡而平静的。英国诗人波普为他写的碑铭说:“自然和自然的规律,都藏在黑暗的夜间;人帝说‘让牛顿降生",使一切变得灿烂光明。”

高中物理发展史

牛顿  万有引力

卡文迪许   用扭秤实验测定万有引力常数G

菲涅耳  折射反射定律泊松亮斑

迈克耳逊   光速精确值

托马斯·杨  用干涉法测光波波长

库伦  库伦定律

安培   发现电流之间的相互作用力

法拉第  电磁感应

普朗克  量子理论

德布罗意  物质波

迈克斯韦  电磁波理论

赫兹  发现电磁波

汤姆生  发现电子

查德威克  发现中子

伦琴  X射线

卢瑟福  α粒子散射试验发现质子

爱因斯坦  相对论光电效应质能方程

约里奥-居里夫妇  γ射线

布朗  布朗运动

奥斯特  导线通电产生磁效

相关推荐

物理学史总结

高中物理学史专题★伽利略(意大利物理学家)对物理学的贡献:①发现摆的等时性②物体下落过程中的运动情况与物体的质量无关③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)经典题目伽利略根据实验证实了力是使物体运动的原因(错)伽利略认为力是维持物体运动的原因(错)伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对)★胡克(英国物理学家)对物理学的贡献:胡克定律经典题目胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)★牛顿(英国物理学家)对物理学的贡献①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学②经典力学的建立标志着近代自然科学的诞生经典题目牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)牛顿提出的万有引力定律奠定了天体力学的基础(对)★卡文迪许贡献:测量了万有引力常量典型题目牛顿第一次通过实验测出了万有引力常量(错)卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对)★亚里士多德(古希腊)观点:①重的物理下落得比轻的物体快②力是维持物体运动的原因经典题目亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对)★开普勒(德国天文学家)对物理学的贡献 开普勒三定律经典题目开普勒发现了万有引力定律和行星运动规律(错)托勒密(古希腊科学家)观点:发展和完善了地心说哥白尼(波兰天文学家) 观点:日心说第谷(丹麦天文学家) 贡献:测量天体的运动威廉·赫歇耳(英国天文学家)贡献:用望远镜发现了太阳系的第七颗行星——天王星汤苞(美国天文学家)贡献:用“计算、预测、观察和照相”的方法发现了太阳系第九颗行星——冥王星泰勒斯(古希腊)贡献:发现毛皮摩擦过的琥珀能吸引羽毛、头发等轻小物体★库仑(法国物理学家)贡献:发现了库仑定律——标志着电学的研究从定性走向定量典型题目库仑总结并确认了真空中两个静止点电荷之间的相互作用(对)库仑发现了电流的磁效应(错)富兰克林(美国物理学家)贡献:①对当时的电学知识(如电的产生、转移、感应、存储等)作了比较系统的整理②统一了天电和地电密立根 贡献:密立根油滴实验——测定元电荷昂纳斯(荷兰物理学家) 发现超导欧姆: 贡献:欧姆定律(部分电路、闭合电路)★奥斯特(丹麦物理学家)电流的磁效应(电流能够产生磁场)经典题目奥斯特最早发现电流周围存在磁场(对)法拉第根据小磁针在通电导线周围的偏转而发现了电流的磁效应(错)★法拉第贡献:①用电场线的方法表示电场②发现了电磁感应现象③发现了法拉第电磁感应定律(E=n△Φ/△t)经典题目奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象(对)法拉第发现了磁场产生电流的条件和规律(对)奥斯特对电磁感应现象的研究,将人类带入了电气化时代(错)法拉第发现了磁生电的方法和规律(对)★安培(法国物理学家)①磁场对电流可以产生作用力(安培力),并且总结出了这一作用力遵循的规律②安培分子电流假说经典题目安培最早发现了磁场能对电流产生作用(对)安培提出了磁场对运动电荷的作用力公式(错)狄拉克(英国物理学家)贡献:预言磁单极必定存在(至今都没有发现)★洛伦兹(荷兰物理学家)贡献:1895年发表了磁场对运动电荷的作用力公式(洛伦兹力)阿斯顿贡献:①发现了质谱仪 ②发现非放射性元素的同位素劳伦斯(美国) 发现了回旋加速器★楞次 发现了楞次定律(判断感应电流的方向)★汤姆生(英国物理学家)贡献:①发现了电子(揭示了原子具有复杂的结构)②建立了原子的模型——枣糕模型经典题目汤姆生通过对阴极射线的研究发现了电子(对)★卢瑟福(英国物理学家)指导助手进行了α粒子散射实验(记住实验现象)提出了原子的核式结构(记住内容)发现了质子经典题目汤姆生提出原子的核式结构学说,后来卢瑟福用粒子散射实验给予了验证(错)卢瑟福的原子核式结构学说成功地解释了氢原子的发光现象(错)卢瑟福的a粒子散射实验可以估算原子核的大小(对)卢瑟福通过对α粒子散射实验的研究,揭示了原子核的组成(对)★波尔(丹麦物理学家)贡献:波尔原子模型(很好的解释了氢原子光谱)经典题目玻尔把普朗克的量子理论运用于原子系统上,成功解释了氢原子光谱规律(对)玻尔理论是依据a粒子散射实验分析得出的(错)玻尔氢原子能级理论的局限性是保留了过多的经典物理理论(对)★贝克勒尔(法国物理学家)发现天然放射现象(揭示了原子核具有复杂结构)经典题目天然放射性是贝克勒尔最先发现的(对)贝克勒尔通过对天然放射现象的研究发现了原子的核式结构(错)★伦琴 贡献:发现了伦琴射线(X射线)★查德威克 贡献:发现了中子★约里奥·居里和伊丽芙·居里夫妇①发现了放射性同位素②发现了正电子经典题目居里夫妇用α粒子轰击铝箔时发现电子(错)约里奥·居里夫妇用α粒子轰击铝箔时发现正电子(对)★普朗克 贡献:量子论★爱因斯坦贡献:①用光子说解释了光电效应②相对论经典题目爱因斯坦提出了量子理论,普朗克提出了光子说(错)爱因斯坦用光子说很好地解释了光电效应(对)是爱因斯坦发现了光电效应现象,普朗克为了解释光电效应的规律,提出了光子说(错)爱因斯坦创立了举世瞩目的相对论,为人类利用核能奠定了理论基础;普朗克提出了光子说,深刻地揭示了微观世界的不连续现象(错)★麦克斯韦贡献:①建立了完整的电磁理论②预言了电磁波的存在,并且认为光是一种电磁波(赫兹通过实验证实电磁波的存在)经典题目普朗克在前人研究电磁感应的基础上建立了完整的电磁理论(对)麦克斯韦从理论上预言了电磁波的存在,赫兹用实验方法给予了证实(对)麦克斯韦通过实验证实了电磁波的存在(错)
2023-09-05 14:18:441

《物理学史》

●伽利略·伽利雷(1564年-1642年)人类现代物理学的创始人,奠定了人类现代物理科学的发展基础。● 1900-1926年 建立了量子力学。● 1926年 建立了费米狄拉克统计。● 1927年 建立了布洛赫波的理论。● 1928年 索末菲提出能带的猜想。● 1929年 派尔斯提出禁带、空穴的概念,同年贝特提出了费米面的概念。● 1947年贝尔实验室的巴丁、布拉顿和肖克莱发明了晶体管,标志着信息时代的开始。● 1957年 皮帕得测量了第一个费米面超晶格材料纳米材料光子。● 1958年杰克.基尔比发明了集成电路。● 20世纪70年代出现了大规模集成电路。物理与物理技术的关系:● 热机的发明和使用,提供了第一种模式:技术—— 物理—— 技术● 电气化的进程,提供了第二种模式:物理—— 技术—— 物理当今物理学和科学技术的关系两种模式并存,相互交叉,相互促进“没有昨日的基础科学就没有今日的技术革命”。例如:核能的利用、激光器的产生、层析成像技术(CT)、超导电子技术、粒子散射实验、X 射线的发现、受激辐射理论、低温超导微观理论、电子计算机的诞生。几乎所有的重大新(高)技术领域的创立,事先都在物理学中经过长期的酝酿。物理学的方法和科学态度:提出命题 → 理论解释 → 理论预言 → 实验验证 →修改理论。现代物理学是一门理论和实验高度结合的精确科学,它的产生过程如下:①物理命题一般是从新的观测事实或实验事实中提炼出来,或从已有原理中推演出来;②首先尝试用已知理论对命题作解释、逻辑推理和数学演算。如现有理论不能完美解释,需修改原有模型或提出全新的理论模型;④新理论模型必须提出预言,并且预言能够为实验所证实;⑤一切物理理论最终都要以观测或实验事实为准则,当一个理论与实验事实不符时,它就面临着被修改或被推翻。● 怎样学习物理学?著名物理学家费曼说:科学是一种方法,它教导人们:一些事物是怎样被了解的,什么事情是已知的,了解到了什么程度,如何对待疑问和不确定性,证据服从什么法则;如何思考事物,做出判断,如何区别真伪和表面现象?著名物理学家爱因斯坦说:发展独立思考和独立判断的一般能力,应当始终放在首位,而不应当把专业知识放在首位.如果一个人掌握了他的学科的基础理论,并且学会了独立思考和工作,他必定会找到自己的道路,而且比起那种主要以获得细节知识为其培训内容的人来,他一定会更好地适应进步和变化 。● 学习的观点:从整体上逻辑地,协调地学习物理学,了解物理学中各个分支之间的相互联系。● 物理学的本质:物理学并不研究自然界现象的机制(或者根本不能研究),我们只能在某些现象中感受自然界的规则,并试图以这些规则来解释自然界所发生任何的事情。我们有限的智力总试图在理解自然,并试图改变自然,这是物理学,甚至是所有自然科学共同追求的目标。以物理学为基础的相关科学:化学,天文学,自然地理学等。
2023-09-05 14:18:521

高中物理学史

请问你这个问题是想问什么?是别人学习物理的经历?还是怎么学习高中物理?
2023-09-05 14:19:101

物理学史属于科学史?

