数学模型

阅读 / 问答 / 标签

分析重金属污染物传播特征,由此建立什么数学模型比较好

我表示第三问好难

简述建立线性规划问题数学模型的主要步骤,并指出其中最关键的步骤是什么

简单的线性规划(1)求线性目标函数的在约束条件下的最值问题的求解步骤是:①作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l;②平移——将l平行移动,以确定最优解所对应的点的位置;③求值——解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值

线性规划问题的数学模型

设计划生产甲产品x件、乙产品y件,利润为z,则x,y满足2x+2y≤12x+2y≤84x≤164y≤12x,y 为自然数目标函数z=2x+3y由线性规划知在2x+2y=12,x+2y=8的交点(4,,2)利润z有最大值为2×4+3×2=14

线性规划数学模型由几部分组成?分别是什么?

1.确定决策变量---可以不算组成部分;2.确定目标函数;3.确定不等式约束,形如AX<b,要确定A矩阵,b向量;4.确定等式约束,形如AeqX=beq,要确定Aeq矩阵,beq向量;5.确定决策变量的上下界lb,ub向量;

线性规划问题数学模型的三个要素是什么

线性规划问题的形式特征三个要素组成:1. 变量或决策变量2. 目标函数3. 约束条件

物流资源分配方案线性规划数学模型的特征

有统一算法,任何线性规划问题都能求解。物流资源分配方案线性规划在物流工程中得到了广泛的应用,数学模型特征是有统一算法,任何线性规划问题都能求解。线性规划是数学规划中理论成熟,方法有效,应用最广泛的一个分支。

试述运用线性规划建立数学模型的步骤。

【答案】:线性规划是指在线性等式或不等式的约束条件下,求解线性目标函数的最大值或最小值的方法。运用线性规划建立数学模型的步骤是:(1)确定影响目标的变量;(2)列出目标函数方程;(3)找出实现目标的约束条件;(4)找出使目标函数达到最优的可行解,即为该线性规划的最优解。

解线性规划数学模型有哪些方法

模型建立:从实际问题中建立数学模型一般有以下三个步骤;1.根据影响所要达到目的的因素找到决策变量;2.由决策变量和所在达到目的之间的函数关系确定目标函数;3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。线性规划难题解法所建立的数学模型具有以下特点:1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。2、目标函数是决策变量的线性函数,根据具体问题可以是最大化或最小化,二者统称为最优化。3、约束条件也是决策变量的线性函数。当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。例:生产安排模型:某工厂要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示,表中右边一列是每日设备能力及原材料供应的限量,该工厂生产一单位产品Ⅰ可获利2元,生产一单位产品Ⅱ可获利3元,问应如何安排生产,使其获利最多?解:1、确定决策变量:设x1、x2分别为产品Ⅰ、Ⅱ的生产数量;2、明确目标函数:获利最大,即求2x1+3x2最大值;3、所满足的约束条件:设备限制:x1+2x2≤8原材料A限制:4x1≤16原材料B限制:4x2≤12基本要求:x1,x2≥0用max代替最大值,s.t.(subject to 的简写)代替约束条件,则该模型可记为:max z=2x1+3x2s.t. x1+2x2≤84x1≤164x2≤12x1,x2≥0解法 求解线性规划问题的基本方法是单纯形法,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。对于只有两个变量的简单的线性规划问题,也可采用图解法求解。这种方法仅适用于只有两个变量的线性规划问题。它的特点是直观而易于理解,但实用价值不大。通过图解法求解可以理解线性规划的一些基本概念。

线性规划问题及其数学模型

地下水资源管理的线性规划问题,通常可分为两大类:一类是从社会效益或环境效益出发,即在一定水文地质条件下,寻找供水或排水工程的最佳方案;另一类是从经济效益出发,在满足供、排水工程规划的情况下,寻求完成此工程经济效益最高或成本最低的方案。线性规划问题包括三个要素:(1)决策变量。根据已知条件及所要求的问题,用一组变量x1,x2,…,xn来表示,这些变量称为决策变量,取值要求为非负。(2)目标函数。一个问题都有一个明确的目标,以决策变量的线性函数表示,称为目标函数,它是衡量决策方案优劣的准则。这种准则可用物理量(如水位,水量、水温、水质等)或经济指标(如利润、成本等)来衡量。(3)约束条件。每一个问题都有一定的限制条件,这些条件称为约束条件。它是用一组线性等式或不等式来表示的,其变量与目标函数变量必须是有机联系或者一致的。因为目标函数和约束方程都是决策变量的线性表达式,所以这类模型称为线性规划模型。线性规划的数学模型可表示为:目标函数华北煤田排水供水环保结合优化管理约束条件华北煤田排水供水环保结合优化管理式中:Z为目标函数值;n为决策变量数;m为约束方程数;ai,j为结构系数;cj为价值系数;bi为常数项。

