barriers / 阅读 / 详情

log函数的求导公式

2023-05-20 02:02:26
共2条回复
苏州马小云

log函数,也就是对数函数,它的求导公式为y=logaX,y"=1/(xlna) (a>0且a≠1,x>0)【特别地,y=lnx,y"=1/x】。

对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。

如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。对数函数实际上是指数函数的反函数。

对数函数的求导公式为为y=logaX,y"=1/(xlna) (a>0且a≠1,x>0)【特别地,y=lnx,y"=1/x】。

求导公式

关于导数:

导数,是微积分中的重要基础概念。设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0)。

如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。注意:有的函数是没有导数的。若某函数在某一点存在导数,则称其在这一点可导,否则称为不可导。

gitcloud

(loga(x))"=1/(xlna)

特别地(lnx)"=1/x

相关推荐

求导基本公式

导数的基本公式:y=c(c为常数)y"=0、y=x^ny"=nx^(n-1)。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。导数的性质:(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
2023-01-13 20:59:101

求导公式表

求导公式表如下:1、C"=0(C为常数)。2、(Xn)"=nX(n-1)(n∈R)。3、(sinX)"=cosX。4、(cosX)"=-sinX。5、(aX)"=aXIna(ln为自然对数)。6、(logaX)"=(1/X)logae=1/(Xlna)(a>0,且a≠1)。7、(tanX)"=1/(cosX)2=(secX)2。8、(cotX)"=-1/(sinX)2=-(cscX)2。9、(secX)"=tanX secX。求导注意事项1、函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的。2、复合函数要会写出它的复合过程,按照复合函数的求导法则一次求导就可以了,也是通过这个复合函数求导法则可求出很多函数的导数。3、导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
2023-01-13 20:59:181

求导公式 求导公式介绍

1、导数公式:y=c(c为常数) y=0、y=x^n y=nx^(n-1) ; 2、运算法则:加(减)法则:[f(x)+g(x)]=f(x)+g(x); 3、求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
2023-01-13 20:59:291

求导基本公式表

求导基本公式表如下:1、y=c,y"=0(c为常数) 2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax, y"=1/(xlna)(a>0且 a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。10、y=arccosx,y"=-1/√(1-x^2)。11、y=arctanx,y"=1/(1+x^2)。12、y=arccotx,y"=-1/(1+x^2)。13、y=shx,y"=ch x。14、y=chx,y"=sh x。15、y=thx,y"=1/(chx)^2。16、y=arshx,y"=1/√(1+x^2)。
2023-01-13 20:59:361

如何求导 有哪些求导公式?

1、求函数y=f(x)在x0处导数的步骤:求函数的增量Δy=f(x0+Δx)-f(x0);求平均变化率;取极限,得导数。 2、常见的求导公式有: C"=0(C为常数); (x^n)"=nx^(n-1) (n∈Q); (sinx)"=cosx; (cosx)"=-sinx;(e^x)"=e^x;(a^x)"=a^xIna (ln为自然对数;loga(x)"=(1/x)loga(e)
2023-01-13 20:59:441

基本求导公式是什么?

基本求导公式:1、y=c(c为常数)、y"=0。2、y=x^n、y"=nx^(n-1)。3、y=a^x、y"=a^xlna、y=e^x、y"=e^x。4、y=logax、y"=logae/x、y=lnx、y"=1/x。5、y=sinx、y"=cosx。6、y=cosx、y"=-sinx。7、y=tanx、y"=1/cos^2x。8、y=cotx、y"=-1/sin^2x。注意事项:1、不是所有的函数都可以求导;2、可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。运算法则1、减法法则:(f(x)-g(x))"=f"(x)-g"(x)2、加法法则:(f(x)+g(x))"=f"(x)+g"(x)3、乘法法则:(f(x)g(x))"=f"(x)g(x)+f(x)g"(x)4、除法法则:(g(x)/f(x))"=(g"(x)f(x)-f"(x)g(x))/(f(x))^2
2023-01-13 20:59:473

求导公式运算法则是怎样的?

求导公式:y=c(c为常数)——y"=0;y=x^n——y"=nx^(n-1);y=a^x——y"=a^xlna;y=e^x——y"=e^x;y=logax——y"=logae/x;y=lnx——y"=1/x ;y=sinx——y"=cosx ;y=cosx——y"=-sinx ;y=tanx——y"=1/cos^2x ;y=cotx——y"=-1/sin^2x。运算法则:加(减)法则:[f(x)+g(x)]"=f(x)"+g(x)"乘法法则:[f(x)*g(x)]"=f(x)"*g(x)+g(x)"*f(x)除法法则:[f(x)/g(x)]"=[f(x)"*g(x)-g(x)"*f(x)]/g(x)^2求导定义求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。注意事项1.不是所有的函数都可以求导。2.可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
2023-01-13 21:00:052

一般求导公式

把(X+C)看做一个整体,当做一个函数f(x),把根号看成f(x)的1/2次方,然后对整个函数求导,把1/2提到最前面,f(x)的-1/2次方(1/2-1=-1/2),再对f(x)求导,即对(X+C)求导,得1,。故本题答案为1/2*(根号(x+c))
2023-01-13 21:00:211

函数的求导公式是哪些?