是啊
2023-09-05 14:19:224

推荐一本关于物理学史的书

他们说的都不错,建议房主买来看,或者报个班学习物理。我就只推荐一下史蒂芬霍金的《时间简史》。可以很好的丰富你的知识。有科普版。你也可以看看其它他写的书,都很棒。这样对于以后的学习有很大的好处。我是真心这样说的。不为赚分。我特别特别特别推荐房主多看课外书。丰富知识。我就后悔没多看书,所以,现在要多看书。学习物理其实真的可以报一对一来学习。但课外知识就要看你积累了。多看书才有知识啊!你以为诸葛亮天生聪明?智者都是多看书才来的啊。纯手写,希望能帮到你谢谢
2023-09-05 14:19:332

物理学史上的两朵乌云指的是什么

19世纪的最后一天,欧洲著名的科学家欢聚一堂。会上,英国著名物理学家威廉.汤姆生(即开尔文男爵)发表了新年祝词。他在回顾物理学所取得的伟大成就时说,物理大厦已经落成,所剩只是一些修饰工作。同时,他在展望20世纪物理学前景时,却若有所思地讲道:“动力理论肯定了热和光是运动的两种方式,现在,它的美丽而晴朗的天空却被两朵乌云笼罩了,”“第一朵乌云出现在光的波动理论上,”“第二朵乌云出现在关于能量均分的麦克斯韦-玻尔兹曼理论上。威廉.汤姆生在1900年4月曾发表过题为《19世纪热和光的动力学理论上空的乌云》的文章。他所说的第一朵乌云,主要是指迈克尔逊-莫雷实验结果和以太漂移说相矛盾;他所说的第二朵乌云,主要是指热学中的能量均分定则在气体比热以及热辐射能谱的理论解释中得出与实验不等的结果,其中尤以黑体辐射理论出现的“紫外灾难”最为突出。开尔文是19世纪英国杰出的理论物理和实验物理学家,是一位颇有影响的物理学权威,他的说法道出了物理学发展到19世纪末期的基本状况,反映了当时物理学界的主要思潮。物理学发展到19世纪末期,可以说是达到相当完美、相当成熟的程度。一切物理现象似乎都能够从相应的理论中得到满意的回答。例如,一切力学现象原则上都能够从经典力学得到解释,牛顿力学以及分析力学已成为解决力学问题的有效的工具。对于电磁现象的分析,已形成麦克斯韦电磁场理论,这是电磁场统一理论,这种理论还可用来阐述波动光学的基本问题。至于热现象,也已经有了唯象热力学和统计力学的理论,它们对于物质热运动的宏观规律和分子热运动的微观统计规律,几乎都能够做出合理的说明。总之,以经典力学、经典电磁场理论和经典统计力学为三大支柱的经典物理大厦已经建成,而且基础牢固,宏伟壮观!在这种形势下,难怪物理学家会感到陶醉,会感到物理学已大功告成,因而断言往后难有作为了。这种思想当时在物理界不但普遍存在,而且由来已久。普朗克曾在1924年做过一次演讲。在演讲中,他回忆1875年在慕尼黑大学学物理时,物理老师P.约里(1809-1884)曾劝他不要学纯理论,因为物理学“是一门高度发展的、几乎是臻善臻美的科学”,现在这门科学“看来很接近于采取最稳定的形式。也许,在某个角落里还有一粒尘屑或一个小气泡,对它们可以去进行研究和分类,但是,作为一个完整的体系,那是建立得足够牢固的。而理论物理学正在明显地接近于几何学在数百年中所已具有的那样完美的程度。”普朗克的另一位名师,柏林大学的G?基尔霍夫(1824-1887)也说过类似的话,他说“物理学已经无所作为,往后无非在已知规律的小数点后面加上几个数字而已。”尽管开尔文对物理学成就的评价言之过激,但他能够在此万里晴空中发现“两朵乌云”并为之忧心忡忡,足见他富有远见。物理学发展的历史表明,正是这两朵小小的乌云,终于酿成了一场大风暴。
2023-09-05 14:19:451

求物理学史

中国物理学史》分为三编。上编,对比编,着重介绍中国悠久历史文化中有关物理知识的内容,采用与以古希腊为主的西方有关论述进行对比的方法,论证中国古人并不比西方人差,没必要“言必称希腊”,并对古代中国科技为何先进,后来又为何落后的原因进行剖析,留给今人做思考。中编,认知编,介绍经典物理在中国的传播、发展,中国物理学会的成立与活动,物理学人对物理科学的贡献,包括以中国人命名的物理学公式、定律、定义,重点介绍改革开放后物理学各个领域的前沿发展态势及重要成果。下编,争鸣编,介绍21世纪以来,非主流派学者提出的物理新概念、新观点、新理论,虽尚未成熟,但体现了创新,闪现了思想之火花,希望给读者一些启迪。书名中国物理学史出版社湖南大学出版社页数190页开本16作者舒恒杞更多基本介绍内容简介《中国物理学史》是从物理学史这个角度进行爱国主义教育的教材。适合从事相关研究工作的人员参考阅读。作者简介舒恒杞,1940年2月出生,湖南溆浦人。怀化学院物信系退休副教授。原中国物理学会会员,中国近代物理研究会师专分会理事会理事,《探索》、《北京相对论研究动态》编委。个人业绩曾被载入《溆浦名人》、《世界优秀专家人才名典》等书中,编著《电磁学》、《高能物理发展年史》等教材,主编《湖南省师专原子物理学标准化试题库》,参与“创新专业综合理科新教材”中的《物质结构》一书的编写,并获高教部“高师理科一体化理论与实践”二等奖。主要学术论文有《场是怎样传递相互作用的》《微观粒子新的分类表》《略论反物质》《核外电子排布的关键》《东西方古代对电和磁现象认识的对比》等20余篇,并对大、中学生进行过20余次前沿科普专题讲座。历经二十余年的辛勤耕耘,查阅大量文献资料,多方求证,终于在古稀之年编著出《中国物理学史》。
2023-09-05 14:20:231

简单阐述世界近代物理学史的发展和当今物理学发展的前沿问题?(不少于1000字)

找一本《物理学史》,把最后两三章摘抄一下就行了
2023-09-05 14:20:355

物理学发展史求教

有物理学新基本理论(或物理学新基本定律),发表在《科技创新导报》2008年第12期的171页上!
2023-09-05 14:20:582

物理学史的介绍

本书介绍物理学发展的历史,着重讲述物理学基本概念、基本定律和各主要分支的形成过程,特别侧重现代物理学的发展史。
2023-09-05 14:21:091

有哪位帮忙去整理一下高中物理的物理学史考点啊!!

一、力学:1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体不会比轻物体下落得快;他研究自由落体运动程序如下:提出假说:自由落体运动是一种对时间均匀变化的最简单的变速运动;数学推理:由初速度为零、末速度为v的匀变速运动平均速度 和 得出 ;再应用 从上式中消去v,导出 即 。实验验证:由于自由落体下落的时间太短,直接验证有困难,伽利略用铜球在阻力很小的斜面上滚下,上百次实验表明: ;换用不同质量的小球沿同一斜面运动,位移与时间平方的比值不变,说明不同质量的小球沿同一斜面做匀变速直线运动的情况相同;不断增大斜面倾角,重复上述实验,得出该比值随斜面倾角的增大而增大,说明小球做匀变速运动的加速度随斜面倾角的增大而变大。合理外推:把结论外推到斜面倾角为90°的情况,小球的运动成为自由落体,伽利略认为这时小球仍保持匀变速运动的性质。(用外推法得出的结论不一定都正确,还需经过实验验证)注:伽利略对自由落体的研究,开创了研究自然规律的一种科学方法。(回忆理想斜面实验)2.1683年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律。3.17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。4.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。5.17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。6.我国宋朝发明的火箭与现代火箭原理相同,但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。7.17世纪荷兰物理学家惠更斯确定了单摆的周期公式。周期是2s的单摆叫秒摆。8.奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。(相互接近,f增大;相互远离,f减少)二、热学:1.1827年英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。2.19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。3.1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。4.1848年 开尔文提出热力学温标,指出绝对零度(-273.15℃)是温度的下限。T=t+273.15K 热力学第三定律:热力学零度不可达到。三、电磁学:1.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。(转化)2.1752年,富兰克林在费城通过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。3.1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。4.1911年荷兰科学家昂尼斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。5.1841~1842年 焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。6.1820年,丹麦物理学家奥斯特发现电流可以使周围的磁针偏转的效应,称为电流的磁效应。安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥;同时提出了安培分子电流假说。荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。7.汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。1932年美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。8.1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应现象;1834年楞次发表确定感应电流方向的定律。9.1832年亨利发现自感现象,即在研究感应电流的同时,发现因电流变化而在电路本身引起感应电动势的现象。日光灯的工作原理即为其应用之一。双绕线法制精密电阻为消除其影响应用之一。10.1864年英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场的基本方程组,后称为麦克斯韦方程组,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波(注意第二册P243的图)。1887年德国物理学家赫兹用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。四、光学:1.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。2.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)3.1621年荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。4.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。1801年,英国物理学家托马斯u2022杨成功地观察到了光的干涉现象1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。1864年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,1887年由赫兹证实。1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。1900年,德国物理学家普朗克为解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律。(量子力学的说明在第三册P56)1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)光具有波粒二象性,光是电磁波、概率波、横波(光的偏振说明光是一种横波)。光的电磁说中要注意电磁波谱(第三册P31),还要注意原子光谱(涉及光谱分析第三册P50)5.1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。(明确其局限性)6.1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。(第三册P54)五、原子物理学:1.1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。2.1909年-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。3.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核也有复杂的内部结构。天然放射现象有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变的快慢(半衰期)与原子所处的物理和化学状态无关。4.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。5.1939年12月德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。1942年 在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。6.1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是利用强激光产生的高压照射小颗粒核燃料。7.现代粒子物理:1932年发现了正电子,1964年提出夸克模型;粒子分为三大类:媒介子,传递各种相互作用的粒子如光子; 轻子,不参与强相互作用的粒子如电子、中微子; 强子,参与强相互作用的粒子如质子、中子;强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.
2023-09-05 14:21:261

从物理学史角度分析动量为什么以p=mv的形式来表达

【摘要】:正 笔者在高中物理教学过程中教"动量和冲量"时,有一位学生问到这么一个问题:为什么要引入动量这个物理量?动量为什么是p=mv?可不可以是P=(mv)~2、p=(mv)~3?等等。这是一个很有思想的学生,而且这个问题也很有意思,但要讲清楚却不是一件容易的事。为什么要引入动量这个物理量?教师可能会引用教科书中对动量的引入的话来回答学生:前面学习了牛顿运动定律,但是对碰撞、打击一些变力问题在高中阶段有困难,所以物理学家引入动量的概念,为解决这一类问题开辟一条新途径。好像动量的引入是为了解决这类问题而引入的,但从物理学史角度看"动量"这个物理量的引入的真正意思当然不是仅仅为了解决这类问题。也有可能会用这句话回答:动量是描述运动物体的运动状态的,但是
2023-09-05 14:21:341

高中物理学史(详细)