网络数据统计分析笔记||网络图的数学模型

前情回顾: Gephi网络图极简教程 Network在单细胞转录组数据分析中的应用 Gephi网络图极简教程 Network在单细胞转录组数据分析中的应用 网络数据统计分析笔记|| 为什么研究网络 网络数据统计分析笔记|| 操作网络数据 网络数据统计分析笔记|| 网络数据可视化 网络数据统计分析笔记|| 网络数据的描述性分析 在前面的章节中我们了解到网络图的构建,可视化,以及网络结构的特征化描述。从本章开始,我们将进入网络图建模的主题,在网络数据分析中构建与使用模型。本章主要介绍几种常见的数学模型,就像我们在学统计建模的时候,先要学习几个常见的分布模型一样。关于统计建模的一般性描述见 环境与生态统计:R语言应用 。 所谓的网络图模型是指:其中 是所有可能的图的集合, 是 上的一个概率分布, 是参数构成的向量,该向量的所有可能取值为 。 在随机图模型(Random graphs)中,我们模仿这样的一个环境,假如一个团体中有很多的个体,之后两个人随机的认识并且成为朋友,那么随着时间的推移,这个团体会变成什么样子呢?或者说这个以人为节点,边代表好友关系的网络会是什么样子的呢? 正式地讲,随机图模型通常是指一个给定了集合 及其上的均匀概率分布 的模型。其重要作用和完备性就像统计建模中的均匀分布一样。 比较常见的随机网路模型是Erdos-Renyi model,可以通过 sample_gnp 来构建。 查看图中组件和团的情况 可以看到我们生成的随机图不是连通的,有一个 巨型组件。 经典随机网络的性质包括:平均度与期望值比较接近,度分布均匀,节点对之间最短路径上的节点相对较少等。 广义随机图模型是经典随机图模型的一般化,具体地: 在Erdos-Renyi模型之外,最常选择的特征是固定度序列。假设对于节点数为8,一半节点的度为2,另4个节点的度为3,从满足条件的图集合中均匀抽取两个。 可见两个图并非同构。 我们可以从构建一个与已知图序列相同的图: 模拟图直径减少一半,之前的聚类也减少了。 随机图模型为我们描述了在不受任何条件控制的条件下的图,可理解为数学模型的背景模型,但是现实世界里的图往往是由特定结构的。基于机制的网络图模型 把我们带入了现实世界。其中最著名的需要所小世界模型了。 小世界模型最经典的特征是既具有规则网络的高聚集性,又具有类似随机网络的小直径。相较随机图模型,小世界模型能够更好地反映真实网络的情况。就像我们人类社会一样,人以群分,六度分隔。 例如在写本笔记的时候: 媒体经常提到COVID-19呼吸道疾病的病例和死亡人数呈“指数”增长,但这些数字暗示了其他东西,一个可能具有幂律属性的“小世界”网络。这将大大不同于疾病的指数增长路径。 在介绍随机网络时提到,随机网络无法解释真实网络中存在的一些情况:局部集聚(较高的集聚系数)和三元闭合(朋友的朋友是朋友)。从网络结构来看,随机网络与真实网络的一大差异便是过低的集聚系数,所以在随机网络模型基础上进行改进时,需要要着重考虑的便是——如何在保留小网络直径这一特点的同时提高集聚系数,使得构建的模型能够对网络局部结构进行更好的刻画。 小世界的性质: 优先连接”(preferential attachment)指的是进入一个网络的新节点倾向于与节点度高的节点相连接。反过来说,一个节点如果已经接受了很多连接,那么它就越容易被新来的节点所连接。 优先连接现象最早是在1925年,由英国统计学家George Udny Yule研究的。后来科学计量之父Derek J. de Solla Price在1976年也研究了这一现象,并把它叫做积累优势(cumulative advantage)。不过,描述优先连接最著名的模型是Albert-Laszlo Barabasi和Reka Albert提出的,所以也被叫做Barabási–Albert模型或BA模型。它的基本形式非常简明:一个新的节点i连接到网络里某个已有节点j的概率,就是节点j的度占全部已有节点的度之和的比重。 BA模型的节点度符合幂律分布,生成的是一个无标度网络(scale-free network)。 网络无标度性的形成有两个基本的要素:一是网络生长,也就是新的节点加入网络的过程;二是网络生长过程当中的优先连接。 ba网络的性质 如开头所言,随机网络作为网络的背景,它经常用来评估网络特征的显著性:即,待观测的网络与随机网络有多大程度的不一样? 假设我们有一个来自某种观测的图,此处称为 ,而我们对某些结构特征感兴趣,不妨称为 。在很多情况下,自然会考虑 是否是显著的,即在某种意义上是不寻常的和超预期的。这一过程很像我们的统计推断过程 统计推断概述 。 生成参考分布 而真实的我们数据的社团数是: 可以说是很显著的了。这时,你要问为什么? 评估小世界性的一种经典方法是:针对待观测网络以及可能观测到的/经过适当修饰的经典随机图,比较两者聚类系数和平均(最短)路径的长度。如果出现小世界性: 评估有向图的小世界性: 0.5501073 > 0.2548 ; 2.148485 > 1.858 具有一定程度的小世界性质。 https://zhuanlan.zhihu.com/p/146499763 https://zhuanlan.zhihu.com/p/205012648 https://blog.csdn.net/limiyudianzi/article/details/81632139 http://economics.mit.edu/files/4623#:~:text=Generalized%20random%20graph%20models%20%28such%20as%20the%20con,combines%20high%20clustering%20with%20short%20path%20lengths%20is https://ocw.mit.edu/courses/economics/14-15j-networks-spring-2018/lecture-and-recitation-notes/MIT14_15JS18_lec12.pdf https://zhuanlan.zhihu.com/p/37121528 https://www.zdnet.com/article/graph-theory-suggests-covid-19-might-be-a-small-world-after-all/ https://www.sohu.com/a/402313767_169228

全球定位系统这个简单的数学模型哪些精度可以达到日常应用要求

全球定位系统这个简单的数学模型时间精度可以达到日常应用要求。全球定位系统(GPS)是一种基于卫星技术的导航定位系统,其原理是通过测量卫星和接收器之间的距离及位置关系,来确定接收器的具体位置。GPS时间精度可以达到纳秒级别,远远超过了日常应用的要求。从理论上讲,GPS系统的时间精度可以达到纳秒级别,这已经足够满足大多数应用需求。在实际应用中,GPS可以很好地满足各种需要精确时间参考的场合,如航空、电信、金融等行业。此外,GPS还被广泛应用于车辆导航、手机定位、物流管理等领域,为人们的生活提供了便利。然而,值得注意的是,GPS的时间精度虽然非常高,但其存在着由于误差和干扰导致的定位偏差问题,特别是在城市等复杂环境下可能会出现定位不准的情况。因此,在使用GPS进行定位时,也需要结合其他技术手段,如地图数据校正等,来确保定位的可靠性和精度。全球定位系统的特点1、全球,全天候连续不断的导航定位能力。GPS能为全球任何地点或近地空间的各类用户提供连续的、全天候的导航定位能力,用户不用发射信号,因而能满足多用户使用。2、实时导航,定位精度高,观测时间短。利用GPS定位时,在1s内可以取得几次位置数据,这种近乎实时的导航能力对于高动态用户具有很大的意义,同时能为用户提供连续的三维位置、三维速度和精确的时间信息。目前利用C/A码的实时定位精度可达20-50m,速度精度为0.1m/s,利用特殊处理可达0.005m/s,相对定位精度可达毫米级。随着GPS系统的不断完善和软件的不断更新,目前20km以内相对静态定位仅需15-20min,快速静态相对定位测量时,当每个流动站与基准站相距在15km以内时,流动站观测时间只需1-2min,然后可随时定位,每站观测只需几秒 。3、测站无需通视:GPS测量只要求测站上空开阔,不要求测站之间互相通视,因此可节省大量的造标费用(一般造标费用占总经费的30%、50%)。由于无需点间通视,点位位置可根据需要可疏可密,这样就使得选点工作变得非常灵活,也可省去经典测量中的传算点、过渡点的测量工作。4、可提供全球统一的三维地心坐标:GPS测量可同时精确测定测站平面位置和大地高程。目前GPS水准可满足四等水准测量的精度,另外,GPS定位是在全球统一的WGS-84坐标系统中计算的,因此全球不同地点的测量成果是相互关联的。5、仪器操作简便:随着GPS接收机的不断改进,GPS测量的自动化程度越来越高。在观测巾测量员只需安置仪器,连接电缆线,量取天线高,监视仪器的工作状态,而其他观测工作,如卫星的捕扶,跟踪观测和记录等均由仪器自动完成,结束测量时,仅需关闭电源,收好接收机,便完成了野外数据采集任务。如果往一个测站上需做长时间的连续观测,还可以通过数据通信方式将所采集的数据传送到数据处理中心,实现全自动化的数据采集与处理。另外,接收机的体积也越来越小,相应的重量也越来越轻,极大地减轻测量作者的劳动强度,使野外工作变得更为轻松。6、抗干扰能力强、保密性好:GPS采用扩频技术和伪码技术,用户只需接收GPS信号,自身不会发射信号,出而不会受到外界其他信号源的干扰。7、功能多、应用广泛:GPS是军、民两用系统,其应用范围十分广泛。具体的应用实例包括:汽车导航和交通管理、巡线车辆管理、道路工程、个人定位以及导航仪等。