2023-01-13 21:00:242

求导的公式有哪些

数学所有的求导公式1、原函数:y=c(c为常数)导数: y"=02、原函数:y=x^n导数:y"=nx^(n-1)3、原函数:y=tanx导数: y"=1/cos^2x4、原函数:y=cotx导数:y"=-1/sin^2x5、原函数:y=sinx导数:y"=cosx6、原函数:y=cosx导数: y"=-sinx7、原函数:y=a^x导数:y"=a^xlna8、原函数:y=e^x导数: y"=e^x9、原函数:y=logax导数:y"=logae/x10、原函数:y=lnx导数:y"=1/x求导公式大全整理y=f(x)=c (c为常数),则f"(x)=0f(x)=x^n (n不等于0) f"(x)=nx^(n-1) (x^n表示x的n次方)f(x)=sinx f"(x)=cosxf(x)=cosx f"(x)=-sinxf(x)=tanx f"(x)=sec^2xf(x)=a^x f"(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f"(x)=e^xf(x)=logaX f"(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f"(x)=1/x (x>0)f(x)=tanx f"(x)=1/cos^2 xf(x)=cotx f"(x)=- 1/sin^2 xf(x)=acrsin(x) f"(x)=1/√(1-x^2)f(x)=acrcos(x) f"(x)=-1/√(1-x^2)f(x)=acrtan(x) f"(x)=-1/(1+x^2)
2023-01-13 21:00:341

复合函数求导公式

复合函数求导公式:①设u=g(x),对f(u)求导得:昌族f"(x)=f"(u)*g"(x),设u=g(x),a=p(u),对f(a)求导得:f"(x)=f"(a)*p"(u)*g"(x)。设函数y=f(u)的定义域为4102Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果 Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u,有唯一确定的y值与之对应,则变量x与y 之间通过变量u形成的一种函数关系,记为: y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)1653。扩展资料可以罩纯通过观察自变量的形式来确定此函数是否为复合函数。举个例子,如f(x)=sin(x),自变量是x,这就是个简单的函数。再如f(x)=sin²(x),虽说自变量仍然是x,但原函数也可以换个角物迅咐度,看作f(u)=u²,自变量是u=sin(x),这样的话,sin²(x)就是个复合函数了。设函数Y=f(u)的定义域为D,函数u=φ(x)的值域为Z,如果D∩Z,则y通过u构成x的函数,称为x的复合函数,记作Y=f[φ(x)]。x为自变量,y为因变量,而u称为中间变量。
2023-01-13 21:00:411

函数求导公式及方法

四、基本求导法则与导数公式 1. 基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设 , 都可导,则 (1) (2) ( 是常数) (3) (4) 反函数求导法则 若函数 在某区间 内可导、单调且 ,则它的反函数 在对应区间 内也可导,且 或 复合函数求导法则 设 ,而 且 及 都可导,则复合函数 的导数为或 上述表中所列公式与法则是求导运算的依据,请读者熟记. 如果有邮箱发课件给你!
2023-01-13 21:00:483

什么是函数求导公式

解答:dx:是x的无穷小的增量;dy:是y的无穷小的增量;dy/dx:是y对x的导数,是dy对dx的微分的商,简称微商。意义:随着x的无穷小增量,引起y无穷小的增量,这两个增量的比率。也就是,y随x的无穷小变化所导致的相对变化率、牵连变化率。几何意义:在原函数上任意一点x处的切线的斜率。y":国内的教学,对y"一往情深,对dy/dx弃如敝屣。这样完全一边倒的教学法,就葬送了许多学生对微积分的基本悟性。y"唯一的好处就是书写简便,它埋葬了微商的特性,尤其是解微分方程的直觉。y"×dx:就是微分,y"在定义上是dy/dx,在表达形式上是一个函数y",y"×dx就是表示由于x的增量导致的y的增量的大小。也就是(dy/dx)dx,在形式上是f"(x)dx,在意义上是dy,这就是导数公式与微分公式的关系。
2023-01-13 21:00:521

13个求导公式

1.y=c y"=02.y=α^μ y"=μα^(μ-1)3.y=a^x y"=a^x lnay=e^x y"=e^x4.y=loga x y"=loga,e/xy=lnx y"=1/x5.y=sinx y"=cosx6.y=cosx y"=-sinx7.y=tanx y"=(secx)^2=1/(cosx)^28.y=cotx y"=-(cscx)^2=-1/(sinx)^29.y=arc sinx y"=1/√(1-x^2)10.y=arc cosx y"=-1/√(1-x^2)11.y=arc tanx y"=1/(1+x^2)12.y=arc cotx y"=-1/(1+x^2)13.y=sh x y"=ch x导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。
2023-01-13 21:01:421

数学所有的求导公式

高等数学记住这些就可以了1y=c(c为常数)y"=02.y=x的n次方y"=nx的(n-1)次方3.y=a^xy"=a^xlnay=e^xy"=e^x4.y=logax(底数为a,真数为x)y"=(logae)/x(底数为a,真数为e)y=lnxy"=1/x5.y=sinxy"=cosx6.y=cosxy"=-sinx7.y=tanxy"=1/cos^2x8.y=cotxy"=-1/sin^2x9.y=arcsinxy"=1/√1-x^210.y=arccosxy"=-1/√1-x^211.y=arctanxy"=1/1+x^212.y=arccotxy"=-1/1+x^2
2023-01-13 21:01:452

请列举出大学微积分需要用到的所有求导公式

不知道u是关于x的函数吗?如果不是,对y=u/x求导,y"=u/-x^2;如果u是关于x的函数,则对y=u/x求导,y"=u"/x-u/x^2
2023-01-13 21:01:483

求导公式运算法则是什么?