你懂得
2023-09-05 14:21:451

物理学史读后感

  物理学史读后感(一)   物理学史是人类对自然界中各种物理现象的认识史,它研究的是物理学发生、发展的规律,说明了物理学中的基本概念、定律和理论体系的酝酿、产生和发展的辩证过程。它是一座知识财富的宝库,不仅展示了物理学理论形成的前因后果、来龙去脉,而且深刻的揭示了物理学的研究方法;它也是一块精神财富的宝地,物理学的发展极大地改变着人们的自然观、世界观,升华了人们对人与自然,人与社会的认识。与此同时,物理学家在探求真理的过程中展现出的人格魅力,不畏艰险献身科学的高尚品格,也给后人增添了无穷的榜样力量。物理学不仅以其知识、方法和思想极大的促进了自身的发展,而且在更广阔的领域深刻的影响着人类文明的进程,成为人类文化的一部分。   学习物理学史就是为了了解物理学所走过的道路,它将有助于我们更深刻地认识物理学,更有效地应用和发展物理学。过去很多人总是在说以史为鉴,但我们认为对物理学史的学习仅仅以史为鉴还远不能满足时代的要求,更应该在以史为鉴的基础上以史为器去发展、去创新。物理学史和自然科学史告诉我们,历史上的一些发明、创造并不是前人研究内容的简单重复,而往往是前人研究方法、思维特征的重现,并且它更是螺旋形上升的。   在物理教学中适当引入物理学史教育,让学生更多的了解科学发展的历程,并从前人的经验中受到启发、教益,从而感悟科学方法,提升人文素养,培养创新意识,是素质教育全面发展观的基本要求,也是落实新课标三维目标的必然选择。   下面,从几个方面简述物理学史的作用:   一、感悟科学方法   物理学的发展史是一部物理学方法论的发展史,物理学在发展过程中,不仅产生了宝贵的理论成果,更留给后人值得深思的物理学的研究方法。物理发展的历史证明,每一次重大科学理论的突破,往往都伴随着新的科学方法的诞生,而新的科学方法又反过来促进物理学的发展。   力学是物理学中发展最早的一个分支,机械运动是力学中最直观、最简单、也是最便于观察因而也最早得到研究的一种运动形式。然而,和物理学的其他部门相比,力学的研究却经历了更为漫长的过程。从古希腊时代算起,这个过程几达二千年之久。只所以会如此漫长,一个很重要的原因就是人类缺乏经验,缺乏正确的科学研究方法,因而也就难以得出正确的科学结论。亚里士多德是古希腊时代人类历史上少数百科全书式的大哲学家,而且是通过观察自然,运用形而上学的哲学思想方法试图解释自然,奠定物理学思想萌芽的人。然而,由于历史的局限,亚里士多德对自然的研究仅仅停留在观察和思辩的层面上,致使像力是维持物体物运动的原因,重的物体下落得快,轻的物体下落得慢等错误长期统治着人们的思想。   但是,伽利略没有仅仅停留在逻辑思辩上,而是继续做了斜面实验。他发现,落体的速度越来越快,是一种匀加速运动,而且加速度与重量无关;他还发现,斜面越陡,加速度越大,斜面越平,则加速度越小,在极限情况下,斜面垂直,相当于自由下落,不同物体的加速度是一样的。当斜面完全水平时,加速度为零,这时,一个运动着的物体就应该是沿直线永远运动下去。斜面实验表明,物体运动的保持并不需要外力,需要外力的是物体运动的改变。伽俐略最终用理想实验由斜面的情形推到自由落体和水平运动的情形。   伽俐略逻辑推理与实验验证相结合的思维方式,为后人找到了研究物理的正确科学方法。从此,一门博大精深的科学已经出现(伽俐略语),物理从此从哲学中分离出来并得以迅速发展。纵观物理学三百余年的发展史,可以看出,实验在检验已知理论,探索未知规律等方面起到了不可替代的作用。早在1687年,牛顿在其出版的《自然哲学的数学原理》一书中就已经正式提出了万有引力定律,可直到一百多年后的1798年,英国科学家卡文笛许利用扭称这一巧妙的实验装置测出引力常数后,万有引力定律才得以全面的展示在世人面前;麦克斯韦对电磁波理论进行了长达十年的研究,并以一组简洁的数学方程把电磁波理论概括得十分优美对称,但当年却难以令人信服,直到二十多年后他预言的电磁波被赫兹的实验所证实,他的学说才成为举世公认的电磁理论基础;1905年,爱因斯坦用光电子假说总结了光的微粒说和波动说之间长期的争论,能很好的解释光电效应的实验结果,但是直到1916年,当密立根以其严密的实验全面地证实了爱因斯坦的光电方程后,光的粒子性才被人们所接受……可以说:实验,只有实验,才是物理学的基础。   将物理学史引入课堂,不仅能使学生有身临其境之感,而且能领略前辈大师的研究方法,得其精髓,有所借鉴。   二、提升人文素养   物理学史是一部人文史,物理学家们在从事科学活动的过程中,不仅揭示了自然界基本运动形式的诸多真理,同时也为后人树立了一座座道德丰碑。科学家们在探索自然的过程中展现出的人格魅力、人文素养,对科学事业的执着追求精神,都会使学生的情感升华,对引导学生确立正确的人生观和价值观,实现人格的完美化具有积极的促进作用。牛顿是经典物理的奠基人,但他却谦称自己站在巨人的肩膀上;居里夫妇是镭元素的发现者,然而他们却没有居功自傲,镭只是一种元素,它属于世界所有,科学应当为大众服务,它应当属于全人类。她说过的这句话一定会给学生留下深刻的印象   物理学史也是一部美学史,对称、和谐、统一等美学要素在物理学的发展中起着非常重要的文化导向作用。当先人们对天体的运动还充满着神秘与未知时,却能直观的感受到其运动轨道应该是圆周,因为圆是美的。物理之美是直观的,比如彩虹是极美的表面现象,人人都可以看到;物理之美也是深刻的,电荷之间的引力与物体之间的万有引力都遵循平方反比率,电子绕核运动的模型和星体之间的模型相仿等等无一不显示着物理学深刻的统一美。   物理学是一门与自然、生活、技术进步和社会发展有着最广泛联系的科学。它可以揭开大千世界的奥秘,使学生志向高远,憧憬未来,本应该是学生最为钟情的一门课程。然而,有时它竟成为学生最为头疼和恐惧的课程。这不能不说是单一课程目标与僵化教学模式的一个苦果,我们有理由相信,充分重视物理课程中的人文素养资源,坚持三维课程目标,就一定能够焕发物理课程的魅力。   三、培养创新意识   物理学的发展史本身就是怀疑、批判、求真、创新的发展史。通过物理学史的教学展现物理学发展的历程, 展现在这个历程中,物理学家们对真理的追求,不同理论观点的冲突、纷争与批判,有助于培养学生的怀疑和批判精神。而怀疑和批判精神对于科学发展是不可或缺的,是创新意识和创新能力的重要特征。   从亚里士多德力是维持物体运动的原因到牛顿惯性是物体的根本属性;从牛顿的绝对时空观到爱因斯坦的广义相对论;从热质说到能量说;从光的微粒说、波动说到波粒二象性和光子说,物理学史展现的.知识是一种动态的、变化的知识,呈现出人类对物理现象的认识不断深化的过程。这种过程既突显了科学家们不迷信权威,不迷信书本,敢于怀疑的创新精神,同时也隐喻着人类对自然的认识是无止境的,从而深刻的促进着人们的思想解放。   19世纪末,物理学已经有了相当的发展,几个主要部门——力学、热学、电磁学以及光学,都已经建立了完整的理论体系,在应用上也取得了巨大的成果。这时一部分物理学家认为,物理学已经发展到顶,伟大的发现不会再有了,以后的任务无非是在细节上作些补充和修正,使常数测得更精确而已。然而,也正是这个时候,伦琴发现了X射线,并导致了电子的发现。X射线一旦发现,立即取得了广泛的应用,迅速打破了物理学界沉闷的空气,极大的促进着人们思想的解放,带来了一场深刻的物理学革命,把人们的注意力引向更深入、更广阔的天地,从而揭开了现代物理学革命的序幕。   物理课程不应该把人类认识自然的历史擦去,不能被公式和逻辑的面纱掩盖。把动态的、进化的物理学理论异化为机械的公式、定律,繁、难、偏、旧的习题呈现给学生,在传统教学中是司空见惯的。其结果必将使学生对原本不断深化的物理学理论教条化、神圣化,不自觉地剥夺了学生的怀疑精神、批判精神,丧失培养学生创新能力的极好机会,模糊了物理学习的最终目的。   现有的物理知识,都是人类与物理世界的长期对话中,经过无数的曲折与反复,进行抽象概括而获得的。只有考察物理学的过去,才能理解它的现状,把握它的未来,对物理学史相关知识的探究,必将潜移默化地提升学生的科学素养和人文素养,对学生的全面发展起到积极的促进作用。   物理学史读后感(二)   物理学是研究物质及其行为和运动的科学,是最早的自然学科之一。物理学的发展是很久远的,自古以来时间最长的也就是物理学中最基本的,也是最重要的部分,经典物理学,其主要研究的方面是力学,光学和天文学的研究。也正是这些方面,让物理学家们探索了相当长的时间,从人类的文明开始,人们就开始关注世界上事物的发展,从刚开始的额懵懂,到逐渐的了解,这其中有着怎么样坎坷曲折的道路,无数次的错误,无数的物理学家为之奋斗终身,献出自己的青春年华,为的就是获取真理。   没有探索就没有发现,没有大胆的打破传统的思想,就不会有新的理论的诞生,或者是对旧的理论的改正,正如伽利略一样,正是打破了传统的思维,敢于挑战人们所信奉的真理,才使得他获得了真理,站在了物理学的巅峰之上。自古,亚里士多德的理论就一直被人们信奉为真理,他提出:重的物体和清的物体下落的速度是一样的。这被人们当做真理传承了号几个世纪,可是,当伽利略通过大量的实验证明着是个错误的时候,他勇敢的提出来了,通过比萨斜塔的实验,他向世人证明了自己的正确,证明了本有的真理,打破了巩固人们思想的错误理论。   科学的发展是很漫长的,其中,也是要付出许多沉痛的代价的,在宗教的束缚下,在上帝与地心说的统治之下,哥白尼和布鲁诺是何等的不畏权势,勇敢而大胆的相信自己的真理,并不断的向人们宣示这真理,在被宗教迫害,逼迫其放弃自己的真理而服从宗教的通知的时候,他们毅然拒绝,终为自己所信奉的真理献出了自己的生命,可是日心说在后代终于还是被证明是正确的,从而被世人所接受。   发展的事物总是那么的坎坷,可是科学的探索是没有尽头的,在经典物理以后,继而发展起来的就是爱因斯坦的相对论和现在人们经常耳边能听说到的原子物理学,这时的发展也是一样那么的不顺利,在爱因斯坦提出相对论之后很长的一段时间人们总是不相信爱因斯坦在相对论中所描述的时间和空间的关系,可是,不管刚开始人们是一种怎么样的心态,最红人们所接受的都必须是真理的,因为没有任何食物可以战胜得过真理。但是真理的诞生却是要靠我们很多人的奋斗才能产生的。   物理学史读后感(三)   物理学作为一门科学意味着能够更多的创造出人们所需要的物质财富,对社会发展的积极作用。   在我看来,要想完整表达物理学史对我们学习的要求,应做到以下几点:   1、通过物理学史的学习,激发学生的学习兴趣。   有句话说得好,兴趣是最好的老师。当你带着兴趣去学某样东西的时候,可以达到事半功倍的效果。物理学史记载人类揭开世界奥秘和令人兴奋的探索历程。不论是否喜欢历史,大多数人都是喜欢听故事的,因为孩子最早的认知就是从故事中体味和形成的。以故事的形式讲历史学生更易接受。   2、通过物理学史的学习,培养观察和分析问题能力。   物理学是一门以实验为基础的科学,观察和实验既是研究物理学的基本方法,也是学习物理的基本方法。物理学史中描述许多科学家善于从不被注意的一些平常现象中细心地观察与思考的事例。比如伦琴一生在物理学领域中进行过大量实验研究工作,一次实验中,他偶然发现包有黒纸的底片被曝光,但他从没放弃过着一个细小现象。正是他从这种观察能力、分析能力使他发现X射线从而获得诺贝尔奖。学生在了解物理学史知识的过程中便可认识到注意观察和认真进行实验是学好物理学的关键。因此在今后的学习中要有意识的观察,亲自动手实验,逐步培养勤观察、勤思考的习惯,这种能力的培养在今后的工作中将受益无穷。   3、通过物理学史的学习,培养质疑精神和提出科学问题的能力。   独立思考和独立判断的能力,首先表现在怀疑和批判的精神。科学史上大量实例表明,不囿于传统理论和观念,还迷信权威和书本,是科学创造的思想前提。众所周知,在爱因斯坦之前,洛伦兹和彭加勒已经走到相对论的大门口,只是由于未能摆脱绝对时空观的束缚,才没有最终迈进相对论的门槛。正是由于爱因斯坦抛开了绝对运动和静止以太的观念,并深刻地审查了同时性概念的物理学根据,才创建了狭义相对论,引起了人类时空观的巨大变革。   4、通过学习物理学史,学习物理大师的科学方法和进行科学思维的训练。   物理学研究中建立了许多理想模型,理想过程、理想实验、运用了观察和实验,类比和联想,猜测和试探分析和综合,佯谬和反证方法,科学假设方法等等,物理学史中有大量的生动事例说明科学大师们熟练而巧妙地运用这些方法取得重要成果的过程。利用这些事例,可以对学生进行具体的科学方法的教育。比如讲自由落体运动时,介绍伽利略用归谬法驳斥亚里士多德重的物体比轻的物体落得快。伽利略指出:如果从塔上落下来两个同体积的球,其中之一不另一个重一倍,按亚里士多德的理论重的不轻的快一倍。如果将两球绑在一起,重量之和大于重球,下落速度应该比重球快。但如果两球是独立的,他们应该比轻球快,比重球慢。一件事情却出现两种结果,证明理论有误。爱因斯坦在创立相对论过程中,设法用真实实验来说明,设想了大量的理想实验,理想模型,成为物理学史中的一朵奇葩。   5、通过物理学史的学习,服务于物理知识的掌握。   任何理论的建立都不是某个人突发奇想而出现的。都有其发生、发展、成熟的过程。有的需要一个人一生甚至几代人的努力才能完善一套理论。1687年,牛顿发表了《自然哲学之数学原理》,这部巨着总结了力学的研究成果,标志了经典力学体系初步建立。这是物理学史上第一次大综合,是天文学、数学和力学历史发展的产物,也是牛顿创造性研究的结晶。但是这些成就并不能只归功于牛顿一人,因为在牛顿之前就有很多科学家在这方面做过大量有成就的研究,并取得大量成果,这位牛顿的研究打下了坚实的理论和资料方面的基础。牛顿在一封给胡克的信中写道如果我看得更远,那是因为站在巨人的肩上。人们通常认为他指出的巨人是伽利略和开普勒。其实他完成的综合工作是基于从中世纪以来世世代代从事科学研究的前人的累累成果。   6、通过物理学史的学习,培养科学精神。   所有的科学家,都不能脱离他所在社会,他首先是一个社会人,然后他才是一个科学家。科学技术像一把双刃剑,既能通过促进经济和社会发展以造福于人类,同时也可能在一定条件下对人类的生存和发展带来消极后果。   遥想两千三百多年前,亚里士多德提出物理学的概念以来,物理学真是历尽荣辱兴衰,但最终冲破了神学的桎梏。在科学的海边探望的孩子牛顿,奠定了物理学的基础,三百多年来,物理学已发展成为一门以人类进步、社会发展休戚相关的学科。物理学作为一门最基础的自然科学,它的发展动力是深深地植根于人类对真理的非功利追求上,正是这种非功利的追求给人类带来最大的收益。它的发展从来就对人类社会思想、文化发生巨大影响。人类社会进步的一个主要动力便是科学精神,现代科学精神的典范和集中的反映就是现代物理学。以现代物理学为代表的科学精神,是人类进步的一面旗帜,它将高高飘扬在未来的岁月中。而我们要做的就是学习科学家的优良品质,刻苦学习,向科学的高峰勇敢地攀登。
2023-09-05 14:21:541