求人工神经网络的具体算法,数学模型,比如求一个函数最优值之类的,不要各种乱七八糟的介绍,谢谢

单纯人工神经网络好像不能找最优吧

绝对定向的数学模型是什么摄影测量学作业

内定向就是根据像片的框标坐标(分角框标与边框标)和相应摄影机的检定参数,恢复像片与摄影机的相关位置,也就是在加密和采集仪器上建立像片坐标系。导入像片的框标坐标和相应摄影机的检定参数,能实现自动内定向,但为了把握起见,一般应进行手工内定向。 连续相对定向是针对航带定向的,可实现连续定向一个航带,是航带法区域网平差的先验计算;单独定向是针对两 不需要,相对定向是两张有一定重叠度的影像之间进行的。以第一张相片的相助点为坐标原点的坐标系为参照坐标 内定向: 确定相机内方位元素, (f, x, y); 相对定向: 将影像坐标系转换到基准影像坐标系 将仪器坐标系中的像点坐标转换为像平面坐标系中 坐 基本定向点,就是内业选取的像控点,然后到外业测量之后,再到内业进行刺点。 内业加密点,就是进行空三 摄影测量 什么时候不需要内定向?: 为什么要进行内定向,因为影像和相机框标不吻合,且影像本身存在形变,相机框标不吻合的原因是相片相对于相...摄影测量中三个定向的名称目的方法?: 内定向: 确定相机内方位元素, (f, x, y); 相对定向: 将影像坐标系转换到基准影像坐标系...摄影测量中 相对定向需要控制点吗?为什么?: 不需要,相对定向是两张有一定重叠度的影像之间进行的。以第一张相片的相助点为坐标原点的坐标系为参照坐标...摄影测量中 基本定向点和内业加密点一样吗 ?分别是什么?: 基本定向点,就是内业选取的像控点,然后到外业测量之后,再到内业进行刺点。 内业加密点,就是进行空三...

动力学系统的数学模型主要包括哪些种类?

在一起吗!在家了?在一起!这

本人关于数学模型的全英文文章,希望找到合适的期刊投出去,大家些期刊建议啊。

期刊名称:Acta Mathematica Scientia(English Series)曾用刊名:数学物理学报(英文版);Acta Mathematica Scientia主办单位:中国科学院武汉物理与数学研究所期刊名称:Acta Mathematica Sinica主办单位:中国科学院应用数学研究所期刊名称:Acta Mathematicae Applicatae Sinica曾用刊名:应用数学学报(英文版)主办单位:中国科学院应用数学研究所;中国数学会期刊名称:Applied Mathematics and Mechanics(English Edition)曾用刊名:应用数学和力学(英文版);Applied Mathematics and Mechanics主办单位:上海大学期刊名称:Applied Mathematics:A Journal of Chinese Universities(Series B)曾用刊名:高校应用数学学报B辑(英文版);Applied Mathematics:A Journal of Chinese Universities主办单位:浙江大学期刊名称:Chinese Annals of Mathematics,Series B曾用刊名:数学年刊B辑(英文版);Chinese Annals of Mathematics主办单位:复旦大学期刊名称:Communications in Mathematical Research曾用刊名:数学研究通讯(英文版);东北数学(英文版);东北数学;Northeastern Mathematical Journal主办单位:吉林大学期刊名称:Journal of Computational Mathematics曾用刊名:计算数学(英文版)主办单位:中国科学院数学与系统科学研究院期刊名称:Journal of Systems Science & Complexity曾用刊名:系统科学与数学(英文版);系统科学与复杂性学报(英文版);Systems Science and Mathematical Sciences;Journal of Systems Science and Complexity主办单位:中国科学院系统科学研究院期刊名称:数学季刊(英文版)曾用刊名:数学季刊主办单位:河南大学全英文的数学期刊不多的

数学模型有哪些

模型分类按应用领域分类:生物学数学模型医学数学模型地质学数学模型气象学数学模型经济学数学模型社会学数学模型物理学数学模型化学数学模型天文学数学模型工程学数学模型管理学数学模型按是否考虑随机因素分类:确定性模型随机性模型按是否考虑模型的变化分类:静态模型动态模型按应用离散方法或连续方法分类:离散模型连续模型按建立模型的数学方法分类:几何模型微分方程模型图论模型规划论模型马氏链模型按人们对事物发展过程的了解程度分类:白箱模型:指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的工程技术问题。灰箱模型:指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。如气象学、生态学经济学等领域的模型。黑箱模型:指一些其内部规律还很少为人们所知的现象。如生命科学、社会科学等方面的问题。但由于因素众多、关系复杂,也可简化为灰箱模型来研究。

什么样的模型称为数学模型?

、真实完整。   1)真实的、系统的、完整的,形象的反映客观现象;   2)必须具有代表性;   3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;   4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。   2、简明实用。在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。   3、适应变化。随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。

常见的数学模型有哪些?(常见的数学模型有哪些例子)

1、常见的数学模型有哪些?。 2、常见的数学模型有哪些例子。 3、常用的数学模型有哪些。 4、数学中有哪些模型。1.优化模型。 2.优化模型包括四个要素:决策变量、目标函数、约束条件、求解方法。 3.微分方程模型。 4.微分方程模型一般适用于动态连续模型,当描述实际对象的某些特性随时间或空间而演变的过程、分析它的变化规律、预测它的未来性态,研究它的控制手段时,通常要建立对象的动态模型。 5.概率统计模型。 6.概率统计模型包括预测模型、经济计量模型和马尔可夫链模型三种模型。

数学模型的优点和缺点

数学模型的优点是:( 1 )利用嫡值模糊算法,能用信息嫡评价所获系统信息的有序度及其效用即由评价指标值构成的判断矩阵来确定指标的权重从而尽量消除各指标权重的人为干扰使评价结果更符合实际。( 2 )算法在总体上较为简单,只利用了几个公式,便于理解。( 3 )准确性高,利用统计所得数据可以完全求得最后结果。( 4 )能客观的反应北京市水资源短缺的风险,防止主观偏差。( 5 )考虑全面、充分(列举20项风险指标),几乎包含所有影响因素。数学模型的缺点是:( 1 )当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确。命名清晰性低。( 2 )在计算因子得分时,采用的是最小二乘法,此法有时可能会失效。( 3 )在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映被试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。

数学建模与数学模型关系

数学建模很简单,我们在生活中都有遇到。例如吃橘子,吃三个,就是建模。数学模型,在遇到问题时,建立数学模型是一个步骤,在很多问题都用到。

建立数学模型的方法

建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法。机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义。模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作。情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料。模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解不同的简化假设会得到不同的模型假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设,假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下-步的工作。通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合·作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化经验在这里也常起重要作用写出假设时,语言要精确,就象做习题时写出已知条件那样。

建立数学模型的方法

建立数学模型的方法如下:1.类比法。数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型。2.量纲分析法。量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。3.差分法。差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。差分法的解题步骤为:建立微分方程;构造差分格式;求解差分方程;精度分析和检验。4.变分法。变分法是处理函数的函数的数学领域,即泛函问题,和处理数的函数的普通微积分相对。这样的泛函可以通过未知函数的积分和它的导数来构造,最终寻求的是极值函数。现实中很多现象可以表达为泛函极小问题,即变分问题。变分问题的求解方法通常有两种:古典变分法和最优控制论。受基础知识的制约,数学建模竞赛大专组的建模方法使用变分法较少。

在数据库系统中,常用的数学模型主要有那四种呢?