01 运算法则是:加(减)法则,[f(x)+g(x)]"=f(x)"+g(x)";乘法法则,[f(x)*g(x)]"=f(x)"*g(x)+g(x)"*f(x);除法法则,[f(x)/g(x)]"=[f(x)"*g(x)-g(x)"*f(x)]/g(x)^2。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。 导数也叫导函数值,又名微商,是微积分中的重要基础概念。由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。求导运算法则是:加(减)法则:[f(x)+g(x)]"=f(x)"+g(x)";乘法法则:[f(x)*g(x)]"=f(x)"*g(x)+g(x)"*f(x);除法法则:[f(x)/g(x)]"=[f(x)"*g(x)-g(x)"*f(x)]/g(x)^2。 一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
2023-01-13 21:01:512

高中数学求导公式是啥

求导,即对函数进行求导。用()"表示求导的方法(1)求函数y=f(x)在x0处导数的步骤:    ①求函数的增量Δy=f(x0+Δx)-f(x0)    ②求平均变化率    ③取极限,得导数。(2)几种常见函数的导数公式:    ①C"=0(C为常数);    ②(x^n)"=nx^(n-1)(n∈Q);    ③(sinx)"=cosx;    ④(cosx)"=-sinx;    ⑤(e^x)"=e^x;    ⑥(a^x)"=a^xIna(ln为自然对数)    (3)导数的四则运算法则:    ①(u±v)"=u"±v"    ②(uv)"=u"v+uv"   ③(u/v)"=(u"v-uv")/v^2(4)复合函数的导数  复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。导数是微积分的一个重要的支柱!
2023-01-13 21:02:121

求导公式运算法则

运算法则减法法则:(f(x)-g(x))"=f"(x)-g"(x)加法法则:(f(x)+g(x))"=f"(x)+g"(x)乘法法则:(f(x)g(x))"=f"(x)g(x)+f(x)g"(x)除法法则:(g(x)/f(x))"=(g"(x)f(x)-f"(x)g(x))/(f(x))^2导数公式1.y=c(c为常数) y"=02.y=x^n y"=nx^(n-1)3.y=a^x y"=a^xlnay=e^x y"=e^x4.y=logax y"=logae/xy=lnx y"=1/x5.y=sinx y"=cosx6.y=cosx y"=-sinx7.y=tanx y"=1/cos^2x8.y=cotx y"=-1/sin^2x
2023-01-13 21:02:162

求导法则公式

求导法则公式如下图:求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。常见函数的导数公式有:(1nx)"=1/X、(sinx)"=COSX、(COSX)"=-sinX。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。对数函数拓展的求导公式是以e为底的对数求导公式的拓展。即:[ln(x+√(x^2+a^2))]'=1/√(x^2+a^2);[ln(x+√(x^2-a^2))]'=1/√(x^2-a^2)。
2023-01-13 21:02:221

求导公式运算法则是什么?

运算法则是:加(减)法则,[f(x)+g(x)]"=f(x)"+g(x)";乘法法则,[f(x)*g(x)]"=f(x)"*g(x)+g(x)"*f(x);除法法则,[f(x)/g(x)]"=[f(x)"*g(x)-g(x)"*f(x)]/g(x)^2。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。 导数也叫导函数值,又名微商,是微积分中的重要基础概念。由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。求导运算法则是:加(减)法则:[f(x)+g(x)]"=f(x)"+g(x)";乘法法则:[f(x)*g(x)]"=f(x)"*g(x)+g(x)"*f(x);除法法则:[f(x)/g(x)]"=[f(x)"*g(x)-g(x)"*f(x)]/g(x)^2。 一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x?f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
2023-01-13 21:02:351