物理学史

百度百科
2023-09-05 14:22:052

高考物理学史有多少分

高考物理总分110分,生物90分,化学100分。
2023-09-05 14:22:161

求关于物理学史的知识点

百度文库利多的是,不论是高中的还是初中的,还是大学的都有的,朋友。
2023-09-05 14:22:414

一篇3000字左右的物理学家故事或物理学史的读书(体会)报告

我高一四班。。。悲惨 谁找到了??????????????????????????????????????、
2023-09-05 14:23:0310

物理学史

教师培训的题目
2023-09-05 14:23:332

物理学史的教育价值

关于物理学史的教育价值如下:物理学家在得出重大科学发现的同时,往往还总结出一整套科学研究的方法,如伽利略首先走上了用精确的数学分析和总结实验数据为特点的研究道路,在实验设计中运用了理想化方法,以可靠的事实为基础。经过抽象思维,抓住主要因素,化繁为简,揭示本质规律,牛顿则是头一位大量应用数学方法来系统地整理物理理论、用系统的数学方法对个别研究成果进行整理、组织,并使其由经验积累上升到理性概括,由零碎知识上升到系统理论的科学家。富兰克林、欧姆、法拉第和麦克斯韦则在建立单元电液理论、欧姆定律、电力线和电磁场理论的过程中,巧妙地应用了类比法。这些都是人类在认识自然界中所积索起来的宝贵财富。正如著名的数理学家拉普拉斯所指出的:"认识一种天才的研究方法,对于科学的进步....并不比发现本身更少用处。"因此,在物理教学中如果将物理学史中总结归纳出来的一系列思维方法介绍给学生,并为之掌握,这对于培养学生分析、处理和解决问题的能力,在学生进行创造性思维,探索新知识,摆脱"题海”困扰,减轻学习负担上都是很有帮助的。
2023-09-05 14:23:421

什么是是物理学史研究的基础?

中国古代物理学史的研究是必须从一切古书中发掘史料的。中国古书没有标点符号,不同的断句读法,可以解释出不同的意义来;古汉语又是一字多义,一个字的不同解释,又可以阐发出迥异的内容。再加以古书,特别是一些笔记小说之类的书,记事往往不尽翔实,或以无作有,或以少作多,或张冠李戴,或添油加醋……因此,每每需要我们作一番鉴别的工作,要去伪存真,去芜存精。这项工作做不好,就得不到真实的史料。所以它是物理学史研究的基础。
2023-09-05 14:24:141

近几年的高考物理学史

1.2008年广东理科基础1、最早提出用电场线描述电场的物理学家是 ( )dyszplgA.牛顿 B.伽利略 C.法拉第 D.阿基米德答:Cdyszplg2.2001年上海卷9.请将右面三位科学家的姓名按历史年代先后顺序排列: 、 、 。任选其中二位科学家,简要写出他们在物理学上的主要贡献各一项: , 。答:伽利略,牛顿,爱因斯坦。伽利略:望远镜的早期发明,将实验方法引进物理学等;牛顿:发现运动定律,万有引力定律等;爱因斯坦:光电效应,相对论等。dyszplg3.2007年广东卷1、许多科学家在物理学发展过程中做出了重要贡献,下列表述正确的是 ( )A.卡文迪许测出引力常数B.法拉第发现电磁感应现象C.安培提出了磁场对运动电荷的作用力公式D.库仑总结并确认了真空中两个静止点电荷之间的相互作用规律dyszplg答:A B Ddyszplg4.2004年上海卷2.下列说法中正确的是 ( )A.玛丽u2022居里首先提出原子的核式结构学说.B.卢瑟福在α粒子散射实验中发现了电子.C.查德威克在原子核人工转变的实验中发现了中子.D.爱因斯坦为解释光电效应的实验规律提出了光子说.答:C D5.2005年上海卷6.2005年被联合国定为“世界物理年”,以表彰爱因斯坦对科学的贡献.爱因斯坦对物理学的贡献有 ( ) A.创立“相对论”, B.发现“X射线”,C.提出“光子说”, D.建立“原子核式模型”.答:A C6.2006年广东卷3、下列说法正确的是 ( )A.康普顿发现了电子B.卢瑟福提出了原子的核式结构模型C.贝史勒尔发现了铀和含铀矿物的天然放射现象D.伦琴发现了X射线 答:B C D7.2008年理综上海卷4、二十世纪初,为了研究物资内部的结构,物理学家做了大量的实验,揭示了原子内部的结构。发现了电子、中子和质子,右图是( )A.卢瑟福的α粒子散射实验装置B.卢瑟福发现质子的实验装置C.汤姆逊发现电子的实验装置D.查德威克发现中子的实验装置答:A8.2009年上海卷8.牛顿以天体之间普遍存在着引力为依据,运用严密的逻辑推理,建立了万有引力定律。在创建万有引力定律的过程中,牛顿( )A.接受了胡克等科学家关于“吸引力与两中心距离的平方成反比”的猜想B.根据地球上一切物体都以相同加速度下落的事实,得出物体受地球的引力与其质量成正比,即Fuf0b5m的结论C.根据Fuf0b5m和牛顿第三定律,分析了地、月间的引力关系,进而得出Fuf0b5m1m2D.根据大量实验数据得出了比例系数G的大小答:ABC解:题干要求“在创建万有引力定律的过程中”,牛顿只是接受了平方反比猜想,和物体受地球的引力与其质量成正比,即Fuf0b5m的结论,而提出万有引力定律后,后来利用卡文迪许扭称测量出万有引力常量G的大小,至于D项也是在建立万有引力定律后才进行的探索,因此符合题意的有ABC。9.2009年海南卷11.在下面括号内列举的科学家中,对发现和完善万有引力定律有贡献的是 。(安培、牛顿、焦耳、第谷、卡文迪许、麦克斯韦、开普勒、法拉第)答:第谷、开普勒、牛顿、卡文迪许解:第谷搜集记录天文观测资料、开普勒发现开普勒三定律、牛顿发现万有引力定律、卡文迪许测定万有引力常数10.2009年理综宁夏卷14. 在力学理论建立的过程中,有许多伟大的科学家做出了贡献。关于科学家和他们的贡献,下列说法正确的是 ( )A. 伽利略发现了行星运动的规律 B. 卡文迪许通过实验测出了引力常量 C.牛顿最早指出力不是维持物体运动的原因 D.笛卡尔对牛顿第一定律的建立做出了贡献 答:B D解:行星运动定律是开普勒发现的A错误;伽利略最早指出力不是维持物体运动的原因,C错误。11.2009年广东卷1.物理学的发展丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了物质生产的繁荣与人类文明的进步。下列表述正确的是 ( )A.牛顿发现了万有引力定律 B.洛伦兹发现了电磁感应定律C.光电效应证实了的光的波动性 D.相对论的创立表明了经典力学已不再适用答:A解:电磁感应定律是法拉第发现的,B错误;光电效应证实了光的粒子性,C错误;相对论论和经典力学研究的领域不同,不能说相对论的创立表明经典力学已不再适用,D错误。正确答案选A。
2023-09-05 14:24:211

高中课本里涉及到的物理学史?

物理学史可以直接从名人入手,你看看高中有哪些闻名世界的物理学家,那么直接再看他的成就即可。从这一点上应该很好总结。手边没有高中物理书,只能为阁下提些建议了。
2023-09-05 14:24:323