数据库模型的分类 :1、概念模型 2 、层次模型 3 、网状模型 4、 关系模型 一般意义上的模型的表现形式可以分为 物理模型、数学模型、结构模型和仿真模型。

谁能举例说说生活中的数学模型有哪些呢?

比如:铅球投掷模型

数学模型的例子

以下是一些数学模型的例子:1、经济模型:经济模型是通过数学和统计学的方法,描述经济系统运行规律的数学模型。比如货币数量论、供求关系模型等。2、生物模型:生物模型是将生物学中的生物现象抽象化为数学形式,以便于研究和预测生物现象的变化。比如人口增长模型、疾病传播模型等。3、物理模型:物理模型是将物理学中的现象抽象化为数学形式,并以此预测和解释实际物理现象。比如天体运动模型、量子场论模型等。4、工程模型:工程模型是将工程问题抽象化为数学形式,以便于分析和解决实际工程问题。比如航空航天模型、水利水电模型等。数学模型是将实际问题抽象化为数学形式,并在此基础上建立起来的数学方法和模型。数学模型在科学研究和工程实践中具有广泛的应用,总之,数学模型是将实际问题抽象化为数学形式,并在此基础上建立的数学方法和模型,具有广泛的应用。它不仅可以帮助人们更好地理解和分析实际问题,还可以为实际问题的解决提供有效的工具和方法

常见的数学模型有哪些

首先,常用的数学模型有优化模型(主要是统计回归,包括对数据的处理,用到拟合,差值等等),微分方程模型(常微较多,偏微不常用),差分方程型(就是离散型,这类不能求导微分等等),概率论模型,还有什么图论啊 一些乱七八糟的 (以上我说的都是一些很基础的模型,复杂的模型差不多都是基于简单模型) 数学建模主要有三步,1.把实际问题转化成数学问题(这一般是竞赛前两天的工作);2.用数学知识和计算机知识(主要是MATLAB)解决数学问题;3.整理和完善,论文写作 我认为数学建模最重要的一步就是把实际问题转化成数学问题这一步,因为后面两步往往是不难的。 关键点有 1头脑要灵活一点,要大胆的想,考虑的因素要全面一点,但是呢,不能想出一个模型就马上建模,因为要考虑很多问题,比如是否可行(主要是实际的问题,比如合作模型中,合作中每个人得到的利益要大于等于没有合作时原来每个人的利益),比如建立的数学模型是否容易解决(比如你建立了一个常微分方程组,这个问题一般情况下好像数学家都还没给出解决,所以可想而知你和计算机能不能解决了,这个时候你应该考虑把问题巧妙地转换一下或者简化一下) 关键点之2,要找到实际问题之中和核心问题,然后由这个或者这几个核心(最好不要太多核心)来拓展。比如火箭三级助推这个问题,它的核心问题是对火箭质量改变规律的探究。然后呢,做完了核心问题的研究以后,想想实际的问题。比如,还是火箭助推这个问题,发现了助推器越多越好这个规律后,是不是就要用无穷级助推呢?显然不是,这就是后续的最优化问题。 你可以找个班去听听,或者借本书看看。(主要推荐姜启源的《数学建模》),然后自己试着建模,慢慢来。然后学一些知识,数学当然不能少(主要你要学运筹学,最优化等等,如果你想在建模中脱颖而出的话),还有要早点组队磨合,做好分工与合作。 论文一般没什么,主要就把你的思路清晰简洁的表达出来,结合图形,表格等等,然后语言要严谨,用词准确,能生动就更好了。(当然美国的数模竞赛还要你英语水平比较高才行)你可以去研读一些优秀论文,对你帮助很大的。 希望我能帮到你~

数学建模与数学模型有什么区别呢

模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物,集中反映了原型中人们需要的那一部分特征。数学建模就是指对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构,其意义在于用数学方法解决实际问题。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。数学模型可以描述为:对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一定的必要假设,然后运用恰当的数学工具得到的一个数学结构。这样,在一定抽象并且简化的基础之上得到的一个数学结构,也就是数学模型,可以帮助人们更加深刻地认识所研究的对象。比方说,我们所研究的物理学,尤其是应用在工程上面的物理学,比如电路,理论力学,材料力学这些,就是对数学建模的一个很好直观的例子。

数学模型是什么?怎么用它做题啊?

数学模型:1、实物的模型。例如:球体模型、正方体模型等2、理论模型,在数学学习中归纳总结的数学规律。例如:二次函数模型

什么样的数学模型是好模型?

1一个好的模型不需要完美地解释所有现象,甚至不要求它的推导是符合实际的,它只要能够按要求解释部分我们想要理解的现象,那么这个模型就是一个解释该现象的好模型;2模型的假设简单,不符合实际,只有当该模型的结论和现实中的数据相差太多时才是个缺点;若该模型结果可以和实际结果达到按要求的吻合,则模型中不符合实际的简单假设反而是个优点,因为该模型使我们对现象的理解变得简单,也有可能帮助我们看清楚了决定现象的主要因素。 数学模型的 历史 可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。对于广大的科学技术工作者对大学生的综合素质测评,对教师的工作业绩的评定以及诸如访友,采购等日常活动,都可以建立一个数学模型,确立一个最佳方案。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。1、真实完整。1)真实的、系统的、完整的,形象的反映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。2、简明实用。在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。3、适应变化。随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM方法。数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代数方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。在 体育 实践中常常提到优秀运动员的数学模型。如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。静态和动态模型静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。分布参数和集中参数模型 分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。连续时间和离散时间模型 模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。随机性和确定性模型 随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。参数与非参数模型 用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种系统辨识的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。线性和非线性模型 线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。编辑本段数学模型的定义  现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。"数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。"具体来说,数学模型就是为了某种目的,用字母、数字及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。 好的模型,应该做到自洽,本课题组验证无误。互洽,国际同行确认。普洽,经过外行用专业基础知识反复推敲,没有异议。 解决问题的模型 不知道。我们建立的数学也就对物质层面简单的解释一下。精神层面根本摸不着门。

数学模型有什么用

数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。在体育实践中常常提到优秀运动员的数学模型。如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。静态和动态模型静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。分布参数和集中参数模型分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。连续时间和离散时间模型模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。随机性和确定性模型随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。参数与非参数模型用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种系统辨识的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。线性和非线性模型线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。

什么是数学模型法?