求导的公式

  .常用导数公式  1.y=c(c为常数) y"=0  2.y=x^n y"=nx^(n-1)  3.y=a^x y"=a^xlna  y=e^x y"=e^x  4.y=logax y"=logae/x  y=lnx y"=1/x  5.y=sinx y"=cosx  6.y=cosx y"=-sinx  7.y=tanx y"=1/cos^2x  8.y=cotx y"=-1/sin^2x  9.y=arcsinx y"=1/√1-x^2  10.y=arccosx y"=-1/√1-x^2  11.y=arctanx y"=1/1+x^2  12.y=arccotx y"=-1/1+x^2  在推导的过程中有这几个常见的公式需要用到:  1.y=f[g(x)],y"=f"[g(x)]•g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』  2.y=u/v,y"=u"v-uv"/v^2  3.y=f(x)的反函数是x=g(y),则有y"=1/x"  证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。  2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y"=e^x和y=lnx y"=1/x这两个结果后能用复合函数的求导给予证明。  3.y=a^x,  ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)  ⊿y/⊿x=a^x(a^⊿x-1)/⊿x  如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。  所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β  显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。  把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。  可以知道,当a=e时有y=e^x y"=e^x。  4.y=logax  ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x  ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x  因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有  lim⊿x→0⊿y/⊿x=logae/x。  可以知道,当a=e时有y=lnx y"=1/x。  这时可以进行y=x^n y"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,  所以y"=e^nlnx•(nlnx)"=x^n•n/x=nx^(n-1)。  5.y=sinx  ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)  ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)  所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx  6.类似地,可以导出y=cosx y"=-sinx。  7.y=tanx=sinx/cosx  y"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x  8.y=cotx=cosx/sinx  y"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x  9.y=arcsinx  x=siny  x"=cosy  y"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^2  10.y=arccosx  x=cosy  x"=-siny  y"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^2  11.y=arctanx  x=tany  x"=1/cos^2y  y"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2  12.y=arccotx  x=coty  x"=-1/sin^2y  y"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2  另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与  4.y=u土v,y"=u"土v"  5.y=uv,y=u"v+uv"  均能较快捷地求得结果。
2023-01-13 21:02:421

有哪些数学求导公式

数学所有的求导公式1、原函数:y=c(c为常数)导数: y"=02、原函数:y=x^n导数:y"=nx^(n-1)3、原函数:y=tanx导数: y"=1/cos^2x4、原函数:y=cotx导数:y"=-1/sin^2x5、原函数:y=sinx导数:y"=cosx6、原函数:y=cosx导数: y"=-sinx7、原函数:y=a^x导数:y"=a^xlna8、原函数:y=e^x导数: y"=e^x9、原函数:y=logax导数:y"=logae/x10、原函数:y=lnx导数:y"=1/x求导公式大全整理y=f(x)=c (c为常数),则f"(x)=0f(x)=x^n (n不等于0) f"(x)=nx^(n-1) (x^n表示x的n次方)f(x)=sinx f"(x)=cosxf(x)=cosx f"(x)=-sinxf(x)=tanx f"(x)=sec^2xf(x)=a^x f"(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f"(x)=e^xf(x)=logaX f"(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f"(x)=1/x (x>0)f(x)=tanx f"(x)=1/cos^2 xf(x)=cotx f"(x)=- 1/sin^2 xf(x)=acrsin(x) f"(x)=1/√(1-x^2)f(x)=acrcos(x) f"(x)=-1/√(1-x^2)f(x)=acrtan(x) f"(x)=-1/(1+x^2)
2023-01-13 21:02:511

求导公式

基本初等函数的导数公式:1 .C"=0(C为常数);2 .(Xn)"=nX(n-1) (n∈Q);3 .(sinX)"=cosX;4 .(cosX)"=-sinX;5 .(aX)"=aXIna (ln为自然对数)特别地,(ex)"=ex6 .(logaX)"=(1/X)logae=1/(Xlna) (a>0,且a≠1)特别地,(ln x)"=1/x7 .(tanX)"=1/(cosX)2=(secX)28 .(cotX)"=-1/(sinX)2=-(cscX)29 .(secX)"=tanX secX10.(cscX)"=-cotX cscX导数的四则运算法则:①(u±v)"=u"±v"②(uv)"=u"v+uv"③(u/v)"=(u"v-uv")/ v2④复合函数的导数[u(v)]"=[u"(v)]*v" (u(v)为复合函数f[g(x)])复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。导数是微积分的基础,同时也是微积分计算的一个重要的支柱。
2023-01-13 21:03:153

求导法则公式

y=f(x)=c (c为常数),则f"(x)=0。f(x)=x^n (n不等于0) f"(x)=nx^(n-1) (x^n表示x的n次方)f(x)=sinx f"(x)=cosx。f(x)=cosx f"(x)=-sinx。f(x)=a^x f"(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f"(x)=e^x。f(x)=logaX f"(x)=1/xlna (a>0且a不等于1,x>0)。f(x)=lnx f"(x)=1/x (x>0)。f(x)=tanx f"(x)=1/cos^2 x。f(x)=cotx f"(x)=- 1/sin^2 x。加(减)法则:(f(x)+/-g(x))"=f"(x)+/- g"(x)。乘法法则:(f(x)g(x))"=f"(x)g(x)+f(x)g"(x)。除法法则:(g(x)/f(x))"=(f(x)"g(x)-g(x)f"(x))/(f(x))^2。1、导数定义。导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。2. 几何意义。函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
2023-01-13 21:03:311

求导公式有哪些

求导公式c"=0(c为常数)例如5的倒数是0(x^a)"=ax^(a-1),a为常数且a≠0 例如x^5的倒数是5x^4(a^x)"=a^xlna例如5^x的倒数是5^xln5(e^x)"=e^x上体的特殊情况,lne=1(logax)"=1/(xlna),a>0且 a≠1(lnx)"=1/x(sinx)"=cosx(cosx)"=-sinx(tanx)"=(secx)^2(secx)"=secxtanx(cotx)"=-(cscx)^2(cscx)"=-csxcotx(arcsinx)"=1/√(1-x^2)(arccosx)"=-1/√(1-x^2)(arctanx)"=1/(1+x^2)(arccotx)"=-1/(1+x^2)(uv)"=uv"+u"v(u+v)"=u"+v"(u/)"=(u"v-uv")/^2
2023-01-13 21:03:553