物理学史 轶事 趣闻

朋友,你一定知道法拉第这个光辉的名字吧!他在1831年发现的电磁感应现象,预告了发电机的诞生,开创了电气化的新时代。他毕生致力研究的科学理论——场的理论,引起了物理学的革命。相传法拉第的老师戴维,一个誉满全球、世界公认的大化学家在瑞士日内瓦养病时,有人问他一生中最伟大的发现是什么,他绝口不提自己发现的钠、钾、氯、氟等元素,却说: “我最伟大的发现是一个人,是法拉第!” 是的,戴维回答得好,重要的是人!下面就是这个学徒出身的大科学家在踏进科学大门之前,在坎坷的生活道路上向往科学、努力奋斗以及在进入科学殿堂之后建立丰碑的故事。 为了装备自己的小实验室,法拉第到药房里去拣别人扔掉的瓶子,花半个便士买一点最便宜的药品。他抱着拣来的、买来的东西,回到书店里的阁楼上,心里乐开了花。从此,每天下工以后,法拉第埋头在自己的小实验室里点上一支蜡烛,进行实验。 从13岁到21岁,法拉第在书店里当了8年学徒。这正是他长知识、长身体的时期。在将近3000个夜晚,法拉第把时间都用在读书和实验上了。 1791年9月22日,迈克尔.法拉第出生在一个铁匠的家里。他父亲体弱多病,铁匠铺开不下去了,最后只好盘给人家,自己去当帮工。为了维持生活,法拉第12岁当报童,13岁去里波先生的书店里当学徒,学装订手艺。从此,法拉第走上了生活的道路。 在里波先生的书店里,到处是书。这里是智慧的源泉,知识的海洋。法拉第象一块巨大的海绵,在知识的海洋里贪婪地吸吮着。劳动了一天以后,他在微弱的烛光下拼命地读书。书里讲的那些电的现象和化学实验,把法拉第迷住了。他渴望把书上讲的那些实验能做一遍,可是一个穷学徒哪来的钱买仪器和药品呢! 里波先生的书店在伦敦是很有名气的,加上法拉第手艺出众,态度和气,赢得了顾客的好感。因此,皇家学会很多会员,都乐意把自己的科技书籍送来装订。顾客中有位当斯先生很喜欢法拉第,有一次他送 给法拉第4张入场券,让他去皇家学院听大化学家戴维的讲座。 1812年2月的一个晚上,法拉第生平第一次跨进皇家学院的大门,坐在阶梯形的讲演厅里。他的心情紧张而又焦急。戴维终于出现了,大厅里响起一阵阵热烈的掌声。戴维讲的题目是发热发光物质,讲得那么轻松,却又那么透彻。他精神抖擞,神采奕奕,天才的光华和热力,似乎正从他的身上向外辐射。法拉第被深深地吸引住了,他飞快地记着,笔记本翻过一页又一页。 法拉第一连听了戴维的4次讲座,好像游历了美丽、庄严、圣洁的科学殿堂,那里阳光灿烂,照得他心里 光明、温暖。他把4次听讲的笔记仔细整理以后,用漂亮的皮封面装订成册。他经常轻轻地翻阅,多么渴望 能从事科学研究工作啊! 遗憾的是,在那个时代,命运对穷人从来不露出笑脸。它总是一副威严、狰狞的面孔,迫使你对它膜拜和 屈服。然而,也有许多穷人并不屈从,他们顽强地和命运搏斗。法拉第就是其中最顽强的一个。这个铁匠的儿子,从小爱看父亲挥舞大锤,一下一下地锻打烧红的铁块。铁块变冷变硬以后,父亲把它放在炉火里重新烧红。经过千锤百炼,铁坯终于按照人的意志变成各种工具。父亲曾经自豪地对他说:铁匠面前永远没有顽铁。多少年来,父亲的话一直激励着他。 于是,他决定写信给当时的英国皇家学会会长班克斯爵士,要求在皇家学院找个工作,哪怕在实验室里洗瓶子也行。他心神不宁地等了整整一个星期,音信全无。他忍不住跑到皇家学院去打听,得到的回音只是冷冰冰的一句话:“班克斯爵士说,你的信不必回复!” 受到这个屈辱的打击,法拉第感到伤心。但他毫不气馁。他想起自己学画的经历。法拉第从小就练得一手好字。至于绘画,他是从一个名叫马克里埃的法国画家那里学来的。那位曾经给拿破仑皇帝画过像,后来横渡英吉利海峡,流亡到伦敦的画家,恰好借住在里波先生铺子的楼上,和法拉第成了邻居。画家看到法拉第学画心切,答应教他。作为交换条件,法拉第要替画家擦皮靴和收拾房间。画家心眼不坏,教得也很 认真,可脾气不好,经常责骂法拉第。法拉第逆来顺受,坚持跟他学画,终于学会了投影和透视,能够逼真地、艺术地把眼前的东西画下来。从这段经历中,他体会到:只有忍辱负重,敢于向命运挑战,才能把本来不属于自己的东西追求到手。 法拉第又一次向命运挑战了。他鼓起勇气给戴维写信,并且把装订成册的戴维4次讲座的笔记一起送去。法拉第巨大的热情、超人的记忆和献身科学的精神,感动了这位大化学家。法拉第到皇家学院化学实验室当了戴维的助手。科学圣殿的大门向学陡出身的法拉弟打开了!
2023-09-05 14:24:442

高中物理中出现的所有物理学史资料的总结

高中物理学史总结力学中的物理学史:1、前384年—前322年,亚里士多德:错误的认为“维持物体运动需要力”。2、1638年伽利略:最早研究“匀加速直线运动”;。3、1683年,牛顿:总结三大运动定律、发现万有引力定律。4、1798年卡文迪许:测出了万有引力常量G。5、1905年爱因斯坦:提出狭义相对论,电、磁学中的物理学史:1、1785年库仑:库仑定律。2、1826年欧姆:欧姆定律3、1820年,丹麦奥斯特:电流的磁效应。4、1831年英国法拉第:电磁感应现象。5、1834年,俄国楞次:楞次定律。6、1864年英国麦克斯韦:预言了电磁波的存在。7、1888年德国物理学家赫兹:发现“光电效应现象”。光学、原子物理中的物理学史:1、历史上关于光的本质有两种学说:一种是牛顿主张的微粒说;一种是荷兰惠更斯提出的波动说。2、1801年,英国托马斯·杨:通过“杨氏双缝干涉实验”观察到了光的干涉现象,证实了光的波动性。3、1818年,法国科学家泊松:观察到光的圆板衍射——泊松亮斑。 4、1895年,德国伦琴:X射线(伦琴射线)。具有很强的穿透本领,能使荧光物质发出荧光,还能使照相底片感光。5、1900年,德国普朗克:提出电磁波的发射和吸收不是连续的,而是一份一份的。6、1905年爱因斯坦:提出了“光子说”,成功地解释了光电效应规律。7、1897年,汤姆生:利用阴极射线管发现了电子.
2023-09-05 14:24:561

物理学史 简答题

以上都不会
2023-09-05 14:25:042

初二物理学史是什么

物理学史是物理学在历史进程中的发生、发展过程。近代意义的物理学诞生于欧洲15—17世纪。人们一般将欧洲历史 作为物理学史的社会背景。从远古到公元5世纪属古代史时期;5—13世纪为中世纪时期;14—16世纪为文艺复兴运动时期;16—17世纪为科学革命时期,以N.哥白尼、伽利略、牛顿为代表的近代科学在此时期产生,从此之后,科学随各个世纪的更替而发展。近半个世纪,人们按照物理学史特点,将其发展大致分期如下:①从远古到中世纪属古代时期。②从文艺复兴到19世纪,是经典物理学时期。牛顿力学在此时期发展到顶峰,其 时空观、物质观和因果关系影响了光、声、热、电磁的各学科,甚而影响到物理学以外的自然科学和社会科学。③随着20世纪的到来,量子论和相对论相继出现;新的时空观、概率论和不确定度关系等在宇观和微观领域取代牛顿力学的相关概念,人们称此时期为近代物理学时期。
2023-09-05 14:25:341

高考物理的物理学史

科学家 主要贡献 亚里士多德 力是维持物理运动状态的原因 伽利略 意大利 1638年,论证重物体不会比轻物体下落得快;伽利略理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去(17世纪) 笛卡儿 物体不受外力时,总保持静止或运动状态 牛顿 英国 1683年,提出了三条运动定律,1687年,发表万有引力定律; 开普勒 德国 17世纪提出开普勒三定律; 卡文迪许 英国 1798年利用扭秤装置比较准确地测出了引力常量 库仑 法国 发现了电荷之间的相互作用规律——库仑定律 密立根 美国 通过油滴实验测定了元电荷的数值。e=1.6×10-19C 昂尼斯 荷兰 大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。 焦耳和楞次 先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律(1834年楞次确定感应电流方向的定律) 奥斯特 丹麦 电流可以使周围的磁针偏转的效应,称为电流的磁效应 洛仑兹 荷兰 提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点 笛卡儿 法国 第一个提到“动量守恒定律” 安培 法国 分子环形电流假说(原子内部有环形电流) 法拉第 英国 发现的电磁感应现象使人类的文明跨进了电气化时代。在1821年,法拉第在重复奥斯特“电生磁”实验时,制造出人类历史上第一台最原始的电动机。 亨利 美国 最大的贡献是在1832年发现自感现象 汤姆孙 英国 利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型(葡萄干布丁模型),从而敲开了原子的大门 普朗克 德国 量子论的奠基人。为了解释黑体辐射,提出了能量量子假说解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界 爱因斯坦 德国 提出光子说(科学假说),成功地解释了光电效应规律提出的狭义相对论(经典力学不适用于微观粒子和高速运动物体)总结出质能方程:(2005年被联合国定为“世界物理年”,以表彰他对科学的贡献) 普吕克尔 德国 德国科学家发现了阴极射线。 卢瑟福 英国 进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m ;用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子(该实验表明了原子内质量和电量的分布,并没有揭示原子核的组成),并预言了中子的存在 玻尔 丹麦 量子力学的先驱。吸取普朗克、爱恩斯坦的量子概念,提出原子结构的玻尔理论,成功解释了氢原子光谱。最先得出氢原子能级表达式 贝克勒尔 法国 发现天然放射现象,说明原子核也有复杂的内部结构 查德威克 英国 在α粒子轰击铍核时发现中子(原子核人工转变的实验),由此人们认识到原子核的组成 居里夫妇 法国 发现了放射性更强的钋和镭。
2023-09-05 14:26:072

高考常考的物理学史,要求简单明了的

高中物理学史总结一、力学  1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);   2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。  同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。  3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。  4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。  5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。  6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。  7、17世纪,德国天文学家开普勒提出开普勒三大定律;  8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;  9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。  10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;  俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。  11、1957年10月,苏联发射第一颗人造地球卫星;  1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。二、电磁学  12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。  13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。  18世纪中叶,美国人富兰克林提出了正、负电荷的概念。  1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。  14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。  15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。  16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。  17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。  18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。  19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。  20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。  21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。  22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。  23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。  (最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)  24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。  25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。  26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。三、热学  27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。  28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。  29、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。  30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。  21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。  四年后,帕斯卡的研究表明,大气压随高度增加而减小。  1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。四、波动学  22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。  23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。  24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。五、光学  25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。  26、1801年,英国物理学家托马斯61杨成功地观察到了光的干涉现象。  27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。  28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。  29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。  30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。  31、1800年,英国物理学家赫歇耳发现红外线;  1801年,德国物理学家里特发现紫外线;  1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。  32、激光——被誉为20世纪的“世纪之光”。六、波粒二象性  33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;  受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。  34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。  35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。  36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。  37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;  1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。七、相对论  38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),  ②热辐射实验——量子论(微观世界);  39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。  40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:  ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;  ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。  狭义相对论的其他结论:  ①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)  ②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。  ③相对论质量:物体运动时的质量大于静止时的质量。  41、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。八、原子物理学  42、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流)。  43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。  44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。  45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。  天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。  46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,  并预言原子核内还有另一种粒子——中子。  47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。  48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。  49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。  50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。  51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。  52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。  53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;  轻子-不参与强相互作用的粒子,如:电子、中微子;  强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。  54、1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成。
2023-09-05 14:26:271

学习物理学史的意义?