数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

数学模型及其解法

按照描述地下水流变量的性质,地下水流的数学模型可分为两类。一类是随机模型,研究的对象是随机变量,即该变量的取值不是确定性的而是概率。另一类是确定性模型,模型中变量取确定值,确定性模型由上述一个或一组微分方程及其相应的定解条件所构成,本教材仅介绍确定性模型(下文简称数学模型)。求解数学模型的方法主要有3类:即解析法、数值法(数值模拟法)和物理模拟法。解析法是应用数学分析方法获得一个用连续函数表达其解的方法(通常以水头H表示)。这个函数式(称解析解)反映了含水层参数、源汇项及边界条件等对水头时空分布的影响,因此,可以直接或通过数学分析方法来揭示各因素与水头H时空分布的内在联系。我们强调解析解是个连续函数,就是说其解可以给出任何空间点和时间点的水头值,因而可以通过数学分析方法给定任意时空点的水力坡度J、渗流速度v和任意断面的流量等运动要素。它的另一个优点是,解析解是精确的。解析法的主要缺点是,能够求解的问题一般比较简单,除个别问题外,一般要求含水层为均质、等厚、边界为直线、圆形或无界等。数值方法与解析法不同,其解(称数值解)不是一个连续分布的函数,而是按要求事先设计好的时空离散点上的数值解(例如水头值)。这些数值解不能直接给出含水层参数、源汇项、边界等各因素对水头时空分布的函数关系,只能从数值分布特征去寻找规律。另外,数值解本身是一种近似解。然而它最大的优点是,不受水文地质条件的限制,可用于自然界各种复杂的条件。一般地讲,只要地下水运动机理清楚了的问题,都可用数值法求解。数值解方法的运算量往往很大,一般要借助于电子计算机才能实现。物理模拟方法:由于已知控制地下水运动的基本微分方程是抛物线方程和椭圆方程等,这一数学物理方程在其他物理现象方面也存在,例如电动力学、热动力学等。因此,如果研究对象的几何形状、参数分布与边界条件是相似的,则可以利用一种物理现象来研究另一种物理现象,这是物理模型。借助某种物理模型来研究渗流的方法称为物理模拟方法。本教材主要介绍求解均匀流体饱和流动的解析方法,而对物理模拟仅从教学目的出发选择几种进行简要介绍。关于地下水的数值方法将在《地下水流动问题数值方法》 (陈崇希等,1990)中进行专门介绍。

数学模型有哪些

正方形 长方形

什么是数学模型?

有哪些数学模型类型?

数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

什么是数学模型?

数学建模就是用数学语言描述实际现象的过程.这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容.我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程.

数学模型的类别有哪些

优化模型、微分方程模型、稳定性分析模型、代数模型、图论模型、动态规划模型、随机模型、决策与对策模型。 数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型。 数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。对于广大的科学技术工作者对大学生的综合素质测评,对教师的工作业绩的评定以及诸如访友,采购等日常活动,都可以建立一个数学模型,确立一个最佳方案。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。

数学模型可以分为哪三类

数学模型可以分为三类:(1)概念型数学模型(2)方法型数学模型(3)结构型数学模型

数学建模和数学模型有什么区别?

1、概念不同:数学模型是一类方法和一类实例,它是将问题转化为可以用数学解的一系列公式。数学建模是一种竞赛和科目的名称,是学习数学模型和用数学模型来竞赛。2、应用方式不同:数学模型是在实际问题中抽化出数学的模型,也就是纯数学的问题,然后解决这个数学问题,在回到实际问题,也就解决了实际问题。数学建模=建造模型 ,是建立数学模型的全过程,包括模型准备,假设、建立、求解、分析、检验、应用等。扩展资料:不同的数学模型,是以数学方程式的形势表达一个形态, 应该说是已经做好的方程式或关系式,(是名词,强调结果) 而数学建模是以数学的方法建立事物的形态,(是动词,强调过程) 数学模型是通过数学建模得来的,而数学模型不一定通过数学建模。

数学模型的模型种类

用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。静态和动态模型静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。分布参数和集中参数模型分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。连续时间和离散时间模型模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。随机性和确定性模型随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。参数与非参数模型用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种系统辨识的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。线性和非线性模型线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。

什么是数学模型

数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型。数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型。数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。对于广大的科学技术工作者对大学生的综合素质测评,对教师的工作业绩的评定以及诸如访友,采购等日常活动,都可以建立一个数学模型,确立一个最佳方案。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。具体来说,数学模型就是为了某种目的,用字母、数字及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。数学模型是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

什么是数学模型?

模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物,集中反映了原型中人们需要的那一部分特征。数学建模就是指对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构,其意义在于用数学方法解决实际问题。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。数学模型可以描述为:对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一定的必要假设,然后运用恰当的数学工具得到的一个数学结构。这样,在一定抽象并且简化的基础之上得到的一个数学结构,也就是数学模型,可以帮助人们更加深刻地认识所研究的对象。比方说,我们所研究的物理学,尤其是应用在工程上面的物理学,比如电路,理论力学,材料力学这些,就是对数学建模的一个很好直观的例子。

数学模型有哪些呢?

数学模型有如下:1、生物学数学模型2、医学数学模型3、地质学数学模型4、气象学数学模型5、经济学数学模型6、社会学数学模型7、物理学数学模型8、化学数学模型9、天文学数学模型10、工程学数学模型11、管理学数学模型

数学模型有哪些?

内容如下:1、生物学数学模型2、医学数学模型3、地质学数学模型4、气象学数学模型5、经济学数学模型6、社会学数学模型7、物理学数学模型8、化学数学模型9、天文学数学模型10、工程学数学模型11、管理学数学模型数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。数学模型这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

数学模型是什么意思

数学模型(Mathematical Model)是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(MathematicalModeling)。数学建模:就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机);数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。

数学模型是什么

数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。对于广大的科学技术工作者对大学生的综合素质测评,对教师的工作业绩的评定以及诸如访友,采购等日常活动,都可以建立一个数学模型,确立一个最佳方案。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。模型种类:静态和动态模型:静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。分布参数和集中参数模型:分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。连续时间和离散时间模型:模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。随机性和确定性模型:随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。参数与非参数模型:用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。线性和非线性模型:线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型。

生物除了数学模型,还有些什么模型

还有物理模型,概念模型

一,什么是数学模型

求图

数学模型的释义

数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。具体来说,数学模型就是为了某种目的,用字母、数字及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

为什么结构框图也是数学模型

结构图也是系统的一种数学模型,它实际上是数学模型的图解化 。

初中数学模型有哪些

手拉手,半角,猪蹄,一线三直角,子母,八字,同余…

什么是数学模型和数学建模

数学建模就是用数学语言描述实际现象的过程.这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容.我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程.

论文需要一个数学模型,请问一下数学模型是什么啊

数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。"数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。"具体来说,数学模型就是为了某种目的,用字母、数字及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。

数学建模和数学模型是一样的吗?