常见函数求导公式

导数是微积分中的重要基础概念,导数实质上就是一个求极限的过程,常见的导数公式有y=c(c为常数)y"=0y=x^ny"=nx^(n-1)y=a^xy"=a^xlna,y=e^xy"=e^x、y=logaxy"=logae/x,y=lnxy"=1/x。三角函数(也叫做"圆函数")是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
2023-01-13 21:03:581

基本求导公式表

求导基本公式表如下:1、y=c,y"=0(c为常数) 2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax, y"=1/(xlna)(a>0且 a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。10、y=arccosx,y"=-1/√(1-x^2)。11、y=arctanx,y"=1/(1+x^2)。12、y=arccotx,y"=-1/(1+x^2)。13、y=shx,y"=ch x。14、y=chx,y"=sh x。15、y=thx,y"=1/(chx)^2。16、y=arshx,y"=1/√(1+x^2)。
2023-01-13 21:04:011

基本初等函数的求导公式

(C)"=0,(x^a)"=ax^(a-1),(a^x)"=(a^x)lna,a>0,a≠1;(e^x)"=e^x[log<a>x]"=1/[xlna],a>0,a≠1;(lnx)"=1/x(sinx)"=cosx(cosx)"=-sinx(tanx)"=(secx)^2(cotx)"=-(cscx)^2(arcsinx)"=1/√(1-x^2)(arccosx)"=-1/√(1-x^2)(arctanx)"=1/(1+x^2)(arccotx)"=-1/(1+x^2)
2023-01-13 21:04:261

求导公式

求导公式c"=0(c为常数)(x^a)"=ax^(a-1),a为常数且a≠0(a^x)"=a^xlna(e^x)"=e^x(logax)"=1/(xlna),a>0且 a≠1(lnx)"=1/x(sinx)"=cosx(cosx)"=-sinx(tanx)"=(secx)^2(secx)"=secxtanx(cotx)"=-(cscx)^2(cscx)"=-csxco...
2023-01-13 21:04:401

常用的求导公式大全

常用的求导公式大全参考如下:1.y=c(c为常数) y"=0    2.y=x^n y"=nx^(n-1)    3.y=a^x y"=a^xlna   y=e^x y"=e^x    4.y=logax y"=logae/x   y=lnx y"=1/x    5.y=sinx y"=cosx    6.y=cosx y"=-sinx7.y=tanx y"=1/cos^2x   8.y=cotx y"=-1/sin^2x2运算法则加(减)法则:[f(x)+g(x)]"=f(x)"+g(x)"乘法法则:[f(x)*g(x)]"=f(x)"*g(x)+g(x)"*f(x)除法法则:[f(x)/g(x)]"=[f(x)"*g(x)-g(x)"*f(x)]/g(x)^2基本初等函数的导数表1.y=c y"=0   2.y=α^μ y"=μα^(μ-1)      3.y=a^x y"=a^x lna    y=e^x y"=e^x4.y=loga,x y"=loga,e/x    y=lnx y"=1/x    5.y=sinx y"=cosx6.y=cosx y"=-sinx    7.y=tanx y"=(secx)^2=1/(cosx)^28.y=cotx y"=-(cscx)^2=-1/(sinx)^2    9.y=arc sinx y"=1/√(1-x^2)10.y=arc cosx y"=-1/√(1-x^2)    11.y=arc tanx y"=1/(1+x^2)12.y=arc cotx y"=-1/(1+x^2)    13.y=sh x y"=ch x14.y=ch x y"=sh x        15.y=thx y"=1/(chx)^216.y=ar shx y"=1/√(1+x^2)        17.y=ar chx y"=1/√(x^2-1)    18.y=ar th y"=1/(1-x^2)
2023-01-13 21:04:431

大学导数公式表有哪些?

2023-01-13 21:04:522

八年级下册数学 怎样容易的把一个多项式因式分解

①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式 另外,在多次多项式内,还可以用双十字相乘法,轮换对称法解决。 主要注意事项:初学因式分解的“四个注意” 因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中。学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。其中四个注意,则必须引起师生的高度重视。 因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举数例,说明如下,供参考。 例1 把-a2-b2+2ab+4分解因式。 解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2) 这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误? 膊荒芗 汉啪拖取疤帷保 匀 饨 蟹治觯?/p> 如例2 △abc的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证这个三角形是等腰三角形。 分析:此题实质上是对关系式的等号左边的多项式进行因式分解。 证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0. 又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0, 即a=c,△abc为等腰三角形。 例3把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1) 这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。防止学生出现诸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2〔3(x-1)-4p〕=2p(x-1)2(3x-4p-3)的错误。 例4 在实数范围内把x4-5x2-6分解因式。 解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6) 这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。 由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。 例题:3ab+5b -22y2+35y-3 a^2+b^2+ab+a+b+a+1
2023-01-13 21:04:176