物理学史是科学发展史,而科学是人类发展的核心部分。每次物理学上的重大突破,都会对人类社会发展产生重大影响,产生震撼人心的冲击和重大技术革命。特别是近代以来,历次物理学重大进展通过技术革命为中心转化为直接生产力,从而推动了社会经济的发展,并最终引发社会革命,推动人类社会从农业社会到工业社会,从蒸汽时代进入电力时代、电子和原子能时代以至现今的信息时代。楼主可以多关注些物理学类的科普书,关于物理学在日常生活中的应用可以看下《鬼脸物理课》,一旦开始读就停不下来。
2023-09-05 14:26:382

高中课本里涉及到的物理学史

发现中子的叫查德威克
2023-09-05 14:26:514

高中物理学史(全部)

能多发点财富值么新课标高考高中物理学史(新人教版)必修部分:(必修1、必修2 )一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。10、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。12、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。选修部分:(选修3-1、3-2、3-3、3-4、3-5)二、电磁学:(选修3-1、3-2)13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。14、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。详细请看http://tieba.baidu.com/f?kz=1197564491,希望对你有帮助!
2023-09-05 14:27:221

求物理学史

新课标高考高中物理学史(新人教版)一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。10、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。12、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。选修部分:(选修3-1、3-2、3-3、3-4、3-5)二、电磁学:(选修3-1、3-2)13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。19、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。20、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。21、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。22、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。23、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。24、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。25、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。26、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。27、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。28、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。五、波动学(3-4选做):33、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。34、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。35、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。【相互接近,f增大;相互远离,f减少】36、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波37、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。38、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。39、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。六、光学(3-4选做):40、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。41、1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。42、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。43、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;1887年,赫兹证实了电磁波的存在,光是一种电磁波44、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。45、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:。46.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。七、相对论(3-4选做):49、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界), ②热辐射实验——量子论(微观世界);50、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。51、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。52、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;53、激光——被誉为20世纪的“世纪之光”;八、波粒二象性(3-5选做):54、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。55、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)56、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。57、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;58、1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。十、原子物理学(3-5选做):59、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。60、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。61、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。62、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。63、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15m。1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。64、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。65、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;66、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。67、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。68、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。69、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。70、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。71、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。63、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。72、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。73、1932年发现了正电子,1964年提出夸克模型;粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子; 轻子-不参与强相互作用的粒子,如:电子、中微子; 强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.物理学史专题★伽利略(意大利物理学家)对物理学的贡献:①发现摆的等时性②物体下落过程中的运动情况与物体的质量无关③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)经典题目伽利略根据实验证实了力是使物体运动的原因(错)伽利略认为力是维持物体运动的原因(错)伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对)★胡克(英国物理学家)对物理学的贡献:胡克定律经典题目胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)★牛顿(英国物理学家)对物理学的贡献①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学②经典力学的建立标志着近代自然科学的诞生经典题目牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)牛顿提出的万有引力定律奠定了天体力学的基础(对)★卡文迪许贡献:测量了万有引力常量典型题目牛顿第一次通过实验测出了万有引力常量(错)卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对)★亚里士多德(古希腊)观点:①重的物理下落得比轻的物体快②力是维持物体运动的原因经典题目亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对)★开普勒(德国天文学家)对物理学的贡献 开普勒三定律经典题目开普勒发现了万有引力定律和行星运动规律(错)托勒密(古希腊科学家)观点:发展和完善了地心说哥白尼(波兰天文学家) 观点:日心说第谷(丹麦天文学家) 贡献:测量天体的运动威廉?赫歇耳(英国天文学家)贡献:用望远镜发现了太阳系的第七颗行星——天王星汤苞(美国天文学家)贡献:用“计算、预测、观察和照相”的方法发现了太阳系第九颗行星——冥王星泰勒斯(古希腊)贡献:发现毛皮摩擦过的琥珀能吸引羽毛、头发等轻小物体★库仑(法国物理学家)贡献:发现了库仑定律——标志着电学的研究从定性走向定量典型题目库仑总结并确认了真空中两个静止点电荷之间的相互作用(对)库仑发现了电流的磁效应(错)富兰克林(美国物理学家)贡献:①对当时的电学知识(如电的产生、转移、感应、存储等)作了比较系统的整理②统一了天电和地电密立根 贡献:密立根油滴实验——测定元电荷昂纳斯(荷兰物理学家) 发现超导欧姆: 贡献:欧姆定律(部分电路、闭合电路)★奥斯特(丹麦物理学家)电流的磁效应(电流能够产生磁场)经典题目奥斯特最早发现电流周围存在磁场(对)法拉第根据小磁针在通电导线周围的偏转而发现了电流的磁效应(错)★法拉第贡献:①用电场线的方法表示电场②发现了电磁感应现象③发现了法拉第电磁感应定律(E=n△Φ/△t)经典题目奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象(对)法拉第发现了磁场产生电流的条件和规律(对)奥斯特对电磁感应现象的研究,将人类带入了电气化时代(错)法拉第发现了磁生电的方法和规律(对)★安培(法国物理学家)①磁场对电流可以产生作用力(安培力),并且总结出了这一作用力遵循的规律②安培分子电流假说经典题目安培最早发现了磁场能对电流产生作用(对)安培提出了磁场对运动电荷的作用力公式(错)狄拉克(英国物理学家)贡献:预言磁单极必定存在(至今都没有发现)★洛伦兹(荷兰物理学家)贡献:1895年发表了磁场对运动电荷的作用力公式(洛伦兹力)阿斯顿贡献:①发现了质谱仪 ②发现非放射性元素的同位素劳伦斯(美国) 发现了回旋加速器★楞次 发现了楞次定律(判断感应电流的方向)★汤姆生(英国物理学家)贡献:①发现了电子(揭示了原子具有复杂的结构)②建立了原子的模型——枣糕模型经典题目汤姆生通过对阴极射线的研究发现了电子(对)★卢瑟福(英国物理学家)指导助手进行了α粒子散射实验(记住实验现象)提出了原子的核式结构(记住内容)发现了质子经典题目汤姆生提出原子的核式结构学说,后来卢瑟福用 粒子散射实验给予了验证(错)卢瑟福的原子核式结构学说成功地解释了氢原子的发光现象(错)卢瑟福的a粒子散射实验可以估算原子核的大小(对)卢瑟福通过对α粒子散射实验的研究,揭示了原子核的组成(对)★波尔(丹麦物理学家)贡献:波尔原子模型(很好的解释了氢原子光谱)经典题目玻尔把普朗克的量子理论运用于原子系统上,成功解释了氢原子光谱规律(对)玻尔理论是依据a粒子散射实验分析得出的(错)玻尔氢原子能级理论的局限性是保留了过多的经典物理理论(对)★贝克勒尔(法国物理学家)发现天然放射现象(揭示了原子核具有复杂结构)经典题目天然放射性是贝克勒尔最先发现的(对)贝克勒尔通过对天然放射现象的研究发现了原子的核式结构(错)★伦琴 贡献:发现了伦琴射线(X射线)★查德威克 贡献:发现了中子★约里奥?居里和伊丽芙?居里夫妇①发现了放射性同位素②发现了正电子经典题目居里夫妇用α粒子轰击铝箔时发现电子(错)约里奥?居里夫妇用α粒子轰击铝箔时发现正电子(对)★普朗克 贡献:量子论★爱因斯坦贡献:①用光子说解释了光电效应②相对论经典题目爱因斯坦提出了量子理论,普朗克提出了光子说(错)爱因斯坦用光子说很好地解释了光电效应(对)是爱因斯坦发现了光电效应现象,普朗克为了解释光电效应的规律,提出了光子说(错)爱因斯坦创立了举世瞩目的相对论,为人类利用核能奠定了理论基础;普朗克提出了光子说,深刻地揭示了微观世界的不连续现象(错)★麦克斯韦贡献:①建立了完整的电磁理论②预言了电磁波的存在,并且认为光是一种电磁波(赫兹通过实验证实电磁波的存在)经典题目普朗克在前人研究电磁感应的基础上建立了完整的电磁理论(对)麦克斯韦从理论上预言了电磁波的存在,赫兹用实验方法给予了证实(对)麦克斯韦通过实验证实了电磁波的存在(错)附高中物理学史(旧人教版)1、1638年,意大利物理学家伽利略①论证重物体不会比轻物体下落得快; ②伽利略的通过斜面理想实验和牛顿逻辑推理得出牛顿第一定律;伽利略通过斜面实验得出自由落体运动位移与时间的平方成正比③伽利略发现摆的等时性(周期只与摆的长度有关),惠更斯根据这个原理制成历史上第一座摆钟2、英国科学家牛顿1683年,提出了三条运动定律。1687年,发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量;3、17世纪,伽利略理想实验法指出:水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;4、20爱因斯坦提出的狭义相对论经典力学不适用于微观粒子和高速运动物体。5、17世纪德国天文学家开普勒提出开普勒三定律;6、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。7、1752年,富兰克林(1)过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。(2)命名正负电荷(3)1751年富兰克林发现莱顿瓶放电可使缝衣针磁化8、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。9、1911年荷兰科学家昂尼斯大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。10、1841~1842年 焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。11、1820年,丹麦物理学家奥斯特电流可以使周围的磁针偏转的效应,称为电流的磁效应。12、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。13、1831年英国物理学家法拉第(1)发现了由磁场产生电流的条件和规律——电磁感应现象;(2)提出电荷周围有电场,并用简洁方法描述了电场—电场线。14、1834年,楞次确定感应电流方向的定律。15、1832年,亨利发现自感现象。 16、1864年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。17、1887年德国物理学家赫兹用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。18、公元前468-前376,我国的墨翟在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。19、1621年荷兰数学家斯涅耳入射角与折射角之间的规律——折射定律。20、关于光的本质有两种学说:一种是牛顿主张的微粒说:认为光是光源发出的一种物质微粒;一种是荷兰物理学家惠更斯提出的波动说:认为光是在空间传播的某种波。21、1801年,英国物理学家托马斯u2022杨观察到了光的干涉现象22、1818年,法国科学家泊松观察到光的圆板衍射——泊松亮斑。23、1895年,德国物理学家伦琴发现X射线(伦琴射线)。24、1900年,德国物理学家普朗克解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;25、1905年爱因斯坦提出光子说,成功地解释了光电效应规律。26、1913年,丹麦物理学家玻尔提出了原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱。27、1924年,法国物理学家德布罗意预言了实物粒子的波动性;28、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。29、1909年-1911年,英国物理学家卢瑟福进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。30、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核也有复杂的内部结构。31、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。32、1932年查德威克在α粒子轰击铍核时发现中子,由此人们认识到原子核的组成。33、1932年发现了正电子,1964年提出夸克模型;粒子分为三大类:媒介子,传递各种相互作用的粒子如光子; 轻子,不参与强相互作用的粒子如电子、中微子; 强子,参与强相互作用的粒子如质子、中子;强子由更基本的粒子夸克组成,夸克带电量可能为元电荷的 或 。34.密立根测定电子的电量35.瓦特在1782年研制成功了具有连杆、飞轮和离心调速器的双向蒸汽机。36.人类对天体的认识从“地心说—托勒密”到“日心说—哥白尼”到“开普勒定律”再到“牛顿的万有引力定律”。 直到1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量万有引力定律显示出强大的威力。
2023-09-05 14:27:311

中国物理发展史

物理学发展史(一)什么是物理学史? 物理学史是研究物理学产生和发展规律的科学,它也是研究物理学的知识、理论和方法的发生与发展规律的历史科学.一、学习物理学史的目的和意义1. 加深对概念和理论的理解,启迪科学新思想的萌发和产生。随着人类社会的发展,物理学研究的内容和范围也不断扩大和深化。在古代,物理学只是自然哲学的一部分,16世纪以后才从哲学中分离出来。以后又逐步建立了力学、热学、电磁学、光学、相对论、量子力学、粒子物理等分支学科。2. 物理学史可以使我们认识到“科学是最高意义上的革命力量”,它推动了社会的发展。物理学史是科学发展史,而科学是人类发展的核心部分。每次物理学上的重大突破,都会对人类社会发展产生重大影响,产生震撼人心的冲击和重大技术革命。特别是近代以来,历次物理学重大进展通过技术革命为中心转化为直接生产力,从而推动了社会经济的发展,并最终引发社会革命,推动人类社会从农业社会到工业社会,从蒸汽时代进入电力时代、电子和原子能时代以至现今的信息时代。3. 研究和学习物理学史有助于学生了解与概括物理学基础知识发展的全貌及其总体规律,研究与掌握物理思想和研究方法的发展过程,有利于巩固和加深理解已学的物理知识,增强学习的主动性与自觉性,提高学习兴趣.在物理学的长期发展中创立了许多很成功的、成熟的方法。 物理学研究中建立了许多理想模型、思想过程、理想实验,这些近似抽象方法促成了许多定律的发现。4. 可以使我们认识到思想观念转变的重要性物理学中复杂的数学公式和定义等,都不过是基本观念的表达形式和演绎工具,基本观念才是先导的、本质的东西。所以,每当学习一个新理论,必须改变自己的思想观念和思维方法。 5. 物理学史可以培养同学们的爱国主义精神正确认识中国古代文明,在当时的历史时期和历史条件下,中国和希腊成为东方和西方两个古代文明中心,我们要为我国的古代文明而骄傲。6.可以培养辩证唯物主义思想,以造就同学们追求真理,献身科学的崇高思想境界对科学研究要有一个正确认识。 科学的道路是不平坦的,科学家成功之路是艰险的,要准备付出比常人更多的精力和代价,必须有热爱科学、献身科学的精神,要善于继承又勇于创新,才有可能取得成功。
2023-09-05 14:27:531

高考物理学史方面的问题

顶一楼,很全啊
2023-09-05 14:28:492

中国物理发展史

哦。。。这个话题这么大啊?
2023-09-05 14:29:018

为什么物理学史很重要?