不一样

怎么建立数学模型

推荐使用eviews软件,spss软件也行,建立回归模型。

常见的数学模型有哪些

1、优化模型。优化模型包括四个要素:决策变量、目标函数、约束条件、求解方法;2、微分方程模型。微分方程模型一般适用于动态连续模型,当描述实际对象的某些特性随时间或空间而演变的过程、分析它的变化规律、预测它的未来性态,研究它的控制手段时,通常要建立对象的动态模型。3、概率统计模型。概率统计模型包括预测模型、经济计量模型和马尔可夫链模型三种模型。

什么是数学模型

数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。对于广大的科学技术工作者对大学生的综合素质测评,对教师的工作业绩的评定以及诸如访友,采购等日常活动,都可以建立一个数学模型,确立一个最佳方案。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。"数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。"具体来说,数学模型就是为了某种目的,用字母、数字及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

数学模型有哪些?

1、生物学数学模型2、医学数学模型3、地质学数学模型4、气象学数学模型5、经济学数学模型6、社会学数学模型7、物理学数学模型8、化学数学模型9、天文学数学模型10、工程学数学模型11、管理学数学模型扩展资料:数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。数学模型这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

什么是数学模型?

数学模型是指对于现实世界的一个特定对象

数学模型的分类有哪些

1、按照模型的应用领域分:人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型;2、按照建立模型的数学方法分:初等模型、几何模型、微分方程模型、统计回归模型、数学规划模型;3、按照模型的表现特性分:确定性模型和随机性模型、静态模型和动态模型、线性模型和非线性模型、离散模型和连续模型;4、按照建模目的分:描述模型、预报模型、优化模型、决策模型、控制模型等。

什么是数学模型?

模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物,集中反映了原型中人们需要的那一部分特征。数学建模就是指对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构,其意义在于用数学方法解决实际问题。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。数学模型可以描述为:对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一定的必要假设,然后运用恰当的数学工具得到的一个数学结构。这样,在一定抽象并且简化的基础之上得到的一个数学结构,也就是数学模型,可以帮助人们更加深刻地认识所研究的对象。比方说,我们所研究的物理学,尤其是应用在工程上面的物理学,比如电路,理论力学,材料力学这些,就是对数学建模的一个很好直观的例子。

什么是数学模型

什么是数学模型数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。数学模型所表达的内容可以是定量的,也可以是定性的,但必须以定量的方式体现出来。因此,数学模型法的操作方式偏向于定量形式。数学模型可以描述为:针对于现实世界的一个特定对象,为了一个特定的目的,根据其内在的系统特征、规律做出一定的必要假设,采用数学语言,概括地或近似地表述出一种数学结构,这种数学结构是借助于数学符号刻画出来的某种系统的纯关系结构。广义上,数学模型包括数学中的各种概念,各种公式和各种理论。在一定抽象并且简化的基础之上得到的一个数学结构,也就是数学模型,可以帮助人们更加深刻地认识所研究的对象。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

十大经典数学模型

以下是十大经典数学模型的简要介绍:1. 线性回归模型:用于建立因变量和一个或多个自变量之间的线性关系,可以用来进行预测和建立关联。2. 二项式分布模型:用于描述在固定数量的试验中成功的概率,被广泛应用于估计统计数据中的置信度和显著性水平。3. 正态分布模型:一种连续分布,它的形状像一个钟形曲线,可以描述自然界中很多现象的分布,例如身高、体重等。4. 马尔可夫链模型:描述状态在时间上的演变,并用于各种应用中,如自然语言处理、金融市场分析等。5. 黑-斯科尔模型:用于分析金融市场中的风险和回报,可帮助投资者做出最优投资决策。6. 生长模型:描述自然界中生物的生长过程,包括人口增长、细胞分裂、植物生长等,被广泛用于农业、生物学等领域。7. 模拟模型:用于模拟复杂系统的行为,包括气象、交通、城市规划等,可帮助决策者做出最优决策。8. 游戏论模型:用于分析博弈中的策略和结果,包括合作博弈、非合作博弈、零和博弈等。9. 压缩模型:用于压缩数据,以减少存储空间和传输时间,常见的压缩模型包括哈夫曼编码、Lempel-Ziv编码等。10. 拓扑模型:描述几何形状的变化和特性,如连通性、维数、曲率等,广泛应用于几何学、物理学、计算机科学等领域。

数学模型有哪些呢?

数学模型如下:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。2、数据拟合、参数估计、插值等数据处理算法。3、线性规划、整数规划、多元规划、二次规划等规划类问题。4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。7、网格算法和穷举法。8、一些连续离散化方法。9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。10、图象处理算法。建模要求:1)真实的、系统的、完整的,形象的反映客观现象。2)必须具有代表性。3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因。4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。

数学模型有哪些

数学模型(mathematical model)就是用数学的语言、方法去近似地刻画实际,描述现实问题的数学公式、图形或算法。数学模型可按不同的方式进行分类。按照模型的应用领域,可分为人口模型、生物模型、生态模型、交通模型、环境模型、作战模型、社会模型、经济模型、医学模型、机械模型等。按照建立模型的数学方法,可分为微分方程模型、几何模型、网络模型、运筹模型、随机模型等。按照建模目的,可分为描述模型、分析模型、预测模型、决策模型、控制模型等。按照对模型结构的了解程度,可分为白箱模型、灰箱模型、黑箱模型。白箱是指对所涉及问题的机理很清楚,黑箱是完全不了解问题的内部机理,灰箱则介于两者之间。根据模型的表现形态还可分为:静态模型和动态模型、解析模型和数值模型、离散模型和连续模型、确定性模型和随机性模型。数学模型和数学建模介绍数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些规律建立起变量、参数之间的关系。求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题。数学建模最重要的特点在于它是一个接受实践检验、多次修改、逐渐完善的过程。数学建模没有固定的格式和标准,也没有明确的方法,通常由明确问题、合理假设、搭建模型、求解模型、分析检验等五个步骤组成。一个理想的数学模型,应尽可能满足以下两个条件:模型的可靠性:在误差允许范围内,能正确反映客观实际;模型的可解性:模型能够通过数学计算,得到可行解。一个实际问题往往很复杂的,影响因素也有很多,要解决实际问题,就要将实际问题抽象简化、合理假设,确定变量和参数,建立合适的数学模型,并求解。模型的可靠性和可解性通常互相矛盾,一般总是在模型可解性的前提下力争较满意的可靠性。

帮忙数学模型论文500分悬赏!