"佛"字寓意是什么

我记得听翟鸿燊教授讲过,不太类似佛教讲的佛字,他说佛教最有先见之明了,佛字左边是人,右边是以钱的符号组成
2023-01-13 21:04:192

如何求圆的周长和面积

圆周长的计算1、圆周长=圆周率×直径,字母公式:C=πd。2、圆周长= 圆周率×半径×2,字母公式:C=2πr。围成圆的曲线的长就是圆的周长。圆周长的长短,取决于圆的直径(半径)。   圆周率是指圆周长和它直径的比值。在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圆心,r 是半径。圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。扩展资料半圆弧与半圆形的区别:半圆弧:它的长度就是所在圆的周长的一半。半圆形:它的长度是所在圆的周长的一半,再加上一条直径的长度。圆的面积计算公式: ,  圆的面积求直径:把圆分成若干等份,可以拼成一个近似的长方形。长方形的宽相当于圆的半径。
2023-01-13 21:04:221

佛字代表什么意思

这个问题很有意思仙儒佛三教代表的字都有人字边仙很容易理解人在山里或者山人有点离尘的味道(所以真人不露相露像非真人)儒人字旁一个需要的需指人的需要所以儒教以推广人伦礼仪道德为己任这两个比较好理解到佛字就不好理解了人字和弗字组成佛弗字一个意义是法国金钱的符号佛教应该和法国没啥联系,不会是这个.一个意思是弓,人弓?弓人?也不对.还有个意思是“不”别加什么正义光明伟大之类的东西不就是不,人不还是不人?还是有点不通。不过想想佛教的来历,也就明白了。当时阿三文化水平不是很高(也不怕别人想歪了)意思应该是:佛因人而成成佛但已经超脱人的范畴了。不人脱离人的物质欲望才能不人成佛。所以不放下物质欲望修佛,画饼罢了。天之道,损有余而补不足。人之道,损不足以奉有余。勉之
2023-01-13 21:04:222

八年级下册数学分解因式

1.=(x-y)(x+y)-3(x+y) =(x-y-3)(x+y)
2023-01-13 21:04:244

佛字为什么那么写

弗的古字是用绳子矫直箭杆的意思。佛在弗的左边加上一个人字,是将人调直的意思,有句话叫:直心是道场。
2023-01-13 21:04:253

数学,八年级下册,分解因式

⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 例如:-am+bm+cm=-m(a-b-c); a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。 注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式 ⑵公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a^2-b^2=(a+b)(a-b); 完全平方公式:a^2±2ab+b^2=(a±b)^2; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2); 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2); 完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3. 其余公式请参看上边的图片。 例如:a^2 +4ab+4b^2 =(a+2b)^2(参看右图).[编辑本段]竞赛用到的方法⑶分组分解法 分组分解是解方程的一种简洁的方法,我们来学习这个知识。 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。 同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。 2. x3-x2+x-1 解法:=(x3-x2)+(x-1) =x2(x-1)+(x-1) =(x-1)(x2+1) 利用二二分法,提公因式法提出x2,然后相合轻松解决。 3. x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。⑷十字相乘法 这种方法有两种情况。 ①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) . ②kx^2+mx+n型的式子的因式分解 如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d). 图示如下: a b × c d 例如:因为 1 -3 × 7 2 -3×7=-21,1×2=2,且2-21=-19, 所以7x^2-19x-6=(7x+2)(x-3). 十字相乘法口诀:首尾分解,交叉相乘,求和凑中
2023-01-13 21:04:282

y=x三次方图像怎么画,知道方法

如下
2023-01-13 21:04:284

印度佛字怎么写?