物理学史是科学发展史,而科学是人类发展的核心部分。每次物理学上的重大突破,都会对人类社会发展产生重大影响,产生震撼人心的冲击和重大技术革命。特别是近代以来,历次物理学重大进展通过技术革命为中心转化为直接生产力,从而推动了社会经济的发展,并最终引发社会革命,推动人类社会从农业社会到工业社会,从蒸汽时代进入电力时代、电子和原子能时代以至现今的信息时代。楼主可以多关注些物理学类的科普书,关于物理学在日常生活中的应用可以看下《鬼脸物理课》,一旦开始读就停不下来。
2023-09-05 14:29:211

2011新课标物理学史 急急急!!!!

已经发过去了,祝你考试成功
2023-09-05 14:29:344

物理学史有什么作用?

物理学史是研究人类对自然界各种物理现象的认识史,它的基本任务就是描述物理概念、定律、理论和研究方法的脉络,提示物理学观念、方法和内容的发生、发展的原因和规律性。今天是昨天的延续,了解历史是为了更好地把握未来。所以在物理教学中,物理学史理应成为一种珍贵的教学资源。但由于受应试教育观念的影响及物理教材本身的因素,物理教师很难把物理学中丰富多彩的内容引人入胜地传达给学生,使得学生对物理基本概念、规律的由来只知其一不知其二,物理知识在学生看来是深奥、难懂的,因而学生对学习物理越来越觉得乏味、难学,越来越缺乏热情。这与物理学在科技与社会发展中越来越重要的地位是相矛盾的。而研究学习物理学史,在教学中必将为物理教学注入新的活力,还“历史”真像与学生,让他们一同与人类探索自然的历史,与科学家追求科学、追求真理、勇于实践、艰苦卓越的奋斗足迹,共悲同喜。这将赋予物理知识于生命意义,有利于激发学生学习物理、攀登科学高峰的热情,下面就几个方面谈谈物理学史在物理教学中的作用
2023-09-05 14:29:471

如何系统地学习物理学史呢?

物理学史是科学发展史,而科学是人类发展的核心部分。每次物理学上的重大突破,都会对人类社会发展产生重大影响,产生震撼人心的冲击和重大技术革命。特别是近代以来,历次物理学重大进展通过技术革命为中心转化为直接生产力,从而推动了社会经济的发展,并最终引发社会革命,推动人类社会从农业社会到工业社会,从蒸汽时代进入电力时代、电子和原子能时代以至现今的信息时代。楼主可以多关注些物理学类的科普书,关于物理学在日常生活中的应用可以看下《鬼脸物理课》,一旦开始读就停不下来。
2023-09-05 14:29:541

求高中物理史实

3月31日,他在北京发来消息:“我明天去看你,来接我,好么?”她在南京,开心地回复:“恩啊”第二天,她在车站搜寻过往人群中他的身影,期待又焦急“你到底在哪儿?”“傻瓜,你不会真在车站吧,今天是愚人节哎,哈哈哈…”她顿住了,泪无声落下,失落、委屈…却被人从身后轻轻抱住,熟悉的声音:“傻瓜,就知道你会来,即使是愚人节,我又怎么舍得骗你…”女孩转过身,娇滴滴的说道:干爹你好坏哦~呜~呜~呜~ vv好吧邪恶一下,高中生活是需要多彩的调节的,目测楼上qq2622824930最佳答案。
2023-09-05 14:30:183

高考必考物理学史知识点总结

必考内容 选考内容1 质点直线运动: 参考系 质点 位移(S=v0t+at2/2) 速度(vt= v0 +at) 加速度(a=F/m=( vt-v0) /t) 相互作用与牛顿定律: 动摩擦力(f=uN) 静摩擦力 (f=-F) 弹力(胡克定律F=-kx) 力的合成与分解(满足平行四边形法则)2 机械能: 功(W=FScosA) 功率(P=FvcosA) 动能定理(W=E2- E1)(E=mv2/2) ▲①万有引力做功(W=GMm[(1/R)-(1/r)])只和半径有关(r→R) ▲②重力做功(W=mg(h-H)) 只和高度有关(h→H)▲③弹力做功(W=(1/2)k[(x2)-( X2)]) 只和弹簧现在长度与原长度的变化量的绝对值有关(x→X, x=L-L", L为伸长后的长度,L"为弹簧原长)▲始终与速度垂直的力不做功抛体运动与圆周运动 : 运动合成与分解(满足平行四边形法则,竖直位移y=gt2/2, 水平位移x=vt) 角速度(w=A/t=v/r) 线速度(v=L/t=Ar/t=wr) 向心加速度(a=v2/r方向指向圆心) 需要的向心力(f=mv2/r方向指向圆心) 万有引力定律 (F=GMm/r2)3-1 电场 电路 磁场: 电荷守恒定律(电荷总数不变) 库仑定律(F=kQq/r2) 场强(E=F/q) 点电荷场强(E=kQ/r2)电势(能) 电容关系式(c=Q/U) 欧姆定律(R=U/I) 电阻定律(R=ρL/s) 电动势(E=I(R+r)) 内阻(r) 电功率(P=UI) 焦耳定律 (Q=I2Rt)3-2 电磁感应 交变电流:通电导线周围磁场(右手定则) 安培力(F=BIL 方向左手定则) 洛仑兹力(F=qvB方向左手定则) 磁通量(Ф=BScosA) 楞次定律 交变电流图像3-3 分子动理论(分子始终在做无规则运动) 统计观点 固体 液体 气体 理想气体: ▲ ①c=PV/T (c为常数,不变) ▲ ②△U=Q+W (V增大,气体对外界做功,W<0)▲ ③U=kT (温度越高,内能越大)(导热性良好说明T不变,绝热说明Q=0)3-4 机械振动与机械波: 简谐振动 单摆周期(T=2п√(L/g)) 频率(f=1/T) 波速(v=λ/ T) 波长(λ) 干涉(△y=Lλ/d) 衍射 多普勒效应(频率变化:远去f↓,近来f↑) 电磁振荡与电磁波: 折射定律(sini/sinr= v1/v2) 反射定律(i=r) 折射率(n= sini/sinr= v1/v2)光 相对论3-5 碰撞与动量守恒(mv1+Mv2= mv1t+Mv2t) 原子结构(原子核与核外电子)原子核(质子和中子)波粒二象性
2023-09-05 14:30:313

物理学史能学到什么有用的知识?

物理学史是科学发展史,而科学是人类发展的核心部分。每次物理学上的重大突破,都会对人类社会发展产生重大影响,产生震撼人心的冲击和重大技术革命。特别是近代以来,历次物理学重大进展通过技术革命为中心转化为直接生产力,从而推动了社会经济的发展,并最终引发社会革命,推动人类社会从农业社会到工业社会,从蒸汽时代进入电力时代、电子和原子能时代以至现今的信息时代。楼主可以多关注些物理学类的科普书,关于物理学在日常生活中的应用可以看下《鬼脸物理课》,一旦开始读就停不下来。
2023-09-05 14:30:381

《物理学史》读书笔记3000字 - 读书笔记

  物理学史是人类对自然界中各种物理现象的认识史,它研究的是物理学发生、发展的规律,说明了物理学中的基本概念、定律和理论体系的酝酿、产生和发展的辩证过程。它是一座知识财富的宝库,不仅展示了物理学理论形成的前因后果、来龙去脉,而且深刻的揭示了物理学的研究方法;它也是一块精神财富的宝地,物理学的发展极大地改变着人们的自然观、世界观,升华了人们对人与自然,人与社会的认识。与此同时,物理学家在探求真理的过程中展现出的人格魅力,不畏艰险献身科学的高尚品格,也给后人增添了无穷的榜样力量。物理学不仅以其知识、方法和思想极大的促进了自身的发展,而且在更广阔的领域深刻的影响着人类文明的进程,成为人类文化的一部分。   学习物理学史就是为了了解物理学所走过的道路,它将有助于我们更深刻地认识物理学,更有效地应用和发展物理学。过去很多人总是在说“以史为鉴”,但我们认为对物理学史的学习仅仅“以史为鉴”还远不能满足时代的要求,更应该在“以史为鉴”的基础上“以史为器”去发展、去创新。物理学史和自然科学史告诉我们,历史上的一些发明、创造并不是前人研究内容的简单重复,而往往是前人研究方法、思维特征的重现,并且它更是螺旋形上升的。   在物理教学中适当引入物理学史教育,让学生更多的了解科学发展的历程,并从前人的经验中受到启发、教益,从而感悟科学方法,提升人文素养,培养创新意识,是素质教育全面发展观的基本要求,也是落实新课标“三维目标”的必然选择。   下面,从几个方面简述物理学史的作用:   一、感悟科学方法   物理学的发展史是一部物理学方法论的发展史,物理学在发展过程中,不仅产生了宝贵的理论成果,更留给后人值得深思的物理学的研究方法。物理发展的历史证明,每一次重大科学理论的突破,往往都伴随着新的科学方法的诞生,而新的科学方法又反过来促进物理学的发展。   力学是物理学中发展最早的一个分支,机械运动是力学中最直观、最简单、也是最便于观察因而也最早得到研究的一种运动形式。然而,和物理学的其他部门相比,力学的研究却经历了更为漫长的过程。从古希腊时代算起,这个过程几达二千年之久。只所以会如此漫长,一个很重要的原因就是人类缺乏经验,缺乏正确的科学研究方法,因而也就难以得出正确的科学结论。亚里士多德是古希腊时代人类历史上少数百科全书式的大哲学家,而且是通过观察自然,运用形而上学的哲学思想方法试图解释自然,奠定物理学思想萌芽的人。然而,由于历史的局限,亚里士多德对自然的研究仅仅停留在“观察”和“思辩”的层面上,致使像“力是维持物体物运动的原因,重的物体下落得快,轻的物体下落得慢”等错误长期统治着人们的思想。   但是,伽利略没有仅仅停留在逻辑思辩上,而是继续做了斜面实验。他发现,落体的速度越来越快,是一种匀加速运动,而且加速度与重量无关;他还发现,斜面越陡,加速度越大,斜面越平,则加速度越小,在极限情况下,斜面垂直,相当于自由下落,不同物体的加速度是一样的。当斜面完全水平时,加速度为零,这时,一个运动着的物体就应该是沿直线永远运动下去。斜面实验表明,物体运动的保持并不需要外力,需要外力的是物体运动的改变。伽俐略最终用“理想实验”由斜面的情形推到自由落体和水平运动的情形。   伽俐略逻辑推理与实验验证相结合的思维方式,为后人找到了研究物理的正确科学方法。从此,“一门博大精深的科学已经出现”(伽俐略语),物理从此从哲学中分离出来并得以迅速发展。纵观物理学三百余年的发展史,可以看出,实验在检验已知理论,探索未知规律等方面起到了不可替代的作用。早在1687年,牛顿在其出版的《自然哲学的数学原理》一书中就已经正式提出了万有引力定律,可直到一百多年后的1798年,英国科学家卡文笛许利用扭称这一巧妙的实验装置测出引力常数后,万有引力定律才得以全面的展示在世人面前;麦克斯韦对电磁波理论进行了长达十年的研究,并以一组简洁的数学方程把电磁波理论概括得十分优美对称,但当年却难以令人信服,直到二十多年后他预言的电磁波被赫兹的实验所证实,他的学说才成为举世公认的电磁理论基础;1905年,爱因斯坦用光电子假说总结了光的微粒说和波动说之间长期的争论,能很好的解释光电效应的实验结果,但是直到1916年,当密立根以其严密的实验全面地证实了爱因斯坦的光电方程后,光的粒子性才被人们所接受……可以说:实验,只有实验,才是物理学的基础。   将物理学史引入课堂,不仅能使学生有身临其境之感,而且能领略前辈大师的研究方法,得其精髓,有所借鉴。   二、提升人文素养   物理学史是一部人文史,物理学家们在从事科学活动的过程中,不仅揭示了自然界基本运动形式的诸多真理,同时也为后人树立了一座座道德丰碑。科学家们在探索自然的过程中展现出的人格魅力、人文素养,对科学事业的执着追求精神,都会使学生的情感升华,对引导学生确立正确的人生观和价值观,实现人格的完美化具有积极的促进作用。牛顿是经典物理的奠基人,但他却谦称自己“站在巨人的肩膀上”;居里夫妇是镭元素的发现者,然而他们却没有居功自傲,“镭只是一种元素,它属于世界所有,科学应当为大众服务,它应当属于全人类。”她说过的这句话一定会给学生留下深刻的印象   物理学史也是一部美学史,对称、和谐、统一等美学要素在物理学的发展中起着非常重要的文化导向作用。当先人们对天体的运动还充满着神秘与未知时,却能直观的感受到其运动轨道应该是圆周,因为“圆是美的”。物理之美是直观的,比如彩虹是极美的表面现象,人人都可以看到;物理之美也是深刻的,电荷之间的引力与物体之间的万有引力都遵循平方反比率,电子绕核运动的模型和星体之间的模型相仿等等无一不显示着物理学深刻的统一美。   物理学是一门与自然、生活、技术进步和社会发展有着最广泛联系的科学。它可以揭开大千世界的奥秘,使学生志向高远,憧憬未来,本应该是学生最为钟情的一门课程。然而,有时它竟成为学生最为头疼和恐惧的课程。这不能不说是单一课程目标与僵化教学模式的一个苦果,我们有理由相信,充分重视物理课程中的人文素养资源,坚持三维课程目标,就一定能够焕发物理课程的魅力。
2023-09-05 14:30:471