看不懂可以去找 火燚 他可13级

科研论文中的数学模型如何选取

初中数学建模论文很简单的中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模 。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的这是某数学竞赛的建模论文要求,可以参考一下(一)、建模论文的标准组成部分建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力.一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成.现就每个部分做个简要的说明.1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.2. 摘要摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.摘要一般分三个部分.用三句话表述整篇论文的中心.第一句,用什么模型,解决什么问题.第二句,通过怎样的思路来解决问题.第三句,最后结果怎么样.当然,对于低年级的同学,也可以不写摘要.3. 正文正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.5. 参考资料在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.(二)、建模论文的写作步骤1. 确定题目选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目.最好是找一位或几位老师帮助安排研究课题.在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议.2. 开展科研课题去图书馆、互联网上查阅与课题相关的资料,观察有关的事件,收集与课题相关的信息.同时如果有条件的话,可以去拜访相关领域的专家和学者.然后将前期所收集到的资料与自己所学的相关知识组织在一起,进行论文的结构论证.完成这些工作后,你应该要制定一个课题时间安排表,这样能保证书写论文的循序渐进.记住在开始写论文后一定要不断地和老师、家长进行沟通,让老师和家长斧正论文中出现的明显错误,并能提出一些更好的研究建议.在论文写作结束以后,一定要得出结论.记住,在论文的结果出来后,有可能得出的结果与假设并不相符,这个并不重要,不要强行改变结果来迎合假设.只要你在论述过程中严格地按照科学方法进行,你的论文还是相当有价值的.最后,需要很好地写一份摘要.摘要的字数应该是论文字数的十分之一左右.3. 完成论文写作完整的论文在完成以上步骤之后就可以新鲜出炉了,完成论文后,一定要再看一遍自己的论文有没有错别字、计算错误、图形的移位或偏差等.最后,在论文的结尾处应该写上感谢的话,感谢帮助你完成这篇论文的所有人.

什么是整数规划?并写出其数学模型

 整数规划是指一类要求问题中的全部或一部分变量为整数的数学规划。是近三十年来发展起来的、规划论的一个分支. 整数规划问题是要求决策变量取整数值的线性规划或非线性规划问题。  一般认为非线性的整数规划可分成线性部分和整数部分,因此常常把整数规划作为线性规划的特殊部分。在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求解答必须是整数。例如,所求解是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是01规划,它的变数仅限于0或1。  整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的 ,30多年来发展出很多方法解决各种问题。解整数规划最典型的做法是逐步生成一个相关的问题,称它是原问题的衍生问题。对每个衍生问题又伴随一个比它更易于求解的松弛问题(衍生问题称为松弛问题的源问题)。通过松弛问题的解来确定它的源问题的归宿,即源问题应被舍弃,还是再生成一个或多个它本身的衍生问题来替代它。随即 ,再选择一个尚未被舍弃的或替代的原问题的衍生问题,重复以上步骤直至不再剩有未解决的衍生问题为止。目前比较成功又流行的方法是分枝定界法和割平面法,它们都是在上述框架下形成的。  0—1规划在整数规划中占有重要地位,一方面因为许多实际问题,例如指派问题、选地问题、送货问题都可归结为此类规划,另一方面任何有界变量的整数规划都与0—1规划等价,用0—1规划方法还可以把多种非线性规划问题表示成整数规划问题,所以不少人致力于这个方向的研究。求解0—1规划的常用方法是分枝定界法,对各种特殊问题还有一些特殊方法,例如求解指派问题用匈牙利方法就比较方便。[编辑]整数规划与组合最优化的关系  整数规划与组合最优化从广泛的意义上说,两者的领域是一致的,都是在有限个可供选择的方案中,寻找满足一定标准的最好方案。有许多典型的问题反映整数规划的广泛背景。例如,背袋(或装载)问题、固定费用问题、和睦探险队问题(组合学的对集问题)、有效探险队问题(组合学的覆盖问题)、送货问题等。因此整数规划的应用范围也是极其广泛的。它不仅在工业和工程设计和科学研究方面有许多应用,而且在计算机设计、系统可靠性、编码和经济分析等方面也有新的应用。[编辑]整数规划的种类  整数规划又分为:  1、纯整数规划:所有决策变量均要求为整数的整数规划  2、混合整数规划:部分决策变量均要求为整数的整数规划  3、纯0-1整数规划:所有决策变量均要求为0-1的整数规划  4、混合0-1规划:部分决策变量均要求为0-1的整数规划  整数规划与线性规划不同这处只在于增加了整数约束。不考虑整数约束所得到的线性规划称为整数规划的线性松弛模型。[编辑]整数规划模型  在现实生活中,决策变量代表产品的件数、个数、台数、箱数、艘数、辆数等等,则变量就只能取整数值. 如截料模型实际上就是一个整数规划模型,该例的决策变量代表所截钢管的根数,显然只能取整数值。因而整数规划模型也有着广泛的应用领域,从 以下的几个例子中更可以窥其一斑。  求解整数规划的一种自然的想法是,能否用整数规划的线性松弛模型的最优解经过四舍五入得到整数规划的最优解呢?回答是否定的,因为这样四舍五入的结果甚至不是可行解。  整数规划比通常的线性规划更加难以求解,迄今求解整数规划其基本求解思路都是按一定的搜索规则,在整数规划的线性松弛模型的可行域内寻找出整数最优解(或确认无整数最优解),因此求整数规划的解需要更多的时间,现通用的解法,主要有分支定界法、割平面法和穷举法等。

建立数学模型的方法和步骤

数学建模的主要步骤:第一、模型准备首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。第二、模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。第三、模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。第四、模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。第五、模型分析对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。数学建模采用的主要方法有:(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模型。1、比例分析法:建立变量之间函数关系的最基本最常用的方法。2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。(三)、仿真和其他方法1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状态变量。②连续系统仿真,有解析表达式或系统结构图。2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。

数学模型,物理模型和概念模型的区别

物理模型就是根据自己所能看到的自然事物转化成一种理想的状态,概念模型就是根据你所了解到的转化为精罕的语言,数学模型就是根据你所看到的事物通过数学关系表达出来

高中生物物理模型,数学模型,概念模型各有哪些例子

物理模型 DNA双螺旋结构模型,细胞膜的流动镶嵌模型 ,细胞结构模型,演示细胞分裂的橡皮泥模型(必修2减数分离附近),必修三糖卡那个实验(描述胰岛素胰高血糖素作用)数学模型 J型变化曲线 (S型也是)酶活性受温度(PH值)影响示意图,不同细胞的细胞周期持续时间等.概念模型 达尔文的自然选择学说(最典型)你要注意个单元后面的概念图,它们同属于概念模型(不过不算规范)真核细胞结构共同特征的文字描述、光合作用过程中物质和能量的变化我的可能不算全,你好好翻翻书,记住三大模型的特征物理模型:以实物或图片形式直观表达认识对象的特征.概念模型:指以文字表述来抽象概括出事物本质特征的模型.数学模型:用来描述一个系统或它的性质的数学形式

物理模型数学模型概念模型的区别

物理模型数学模型概念模型的区别如下:1、物质模型:构建数据仓库的物理分布模型,主要包含数据仓库的软硬件配置,资源情况以及数据仓库模式。2、状态模型:研究流体力学时,流体的稳恒流动,研究理想气体时,气体的平衡态,研究原子物理时,原子所处的基态和激发态等都属于状态模型。3、过程模型:在研究质点运动时,如匀速直线运动,匀变速直线运动,匀速圆周运动,平抛运动,简谐运动等,在研究理想气体状态变化时,如等温变,等压变化,等容变化,绝热变化等。物理模型的特点在数据仓库项目中,物理模型设计和业务模型设计象两个轮子一样有力地支撑着数据仓库的实施,两者并行不悖,缺一不可。实际上,这有意地扩大了物理模型和业务模型的内涵和外延,因为,在这里物理模型不仅仅是数据的存储。而且也包含了数据仓库项目实施的方法论、资源以及软硬件选型,而业务模型不仅仅是主题模型的确立,也包含了企业的发展战略,行业模本等等更多的内容。