又作万字、万字、卍卍字。音译作室利靺蹉洛刹曩。意译作吉祥海云、吉祥喜旋。为佛三十二相之一,八十种好之一。乃显现于佛及十地菩萨胸臆等处之德相。长阿含卷一大本经、大萨遮尼干子所说经卷六、大般若经卷三八一等,均记载佛之胸前、手足、腰间等处有卍字。于今印度阿摩罗婆提(梵Amara^vati^ )出土之佛足石,亦刻有数个卍字。 卍之形,原是古代印度表示吉祥之标志。除印度外,波斯、希腊均有此类符号,通常被视为太阳、电光、火、流水等之象征。在古代印度,佛教、婆罗门教、耆那教均使用之。最早时,古印度人认为此一符号乃存于梵天、毗湿笯(梵Vis!n!u )吉栗瑟拏(梵Kr!s!n!a )胸部之旋毛,而普遍视之为吉祥、清净、圆满之标相。在佛教,卍字为佛及十地菩萨胸前之吉祥相,其后渐成为代表佛教之标志。 卍字之汉译,古来有数说,鸠摩罗什、玄奘等诸师译为‘德"字,菩提流支则译为‘万"字,表示功德圆满之意。另于宋高僧传卷三则谓,卍字译为‘万"并非取其意译,而系准其音。然卍字之音,初时不入经传,至武则天长寿二年(693)始制定此字读为‘万",而谓其乃‘吉祥万德之所集"。 然‘卍"本为一种记号,而非一字。历来之所以联读为‘卍字"者,一方面固因习惯使然,最主要者则因自梵文译成汉文时之讹误。盖梵语laks!n!a,音译作洛刹曩,为‘相"之义;另一梵语aks!ara,音译作恶刹罗,为‘字"之义。或因洛刹曩、恶刹罗两音相近,遂将其字义混同。准此而言,则卍字、万字应作卍相、万相,始符其梵语本义。 相当于‘卍"字之梵语不只一字,以新华严经为例,全经之卍字共有十七处,皆读为‘万",然以梵本对勘之,则其原语共有四种:(一)s/ri^vatsa,音译作室利靺蹉,意译作吉祥臆、吉祥犊。新华严经卷四十八(大一○·二五三下):‘如来胸臆有大人相,形如卍字,名吉祥海云。"其中,‘卍"之原语即为 s/ri^vatsa,系指毛发等旋转重叠如海云之相。(二)nandy-a^varta,音译作难提迦物多,意译为喜旋。新华严经卷二十七(大一○·一四六上):‘其发右旋,光净润泽,卍字严饰。"其中,‘卍"之原语即为 nandy-a^varta,系指佛发右旋之相。(三)svastika,音译作塞缚悉底迦、濊佉阿悉底迦,意译为有乐。新华严经卷二十七(大一○·一四四中):‘愿一切众生得如卍字发,螺文右旋发。"其中,‘卍"字之原语即为 svastika,含有‘有乐"之义,意指毛发右旋,自成纹样,令见者咸得欣悦之相。(四)pu^rn!aghat!a,音译作本囊伽吒,意译为增长。新译华严经卷二十七(大一○·一四八中):‘愿一切众生得轮相指,指节圆满,文相右旋,愿一切众生得如莲华卍字旋指。"其中,‘卍"之原语即为 pu^rn!aghat!a,为‘满瓶"之义,意指佛之头部或指节等处圆满隆起之相。由是可知,上举四相之中,除 pu^rn!aghat!a之外,其余三者皆与毛发有关,然三者之语义亦略有差异,惟诸经论所译一概皆作‘卍"字,实与梵本语义有所出入。 卍字自古即有左右旋之别,于印度教,男性神多用卍表示,女性神多用卍表示。于佛教,现存于鹿野苑之古塔,其上之卍字全为‘卍",该塔系阿育王时代之建筑物,为纪念佛陀昔时于此入定而建者。在西藏,喇嘛教徒多用卍,棒教徒则用卍。我国历代左右旋混用各半,慧琳音义与高丽大藏经皆主张卍,日本大正藏亦准之而采用卍,然宋、元、明三版藏经均用卍。卍字产生左右旋之纷歧,主要系由于‘立场"之差异。盖经中多处有‘右旋"之说,且佛眉间白毫亦宛转右旋,又如礼敬佛菩萨时亦需右绕而行,故‘右旋"一词已成定说,惟究竟以‘卍"为右旋,抑或以‘卍"为右旋,则是争论之关键。若以卍字置于吾人之前,而以吾人之立场观望卍字,右旋则成卍;然若以卍字本身之 立场而言,则卍乃符右旋之方向。参考资料:佛学大词典
2023-01-13 21:04:291

圆的周长和面积计算公式,是怎样得出这两个公式的

本人的观点是:根据“物质与反物质相对、物体与反物体(空间)相对、体积与容积相对、正体与负体相对、正面与负面相对、正线与负线相对和正数与负数相对”它们相对的极限都是零;其余任一项的无穷小都不存在极限。由于圆的周长与直径的比是6+2√3比3(并非是正n边形的周长与对角线的比3.1415926...比1),为此圆的周长c与直径d的比值π只能是(6+2√3)/3(或约等于3.1547...)。圆的周长公式是:c=d(6+2√3)/3,并非c=3.1415926...×d。因为圆被《化圆为方》时圆面积是它外切正方形面积的九分之七,所以圆面积s等于它直径d的三分之一平方的七倍。圆面积公式是:s=7(d/3)²。
2023-01-13 21:04:164

佛字组词 佛什么意思

1、fó 梵语“佛陀”,是对佛教创始人释迦牟尼的简称,亦是佛教徒对修行圆满的人的称呼 。浮屠在中国的简称,指的是印度佛教的创始人。词组:佛教、佛陀、佛寺、佛像、佛堂、佛法、佛经、2、 fú 仿佛,见“仿”。副词,似乎;好像。例:他干起活来仿佛不知道什么是疲倦。动词,像;类似。古同“拂”、违背,违反。词组:仿佛、佛郁。3、bì 古同“弼”,辅弼。《诗.周颂.敬之》:佛时仔肩,示我显德行。郑玄笺:佛,辅也。词组:佛狸。4、bó 古同“勃”,兴起。《荀子》:怫然平世之俗起焉。词组:佛然。
2023-01-13 21:04:151