高考物理学史和研究方法的总结,越全越好,手机软件的总结也可以。

不可以
2023-09-05 14:30:553

物理什么时候有的

物理学这个名词最初是亚里士多德发明的.亚里士多德一生勤奋治学,从事的学术研究涉及到逻辑学、修辞学、物理学、生物学、教育学、心理学、政治学、经济学、美学等,写下了大量的著作,他的著作是古代的百科全书,据说有四百到一千部,主要有《工具论》、《形而上学》、《物理学》、《伦理学》、《政治学》、《诗学》等.他的思想对人类产生了深远的影响.他创立了形式逻辑学,丰富和发展了哲学的各个分支学科,对科学作出了巨大的贡献.亚里士多德把科学分为:(1)理论的科学(数学、自然科学和后来被称为形而上学的第一哲学);(2)实践的科学(伦理学、政治学、经济学、战略学和修饰学);(3)创造的科学,即诗学.物理学方面,亚里士多德反对原子论;不承认有真空存在;他还认为物体只有在外力推动下才运动,外力停止,运动也就停止;还认为作落体运动的物体重的比轻的落得快!
2023-09-05 14:31:072

求中学物理新课标教材中物理学史的所有内容?写论文急用!求知道的好心人帮忙

一、力学  1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);   2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。  同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。  3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。  4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。  5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。  6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。  7、17世纪,德国天文学家开普勒提出开普勒三大定律;  8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;  9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。  10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;  俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。  11、1957年10月,苏联发射第一颗人造地球卫星;  1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。二、电磁学  12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。  13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。  18世纪中叶,美国人富兰克林提出了正、负电荷的概念。  1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。  14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。  15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。  16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。  17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。  18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。  19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。  20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。  21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。  22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。  23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。  (最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)  24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。  25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。  26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。三、热学  27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。  28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。  29、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。  30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。  21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。  四年后,帕斯卡的研究表明,大气压随高度增加而减小。  1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。四、波动学  22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。  23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。  24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。五、光学  25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。  26、1801年,英国物理学家托马斯u2022杨成功地观察到了光的干涉现象。  27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。  28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。  29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。  30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。  31、1800年,英国物理学家赫歇耳发现红外线;  1801年,德国物理学家里特发现紫外线;  1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。  32、激光——被誉为20世纪的“世纪之光”。六、波粒二象性  33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;  受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。  34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。  35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。  36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。  37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;  1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。七、相对论  38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),  ②热辐射实验——量子论(微观世界);  39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。  40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:  ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;  ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。  狭义相对论的其他结论:  ①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)  ②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。  ③相对论质量:物体运动时的质量大于静止时的质量。  41、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。八、原子物理学  42、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流)。  43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。  44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。  45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。  天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。  46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,  并预言原子核内还有另一种粒子——中子。  47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。  48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。  49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。  50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。  51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。  52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。  53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;  轻子-不参与强相互作用的粒子,如:电子、中微子;  强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。  54、1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成。
2023-09-05 14:31:181

有关物理学史的书籍

业余的还是专业的?业余的话这本书挺好:《邮票上的物理学史》http://www.welan.com/union/rec.asp?id=11592&URL=http://www.welan.com/727512/专业一点的话有两种书,一种是写的包括物理学史在内的“科学史”著作,比如《科学的历程》、《世界史上的科学技术》等等都很好,另一种是专题性的物理学史,比如这本很好:《基本粒子物理学史》http://www.welan.com/union/rec.asp?id=11592&URL=http://www.welan.com/411096/另外这本大概不错,我还没读过不能给你保证:《物理学史》http://www.welan.com/union/rec.asp?id=11592&URL=http://www.welan.com/1056583/《上帝掷骰子吗? - 量子物理史话》http://book.sina.com.cn/nzt/liangzishihua/index.shtml从牛顿年代到如今最前沿的物理!作者在网上连载后评价非常的高,语言描述方式很适合大众阅读,不象其他的物理前沿书籍不容易看懂!现在已经出书了
2023-09-05 14:31:371

物理学史上的两朵乌云指的是什么

光量子解决的第一朵乌云,量子理论解决的是第二朵乌云。
2023-09-05 14:31:486

物理学史上的大论战—光学发展在曲折中前进(一)

理不辩则不明。今天我们书本上所见的科学知识,都是经历前人的不断探索和验证的。也就是说,知识是要经得起质疑和检验的,方能发展进步。物理学知识更是如此, 如果笃信有永恒不变的真理那就永远不会发现真理 。这是一篇浅谈以光的属性为例,来论述科学争论在物理学发展中起的作用的小论文,其目的在于科普 做学问尤其是学科学切忌教条主义、权威主义,而失掉了好奇心和质疑权威的勇气 。里面涉及光学史上的很多物理学家和成就,引用自书本。谈到光,每一位研究光学现象的物理学家都必然避不开几个问题:什么是光?光的本性是什么?它由什么组成?便是这么几个简短精确的问题,引发了物理学史上轰轰烈烈的大论战,也正是这场大论战,促使了光学的发展,虽曲曲折折,但始终在前进着。 光学的起源可以追溯到二三千年以前,我国古代墨子所著《墨经》就记载了许多光学现象和规律,例如投影(“景不徙”)、小孔成像(“景。光之人,煦若射,下者之人也高;高者之人也下。足蔽下光,故成景于上;首蔽上光,故成景于下。在远近有端,与于光,故景库内也。”)等等,西方也很早的就有研究光学知识的记载,如欧几里得的《反射光学》研究了光的反射等。但直到近代文艺复兴以来,从建立了放射定律和折射定律开始算起,奠定了几何光学的基础,光学才真正形成一门学科。这成为近代这场大论战开始的前提条件。 17世纪中期,人们对光有了更多的了解,有两种更可能的假说:微粒说和波动说。简单从字面理解一下,微粒说把光看成一种“光原子”,而波动说认为光不是物质粒子,而是由于介质的振动而产生的一种波,为此还提出了“以太”的概念:一种看不见也摸不着的介质,作为光的传播媒介。 笛卡尔率先在他的《方法论》一书中主张波动学说,认为光本质上是一种压力,在完全弹性、冲满一切空间的媒质(以太)中传递,传递的速度无限大。这场大战已硝烟弥漫,可那时谁也无预料到它的持续时间之久,程度之激烈,影响之深远。物理学家们争论间长达数个世纪,战场不仅贯穿了光学发展的全部过程,更使整个物理学都发生了翻天覆地的变化。 微粒说的历史更悠久,但随着光学的发展波动说率先开火了。胡克—物理学上的一员大将明确在1667年出版的《显微术》中主张光是一种振动,并根据云母片的薄膜干涉现象判断光是类似于水波的某种快速脉冲。接着,惠更斯发展了胡克的思想,他进一步提出光是发光体中微小粒子的振动在弥漫于宇宙空间的以太中的传播过程,还认为光的传播方式与声音类似,而不是微粒说所设想的像子弹或箭那样的运动。 尽管惠更斯发展了波动理论,推断出光和声波一样以球面波传播,并引入了惠更斯原理,但是由于他把光看成像声波一类的纵波,不能解释光的干涉、衍射和偏振现象。 波动学说曾因胡克的加入而轰动一时,但却虽着另一个人到来,而被微粒说的乌云压倒了一百多年。这个人就是历史上当之无愧的最伟大的物理学家之一—牛顿。 牛顿是倾向于微粒说的,光的复合和分解,被他比喻为不同颜色微粒的混合和分开。这遭到了胡克的强烈抨击和谴责。胡克当时是英国物理皇家学会的会长,而牛顿因发明了望远镜而当选了皇家学会的会员,牛顿当时的论文是由胡克和玻意耳两人评审的。牛顿和胡克的宿怨我们至今仍有耳闻,可想而知当时的矛盾之激烈,在物理学界水火不容。这种矛盾也激化了当时微粒说与波动说的争论,两派都各有其支持者。 后来的结果我们也知道了,牛顿发表了《原理》一书,建立起了经典力学的大厦而被捧上神坛。1703年胡克去世了,1704年牛顿出版了他的另一巨作《光学》(Opticks),在此后100年里,它都被奉为不可动摇的真理,即代表着权威,而波动说迎来了一段漫长的黑夜。 权威虽重,翻山虽难,但只有翻过山岭,打破权威,才能见新世界的阳光,否则只能在阴影中苟活。 今日暂更于此,若想知后续,看下回细细道来。
2023-09-05 14:32:261