图标概念图是数学模型吗

最佳回答:是的,数学公式和图表都算是。做一个实物是物理模型。圈圈加箭头是概念模型。

什么是物理模型,概念模型,数学模型

物理模型:以实物或图片形式直观表达认识对象的特征.如:DNA双螺旋结构模型,细胞膜的流动镶嵌模型。概念模型:指以文字表述来抽象概括出事物本质特征的模型.如:对真核细胞结构共同特征的文字描述、光合作用过程中物质和能量的变化的解释、达尔文的自然选择学说的解释模型等。数学模型:用来描述一个系统或它的性质的数学形式.如:酶活性受温度(PH值)影响示意图,不同细胞的细胞周期持续时间等。

什么是物理模型,概念模型,数学模型

物理模型:以实物或图片形式直观表达认识对象的特征.如:DNA双螺旋结构模型,细胞膜的流动镶嵌模型.概念模型:指以文字表述来抽象概括出事物本质特征的模型.如:对真核细胞结构共同特征的文字描述、光合作用过程中物质和能量的变化的解释、达尔文的自然选择学说的解释模型等;数学模型:用来描述一个系统或它的性质的数学形式.如:酶活性受温度(PH值)影响示意图,不同细胞的细胞周期持续时间等

高中生物几种模型,一种是数学模型,还几种是?

物理模型 DNA双螺旋结构模型,细胞膜的流动镶嵌模型 ,细胞结构模型,演示细胞分裂的橡皮泥模型(必修2减数分离附近),必修三糖卡那个实验(描述胰岛素胰高血糖素作用)数学模型 J型变化曲线 (S型也是)酶活性受温度(PH值)影响示意图,不同细胞的细胞周期持续时间等.概念模型 达尔文的自然选择学说(最典型)你要注意个单元后面的概念图,它们同属于概念模型(不过不算规范)真核细胞结构共同特征的文字描述、光合作用过程中物质和能量的变化我的可能不算全,你好好翻翻书,记住三大模型的特征物理模型:以实物或图片形式直观表达认识对象的特征.概念模型:指以文字表述来抽象概括出事物本质特征的模型.数学模型:用来描述一个系统或它的性质的数学形式

什么是物理模型、概念模型、数学模型?

物理模型:以实物或图片形式直观表达认识对象的特征。如:DNA双螺旋结构模型,细胞膜的流动镶嵌模型。概念模型:指以文字表述来抽象概括出事物本质特征的模型。如:对真核细胞结构共同特征的文字描述、光合作用过程中物质和能量的变化的解释、达尔文的自然选择学说的解释模型等。数学模型:用来描述一个系统或它的性质的数学形式。如:酶活性受温度(PH值)影响示意图,不同细胞的细胞周期持续时间等。扩展资料:概念模型建模过程1,运用概念目录列表或名词性短语找出问题领域中的后选概念。2,绘制概念到概念模型图中。3,为概念添加关联关系。4,为概念添加属性。概念模型模型设计1,概念模型不依赖于具体的生物系统,他是纯粹反映信息需求的概念结构。2,建模是在需求分析结果的基础上展开,常常要对数据进行抽象处理。常用的数据抽象方法是‘聚集"和‘概括"。3,E-R方法是设计概念模型时常用的方法。用设计好的ER图再附以相应的说明书可作为阶段成果。参考资料:百度百科——概念模型

物理模型数学模型概念模型区别

物理模型就是根据自己所能看到的自然事物转化成一种理想的状态,概念模型就是根据你所了解到的转化为精罕的语言,数学模型就是根据你所看到的事物通过数学关系表达出来。下面通过两个方面来区分。一、特征上的区别:1、物理模型:以实物或画图形式直观的表达认识对zhi象的特征在数据仓库项目中,物理模型设计和业务模型设计象两个轮子一样有力地支撑着数据仓库的实施,两者并行不悖,缺一不可。实际上,这有意地扩大了物理模型和业务模型的内涵和外延,因为,在这里物理模型不仅仅是数据的存储,而且也包含了数据仓库项目实施的方法论、资源以及软硬件选型,而业务模型不仅仅是主题模型的确立,也包含了企业的发展战略,行业模本等等更多的内容。2、概念模型:概念数据模型是面向用户、面向现实世界的数据模型,是与DBMS无关的。它主要用来描述一个单位的概念化结构。采用概念数据模型,数据库设计人员可以在设计的开始阶段,把主要精力用于了解和描述现实世界上,而把涉及DBMS的一些技术性的问题推迟到设计阶段去考虑。3、数学模型:(1)评价问题抽象化和仿真化;(2)各参数是由与评价对象有关的因素构成的。(3)要表明各有关因素之间的关系。二、分类上的区别:1、物理模型:中学物理模型一般可分三类:物质模型、状态模型、过程模型。2、概念模型:原理上来说,并没有具体的分类。3、数学模型:(1)精确型:内涵和外延非常分明,可以用精确数学表达。(2)模糊型:内涵和外延不是很清晰,要用模糊数学来描述。

高中生物物理模型,数学模型,概念模型各有哪些例子

物理模型 DNA双螺旋结构模型,细胞膜的流动镶嵌模型 ,细胞结构模型,演示细胞分裂的橡皮泥模型(必修2减数分离附近),必修三糖卡那个实验(描述胰岛素胰高血糖素作用)数学模型 J型变化曲线 (S型也是)酶活性受温度(PH值)影响示意图,不同细胞的细胞周期持续时间等。概念模型 达尔文的自然选择学说(最典型)你要注意个单元后面的概念图,它们同属于概念模型(不过不算规范)真核细胞结构共同特征的文字描述、光合作用过程中物质和能量的变化我的可能不算全,你好好翻翻书,记住三大模型的特征物理模型:以实物或图片形式直观表达认识对象的特征。概念模型:指以文字表述来抽象概括出事物本质特征的模型。数学模型:用来描述一个系统或它的性质的数学形式祝五一节快乐,高考顺利!望采纳,O(∩_∩)O谢谢

物理模型、概念模型、数学模型、计算机模型分别是什么?

模型①所研究的系统、过程、事物或概念的一种表达形式。  模型可以是物理实体,也可以是某种图形或者是一种数学表达式。  用这种方法处理可以大大减少实验工作量,还有助于了解过程的实质。  有的化工过程如反应过程是化学反应与传递过程(物理过程)相互影响的过程,而化学反应与物理过程往往不可能同时满足化学相似和物理相似的条件。  因此传统的因次论、相似论方法不再适用,这时可用模型法进行研究。  ②根据实验、图样放大或缩小而制作的样品,一般用于展览或实验。  ③铸造机器零件等用的模子。数学模型是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。 一、建立数学模型的要求:  1、真实完整。   1)真实的、系统的、完整的,形象的映客观现象;   2)必须具有代表性;   3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;   4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。   2、简明实用。在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。   3、适应变化。随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。
 1 2  下一页  尾页