初中一年级数学所有解题公式

(一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 1.平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2和 (a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2 =(a+b)2 a2-2ab+b2 =(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 ①项数:三项 ②有两项是两个数的的平方和,这两项的符号相同。 ③有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。 (五)分组分解法 我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式. 如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式. 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m +n) 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m+ n) =(m +n)�6�1(a +b). 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式. (六)提公因式法 1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式. 2. 运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意: 1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于 一次项的系数. 2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤: ① 列出常数项分解成两个因数的积各种可能情况; ②尝试其中的哪两个因数的和恰好等于一次项系数. 3.将原多项式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.把一个分式的分子与分母的公因式约去,叫做分式的约分. 2.分式进行约分的目的是要把这个分式化为最简分式. 3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分. 4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2, (x-y)3=-(y-x)3. 5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方. 6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减. (八)分数的加减法 1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来. 2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变. 3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备. 4.通分的依据:分式的基本性质. 5.通分的关键:确定几个分式的公分母. 通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 6.类比分数的通分得到分式的通分: 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。 同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。 8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号. 10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分. 11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化. 12.作为最后结果,如果是分式则应该是最简分式. (九)含有字母系数的一元一次方程 1.含有字母系数的一元一次方程 引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0) 在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。 含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。 1. 分式 2.二次根式 3.三角形 4.一次函数 5.四边形 6.相似 7.简单概率统计 (一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 1.平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2和 (a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2 =(a+b)2 a2-2ab+b2 =(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 ①项数:三项 ②有两项是两个数的的平方和,这两项的符号相同。 ③有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。 (五)分组分解法 我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式. 如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式. 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m +n) 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m+ n) =(m +n)�6�1(a +b). 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式. (六)提公因式法 1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式. 2. 运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意: 1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于 一次项的系数. 2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤: ① 列出常数项分解成两个因数的积各种可能情况; ②尝试其中的哪两个因数的和恰好等于一次项系数. 3.将原多项式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.把一个分式的分子与分母的公因式约去,叫做分式的约分. 2.分式进行约分的目的是要把这个分式化为最简分式. 3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分. 4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2, (x-y)3=-(y-x)3. 5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方. 6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减. (八)分数的加减法 1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来. 2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变. 3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备. 4.通分的依据:分式的基本性质. 5.通分的关键:确定几个分式的公分母. 通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 6.类比分数的通分得到分式的通分: 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。 同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。 8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号. 10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分. 11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化. 12.作为最后结果,如果是分式则应该是最简分式. (九)含有字母系数的一元一次方程 1.含有字母系数的一元一次方程 引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0) 在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。 含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。 希望你能够采纳 谢谢
2023-01-13 21:04:132

圆的面积周长公式

圆的周长L=2πr(其中r为圆的半径,π为圆周率,通常情况下取3.14);圆面积公式是圆周率×半径的平方,用字母可以表示为:S=πr²或S=π×(d/2)²。(π表示圆周率,r表示半径,d表示直径)。圆是一种几何图形。根据定义,通常用圆规来画圆。同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。同时,圆又是“正无限多边形”,而“无限”只是一个概念。圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。
2023-01-13 21:04:131

佛。字原始写法

忘我
2023-01-13 21:04:122

佛字的意义是什么

【出20:1】 神吩咐这一切的话说,【出20:2】 我是耶和华你的神,曾将你从埃及地为奴之家领出来。【出20:3】 除了我以外,你不可有别的神。【出20:4】 不可为自己雕刻偶像,也不可作什么形像仿佛上天,下地,和地底下,水中的百物。【出20:5】 不可跪拜那些像,也不可事奉它,因为我耶和华你的神是忌邪的神。恨我的,我必追讨他的罪,自父及子,直到三四代,【出20:6】 爱我,守我诫命的,我必向他们发慈爱,直到千代。【仰望十架】团队
2023-01-13 21:04:093

matlab怎么绘制如下幂函数图形?

绘制方法:>> x=0:.01:6;>> y=(x-1).*(x-2).^2.*(x-3).^3.*(x-4).^4;>> plot(x,y)MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中。MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
2023-01-13 21:04:092

一斤等于多少两 一起来看看

1、1斤=10两。 2、斤(拼音:jīn)是汉语通用规范一级字(常用字)。此字初文见于商代甲骨文,产生时间可能更早,其古字形像曲柄的斧头,斤的本义就是这一类的木工工具。斤字在现代多用于重量单位名称,一斤等于十两,旧制为十六两,合二分之一千克。 3、两,又作両,是东亚传统的质量单位,中国在汉代之前已经出现,再传到日本、朝鲜半岛、越南等地,实际质量历代不同,传到各地后亦各自有所变化。传统的1斤等于16两,故有成语“半斤八两”。香港和澳门等地珠宝行所用的1两等于31.25克,与国内所用的1两等于50克不同。 4、传说木杆秤是鲁班运用杠杆原理发明的,再根据北斗七星和南斗六星在杆秤上刻制13颗星花,定为13两一斤。秦始皇统一六国后,添加“福禄寿”三星,改成16 两一斤。
2023-01-13 21:04:091

因式分解测试题答案

1.在(x+y)(x—y)=x2—y2中,从左向右的变形是 整式相乘。从右向左的变形是 因式分解或分解因式
2023-01-13 21:04:093